SATURATION OF ULTRAPOWERS AND KEISLER'S ORDER

Saharon SHELAH

The Hebrew University, Jerusalem Princeton University, Princeton University of California at Los Angeles

Received 5 March 1971 *

We try here to find the connection between how saturated is, or can be an ultrapower, and some properties of the theory of the model and of the ultrafilter. We deal also with similar problems for ultralimits, ultraproducts, limitultrapowers; and the existence of categorical pseudoelementary calsses contained in given elementary classes. In another formulation, this is equivalent to the investigation of Keisler's order \triangleleft , and a generalization \triangleleft^* defined here (see Def. 1.3 in §1). Another generalization which was suggested – replacing ultrapowers by reduced limit powers, is not checked here. Almost all the results here (and more) appear in Shelah [13] §0, F, G (together with historicai remakrs) and they appeared previously in the notices [15], [16]. We solved here, partially, question 25 (of Keisler), from Chang and Keisler [4]; and, equivalently, some questions and conjectures from Keisler [6]. The different sections here are quite unconnected, but §4 depends heavily on [13].

In Section §1 we define notation. In Section §2, we investigate \triangleleft for uncountable theories. We find a way to deduce from theorems about \triangleleft on countable theories theorems about \triangleleft for uncountable theories. We proved that there is a non \triangleleft -minimal nor \triangleleft -maximal theory (2.13A), and that if G.C.H. fails (i.e. there is at least one λ , $2^{\lambda} > \lambda^{+}$), then there are two \triangleleft -incomparable theories (Th. 2.13B). (Those results answer questions of Keisler).

* Revised 26 October, 1971

In Section §3, we mainly prove that certain ultrapowers are not saturated.

Section §4 contains the main results. We affirm a conjecture of Keisler; characterizing countable \triangleleft -minimal theories. We prove that if G.C.H. fails, there is a countable non \triangleleft -minimal non \triangleleft -maximal theory (Th. 4.10, 4.11). We find for models of countable stable theories, almost exactly how saturated are their ultrapowers (Th. 4.1). We also characterize the countable theories T, such that for some $T_1 \supseteq T$, the class of reducts of models of T_1 to the language of T is categorical in some $\lambda > |T_1|$.

In Section §5, we find, quite accurately, how saturated are ultralimits.

76

§ 1. Notations

We shall mostly use the notations in Shelah [13] §1. T will be a complete first-order theory with equality and with no finite models. The first-order language generated from L by adding the predicates $R_1, ...$ and the symbol functions $G_1, ...$ is denoted by $L \cup \{R_1, ..., G_1, ...\}$. Ultrafilters will be denoted by D, and we assume they are non-principal uniform and \aleph_1 -incomplete, and D will be over I, if not mentioned otherwise. We shall use freely Łoś' theorem (see e.g. [1] or [4] on ultrapowers and ultraproducts). Elements of I will be denoted by i, s, t. In an abuse of notation if, for example, M_i is an L-model, $L_1 = L \cup \{P\}$, P_i a relation over $|M_i|$ for every $i \in I$, then (M_i, P_i) is an L_1 -model and if $N = \prod_{i \in I} M_i / D$ then $(N, F^N) = \prod_{i \in I} (M_i, P_i) / D$. We shall denote elements of $\prod_{i \in I} M_i / D$ also as indexed sets $\langle a_i : i \in I \rangle$ and not always as equivalence classes of such indexed sets. Also if $a \in N = \prod_{i \in I} \frac{M_i}{D_i}$, then $a = \langle a_i^{\dagger} i \rangle$: $i \in I \rangle$ and for $\overline{a} = \langle a_0, ..., a_n \rangle$, $\overline{a}[i] = \langle a_0[i], ..., a_n[i] \rangle$. For $a \in M^{I}/D$, eq(a) = {(s, t): a[s] = a[t]}, and for a filter G over $I \times I$, M_D^I/G is a submodel of M^I/D , whose set of elements is $\{a \in M^I/D :$ $eq(a) \in G$. This is defined and investigated in Keisler [9].

An ultrafilter D is (μ, λ) -regular if there is a family of λ subsets of I, which belong to D, and the intersection of every μ sets from the family is empty. D is regular if it is $(\aleph_0, |I|)$ -regular.

For a model *M* the set $p = \{\varphi_k(\bar{x}, \bar{a}^k) : k < k_0\}$ ($\bar{a}^k \in |M|$) is consistent over *M*, if for every finite $w \in k_0$, $M \models (\exists \bar{x}) \land_{k \in w} \varphi_k(\bar{x}, \bar{a}^k)$. Such a consistent set is called a type over *M*. If all the \bar{a}^k are from $A, A \in |M|$, then *p* is a type over *A*. A sequence \bar{c} realizes *p* if $\varphi(\bar{x}, \bar{a}) \in p$ implies $M \models \varphi[\bar{c}, \bar{a}]$. *M* realizes *p* if some $\bar{c} \in |M|$ realizes *p*, and if *M* does not realize *p*, it omits *p*.

M is λ -compact if it realizes every consistent type (over it) of cardinality $< \lambda$; *M* is λ -saturated if it realizes every (consistent) type over any subset $A \subset |M| |A| < \lambda$. By Keisler [8] *D* is λ -good iff for every *M*, M^I/D is λ -compact; and every (\aleph_1 -incomplete) *D* is \aleph_1 -good, but not $|I|^{**}$ -good. *D* is called good if it is $|I|^*$ -good. *M* is λ -universal, if every set of λ formulas which is finitely satisfied in *M* is satisfied in *M*. *M* is ($< \lambda$)-universal if for every $\mu < \lambda M$ is μ -universal.

By [5] (or see e.g. [1], [4] or [6]) for every D_1 , D_2 over I_1 , I_2 we can define the ultrafilter $D_1 \times D_2$ over $I_1 \times I_2$ such that for every M,

 $M^{l_1 \times l_2}/D_1 \times D_2$ is isomorphic to $(M^{l_1}/D_1)^{l_2}/D_2$. If D_1 , D_2 are regular, then $D_1 \times D_2$ is regular, and for every λ , $D_1 \times D_2$ is λ -good iff D_2 is λ -good (see Keisler [10]).

After Keisler [6] we define:

1.1. Definition. $T_1 \triangleleft_{\lambda} T_2$ provided that: for every models M_1 , M_2 of T_1 , T_2 , and (\aleph_0, λ) -regular ultrafilter D over λ , if M_2^{λ}/D is λ^* -compact, then M_1^{λ}/D is λ^* -compact.

1.2. Definition. $T_1 \triangleleft T_2$ if for every λ , $T_1 \triangleleft_{\lambda} T_2$.

A generalization of \triangleleft is

1.3. Definition. $T_1 \triangleleft^* T_2$ if for every *I*, *D*, *G*, λ and $(\lambda^* + |I|^*)$ -sat irated models M_1 , M_2 of T_1 , T_2 , if $M_{2D}^I | G$ is λ^* -compact then $M_{1D}^I | G$ is λ^* -compact.

Keisler [6] shows: $T \triangleleft T$ (2.1a). *T* is \triangleleft_{λ} -minimal iff for every regular *D* over λ , and model *M* of *T*, M^{λ}/D is λ^{*} -compact (§4) and the theory of equality is \triangleleft_{λ} -minimal; and *T* is \triangleleft_{λ} -maximal iff for every non-good. (\aleph_{0}, λ)-regular *D* over λ , and model *M* of *T*, M^{λ}/D is not λ^{*} -compact, and e.g. the theory of numbers is \triangleleft_{λ} -maximal (Th. 3.1). He also shows that for $\lambda > \aleph_{0}$, no theory is both \triangleleft_{λ} -minimal and \triangleleft_{λ} -maximal.

Sh:14

78

Sh:14

§2. Keisler's order for uncountable theories

§ 2. Keisler's order for uncountable theories

Remark on notations.

We shall assume that different theories have languages without any common predicate or function symbol. So writing a formula, it is clear to what unique language it belongs. Let Φ denote an (indexed) set of formulas $\varphi(\bar{x})$; with repetitions possibly. Φ is of L = L(T) if it is a set of formulas which belongs to L. We write $\Phi \subset \mathbb{L}$.

2.1. Definition. $G: \langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ holds, where $\Phi_1 \in L(T_1)$, $\Phi_2 \in L(T_2)$, provided that $\Phi_1 = \{\varphi_k(\overline{x}, \overline{z}^k) : k < k_0\} G[\varphi_k(\overline{x}, \overline{z}^k)] = \Psi_k(\overline{y}, \overline{z}_k) \in \Phi_2, l(\overline{x}) = m_1, l(\overline{y}) = m_2$, and for every model M_1 of T_1 , $\overline{a}^k \in |M_1|, T_2$ has a model M_2 , and $\overline{b}^k \in |M_2|$ such that:

> for every $w \in k_0$ (={ $l : l < k_0$ }) { $\varphi_k(x, a^k) : k \in w$ } is consistent over M_1 iff { $\Psi_k(\overline{y}, \overline{b^k}) : k \in w$ } is consistent over M_2 .

2.2. Definition. $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ holds if there is G such that $G: \langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ holds.

Remarks. A) Clearly by the compactness theorem $G:\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ holds iff for every finite $\Phi \subset \Phi_1, G|\Phi:\langle \Phi, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ holds. B) In Definition 2.1 we can take M_1, M_2 as fixed λ -universal models.

Lemma 2.1. A) If $(\Phi_1, m_1) \le (\Phi_2, m_2), \Phi^1 \subseteq \Phi_1, \Phi_2 \subseteq \Phi^2$ then $(\Phi^1, m_1) \le (\Phi^2, m_2).$

B) If $\Phi^1(\Phi^2)$ is the closure of $\Phi_1(\Phi_2)$ under conjunction and disjunction; then $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ implies $\langle \Phi^1, m_1 \rangle \leq \langle \Phi^2, m_2 \rangle$.

c) If $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$, and $\langle \Phi_2, m_2 \rangle \leq \langle \Phi_3, m_3 \rangle$ then $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_3, m_3 \rangle$.

Proof. Immediate.

Theorem 2.2. A) If for every $\Phi_1 \subset L(T_1)$, $|\Phi_1| \leq \lambda$ there is $\Phi_2 \subset L(T_2)$ and $m_2 < \omega$ such that $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, m_2 \rangle$ then $T_1 \triangleleft_{\lambda} T_2$. B) From the hypothesis of A) we can conclude: if M_1 is a κ -compact model of T_1 , M_2 a ($<\kappa$)-universal model of T_2 , D a (κ , λ)-regular ultrafilter over μ , and M_2^{μ}/D is λ^* -compact, then M_1^{μ}/D is λ^* -compact.

C) In B) if M_1 is λ^+ -compact. M_2 λ -universal, then the regularity of D is superfluous.

