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TRANSFERING SATURATION, THE FINITE COVER PROPERTY, 
AND STABILITY 

JOHN T. BALDWIN, RAMI GROSSBERG, AND SAHARON SHELAH 

Abstract. Saturation is (//, /^-transferable in T if and only if there is an expansion T\ ofTwith 17̂ j | = 

|T | such that if M is a //-saturated model of T\ and \M\ > K then the reduct M\L{T) is /c-saturated. 

We characterize theories which are superstable without f.c.p.. or without f.c.p. as. respectively those where 

saturation is (No, .^-transferable or (re(r). ^-transferable for all A. Further if for some n > \T\.21' > //*, 

stability is equivalent to fo.' all /i > \T\. saturation is (/i^J-transferable. 

§1. Introduction. The finite cover property (f.c.p.) is in a peculiar position with 
respect to the stability hierarchy. Theories without the f.c.p. are stable; but f.c.p. is 
independent from co-stability or superstability. We introduce a notion of transfer­
ability of saturation which rationalizes this situation somewhat by placing f.c.p. in 
a natural hierarchy of properties. For countable theories the hierarchy is co-stable 
without f.c.p., superstable without f.c.p., not f.c.p., and stable. For appropriate 
(JU, K) each of these classes of theories is characterized by (/z, K)-transferability of 
saturation in the following sense. 

DEFINITION 1.1. Saturation is (/z, K)-transferable in T if and only if there is an 
expansion T\ of T with \T\\ = \T\ such that if M is a /^-saturated model of T\ and 
\M\ > K, then the reduct M\L(T) is K-saturated. 

The finite cover property was introduced by Keisler in [Ke] to produce unsaturated 
ultrapowers. One of his results and a slightly later set theoretic advance by Kunen 
yield immediately that if for X > 2lrl, saturation is (|r |+,^-transferable then 
T does not have the finite cover property. The finite cover property was also 
studied extensively by Shelah in [Sh: 10] and Chapters II, VI and VII of [Sh:c]; those 
techniques are used here. 

Our notation generally follows [Sh:c] with a few minor exceptions: \T\ is the 
number of symbols in \L{ T) \ plus No- We do not distinguish between finite sequences 
and elements, i.e. we write a e A to represent that the elements of the finite sequence 
a are from the set A. References of the form IV x.y are to [Sh:c]. 
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TRANSFERING SATURATION, THE FINITE COVER PROPERTY. AND STABILITY 679 

There are several equivalent formulations of the finite cover property. The follow­
ing, which looks like a strengthening of the compactness theorem, is most relevant 
here. 

DEFINITION 1.2. The first order theory T does not have the finite cover property 
if and only if for every formula <t>{x\y) there exists an integer n depending on </> such 
that for every A contained in a model of T and every subset p of{<f>(x,a), -i<j>(x,a); 
a € A) the following implication holds: if every q C p with cardinality less than n 
is consistent then p is consistent. 

The two main tools used in this paper are the following consequence of not f.c.p. 
and a sufficient condition for A-saturation. 

FACT 1.3 (II.4.6). Let T be a complete first order theory without the f.c.p. and A a 
finite set of L(T)-formulas. There is an integer k& such that ifM \= T is a saturated 
model,A C Mwith\A\ < \M\ andl is a set ofA-indiscernibles over A with cardinality 
at least k& then there exists J C M a set of A-indiscernibles (over A) extending I of 
cardinality \M\. 

The principal tool for establishing the transfer of saturation is 

FACT 1.4 (III.3.10). If a model M of a stable theory ifM is either F£, ^-saturated 
or K(T) + ^-saturated andfor each set ofindiscernibles! contained in M there is an 
equivalent set of indiscernibles J contained in M with |J | = X then M is X-saturated. 

We thank Anand Pillay for raising the issue of the superstable case and the referee 
for the final formulation of Theorem 2.2 which generalizes our earlier version and 
for correcting an oversight in another argument. 

§2. The transferability hierarchy. In this section we characterize certain com­
binations of stability and the finite cover property in terms of transferability of 
saturation. Extending the notation we write saturation is (0, ̂ -transferable in T 
if and only if there is an expansion T\ of T with \T\\ = \T\ such that if M (= T\ 
and \M\ > K, M\L{T) is K-saturated. In particular, taking \M\ = K, PC{T\,T) 
is categorical in K. Using this language we can reformulate an old result of Shelah 
(Theorems VI.5.4 and VIII.4.1) to provide the first stage of our hierarchy. 

FACT 2.1. For a countable theory T', the following are equivalent. 

1. T does not have the finite cover property and is co-stable. 
2. For all X > Ko, saturation is (0, X)-transferable in T. 
3. For some X > 2N° saturation is (0, X)-transferable in T. 