D) In the hypothesis of A) (and also B), C)) we can replace "for every $\Phi_1 \subset L(T_1)$," by "for every $\Phi_1 \in K$ " where K is a class of sets of formulas of L(T) such that:

if N_1 is a non- λ^* -compact model of T_1 , then there is a type $p = \{\varphi_k(x, \overline{a^k}) : k < k_0 \leq \lambda\}$ over N_1 which N_1 omit and $\{\varphi_k(x, \overline{y^k}) : k < k_0\} \subset \Phi \in K$ for some Φ .

Remark. This and Theorem 2.5 generalize Keisler [6]. Th. 2.1, p. 29. The generalization [6], Th. 2.3, p. 33, is seemingly incorrect. (On the one hand assume too little - an assumption like 2.2, and conclusion like 2.5; and on the other hand the pattern includes superfluous information). Nevertheless, the generalization goes easily.

Proof. We shall prove only the conclusion of C) by the hypothesis of D). The other cases follow or have similar proofs (or, alternatively, using Keisler [6¹, p. 29, Th. 2.1). So suppose M_1 is a λ^* -compact model of T_1, M_2 a λ -universal model of T_2, D an ultrafilter over $\mu, M_2^{\mu}/D$ is λ^* -compact; and we should prove M_1^{μ}/D is λ^* -compact. Suppose this is not so, and we shall get a cortradiction.

As $N_1 = M_1^{\mu}/D$ is not λ compact, it omits a type (over N_1) $p = \{\varphi_k(x, \bar{a}^k) : k < k_0 \le \lambda\}$. By the definition of K, we can assume $\Phi = \{\varphi_k(x, \bar{y}^k); k < k_0\} \subset \Phi_1 \in K$. By assumption there are $\Phi_2 \subset L(T_2)$, $G, m_2 < \omega$, such that $G: (\Phi_1, 1) \le (\Phi_2, m_2)$. By Lemma 2.1A we can assume $\Phi = \Phi_1$. Let $G[\varphi_k(x, \bar{y}^k)] = \Psi_k(\bar{x}, \bar{z}^k) (l(\bar{x}) = m_2)$.

By Definition 2.1, remembering M_2 is λ -universal, for every $i < \mu$ there are $\overline{b^k}[i] \in [M_2], k < k_0$ such that:

for every $w \in k_0$ { $\varphi_k(x, \vec{a}^k[i]): k \in w$ } is consistent over M_1 iff { $\Psi_k(\vec{x}, \vec{b}^k[i]): k \in w$ } is consistent over M_2 .

As $\overline{b^k}[i]$ is defined for every $i < \mu$, $\overline{b^k} \in M_2^{\mu}/D$ is also defined.

80

Let $q = \{\Psi_k(\overline{x}, \overline{b^k}); k < k_0\}$, and we shall show q is consistent over M_2 . For let $w \subset k_0$, $|w| < \aleph_0$. We should prove $\models (\exists x) \land \Psi_k(\overline{x}, \overline{b^k})$.

This follows from Łoś theorem, definition of $b^k[i]$ and $\widehat{consistency}$ of p. So { $\Psi_k(\overline{x}, \overline{b^k}): k \in w$ } is consistent over M_2^k/D . As this is true for

every finite $w \subset k_0$, q is consistent over M_2^{μ}/D .

Now as M_2^{μ}/D is λ^* -compact, there is a sequence \overline{c} from it that realizes q. We shall prove that p is realized in M_1^{μ}/D , and get the contradiction. Let for $i < \mu$

$$w[i] = \{k < \lambda_0 : M_2 \models \Psi_k[\bar{c}[i], \bar{b}^k[i]]\}$$

Clearly $q[i] = \{\Psi_k(\bar{x}, \bar{b}^k[i]) : k \in w[i]\}$ is consistent. So, as before, by the definition of the $\bar{b}^k[i]$, also $p[i] = \{\varphi_k(x, \bar{a}^k[i]) : k \in w[i]\}$ is consistent over M_1 . As M_1 is λ^* -compact there is c[i] that realizes p[i]. So $c \in M_1^{\mu}/D$ is defined. Now for every $k < k_0 : M_2^{\mu}/D \models \Psi_k[\bar{c}, \bar{b}^k]$ (By the definition of \bar{c}). Hence:

$$\begin{split} \{i < \mu : M_2 &\models \Psi_k [\bar{c}[i], \bar{b}^k [i]] \} \in D \quad \text{or} \\ \{i < \mu : k \in w[i] \} \in D \quad \text{so by the definition of } c[i] \\ \{i < \mu : M_1 &\models \varphi_k [c[i], \bar{a}^k [i]] \} \in D \quad \text{hence} \\ M_1^{\mu} / D &\models \varphi_k [c, \bar{a}^k]. \end{split}$$

So c realizes p, contradiction.

2.3. Definition. Let $\Phi_1 \in L(T_1)$, $\Phi_2 \in L(T_2)$, $\Phi_1 = \{\varphi_k(\overline{x}, \overline{y^k}) : k < k_0\}$, $l(\overline{x}) = m_1$; G a function $G[\varphi_k(\overline{x}, \overline{z^k})] = \Psi_k(\overline{y}, \overline{z_k}) \in \Phi_2$, $l(\overline{y}) = m_2$.

Then $G:\langle \Phi_1, m_1 \rangle \leq^* \langle \Phi_2, m_2 \rangle$ if for every model M_1 of T_1 , and $\overline{a}_n^k \in M_1$, there are a model M_2 of T_2 , and $\overline{b}_n^k \in M_2$ $(k < k_0, n < \omega)$ such that:

for every $w \in k_0 \times \omega$ $\{\varphi_k(\bar{x}, \bar{a}_l^k) : \langle k, n \rangle \in w\}$ is consistent over M_1 iff $\{\Psi_k(\bar{y}, \bar{b}_n^k) : \langle k, n \rangle \in w\}$ is consistent over M_2 .

2.4. Definition. Let $\langle \Phi_1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle$ holds if for some G, $G: \langle \Phi_1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle$ holds.

Lemma 2.3. A) In Definition 2.3, we can replace ω by any $\alpha \geq \omega$. B) $G:\langle \Phi_1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle$ implies $G:\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ C) $\langle \Phi_1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle$ implies $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$

D) If Φ_1 , Φ^1 contain the same formulas (with a different number of repetitions) then

$$\langle \Phi_1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle \Leftrightarrow \langle \Phi^1, m_1 \rangle \leq * \langle \Phi_2, m_2 \rangle$$

E) If $\Phi^1 \subset \Phi_1, \Phi_2 \subset \Phi^2$ then $\langle \Phi_1, m_1 \rangle \leq \langle \Phi_2, m_2 \rangle$ implies $\langle \Phi^1, m_1 \rangle \leq \langle \Phi^2, m_2 \rangle$.

F) $\langle \Phi_1, m_1 \rangle \leq * \langle \Phi_1, m_1 \rangle$ (by the identity map).

Proof. Immediate.

Lemma 2.4. The following statements about T_1 . T_2 are equivalent.

A) For every $\Phi_1 \in L(T_1)$ there are $\Phi_2 \in L(T_2)$ and $m_2 < \omega$ such that $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, m_2 \rangle$.

B) For every $\Phi_1 \subset L(T_1)$, $|\Phi_1| \leq |T_1| + |T_2|^*$ there are $\Phi_2 \subset L(T_2)$ and m_2 such that $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, m_2 \rangle$.

C) For every $\Phi_1 \subset L(T_1)$ there are $\Phi_2 \subset L(T_2)$ and m_2 such that $\langle \Phi_1, 1 \rangle \leq * \langle \Phi_2, m_2 \rangle$.

D) For every $\Phi_1 \subset L(7_1)$, $|\Phi_1| \leq |T_1|$ there are $\Phi_2 \subset L(T_2)$ and m_2 such that $\langle \Phi_1, 1 \rangle \leq * \langle \Phi_2, m_2 \rangle$.

E) Let Φ_0 be the set of formulas $\varphi(x, \overline{y}) \in L(T_1)$ (clearly $|\Phi_0| = |T_1|$). There are $\Phi_2 \subset L(T_2)$, m_2 such that $\langle \Phi_0, 1 \rangle \leq * \langle \Phi_2, m_2 \rangle$.

Proof. Clearly $A \rightarrow B$, $C \rightarrow D \rightarrow E$. So we should prove $B \rightarrow C$, $E \rightarrow A$ only.

Suppose E) holds, and we shall prove A). Let $\Phi_1 \subset L(T_1)$; clearly Φ_1 has a subset Φ such that every formula which appears in Φ_1 appears in Φ exactly once. Hence $\Phi \subset \Phi_0$ [of E)], so by Lemma 2.3E $\langle \Phi_1, 1 \rangle \leq *$ $\langle \Phi_2, m_2 \rangle [\Phi_2 - \text{ of } E)]$. By Lemma 2.3D also $\langle \Phi_1, 1 \rangle \leq * \langle \Phi_2, m_2 \rangle$, and so by 2.3C $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, m_2 \rangle$. So A) holds.

Now suppose that B) holds, and we shall prove C). Let $\lambda = |T_1| + |T_2|^*$, and let $\Phi_1 \subset L(T_1)$. We should prove that there are $\Phi_2 \subset L(T_2)$, m_2 such that $\langle \Phi_1, 1 \rangle \leq * \langle \Phi_2, m_2 \rangle$. By Lemma 2.3D we can assume without loss of generality that no formula appears in Φ_1 twice, hence $|\Phi_1| \leq$

82

§ 2. Keisle.'s order for uncountable theories

 $|T_1| \leq \lambda$. Let $\Phi_1 = \{\varphi_k(x, \overline{y^k}) : k < k_0\}$. Let $\Phi^1 \subset L(T_1)$ be such that every formula of $L(T_1)$ appears in it exactly $|T_2|^*$ times. By B) there are $\Phi_2 \subset L(T_2), m_2$ and G such that $G : \langle \Phi^1, 1 \rangle \leq \langle \Phi_2, m_2 \rangle$. Now each formula $\varphi_k(x, \overline{y^k}) \in L(T)$ appears in $\Phi^1 |T_2|^*$ times, but there are $|T_2|$ formulas in $L(T_2)$. So for some $\Psi_k(\overline{x}, \overline{z^k}) \in L(T_2)$, for $|T_2|^*$ appearances of $\varphi_k(x, \overline{y^k})$ in Φ^1 . $G[\varphi_k(x, \overline{y^k})] = \Psi_k(\overline{x}, \overline{z^k})$. So define $G_1 : \Phi_1 \rightarrow \Phi_2$ by $G_1[\varphi_k(x, \overline{y^k})] = \Psi_k(\overline{x}, \overline{z^k})$. It is easy to check that $G_1 : \langle \Phi_1, 1 \rangle \leq *$ $\langle \Phi_2, m_2 \rangle$.

Theorem 2.5. A) If Φ_0 is the set of all formulas in $L(T_1)$, and for some $\Phi_2 \subset L(T_2)$, $m_2 < \omega$, $\langle \Phi_0, 1 \rangle \leq^* \langle \Phi_2, m_2 \rangle$ then $T_1 \triangleleft^* T_2$.