Since the proof of (1) implies (2) is not given in [Sh:c] and follows the line 
of our other arguments we sketch the proof in our discussion after Theorem 2.5. 
This result holds only for countable languages; the remainder apply to theories of 
arbitrary cardinality. 

We introduce the following special notation to uniformize the statement of the 
next result. 

i(T\ - f K ^ if ^ is stable 
K[ }~ \ \T\+ if T is unstable. 

THEOREM 2.2. The following are equivalent for a complete theory T. 
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1. T does not have the finite cover property. 
2. For all X > \T\+, saturation is (K1(T), X)-transferable in T. 
3. For some X > 2l r ' , saturation is (K'{T), ^-transferable in T. 

PROOF. It is obvious that (2) implies (3). Now we show (3) implies (1) by showing 
that saturation is not even (| T\+, ^-transferable (and so certainly not ( K ( 7 , ) + K I , X)-
transferable) if T has the f.c.p. Let T\ be any extension of T and No an arbitrary 
model of T\ with cardinality at least X. By Kunen's theorem (see [Ku]. or Theorem 
6.1.4in[CK]) there exists an H]-incomplete |r|+-goodultrafilter D on \T\. Denote 
by JVi the ultrapower N^/D. By [Ke] 1.4 and 4.1 or VI.5.3, N\ is 171+-saturated 
but not (2lr|)+-saturated. 

We now show (1) implies (2). Let T be a theory without the f.c.p.. ByII.4.1, T is 
stable. The proof now splits into two cases depending on whether T is superstable. 
We begin with the case that T is stable but not superstable. Then/c'(r) > K(T) + H\ 
and this inequality will be essential shortly. 

Let L\ := L(T)\J{F} where F is a binary function symbol. The theory T\ 
consists of T and the following axioms: 

1. For each x, the function F{x, •) is injective. 
2. For every finite A C L(T), let kA be the integer from Fact 1.3. If / is a finite 

set of A-indiscernibles of cardinality at least k& then there exists an x/ such 
that 
(a) the range of F(xj, •) contains / and 
(b) the range of F(xj, •) is a set of A-indiscernibles. 

It should be clear that the above axioms can be formulated in first order logic in 
the language L\. To see that T\ is consistent, we expand a saturated model NofT 
to a model of T\. Fix a 1-1 correspondence between finite sets of A-indiscernibles 
I with |I| > k& and elements x\ of N. By Fact 1.3, each sufficiently large finite 
sequence of A-indiscernibles I in TV extends to one with \N\ elements. Fix a 1-1 
correspondence between the universe of N and this sequence. Interpret F(x/,x)as 
this correspondence. 

Suppose N* is a /c'(r)-saturated model of T\ of cardinality at least X and denote 
N*\L(T) by N. Since K'(T) > K(T) + H, by Fact 1.4 we need only establish the 
following claim. 

CLAIM 2.3. Any infinite sequence of indiscernibles I in N extends to a sequence J 
of indiscernibles (over the empty set) with cardinality \N\. 

PROOF. Let q(x) be the set of formulas which expresses that for each finite A the 
range of F (x, •) is a set of A-indiscernibles and I is contained in the range of F ( JC, •). 
If a e N realizes the type q(x) then, since F(a, •) is 1-1, J := {F(a,b) : b e N} is 
as required. We now show q(x) is consistent. Fix a finite q* C q(x) and let A be 
a finite subset of L(T) such that all the L(T)-formulas from q* appear in A. Let 
m < co be sufficiently large so that all the elements of/ appearing in q* are among 
{bo,... ,bm-\} and m > kA. It suffices to show that for some a e N, each b, for 
/ < m is in the range of F(a, •) and the range of F(a, •) is a set of A-indiscernibles. 
This follows immediately from T\, by the assumption that m >k&. Since q is over 
a countable set there exists an element a 6 N* satisfying q* and we finish. H 
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We now prove Case (2) of (1) implies (2): superstable T. The general outline of 
the proof is the same but we replace K(T) + Hi -saturation with F£,T) -saturation and 
we must use a different trick to find an equivalent set of indiscernibles. The idea 
for guaranteeing F^,T)-saturation is taken from Proposition 1.6 of [Ca]; the referee 
suggested moving it from a less useful place in the argument to here. 

LEMMA 2.4. If T does not have thefc.p. then there is an expansion T\ of T such 
that if M is a K(T)-saturated model ofT\ then M\L(T) is F^,T^-saturated. 