B) In fact it suffices to demand that there are $\Phi_i \ i < i_0$ such that: if M_1 is a non- λ^* -compact model of T_1 , then there is a type p over M_1 , $p = \{\varphi_k(x, \bar{a}^k) : k < k_0 < \lambda^*\}$, such that for some $i < i_0$ every $\varphi_k(x, \bar{y}^k) \in \Phi_i$; and there are $\Phi_{2,i} \subset L(T_2) \ m_{2,i} < \omega$ such that $\langle \Phi_i, 1 \rangle \leq * \langle \Phi_{2,i}, m_{2,i} \rangle$.

Proof. It is very similar to that of Theorem 2.2, so we omit it. The only differences between the proofs are that here we cannot treat each $i < \mu$ separately, but all together; and that we use $\leq *$ instead of \leq and Lemmas 2.3, 2.4 are also used.

Theorem 2.6. A) If T has the strict order p. (see Shelah [13], Def. 4.2) then $T_{\text{ord}} \triangleleft^* T$, hence $T_{\text{ord}} \triangleleft T$. Also the other conclusions of 2.2 hold for $T_1 = T_{\text{ord}}, T_2 = T$.

B) If T has the independence p (Shelah [13], Def. 4.1) then $T_{ind} \triangleleft^*$ T hence $T_{ind} \triangleleft T$. Also the other conclusion of 2.2 holds for $T_1 = T_{ind}$, $T_2 = T$.

C) If T is instable (Shelah [13], Def. 2.1D) then $T_{ind} \triangleleft^* T$ or $T_{ord} \triangleleft^* T$ (or both hold).

Remark. T_{ord} is the theory of the rational order. T_{ind} is defined in [13] Th. 4.7.

Proof. A) and B) imply C) by [13], Th. 4.1. Now it is easy to check that for T_{ord} , $i_0 = 1$, $\Phi_0 = \{x < y, \exists x < y\}$ satisfies the requirement of 2.5B; and for T_{ind} , $\Phi_0 = \{P(x), z_1 Ex, \exists z_2 Ex\}$, $\Phi_1 = \{\exists P(x), xEz_1, \exists xEz_2\}$, $i_0 = 2$ satisfy those requirements. Hence the conclusion follows by 2.5B.

2.5. Definition. A complete theory T is simple if it satisfies the following.

A) In L(T) there are one two-place predicate xEy, and one-place predicates. For every model M of T, E^M is an equivalence relation over |M|. (Also the equality sign \in L(T)). For a model M of T, $a \in M$ let

$$[a]_{M} = \{b \in M : M \models b E a, \text{ for every predicate } P(x) \text{ of } L(T), \\ M \models P(a) \equiv P(b)\}.$$

B) There is a model M of T such that for every $a \in M$, $[a]_M$ is infinite.

C) There is a model M of T such that for every $a \in M$, there are infinitely many $b \in M$ from different *E*-equivalence classes which realize the same type.

Lemma 2.7. Let T be a simple theory.

A) If M is a model of T, $a \in M$, then any permutation of $\{a\}_M$ is an automorphism of M.

B) Every formula (of L(T)) is equivalent to a boolean combination of formulas of the following forms

1) x = y, 2) x E y, 3) P(x),

4)
$$(\exists y) [xEy \land \bigwedge_{j \leq n} P_j(y) \land \bigwedge_{j \leq m} \neg P^j(y)]$$
.

C) T is stable in every $\lambda \ge 2^{|T|}$ (stable - see [13], Def. 2.1D). So T is superstable.

Proof. Immediate.

Lemma 2.8. Suppose M is a non λ^* -compact model of a simple theory T. Then M omit a type p (over M) which is of one of the following forms.

1)
$$p = \{xEa\} \cup \{P_k(x)^{n_1(l)} : l < l_0 \le \min(\lambda, |T|)\} \cup \{x \ne c_k : k < k_0 \le \lambda\}$$

2) $p = \{P_k(x)^{n_1(l)} : l < l_0 \le \min(\lambda, |T|)\} \cup p_0 \cup \{\neg xEc_k : k < k_0 \le \lambda\}$

84

§ 2. Keisler's order for uncountable theories :

where p_0 consist of formulas ϕ the fourth form: from Lemma 2.7B, and negations of such formulas. (η is a sequence of ones and π erose, $\varphi^0 = \varphi$, $\varphi^1 = \neg \varphi$)

Proof. As *M* is not λ^* -compact, *M* omits a 1-type q, $|q| \leq \lambda$. Without lose of generality suppose $|L(T)| \leq |q| + \aleph_0 = |q|$, because otherwise we can replace *M* by an appropriate reduct. So there is $A \subset |M|$, $|A| \leq |q| \leq \lambda$ such that *q* is a type over *A*, so there is a type $q_1 \in S(A)$, $q \in q_1$, and clearly q_1 is also omitted.

It is clear that if $q_2 \subset q_1$ and:

for every
$$\varphi \in q_1$$
 there are $\Psi_1, ..., \Psi_n \in q_2$ such that
 $M \models (\forall x) \left[\bigwedge_{m=1}^n \Psi_m \rightarrow \varphi \right] (x - \text{the only free variable in}$

the formulas of q_1),

then M omits also q_2 .

So if q_2 is a subtype of q_1 consisting of the formulas of the forms mentioned in 2.7B and their negations, then clearly *M* omits q_2 .

Now our proof split to two cases, according to whether some x E a belong to q_2 or not.

Case I. $x Ea \in q_2$. Clearly no formula x = c belongs to q_2 (otherwise c will realize q_2). So for every $c \in A$, $(x \neq c) \in q_1 \in S(A)$ hence $(x \neq c) \in q_2$. Clearly if $\varphi = x Ea_1 \in q_2$ then as q_2 is consistent over M,

 $M \models (\forall x)[x Ea \rightarrow \varphi]$. Similarly if $\varphi = \neg x Ea_1 \in q_2$. $M \models (\forall x)(x Ea \rightarrow \varphi)$. Similar implications hold if $\varphi \in q_2$ is of the form

 $(\exists y)[x E y \land \bigwedge_{l} P_{l}(y) \land \bigwedge_{l} \exists P^{l}(y)]$ or its negation. So if p is the subtype of q_{2} consisting of the formulas x E a, $P_{k}(x)$ [if $P_{k}(x) \in q_{2}$] $\exists P_{k}(x)$ [if $\exists P_{k}(x) \in q_{2}$] and $x \neq c$ for $c \in A$ then M omits p, and p is of the form 1); and $|p| \leq |q_{1}| \leq \lambda$.

Case II. For no $a \ x \in a \in p$. Clearly for every $c \in A, x \neq c$, $\exists x \in c \in q_2$ and $M \models (\forall x)(\exists x \in c \rightarrow x \neq c)$. Hence it is clear that $p = q_2 - \{x \neq c : c \in A\}$ is omitted in M and it is of the form 2). **Lemma 2.9.** If M is a λ -compact model of a simple theory T, and $N = M_D^I |G$ is $|T|^*$ -compact then N is λ -compact. (In fact it is $\lambda_D^I |G$ -compact.)

Proof. If $\lambda \leq |T|^*$, then there is nothing to be proved. So suppose $\lambda > |T|$. Assume N is not λ -compact and we shall get a contradiction. By the previous lemma we can assume N omits a type p which is of one of the forms mentioned there. So we have two cases.

Case I. M omits p (which is consistent over M) where

$$p = \{x E a\} \cup \{P_l(x)^{\eta(l)} : l < |T|\} \cup \{x \neq c_k : k < k_0 < \lambda\}$$

(there are |T| one place predicates in |T|); clearly it suffices to prove that at least λ -elements of N realize p_1 , where

$$p_1 = \{x Ea\} \cup \{P_l(x)^{\eta(l)} : l < |T|\}.$$

As $|p_1| \leq |T|$ and N is $|T|^*$ -compact, some $b \in N$ realize p_1 . As M is λ -compact, for every $i \in I$, $[b[i]]_M$ is a set of cardinality λ . So we can define for every $k < \lambda$, $i \in I$, an element $b_k[i] \in M$ such that: $k \neq l \Rightarrow b_k[i] \neq b_l[i]$; $b[i] = b[j] \Rightarrow b_k[i] = b_k[j]$. Hence for every k, $b_k \in |M|^I$ is defined, and $eq(b_k) = eq(b) \in G$ hence $b_k \in N$. It is also clear that each h_k belongs to $[b]_N$, and $k \neq l \Rightarrow b_k \neq b_l$. As every element in $[b]_N$ realizes p_1 , p_1 is realized $\geq \lambda$ times in N. Hence p is realized in N, contradiction.

Case II. M omits p which is of form 2) from L mma 2.8. The proof is similar to that of Case I, except that here we should find λ non-E-equivalent elements of N realizing a type over the enpty set. Here we use part C) of Definition 2.5 instead of Part B).

The proof that N is $\lambda_D^I | G$ -compact is similar, so we omit it.

Corollary 2.10. A) A simple countable theory is \triangleleft^* -minimal, and hence \triangleleft -minimal.

B) if M is a model of a simple theory T, D $\in |TV^*$ -good ultrafilter on μ , then M^{μ}/D is \aleph_0^{μ}/D -compact. Hence if D is \aleph_0, μ)-regular, M^{μ}/D is 2^{μ} -compact.

Proof. Immediate.

§2. Keister's order for uncountable theories

Theorem 2.11. For every theory T_1 and cardinal λ there is a simple theory T_2 such that $T_1 \triangleleft_{\lambda} T_2 \triangleleft_{\lambda} T_1$. If $|T_1| \leq \lambda$ then also $|T_2| \leq \lambda$. Moreover if D is a (\aleph_0, λ) -regular ultrafilter over μ , M_1 a model of T_1 , M_2 a model of Γ_2 then M_1^{μ}/D is λ^* -compact iff M_2^{μ}/D is λ^* -compact.

Proof. We shall deal only with the case $|T_1| \le \lambda$. The other case follows from Theorem 2.12.

Let Φ_1 be the set of formulas of T_1 each repeated λ times. Clearly $|\Phi_1| = \lambda$. It is also clear that if for some $\Phi_2 \subset L(T_2)$, $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, 1 \rangle$ then $T_1 \triangleleft_{\lambda} T_2$. (Because if $\Phi^1 \subset L(T_1)$. $|\Phi^1| \leq \lambda$ then $\Phi^1 \subset \Phi_1$, and our conclusion follows by 2.1, 2.2).

Let $\Phi_1 = \{\varphi_k(x, \hat{y}^k) : k < \lambda\}.$

We shall now define a model M_2 , and T_2 will be its theory. We list the properties of M_2 we need, and it is trivial that M_2 exists:

1) The realitions of M_2 are an equivalence relation $E = E^{M_2}$, and for each $k < \lambda$ a monadic relation $P_k = P_k^{M_2}$. 2) For every $a \in M_1$ [a] is infinite.