PROOF. Let T be a theory without the f.c.p.. Form L\ by adding to L new 
&-ary function symbols / f £ , for i < m = m(6,E), for each pair of formulas 
0{z), E(x,y, z) with lg(z) = k such that for any M \= T and a e M, if M \= 9(a) 
then E(x, y,a) is an equivalence relation with m classes. The theory T\ consists of 
T and the following axioms: For each &-ary sequence z such that 9(z), the elements 
ffE(z), i < m provide a complete set of representatives for E(x, y, z). Inanymodel 
of T, one can choose Skolem functions ff,E(z) to give sets of representatives for the 
finite equivalence relations so T\ is consistent. Now suppose that N* |= T\ is K{T)-
saturated. For any q = stp(d/C) with \C\ < K(T), note that q is equivalent to the 
Li-type over C consisting of the formulas E(x, ffE{c)) for E a finite equivalence 
relation defined over a finite sequence c e C such that E(d,fpE(c)). Since this 
type is realized, N = N*\L(T) is F£,T)-saturated. H 

Now we finish showing (1) implies (2) in the superstable case. Let k > \T\ + 

be given. We must find a T2 to witness (N0, -^-transferability. First expand T to 
T\ as in Lemma 2.4 so that if M is an No-saturated model of T\ then M\L(T) is 
/•^-saturated. Form L2 by adding to L\ an n + 2-ary function symbol F„ for each 
n. The theory T2 consists of T\ and the following axioms: 

1. For each x and «-ary sequence z, the function F„ (x, z, •) is injective. 
2. For every finite A C L(T) and n-ary sequence z, let k& be the integer from 

Fact 1.3. If / is a finite set of A-indiscernibles over z of cardinality at least k& 
then there exists an xj such that 
(a) the range of F„{x/, z, •) contains / , 
(b) the range of F„{xr, z, •) is a set of A-indiscernibles over z. 

The consistency of T2 is entirely analogous to the similar step in the proof of 
Theorem 2.2. We just have to interpret each F„ (x, z, y) instead of a single function 
of two variables. Now suppose that TV* |= T2 is an Ho-saturated model of cardinality 
at least k. The reduct N of N* to L(T) is ^ - sa tu ra ted and it suffices by Fact 1.4 
to show for each set of indiscernibles / contained in N there is an equivalent set of 
indiscernibles / with | / | = k. 

Let I = {b„ : n < co} be such an infinite set of indiscernibles in N. Let 
p* = Av(/, N) and, since TV is F£ -saturated, choose m < co such that for 
B = {b0.. .bm_\}, p*\B is stationary and p* does not fork over B. We show 
there is a sequence J of indiscernibles based on p*\B with |J | = \N\. Let 
q\{x) be a type over B that contains (Vy)9(Fm(x,bo,.. .bm-\,y)) for all 9(x) € 
p*\B, for each 4>(xn,... x„_i) € L{T) such that N \= <j)(bo,...b„-\), the for­
mula (Vji) . . . {Vy„)(l>(Fm(x, b0,... bm-i, y\),... Fm(x, b0,... bm^uy„)) and the as­
sertion that Fm(x, c, •) is injective. The definition of T2 implies the consistency of 
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q\. Since q\ is a type over a finite set, q\ is realized by an element a e N*\ this 
guarantees the existence of a set of | N | indiscernibles equivalent to / as required. H 

In the superstable case we can get one slightly stronger result which allows us to 
characterize superstable without f.c.p. by (No, A)-transferability. 

THEOREM 2.5. If for some X > 2^r', saturation is (No, ^-transferable in T then T 
is superstable without the f.c.p. 

PROOF. By Theorem 2.2 we deduce that T does not have the f.c.p. (using X > 2'r!) 
and so T is stable. Suppose for contradiction there are a stable but not superstable T 
and a T\ which witnesses (N0, ̂ -transferability in T. Apply VIII.3.5 to PC(r, , T) 
taking K = N0, ju = (2l r ' )+ and X > ju. There are 2M models of T\ with cardinality 
X, which are No-saturated, whose reducts to L(T) are nonisomorphic. So some are 
not A-saturated. H 

We were unable to find a uniform argument for (1) implies (2) of Theorem 2.2; 
there seem to be two quite different ideas for making the large set of indiscernibles 
equivalent to the given set. The proof of (1) implies (2) of Fact 2.1 proceeds along 
similar lines with the following variation. Since T is co-stable every co-saturated 
model is /^-saturated. Again using the co stability, it easy to Skolemize with 
countably many functions so that each type over a finite set is realized. Then the 
same trick as in the superstable case of Theorem 2.2 guarantees the existence of 
large equivalent indiscernible sets. 

The proof of Theorem 2.2 yields somewhat more than is necessary. The theory T\ 
which is found in the implication (1) implies (2) does not depend on X and contains 
only a single additional function symbol. We could obtain a stronger result than 
(3) implies (1) with the same proof by demanding in a modified (3) that the model 
witnessing ( | r | + , ^-transferability have cardinality X = A'r' > 2'rL 

As pointed out by the referee, we can use the arguments of Theorem 2.2 to 
characterize K{T) for theories without the finite cover property if K(T) satisfies the 
set-theoretic conditions of Theorem VIII.3.5. For example, under the GCH if K(T) 
is not the successor of a singular cardinal and T does not have the f.c.p. K{T) is the 
least K such that there is X > 2l r ' for which saturation is (K, A)-transferable. 

THEOREM 2.6. Suppose that there exists a cardinal JU > \T\ such that 2F > /u+. 
For a complete theory T, the following are equivalent: 

1. T is stable. 
2. For all ft > \T\, saturation is (ju+, 2M)-transferable in T. 
3. For some n> \T\, saturation is (ju+, ju++)-transferable in T. 

The condition /u+ < 2M is used only for (2) implies (3) (which is obvious with 
that hypothesis). In the next two lemmas we prove in ZFC that (1) implies (2), 
and that (3) implies (1). This shows in ZFC that stability is bracketed between two 
transferability conditions. 

LEMMA 2.7. IfT is stable and ju > \T\, saturation is (/x+, 2M)-transferable in T. 

PROOF. We must find an expansion T\ of T such that if M is a //+-saturated 
model of T\ and \M | > 2M, M|L is 21"-saturated. FormLi by adding one additional 
binary predicate E(x, y) and add axioms asserting that E codes all finite sets. (I.e., 
for every set of k elements xt there is a unique y such that E(z,y) if and only 
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if z is one of the x,-.) For any model M\ of T\ and any element b of Mi, let 
[b]:={a £ M, : M| \= E[a,b]}. 

Now let M] be a /^-saturated model of T\ and M the reduct of Mi to L. Suppose 
ACM has cardinality less than 2*" and p e Sl(A). We must show p is realized 
in M. By the definition of K{T) there exists B C A of cardinality less than K(T) 
such that p does not fork over B. Since Mi is |r|+-saturated, we may take p\B to 
be stationary. Let p e S{M) be an extension of p that does not fork over B. Since 
/u+ > \T\ > K(T), by /^-saturation of M there exists/ := {an : n < co} C M such 
that an |= p\(B U {a^ : k < «}). Since the sequence is chosen over a stationary 
type, / is a set of indiscernibles. 

Define an L\ -type q over / so that if b realizes q, [b]Ul is a set of indiscernibles over 
the empty set. Since the relation E codes finite sets, and / is a set of indiscernibles 
q is consistent. By the Ni-saturation of M\ there exists b e M realizing the type q. 
If [b] has 2M elements we are finished since for each formula cf>(x, y) and each ~a G A 
with 4>(x, a) e p, only finitely many elements of [b] satisfy -K/>(X, a). To show [b] 
is big enough, using the /^-saturation of M, we define inductively for n e 2-M 

elements cn e M such that 

1. C0 = b. 

2. For any n, [c^„0] and [c^„i ] are disjoint subsets of [c,]. 
3. If lg(^) is a limit ordinal a, [cn] C f l^at^i ;] 

Now for s e 2<", the c, witness that |[Z>]| = 21". H 

LEMMA 2.8. //'/i > |T| and saturation is (/i+, p++)-transferable in T then T is 
stable. 

PROOF. For the sake of contradiction suppose T is an unstable theory and that 
there is a T\ D T such that if M is a /^-saturated model of T\ with cardinality 
at least fi++, M\L(T) is JU++-saturated. Fix M0 |= T\ with cardinality at least 
ju++. Let D be a p-regular ultrafilter on / = p. Construct an ultralimit sequence 
(Ma : a < p+) as in VI.6 with MQ+i = Ml

ajD and taking unions at limits. 
By VI.6.1 MM> is p+-saturated. But by VI.6.2, since T is unstable, MM+ is not 
p++-saturated. H 

The methods and concerns of this paper are similar to those in the recent paper 
of E. Casanovas [Ca]. He defines a model to be expandable if every consistent 
expansion of Th(M) with at most \M\ additional symbols can be realized as an 
expansion of M. His results are orthogonal to those here. He shows for countable 
stable T that T has an expandable model which is not saturated of cardinality 
greater than the continuum if and only if T is not superstable or T has the finite 
cover property. 

By varying the parameters in (p., K)-transferability of saturation we have char­
acterized four classes of countable theories: co-stable without f.c.p., superstable 
without f.c.p., not f.c.p., and stable. For uncountable X, they correspond re­
spectively to: (0, -^-transferability, (No, ̂ -transferability, (Ki, -^-transferability, 
(Ni, 2No)-transferability. Although the analogous results for uncountable languages 
are more cumbersome to summarise, countability of the language is only essential 
for the co-stable characterization. 
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