2) For every $a \in M_2$, $[a]_{M_2}$ is infinite.

$$[[a]_{M_2} = \{b : b \in M_2, aEb, \text{ and } P_k(a) \equiv P_k(b)$$

for every $k < \lambda\}$

3) For every model M_1 of T_1 and $\bar{a}_k \in M_1$, $k < \lambda$ there are infinitely many $a \in M_2$ such that they are not *E*-equivalent and

(*) for every
$$w \in \lambda$$
, $\eta \in \lambda 2$
 $\{\varphi_k(x, \bar{a}_k)^{\eta(k)} : k \in w\}$ is consistent over M_1 , iff
 $\{x Ea \land P_k(x)^{\eta(k)} : k \in w\}$ is consistent over M_2 .

4) For every $a \in M_2$ there are a model M_1 of T_1 and $\bar{a}_k \in M_1$ $k < \lambda$ such that (*) holds.

Remark. We can replace "for every M_1 " by a fixed λ -universal model M_1 of T_1 .

Now let T_2 be the theory of M_2 . Clearly T_2 is simple, $|T_2| = \lambda$. Let $\Phi_2 = \{x E y \land P_k(x) : k < \lambda\}.$

By 3) in the Definition of M_2 , $\langle \Phi_1, 1 \rangle \leq \langle \Phi_2, 1 \rangle$. Hence by 2.2A $T_1 \triangleleft_{\lambda} T_2$. By 2.2B, if *D* is (\aleph_0, λ) -regular, over 1; M_2^I/D is λ^* -compact implies M_1^I/D is λ^* -compact. We should prove that M_2^I/D is not λ^* -compact implies M_1^I/D is not λ^* -compact. By Lemma 2.8 there are two cases.

Case I. $N_2 = M_2^l/D$ omits a type p (which is consistent over N_2)

$$p = \{x Ea\} \cup \{P_k(x)^{n(k)} : k \in w \subset \lambda\} \cup \{x \neq c_k : k < k_0 \le \lambda\}$$

By extending the type we can assume $w = \lambda$. Let $p_1 = \{x Ea\} \cup \{P_k(x) \in k < \lambda\}$.

As in the proof of Lemma 2.9 it follows that N_2 omits p_1 . By condition 4) in the definition of M_2 ,

$$\langle\!\langle x Ea \wedge P_k(x)^{\eta(k)} : k < \lambda \rangle, 1 \rangle \leq \langle\!\langle \varphi_k(x, \overline{y^k})^{\eta(k)} : k < \lambda \rangle, 1 \rangle$$

(We extend $L(T_{\lambda})$ to include *a*, temporarily, and also extend T_{λ} accordingly.) So by Theorem 2.2, in fact, M_1^l/D is also not λ^* -compact.

Case II. M'_2/D omits $p [p_0 \text{ as in } 2.8, 2)].$

$$p = \{P_k(x)^{\eta(k)} : k \in w \subset \lambda\} \cup \{\neg x E c_k : k < k_1 \le \lambda\} \cup p_0$$

Let $p_1 = \{P_k(x)^{\eta(k)} : k \in w \subset \lambda\} \cup p_0$.

By the proof of 2.9, M_2^I/D omits p_1 . But by Keisler [6], Th. 1.5, M_2^I/D is λ -universal, contradiction.

Theorem 2.12. For every set $\{T_k : k < k_0\}$ of theories there is at least upper bound for each of the orderings $\triangleleft^*, \triangleleft, \triangleleft_{\lambda}$. Its cardinality is $\leq \Sigma_k |T_k|$.

Proof. Let Q_k , $k < k_0$ be k_0 new one-place predicates. Let

$$T = \{ \neg (\exists x) [Q_k(x) \land Q_l(x)] : k, l < k_0, k \neq l \} \cup \{ \Psi^{Q_k} : \Psi \in T_k, k < k_0 \} \cup \{ (\forall x_1 \dots x_n) [R(x_1, \dots, x_n)] \neq n \\ \bigwedge_{i \neq 1} Q_k(x_i)] : R \text{ of } L(T_k) \}$$

88

 $[\Psi^Q \text{ is } \Psi \text{ relativized to } Q - (\exists x)\varphi \text{ is replaced by } (\exists x)(Q(x) \land \varphi)].$ It is clear that T satisfies our demands.

Using the last two theorems we can prove many properties of the order \triangleleft between theories, if we know something about the order among countable theories.

Theorem 2.13. A) For every λ there is a simple theory T_{λ} , $|T_{\lambda}| = \lambda$ such that T_{λ} is \triangleleft_{λ} -maximal. Hence if $\lambda < \mu$, $T_{\lambda} \triangleleft T_{\mu}$ but not $T_{\mu} \triangleleft T_{\lambda}$. So there is an (uncountable) theory which is not \triangleleft -minimal nor \triangleleft -maximal.

B) If there is a countable theory T which is not \triangleleft -minimal nor \triangleleft -maximal (see Th. 4.11) then there are \triangleleft -incomparable theories.

Proof. A) Let T^1 be the (full) theory of numbers. By Keisler [6] T^1 is \triangleleft -maximal, and if M^1 is a model of T^1 . D an (\aleph_0, λ) -regular ultrafilter on λ , then $(M^1)^{\lambda}/D$ is λ^* -saturated iff D is λ^* -good. By 2.11, for every λ there is a simple theory $T_{\lambda}, |T_{\lambda}| = \lambda$, such that $T^1 \triangleleft_{\lambda} T_{\lambda} \triangleleft_{\lambda} T^1$. By the construction (and also by Th. 2.11 itself) it is clear that for $\lambda < \mu$, $T_{\lambda} \triangleleft T_{\mu}$. Not $T_{\mu} \triangleleft T_{\lambda}$, follow from the existence of λ^* -good but not λ^{**} -good (\aleph_0, μ)-regular ultrafilters on μ .

This is by 2.10B and the definitions. The existence of such D follows from Kunen [12], and Keisler [10].

B) By 4.1B we can choose such T, such that if M is any model of T, D a (\aleph_0, λ) -regular ultrafilter over λ , then M^{λ}/D is not λ^* -compact iff for some $n_i, \aleph_0 \leq \prod n_i/D \leq \lambda$. Hence by 2.10B $(M_1 \text{ from } 2.11) M_1^I/D$ is μ^* -compact, but M^I/D is not μ^* -compact. So not $T \triangleleft T_{\lambda}$.

On the other hand as T is not maximal, there is an ultrafilter D over a set I, such that D is not good, but $\aleph_0 \leq \prod n_i/D \Rightarrow |I| < \prod n_i/D$. Define $\lambda = |I|$. So M_1^I/D is $|I|^*$ -compact, but as D is not good, $\lambda = |I|, M^I/D$ is not $|I|^*$ -compact. So not $T_{\lambda} \triangleleft T_{\mu}$.

Conjecture. Every theory is the least upper bound of a set of $\leq 2^{\aleph_0}$ countable theories and a simple theory of cardinality |T|.

§ 3. Unsaturated Ultrapowers

Theorem 3.1. Let T be with the f.c.p., $\mu = \prod m_i/D$, D an ultrafilter over L Then M^{I}/D is not μ^{*} -compact, hence is not $(2^{(I)})^{*}$ -compact.

Remark. The f.c.p. was first defined in Keisler [6], p. 38. This is essentially Theorem 4.1, p. 39 Keisler [6], and we repeat it for completeness only.

Proof. Let $\lambda = \min\{\prod n_i/D : \prod n_i/D \ge \aleph_0\}$ and $\lambda = \prod n_i/D$. By the definition of f.c.p., there is a formula $\varphi(x, \overline{y})$ of L(T), such that for arbitrarily large natural numbers n, the following holds:

there are $\bar{a}_n^0, ..., \bar{a}_n^{n-1}$ such that n-1(*) $M \vDash \neg (\exists x) \bigwedge_{i=0}^{} \varphi(x, \bar{a}_n^i)$ n 1 and for $j \le n$ $M \models (\exists x) \bigwedge_{i=0} \varphi(x, \hat{a}_n^i)$

Let for every $i \in I$, f(i) be the maximal number $\leq n_i$ for which (*) holds. Hence $f(i) \leq n_i$, hence $\prod f(i)/D \leq \prod n_i/D = \lambda$. On the other hand for every n^0 there is $n^1 \ge n^0$ for which (*) holds. So $n_i \ge n^1$ implies $f(i) \ge n^1 \ge n^0$. So

$$\{i: n_i \ge n^1\} \subset \{i: f(i) \ge n^1\} \subset \{i: f(i) \ge n^0\}$$

As $\prod n_i/D \ge \aleph_0$, $\{i: n_i \ge n^1\} \in D$, hence $\{i: f(i) \ge n^0\} \in D$, hence $\Pi f(i)/D \ge n^0$. As n^0 is arbitrary, $\Pi f(i)/D \ge \aleph_0$, so by the definition of λ , $\Pi f(i)/D = \lambda$.

Let $P^i = \{ \overline{a}_{f(0)}^0, ..., \overline{a}_{f(0)}^{f(i)-1} \}$. It is easy to see that the models (M, P^i) satisfy the following sentences

 $\exists (\exists x)(\forall \overline{y})[P(\overline{y}) \rightarrow \phi(x; \overline{y})]$ (i)

(ii)
$$(\forall \overline{y}) [P(\overline{y}) \rightarrow (\exists x) (\forall \overline{z}) (P(\overline{z}) \land \overline{y} \neq \overline{z} \rightarrow \varphi(x; \overline{z}))]$$
.

90

§3. Unsaturated Ultrapowers

Let $(N, P^{N'}) + \Pi_i(M, P^i)/D$. Clearly $|P^N| = \Pi |P^i|/D = \Pi f(i)/D = \lambda$. As the sentences (i), (ii) are satisfied by every (M, P^i) , they are satisfied by (N, P^N) . So $p = \{\varphi(x, \bar{a}) : \bar{a} \in P^N\}$ is a type over N, (by (ii)) but is omitted (by (i)), and $|p| = |P^N| = \lambda \le \mu$. So N is not μ^* -compact.

Theorem 3.2. Let *M* be a model of *T*, *T* has the f.c.p. . Let $\varphi(x; \overline{y}) \in L(T)$, and *P*, the set of $n < \omega$ for which (*) (from 3.1) is satisfied, is infinite. Let $(N_1, <, P^N) = (\omega, <, P)_D^l | G, a \in P^N, \mu = |\{b \in N : b < a\}\}$. Then over $M_D^l | G$ there is a type $p, |p| = \mu$, which is omitted, but $q \subset \overline{p}$, $q \neq p \Rightarrow q$ is realized. Moreover, *p* consists of formulas of the form $\varphi(x, \overline{a})$ only.

Proof. Clear from 3.1.

Theorem 3.3. Let *M* be a model of an unstable theory *T*, $\Pi_{i \in I} m_i / D < 2^{\lambda}$. Then M^I/D is not λ^* -compact.

Proof. Let $\mu = \min\{\Pi n^i/D : \Pi n^i/D \ge \aleph_0\}$, $\mu = \Pi n^i/D < 2^{\lambda}$, $n_i = [\log_2 n^i - 1]$ ([x] - the integral part of x). Clearly $\aleph_0 \le \Pi n_i/D \le \Pi n^i/D = \mu$, hence by the definition of μ , $\Pi n_i/D = \mu$. By [13], Th. 4.1A there is a formula $\varphi = \varphi(x; \overline{y}) \in L(T)$ which has the strict order p, or the independence p. For simplicity let $\varphi = \varphi(x; y)$.

By the definitions for every $i \in I$ there are elements $a_i^0, ..., a_i^{n-1}$ of M such that:

(i) if φ has the independence p, then for every $w \subset n_i$,

 $\{\varphi(x, a_i^k) \text{ if } (k \in w) : k < n_i\}$ is consistent over M

(ii) if φ has not the independence p, (hence has the strict order p) for $k, l < n_i$

 $M \models (\exists x) [\neg \varphi(x, a_i^k) \land \varphi(x, a_i^l)] \text{ iff } k < l$

Let $P_i = \{a_i^k : k < n_i\}$, and $S_i \subset |M|$ be such that: (1) for every $a \in M$ there is $b \in S_i$ such that:

for every
$$c \in P_i$$
, $M \models \varphi[a, c] \equiv \varphi[b, c]$

(2) there are no $a, b \in S_{i}, a \neq b$, such that:

$$c \in P_i \Rightarrow M \models \varphi[a, c] \equiv \varphi[b, c].$$

Clearly $n_i \leq |S_i| \leq 2^{n_i} \leq n^i$ as $|P_i| = n_i$. Let $N = M^I/D$, $(N, P^N, S^N) = \prod_{i \in I} (M, P_i, S_i)/D$. Clearly $|P^N| = \prod |P_i|/D = \prod n_i/D = \mu$, and $|S^N| = \prod |S_i|/D \leq \prod n^i/D = \mu$, $|S^N| \geq \prod n_i/D = \mu$, so $|S^N| = \mu$.

Now we split the proof to two cases.

Case I. $\varphi(x; y)$ has the independence p. Let $\lambda_1 = \min(\lambda, \mu)$, and choose $A \subset P^N$, $|A| = \lambda_1$. By the definition of the P_i 's, clearly for every $B \subset A$, $p_B = \{\varphi(x, a)^{\text{if}(a \in B)} : a \in A\}$ is consistent over N. Now by the definition of the S_i , if p_B is realized in N, it is realized by some element of S^N . Hence the number of types μ_B , which are realized in N is $\leq |S| = \mu$ (because $B_1 \neq B_2$ implies no elements realized both p_{B_1} and p_{B_2}). On the other hand the number of such types is $|\{B:B \subset A\}| = 2^{|A|} = 2^{|A|} = 2^{|A|}$. Clearly $2^{\mu} > \mu$, and by hypothesis and definition of μ , $2^{\lambda} > \mu$; hence $2^{\lambda_1} > \mu$. So for some $B \subset A$, N omit p_B , and as $|p_B| = \lambda_1 \leq \lambda$, N is not λ^+ -compact.

Case II. $\varphi(x, y)$ has not the independence p, hence has the strict order p. Let us assume N is λ^* -compact.

Clearly the formula $y < z = (\exists x) [\exists \varphi(x, y) \land \varphi(x, z)]$ define an order on P^N . It is easily seen that for every $a \in N$, either $c \in P^N \Rightarrow N \models \varphi(a, c)$ or there is $b \in P^N$ such that $c \in P^N \Rightarrow N \models \varphi(a, c) \equiv b < c$ [as the corresponding sentence holds in every (M, P_i)]. Hence if there is a set of formulas $\{P(x)\} \cup \{x < c : c \in C_1 \subset P^N\} \cup \{c < x : c \in C_2 \subset P^N\}$ which is finitely satisfied in (N, P^N, S^N) but not realized in it. *then* N will not be λ^* -compact, contradiction. So there is no such set of formulas.

Now we define by induction on $l(\eta)$, $\eta \in \lambda^{\geq 2}$ elements $a_{\eta}b_{\eta} \in P^{N}$ such that:

(1) for every n, $(N, P) \models (\exists y_1 \dots y_n) \begin{bmatrix} n \\ \bigwedge_{i=1}^n P(y_i) \land a_\eta < y_1 \land y_1 < y_2 \land \dots \\ \dots \land y_n < b_\eta \begin{bmatrix} \\ \\ (2) \text{ if } k < l(\eta) \text{ then } a_{\eta k} < a_\eta < b_\eta < b_{\eta k} \end{bmatrix}$

 $(3) a_{\eta(0)} < b_{\eta(0)} < a_{\eta(1)} < b_{\eta(0)}$

92

§3. Unsaturated Ultrapowers

Clearly the definition is possible hence

$$2^{\lambda} > \mu = |P^{N}| \ge |\{a_{n} : \eta \in \lambda 2\}| = |\{\eta : \eta \in \lambda 2\}| = 2^{\lambda}$$

contradiction. So M^{l}/D is not λ^{*} -compact, also in the second case.

Theorem 3.4. Suppose T has the strict order p, M is a λ^* -universal model of T, D an (\aleph_0, λ) -regular ultrafilter on λ . Then M^{λ}/D is not λ^{**} -compact.

Remarks. 1) this theorem was proved independently by Keisler and the author.

2) The demand of λ^* -universality of *M* is necessary, because by an unpublished result of Solovay, it is consistent with ZFC + $2^{80} > 8_1$, that there is an ultrafilter *D* on ω such that got any countable model *M* of a countable language, M^{ω}/D is saturated.

Also, for a weaker result that follows from ZFC, see [17].

Proof. Let $\mu = \exists_{(\lambda^*)}$. Note that $\mu^{\lambda} = \mu$. $\mu^{\lambda^*} > \mu$, and w.l.o.g. $\mu > |T|$. If M^{λ}/D is not λ' -compact, the theorem holds. So assume it is λ^* -compact. So by Theorem 2.6, if N is a model of T_{ord} (the theory of dense order) then N^I/D is λ^* -compact. Let $J = \omega^{>}(\mu^* + \mu)$, (μ^* is μ with inverse order). Let < order J by the lexicographic order. Note that $\langle J, \rangle$ satisfies

(i) J is dense without last and first element (ii) s < t, $s < t \in J$ implies there are s < t, i < u and

(ii) s < t, $s, t \in J$ implies there are $s_i, t_i, i < \mu$ such that

$$i < j < \mu \Rightarrow s < s_i < t_i < s_j < t_j < t$$

W.l.o.g. assume *M* is μ^* -saturated. Now as *T* has the strict order *p*, and *M* is universal, there is $\varphi(\overline{x}, \overline{y}) \in L(T)$ and $\overline{a}_s \in |M|$ for $s \in J$ such that:

(iii) $M \models (\exists \bar{x}) [\exists \varphi(\bar{x}, \bar{a}_s) \land \varphi(\bar{x}, \bar{a}_t)]$ iff s < t.

Let $P^M = \{\overline{a_s} : s \in J\}$, $\langle M = \{\langle \overline{a_s}, a_t \rangle : s < t\}$, and $(N, F^N, \langle N \rangle) = (M, P^M, \langle N \rangle)^{\lambda}/D$. Note that $\langle M$ order P^M is in a dense order without first and last element, hence $(P^N, \langle N \rangle)$ is λ^* -saturated. Notice that also (ii) is satisfied by $(P^N, \langle N \rangle)$. So we can define $\overline{a_\eta}, \overline{b_\eta} \in P^N$ for $\eta \in \lambda^{*>\mu}$ such that:

(A) If $k < l(\eta), \tau = \eta | k$ then $\overline{a}_r < \widetilde{a}_p < \overline{b}_n < \overline{b}_r$ (B) If $i < k < \mu$, then $\overline{a}_{n-(k)} < \overline{b}_{n-(k)} < \overline{a}_{n-(k)} < \overline{b}_{n-(k)}$.

Now for every $\eta \in \lambda^* \mu$, the type

$$p_{\eta} = \{ \neg \varphi(\overline{x}, \overline{a}_{\eta l}) : l < \lambda' \} \cup \{ \varphi(\overline{x}, \overline{b}_{\eta l}) : l < \lambda^* \}$$

is consistent over N, and $|p_n| = \lambda^2$. If any p_n is omitted – the conclusion of the theorem holds. So p_{η} is realized by c_{η} , and clearly $\eta, \tau \in \lambda^* \mu$, $\eta \neq \tau$ implies $c_n \neq c_\tau$. As in the proof of Theorem 3.3 (the use of S) we see that in N at most μ types $\subset \{ \varphi(\widehat{x}, \widetilde{a})^i : i \in \mathbb{Z}, \widetilde{a} \in P^N \}$ are realized. Contradiction.

Lemma 3.5. If T is \triangleleft_{λ} -minimal, $\# \otimes \lambda$, then T is \triangleleft_{α} -minimal.

Proof. By Keisler [6] T is not \triangleleft_{κ} minimal iff there is an (\aleph_0, κ) -regular ultrafilter D on κ , and a model M of T such that M^{κ}/D is not κ^* -compact. Assume T is not \triangleleft_{μ} -minimal. So where is a (\aleph_0, μ) -regular ultrafilter on μ , and a model M of T such that M_{μ}/D is not μ^* -compact. Let D_1 be a (\aleph_0, λ) -regular ultrafilter on $\lambda, D_2 = D_2 \times D$, $I = \lambda \times \mu$, so D_2 is an ultrafilter on I, $|I| = \lambda D_2$ is (\aleph_0, λ) -tegular and $M^I/D_2 = (M^{\lambda}/D_1)^{\mu}/D$ is not μ^* -compact.

Hence not λ^* -compact. So T is Not \mathcal{A}_{λ} -minimal Contradiction.

Sh:14

94

§ 4. Saturation of ultrapowers and categoricity of pseudo-elementary classes

Theorem 4.1. Let T be countable theory, M_i a model of T for every $i \in I$, and D an ultrafilter over I. Let $N = \prod_{i \in I} M_i/D$. Then A) If T has not the f.c.p., $\lambda = \aleph_0^1/D$, then N is λ -saturated B) If T is stable and has the f.c.p. then N is max λ -saturated where

 $\lambda = \min \left\{ \prod n_i / D : \prod n_i / D \ge \aleph_0 \right\}$

C) If T has not the f.c.p., each M_i is μ saturated, and

 $\lambda = \mu^I / D$ then N is λ -saturated.

D) For every finite $\Delta \subset L(T)$ let

 $\lambda_i(\Delta) = \min \{ |p| : p \text{ is } \Delta\text{-}1\text{-}type \text{ over } M_i \text{ which is } omitted by M_i \}$

 $\lambda^* = \min \left\{ \prod \lambda_i(\Delta) / D : \Delta \subset L(T), |\Delta| < \aleph_0 \right\}.$

Let λ be the first cardinal, $\lambda = \prod \lambda^i / D$ for some λ^i , and for every finite $\Delta \subset L(T)$, $\{i: \lambda^i \leq \lambda_i(\Delta)\} \in D$.

Then if T has not the f.c.p., N is λ -saturated, but not $(\lambda^*)^*$ -saturated.

Remarks. 1) Clearly the results, except *D*, are the best possible. For example in A), if we choose the M_i as countable models, then $||N|| = 8\frac{1}{0}/D = \lambda$, hence *N* is not λ^* -saturated.

2) Instead demanding T is countable, we can demand D is $|T|^*$ -good. By Theorem 2.13 this is necessary.

Proof. Notice: as T is countable, for every model M of T and cardinality $\kappa > \aleph_{0}$, M is κ -compact iff M is κ -saturated.

Now in case B), N is not λ^* -saturated by Theorem 3.1. Similarly we can prove in Case D) N is not $(\lambda^*)^*$ -saturated. So it remains to prove that in all cases N is λ -saturated.

Clearly N is \aleph_1 -saturated. By [13] Th. 5.16, as T is countable and

stable, it suffices to prove:

if $\{c_i: i < \omega\} \subset |N|$ is an indiscernible set ([13], Def. 5.1, 5.2), then it can be extended in N to an indiscernible set of cardinality λ .

For every $i \in I$ let us choose a family S_i of subsets of $|M_i|$ such that: 1) $|S_i| = ||M_i||$

2) every finite subset of $|M_i|$ belongs to S_i

3) for every finite Δ ⊂ L(T), n < ω, if w ∈ S_i is Δ-n-indiscertible set, 0 ≤ μ ≤ ||M_i|| and there is a Δ-n-indiscertible set w', w ⊂ w' ⊂ |M_i|, |w'| = μ, then there is w'' ∈ S_i, |w''| = μ, w ⊂ w'' ⊂ |M_i| and w'' is Δ-n-indiscertible set.

Let $|M_i| = \{a_j^i : j < \|M_i\|\}, S_i = \{w_j^i : j < \|M_i\|\}$. Let us define the relation \in^i on $|M_i| : \in^i = \{\langle a_j^i, a_k^i \rangle : a_j^i \in w_k^i\}$. We shall write $x \in y$ instead of $\in(x, y)$. In the language $L = L(T) \cup \{\in\}$, clearly there is a formula $\varphi_{\Delta,n}(x)$ meaning $\{y : y \in x\}$ is a Δ -*n*-indiscernible set, for every finite Δ , *n*.

Now for every $i \in I$ we define P_{Δ}^{i} according to the part of the theorem we want to prove; in

A) $P^i = \{a_k^i : |w_k^i| \ge \aleph_0\}$, in B) $P^i = \{a_k^i : k < ||M_i||\} = |M_i|$, in C) $P^i = \{a_k^i : |w_k^i| \ge \mu\}$, in D) $P^i = \{a_k^i : |w_k^i| \ge \lambda^i\}$ where λ^i are defined such that $\Pi \lambda^i / D \ge \lambda$, and for every finite Δ , $\{i : \lambda^i \le \lambda_i(\Delta)\} \in D$.

Now the following hold

(*) For every finite $\Delta \subset L(T)$, $n < \omega$ there is $m = m(\Delta, n) < \omega$ such that the set of *i*'s for which the following holds belongs to *D*:

(**) For every Δ -*n*-indiscernible set w_k^i , $|w_k^i| \ge m$, there is a Δ -*n*-indiscernible set w_j^i , $w_j^i \in w_j^i \in P^i$.

Let us prove it. In part B) it is trivial. In the other parts T has not the f.c.p., so in part A) it follows from [13] Th. 5.5C, in part C) from 5.5B, and in part D) from the proof of Th. 5.5A in [13]. Notice that except in D) (**) holds for every *i*.

Now clearly (**) is equivalent to a first-order sentence in $L' = L \cup \{\in\} \cup \{P\}$. Let $N' = (N, \in^N, P^V) = \Pi(M_i, \in^i, P^i)/D$. Clearly N' is \aleph_1 -saturated.

96

By (*) clearly the sentences corresponding to (**) are satisfied by N'. Remember we say it suffices to prove that $\{c_i: i < \omega\}$ can be extended in N to an indiscernible set of cardinality λ . As $\{c_i: i < \omega\}$ is an indiscernible set, for every Δ , n it is a Δ -n-indisc mible set. Hence every finite subset of

$$p = \{c_i \in x : i < \omega\} \cup \{\varphi_{\Delta,n}(x) : \Delta \in L(T), \\ |\Delta| < \aleph_0, n < \omega\} \cup \{P(x)\}$$

is satisfies in N', hence p is satisfied in N', say by b. As for every Δ , n, N' $\vDash \varphi_{\Delta,n}(b)$, clearly $w = \{a \in |N| : N' \vDash a \in b\}$ is an indiscernible set, and of course $\{c_i : i < \omega\} \subset w$. As $N' \vDash P[b]$, and $|w| \ge |\{c_i : i < \omega\}| = \aleph_0$, clearly $|w| \ge \lambda$ (the check for each part is easy). So we prove the theorem.

It will be more satisfactory if in 4.1D, $\gamma = \lambda^*$. (This holds if $M_i = M$). For this it suffices to prove

Conjecture A. Let $\langle J, \rangle = \langle \mu, \rangle^I / D$. (< - the natural order on ordinals.) For $a \in J$, let $|a| = |\{b \in J : b < a\}|$. Suppose $a_n \in J$ for $n < \omega$, $|a_n| = |a_0|$. Then there is $a \in J$, $a \le a_n$ and $|a| = |a_0|$.

Theorem 4.2. Let *M* be a λ -compact model of *T*, $|T| \leq |I|$, $N = M^I/D$. If *N* is $(2^{(H)})^*$ -compact, then *N* is λ^I/D -saturated.

Remarks. 1) This affirms conjecture 4D of Keisler [6], p. 41, which says that N is λ -saturated.

2) For countable T, this theorem follows from Theorems 3.1, 4.1C.

3) Here the proof works also for \aleph_1 -complete ultrafilter *D*.

Proof. As N is $(2^{|I|})^*$ -compact, by 3.1, T has not the f.c.p. Hence T is stable ([13], Th. 3.8A). As N is $(2^{|I|})^*$ -compact, $|I| \le |T|$, clearly every infinite indiscernible set can be extended to one with cardinality $\ge (2^{|I|})^*$. By [13], 5.16 and 5.11 (remembering that by [13] Th. 4.1A T has not the independence p). It suffices to prove that:

If W_1 is an indiscernible set in N, $|W_1| \ge (2^{|I|})^*$, then there is an indiscernible set W_2 , $|W_1 \cap W_2| \ge \aleph_0$, $|W_2| \ge \lambda^I/D$.

Let $\{a_k : k < (2^{|l|})^*\} \subset W_1$. Now the following statement will be proved later.

(*) there is an infinite $w \in (2^{|I|})^*$ such that for every $i \in I$, $\{a_k, [i] : k \in w\}$ is an indiscernible set in M.

We can assume $\lambda > |T|$, as otherwise the conclusion of the theorem is trivial. For every $i \in I$ let P^i be a maximal indiscernible set $\{a_k | i\}$: $k \in w$ $\} \subset P^i \subset |M|$. As M is λ -compact, $\lambda > |T|$, clearly $|P^i| \ge \lambda$. Let $(N, P^N) = \langle I(M, P^i)/D \rangle$. Clearly $|P| = II |P^i|/D \ge \lambda^2/D$. Now for every finite $\Delta \subset L(T)$, $n < \omega$, the statement "P is a Δ -n-indiscernible set" is elementary, hence P is an indiscernible set. So $P \subset |M|$, $\{a_k : k \in w\} \subset P$, hence $|P \cap W_1| \ge |\{a_k : k \in w\}| \ge \aleph_0$. So P satisfies the conditions for W_2 . Hence we should prove only (*).

As T is stable, by [13]. Th. 2.13, $|B| \le 2^{|I|}$ implies $|S(B)| \le (2^{|I|})^{|T|} =$ $2^{|I|}$. It is also clear that for $B_i \subset |M|$, $|B_i| \leq 2^{|I|}$ for every $i \in I$; $|\Pi_{i \in I} S(B_i)| = \Pi_{i \in I} |S(B_i)| \le (2^{|P|})^{|I|} = 2^{|I|}.$

Define for $k \leq |I|^*$, sets $w_k \in (2^{|I|})^*$ by induction:

- 1) $w_0 = \{ \}, w_\delta = \bigcup_{l \le \delta} w_l$ for a limit ordinal δ .
- 2) Let w_{α} be defined. Then for every $l < (2^{T})^{*}$ there is a unique $k \in w_{\alpha+1}$ such that: for every $i \in I$, $a_k[i]$, $a_i[i]$ realizes the same type in *M* over $\{a_i[i] : j \in w_{\alpha}\}$.

Clearly for every k, $|w_k| \leq 2^{|l|}$. Choose $\alpha_0 < (2^{|l|})^*$, $\alpha_0 \notin w_{|l|}$. For every $\alpha < |I|^*$, let k_{α} be the ordinal such that for every $i \in I$, $a_{\alpha 0}[i]$, $a_{k_{\alpha}}[i]$ realizes the same .ype over $\{a_{i}[i] : i \in w_{\alpha}\}$ and $k_{\alpha} \in w_{\alpha+1}$. Clearly for every $i, \alpha \leq \beta < \gamma < |E^{+}, a_{k_{R}}[i], a_{k_{N}}[i]$ realizes the same type in M over $\{a_{k_l}: l < \alpha\}$

By [13], Th. 5.17, for every *i*, there is $l(i) < |I|^*$ such that $\{a_{k_k}[i] :$ $l(i) \le \alpha < |I|^*$ is an indiscernible set. Let $l_0 = \sup_{i \in I} l(i)$, $w = \{k_\alpha : \overline{l_0} \le 1 \le 1\}$. Clearly this is the w required in (*). $\alpha < |I|^*$. Clearly this is the w required in (*).

Remark. We can in fact find such w of cardinality $(2^{il})^*$.

Theorem 4.3. If T is countable, superstable, and has not the f.c.p., then there is $T_1, T \in T_1, |T_1| = 2^{\aleph_0}$ such that $PC(T_1, T)$ is categorical in every cardinality $\geq 2^{80}$. Moreover every model in PC(T_1 , T) of cardinality $> \aleph_0$ is saturated.

98

§4. Saturation of ultrapowers

Remark. PC(T_1 , T) is the class of reducts to L(T) of models of T_1 . Note that by Theorem 4.8, and by [13] Section 0. G.7, G.10: the theorem is the best possible.

Proof. Let M be a countable model of T. We expand M to M_1 by adding names for all the possible relations and functions over |M| (i.e. M_1 is a complete model). Let L_1 be the language of M_1 , and T_1 the theory of M_1 (i.e. the set of sentences from L_1 that M_1 satisfied). Clearly T_1 contains its Skolem functions.

Let N_1 be any uncountable model of T_1 , and let N be the reduct of N_1 to L(T). It suffices to prove that N is saturated (as by Moriey and Vaught [18], every two saturated models of the same complete theory, which are of the same cardinality *are isomorphic*). So let p be any 1-type over N, |p| < ||N||, and it suffices to prove that p is realized in N.

Let p_1 be any extension of p to a complete type over |N|, and let $\varphi(x, \hat{a}) \in p_1$ be such that $\text{Deg}\{\varphi(x, \hat{a})\} = \text{Deg}\,p_1$. (see [13], Def. 6.3, Lemma 6.2A, 6.2B). Let $|M| = \{a_i : i < \omega\}$, and let $c_i, i < \omega$ be individual constants in L_1 such that $c_i^{M_1} = a_i$. Clearly there is $a^0 \in |N_1|$, $a^0 \neq c_i^{N_1}$ for $i < \omega$. Define $A = \{F^{N_1} [\hat{a}, a^0] : F$ a function symbol in $L_1\}$. Clearly the submodel N_1^* of N_1 , $|N_1^*| = A$, is an elementary submodel if N_1 (by the definition of T_1 and Tarski–Vaught Test). Let N^* be the reduct of N_1^* to L(T). Clearly N^* is an elementary submodel of N_1 . We shall show now

(*) N_1^* is \aleph_1 -compact, hence N^* is \aleph_1 -saturated.

So let q be a countable type over N_1^* , and we should prove it is realized in N_1^* . Let $q = \{\varphi_i(x, a_0^i, \dots, a_m^i) : i < \omega\}$.

As every $a_i^i \in A$, for some $F_{ij} \in L_1$, $a_j^i = F_{i,j}^M[\bar{a}, a^0]$. So by substituting we get $q = \{\Psi_i(x, \bar{a}, a^0) : i < \omega\}$. Remembering $|M| = \{a_i : i < \omega\}$, $c_i^{M_1} = a_i, M_1$ is complete; it is clear that there is a function symbol G in L_1 such that for every a_n, \bar{b}, b^0 from |M|, $G^{M_1}(a_n, \bar{b}, b^0)$ realizes $\{\Psi_i(x, \bar{b}, b^0) : i < m\}$ for the maximal possible $m \le n$. Clearly for every n

$$M_{1} \models (\forall \bar{z})(\forall y) \left[\bigwedge_{i=0}^{n+1} y \neq c_{i} \land (\exists x) \land \bigwedge_{i=0}^{n+1} \Psi_{i}(x, \bar{z}) \rightarrow \right. \\ \left. \rightarrow \bigwedge_{i=0}^{n-1} \Psi_{i}(G(y, \bar{z}), \bar{z}) \right]$$

As $a^0 \neq c_i^{N^*}$ for $i < \omega$, clearly $G^{N^*}(a^0, \tilde{a}, a^0)$ realizes q. So we prove (*).

As N^* is \aleph_1 -saturated; by [13], 6.8A, 6.8D, we can find $B \in N^*$, $|B| = \aleph_0$ such that $p_1 | B$ is fixed ([13], Def. 6.5), and we can define $b_i \in N^*$ for $i < \omega$, such that b_i realizes $p_1 | (B \cup \{b_j : j < i\})$. By the definition of a fixed type we can define b_i , $\omega \leq i < \omega + \omega = \omega^2$ such that b_i realizes over $|N| \cup \{b_i : j < i\}$ a type p_i , $p_1 \in p_i$, $\log p_1 = \log p_i$. By [13], Th. 6.12A, $\{b_i : i < \omega^2\}$ is an indiscernible set over B. By [13] Th. 4.1 T has not the independence p. So $\theta(x, c) \in p_1$ implies $\models \theta\{b_i, c\}$ for $\omega < i < \omega^2$. So $\{i < \omega^2 : \models \theta\{b_i, \bar{c}\}\}$ is infinite, so by [13], Th. 5.9, $\{i < \omega^2 : \models \neg \theta\{b_i, \bar{c}\}\}$ is finite, so $\{i < \omega : \models \neg \theta\{b_i, \bar{c}\}\}$ is finite. So if W is an indiscernible set in N, $b_i \in W$ for $i < \omega$, then $\theta(x, \bar{c}) \in p_1$ implies $\{b \in W : N \models \neg \theta(b, \bar{c})\}$ is finite. So clearly it suffices to prove that $\{b_i : i < \omega\}$ can be extended in N (not N_1) to an indiscernible set of cardinality $\|N\|$. (Because then all but $\leq |p| + \aleph_0$ elements of the set will realize p_i .)

Let S be a family of subsets of |M| such that

- 1) $|S| = \aleph_0$
- 2) every finite subset of |M| belongs to S.
- 3) If W is a finite Δ -*n*-indiscernible subset of M, (Δ a finite subset of L₁), and W can be extended to an infinite Δ -*n*-indiscernible set in M. then there is such extension which belongs to S.

Let $S = \{W_i : i < \omega^1, \text{ and noting } |M| = \{a_i : i < \omega\} \text{ let } \in^{M_1} = \{\langle a_i a_j \rangle : a_i \in W_j\}, P^{M_1} = \{a_j : W_j \mid = \aleph_0\}, \text{ where } \in, P \text{ belongs to } L_1 \text{ and let } F \in L_1 \text{ be such that for every } a_i \in P^{M_1}, F^{M_1}(x, a_j) \text{ is a function from } W_j \text{ onto } |M|; \text{ and we write } x \in y \text{ instead of } \in (x, y). \text{ Clearly for every finite } \Delta \subset L(T), n < \omega, \text{ there is a formula } \varphi_{\Delta,n}(x) \text{ in } L_1 \text{ saying that } \{v : v \in x\} \text{ is a } \Delta$ -n-indiscernible set. Let

$$q = \{\varphi_{\Delta,n}(x) : \Delta \subset L(T), n < \omega, |\Delta| < \aleph_0\} \cup \cup \{b_i \in x : i < \omega\} \cup \{P(x)\}.$$

It suffices to prove that q is consistent over N_1^* . Because as N_1^* is \aleph_1 compact, q is realized, by some element $b \in N_1^*$. Hence $W = \{c \in N_1 :$ $N_1 \models c \in b\}$ is an indiscernible set (as $N_1^* \models \varphi_{\Delta n}(b), N_1^*$ is an elementary
submodel of N_1). Clearly $b_i \in W$ for $i < \omega$. Also |W| = ||N|| as $N_1 \models P[b]$ [using $F^{N_1}(x, b)$].

§4. Saturation of ultrapowers

Now in order to prove that q is consistent over N_1^* it suffices to prove that every finite subset of it is consistent. By [13], Lemma 5.1C instead of a finite number of $\varphi_{\Delta,n}(x)$ we can take one. So it suffices to prove the consistency of

$$q' = \{P(x), \varphi_{\Delta,n}(x)\} \cup \{b_i \in x : i < m < \omega\}.$$

By [13] Lemma 5.5C for every finite Δ , *n* there is $r = r(\Delta, n) < \omega$ such that: if $m \ge r$, $\{b_0, ..., b_m\}$ is a Δ -*n*-indiscernible set in *M*, then there is an infinite Δ -*n*-indiscernible set in *M* which extends $\{b_0, ..., b_m\}$. So for $r \ge r(\Delta, n)$

$$\begin{split} M_{1} &\models (\forall x)(\forall y_{0} \dots y_{r}) \left[\left(\bigwedge_{i < j} y_{i} \neq y_{i} \land \varphi_{\Delta,n}(x) \land \bigwedge_{i \leq r} y_{i} \in x \right) \rightarrow \\ &\land (\exists y) \left(\varphi_{\Delta,n}(y) \land P(y) \land \bigwedge_{i \leq r} y_{i} \in y \right) \right] \end{split}$$

This clearly implies the consistency of q'. as $\{b_i : i < \omega\}$ is an indiscernible set (in $l_i(T)$) and for every $c_1 \dots c_n \in N_1$ there is $c \in N_1$ such that $N_1 \models (\forall x) (\stackrel{t}{x} \in c \equiv \bigvee_{i=1}^n x = c_i)$.

The following theorems have similar proofs, so we omit them.

Theorem 4.4. A) If T is countable, without the f.c.p., and stable in \aleph_0 (i.e. totally transcendental) then there is T_1 , $T \subset T_1$, $|T_1| = \aleph_0$, such that $PC(T_1, T)$ is categorical in every $\lambda \ge \aleph_0$, and every model of it is saturated.

B) If T has the f.e.p., is countable and stable in \aleph_0 , $\lambda \ge 2^{\aleph_0}$ then there is T_1 , $T \subseteq T_1$, $|T| = \lambda$ such that $PC(T_1, T)$ is categorical in λ and every model of it of cardinality λ is saturated.

Theorem 4.5. If T is countable and superstable, then there is T_1 , $T \subset T_1$, $|T_1| = 2^{\aleph_0}$ such that $PC(T_1, T)$ is categorical in 2^{\aleph_0} , and every model of it of cardinality 2^{\aleph_0} is saturated.

Remark. We use the following fact: if M_1 is a complete model, which expands $\langle \omega, \langle \rangle, N_1$ is an uncountable model of the theory of M_1 , $a \in |N_1|, |\{b \in N_1 : b < a\}| \ge \aleph_0$ then $|\{b \in N_1 : b < a\}| \ge 2^{\aleph_0}$.

Theorem 4.6. Let M be a model of a countable and superstable theory T, $N = M_D^I | G$, $||N|| > \aleph_0$, $\forall \neq M$. Then A) N is \beth_1 -saturated. **B)** If T has not the f.c.p., M is λ -compact then N is λ_D^I (G-compact. $a\}| < \lambda$, then N is λ -saturated.

Theorem 4.7. A) Let M be a countable model of a stable theory T which has the f.c.p., and $\Delta \subset L(T)$ be finite. Let p be a Δ -1-type over $N = M_D^I | G$ which is omitted by N; but every $q \in p$, |q| < |p| is realized by N; and |p| is regular. Then there is

 $s \in \langle \omega + 1, < \rangle_D^I | G \text{ such that } | p | = | \{t : \langle \omega + 1, < \rangle_D^i | G \models t < s \} |$

Remark. 1) This theorem is a converse to Theorem 3.2. 2) For uncountable M, we should replace $\omega + 1$ by $\lambda + 1$, $\lambda = \|M\|$.

Proof. By [13] Th. 5.9A there are finite Δ_1 , n_1 such that: (*) If $\varphi(x, \overline{y}) \in \Delta$, $\{a_i : i < \alpha\}$ is a $\Delta_1 - n_1$ -indiscernible set in N then for every \overline{b} from N either $|\{i < \alpha : N \models \varphi[a_i, \overline{b}]\}| < n_1$ or $|\{i < \alpha : N \models \neg \varphi[a_i, \overline{b}]\}| < n_1.$

By [13], Th. 5.10 there are finite Δ_2 , n_2 such that

(**) (i) every $\Delta_2 - n_2$ -indiscernible set is a $\Delta_1 - n_1$ -indiscernible set. $n_2 \geq n_1$.

(ii) if W_i is a Δ_i - n_i -indiscernible set in N, i = 1, 2 and $|W_1 \cap W_2| \ge n_2$ $\dim(W_2, \Delta_2, n_2, N) \geq \aleph_0 \text{ then } \dim(W_1, \Delta_1, n_1, N) \geq$ $\dim(W_2, \Delta_2, n_2, N)$ ([13], Def. 5.4 define dim).

Similarly we can define finite Δ_3 , n_3 which will relate to Δ_2 . n_2 just as Δ_2 , n_2 relate to Δ_1 , n_1 .

Now let $p = \{\varphi_i(x, \overline{a^i}) : i < |p|\}$. (So for every $i, \varphi_i(x, \overline{y})$ belongs to Δ . or is the negation of a formula from Δ .) For every j < |p| let $p_j =$ $\{\varphi_i(x, \bar{a}^i): i < j\}$. By our assumption each p_i is realized by some $b_i \in N$. As |p| is regular, by [13], Th. 5.8 there is $w \in |p|$, |w| = |p| such that $W_1 = \{b_i : j \in w\}$ is $\Delta_3 \cdot n_3$ -indiscernible set (hence also $\Delta_2 \cdot n_2$ - and Δ_1 - n_1 -indiscernible set). Clearly dim $(W_1, \Delta_1, n_1, N) \ge |p|$. Let us prove that the equality holds. Otherwise there is W^1 , $W_1 \in W^1$, $|W^1| > |p|$ and

Sh:14

102

 W^1 is also $\Delta_1 - n_1$ -indiscernible. Now $\varphi_i(x, \tilde{a}^i) \in p$ implies $i < j < |p| \Rightarrow N \models \varphi_i[b_j, \tilde{a}^i]$, hence $|\{b \in W_1 : \models \varphi_i[b, \tilde{a}^i]\}| \ge \aleph_0$ hence $|\{b \in W^1 : \models \varphi_i[b, \tilde{a}^i]\}| \ge \aleph_0$, hence by (*) $|\{b \in W^1 : N \models \neg \varphi_i[b, \tilde{a}^i]\}| < n_1$. So the number of $b \in W^1$ which do not realize p is $\le n_i |p| < |W^1|$, so p is realized in N. Contradiction. So dim $(W_1, \Delta_1, n_1, N) = |p|$.

Let us choose in M any countable set $P^M = \{a_i : i \leq \omega\}$, and define an order relation $\leq^M = \{\langle a_i, a_j \rangle : i \leq j\}$ (we write $x \leq y$ instead $\langle (x, y) \rangle$). We also define a relation Q^M such that: if $\{c_1, ..., c_{n_3}\}$ is a Δ_2 - n_2 -indiscernible set in M, then $\{c \in M : \langle c, c_1, ..., c_{n_3} \rangle \in Q^M\}$ is a maximal Δ_2 - n_2 -indiscernible set in M, and it includes $c_1, ..., c_{n_3}$. Let us define also a function F^M such that: for every $c_1, ..., c_{n_3} \in M$, let $W = \{c \in M : \langle c, c_1, ..., c_{n_3} \rangle \in Q^M\}$; now $|W| = r < \omega$ implies $F^M(c_1, ..., c_{n_3}) = a_{r+1}$ and $|W| \geq \aleph_0$ implies $F^M(c_1, ..., c_{n_3}) = a_{\omega}$. We also define H^M such that if $F^M(c_1, ..., c_{n_3}) = a_{r+1}$, $H^M(x, c_1, ..., c_{n_3}) \in Q^M\}$; and if $F^M(c_1, ..., c_{n_3}) = a_{\omega}$, $H^M(x, c_1, ..., c_{n_3}) \in Q^M\}$; and if $F^M(c_1, ..., c_{n_3}) = a_{\omega}$, $H^M(x, c_1, ..., c_{n_3}) \in Q^M\}$; and if $F^M(c_1, ..., c_{n_3}) = a_{\omega}$, $H^M(x, c_1, ..., c_{n_3}) \in Q^M\}$; Let

$$N_1 = (N, P^N, \langle N, F^N, Q^N, H^N) = (M, P^M, \langle M, F^M, Q^M, H^M)_D^I | G$$

Let us choose n_3 different element of $W_1 (\subseteq |N|) - c_1, ..., c_{n_3}$. Let $W_2 = \{c \in |N_1| : N_1 \models Q\{c, c_1, ..., c_{n_3}\}\}$. Clearly W_2 is a maximal Δ_2 n_2 -indiscernible set, hence dim $(W_2, \Delta_2, n_2, N) = |W_2|$. Let $a = F^{N_1}[c_1, ..., c_{n_3}]$, and $\lambda = |\{b \in P^{N_1} : N_1 \models b < a\}|$. Clearly, (using H) $|W_2| = \lambda$. It is also clear that $c_1, ..., c_{n_3} \in W_2$, hence $|W_1 \cap W_2| \ge n_3$. As W_1 is $\Delta_i - n_i$ -indiscernible set for i = 1, 2, 3.

(i) $|p| = |W_1| \le \dim(W_1, n_3, \Delta_3, N) \le \dim(W_1, \Delta_1, n_1, N) = |p|$

As $|W_1 \cap W_2| \ge n_3$, and W_3 is infinite, by the definition of $\Delta_3 n_3$.

(ii) $|W_2| = \dim(W_2, \Delta_2, n_2, N) \ge \dim(W_1, \Delta_3, n_3, N)$

Hence W_2 is infinite. As $|W_1 \cap W_2| \ge n_3 \ge r_2$, by (**).

(iii) dim $(W_1, \Delta_1, n_1, \tilde{N}) \ge \dim(W_2, \Delta_2, n_2, N)$.

By (i), (ii), $|p| = \dim(W_1, \Delta_1, n_1, N) = |W_2| = \lambda$. So we prove the theorem: $|p| = \lambda$. Remark: We could choose $P^M = |M|$.

Conjecture 4B. The theorem holds also if |p| is singular.

Theorem 4.8. Suppose T is stable and has the f.c.p. Let $\aleph_0 \ge |T_1| + \aleph_{\beta}$, $\aleph_{\beta} = 2^{\aleph_0}$, and $T \subseteq T_1$. Then in PC(T_1 , T) there are at least $2^{|\alpha|-\beta}$ non-isomorphic models of cardinality \aleph_{α} .

Proof. Follows immediately from Theorems 3.1, 4.8, (and 4.1A if \aleph_{β} is singular) depending on the following.

For $s \in P$, where $P \subset J$, < order J, define $|s| = |\{t : \langle J, \langle \rangle \models t < s\}|$ SP($\langle J, \langle, P \rangle) = \{|s| : s \in P, |s| \text{ is infinite and regular, or } |s| = 2^{\otimes 0}\}.$

Let K be a set of regular cardinals $\ge 2^{\otimes 0}$, and may be also $2^{\otimes 0}$; and assume there is a greatest cardinal in K, and let P be a set of natural numbers. Then there are I. D, G such that

$$K = \operatorname{SP}(\langle \omega, \langle, P \rangle_D^I | G), \ \aleph_{0D}^{-I} | G = \max\{\lambda : \lambda \in K\}.$$

Theorem 4.9. If T is not \triangleleft_{λ} -minimal, then it is not \triangleleft_{μ} -minimal for every $\mu \ge \min(2^{|T|}, \lambda)$.

Remark. If *T* is countable, stable and with the f.e.p., *T* is \triangleleft_{λ} -minimal iff $\lambda < 2^{\aleph_0}$.

Proof. If $\mu \ge \lambda$, the conclusion follows by Lemma 3.5. So we can assume $\lambda > \mu \ge 2^{|T|}$; and by the same lemma it suffices to prove the theorem for the case $\mu = 2^{|T|}$. So let $\lambda > \mu = 2^{|T|}$. *T* is \triangleleft_{μ} -minimal but not \triangleleft_{λ} -minimal.

As T is not \triangleleft_{λ} -minimal, by Keisler [6] there is an (\aleph_0, λ) -regular ultrafilter P over λ , such that for every model N of T, N^{λ}/D is not λ^* compact. Let M be a λ^* -saturated model of T: $\{I_k : k < \lambda\} \subset D$ a family of sets, the intersection of any infinite subfamily of it is empty.

Suppose first M^{λ}/D is not $|T|^*$ -compact. Then there is $A \subset |M^{\lambda}/D|$, $|A| \leq |T|$, such that M^{λ}/D omit a type over A. Without loss of generality there is eq $\subset \lambda \times \lambda$, such that for every $a \in A$, eq $(a) \supset$ eq and eq has |T| equivalence classes. Let G be the filter over $\lambda \times \lambda$ generated by eq. Then also $M_D^{\lambda}|G$ is not $|T|^*$ -compact, and clearly for some filter D_1 over |T|, $M_D^{\lambda}|G$ is isomorphic to $M^{|T|}/D_1$; so T is not $\triangleleft_{(T)}$ -minimal hence not \triangleleft_n -minimal.

Assume now M^{λ}/D is $|T|^{+}$ -saturated. By [13], 5.16, there is an indis-

Sh:14

104

cernible set $W = \{a_n : n < \omega\}$ in M^{λ}/D , dim $(W, M) \leq \lambda$. Without loss of generality there is an equivalence relation $eq \subset \lambda \times \lambda$ with $\leq |T|$ equivalence classes such that $eq(a_n) \supset eq$ for $n < \omega$. Let G be the filter over $\lambda \times \lambda$ generated by eq. Clearly $M_D^{\lambda}|G$ is an elementary submodel of M^{λ}/D (Keisler [9]) and $W \subset M_D^{\lambda}|G$. It is also clear that for some ultra-filter D_1 over |T|, $M_D^{\lambda}|G$, $N = M^{|T|}/D_1$ are isomorphic. As M is λ^* -saturated, $\lambda > 2^{|T|}$, it suffices to prove $M_D^{\lambda}|G$ is not $(2^{|T|})^*$ -saturated. If it was, by Lemma 4.2 it will be λ^* -saturated, hence $\lambda \ge \dim(W, M^{\lambda}/D) \ge \dim(W, M_D^{\lambda}|G) \ge \lambda^*$. Contradiction.

Now we shall try to deduce some results on \triangleleft .

Theorem 4.10. A) Let T be countable. T is <1-minimal iff T has not the f.c.p.
B) For λ≥ 2⁸⁰. T is <1_λ-minimal iff T has not the f.c.p.
C) If 8₀ < λ < 2⁸⁰ < 2^λ, T is <1_λ-minimal iff T is stable.
D) If 8₀ < λ < 2⁸⁰, then if T is stable, it is <1_λ-minimal, and if it is <1_λ-minimal it has not the strict order p.

Proof. A, B) Follow from 4.1A and from 3.1 with product of ultrafilters.C) Follows from 4.1A, B and from 3.3 with product of ultrafilters.

D) Follows from 4.1A, B and from 4.4 with product of ultrafilters.

Theorem 4.11. There is a non- \triangleleft -minimal or \triangleleft -maximal countable theory *T*, iff there is a non-good ultrafilter *D*, such that $\lambda = \prod n_i/D \ge \aleph_0$ implies $\lambda > |I|$ (if G.C.H. fails, there is such *D*),

Proof. If there is no such *D*, by 4.1 every *T* with the f.c.p. is \triangleleft -maximal; so by 4.10A every countable theory is either \triangleleft -minimal or \triangleleft -maximal. If there is such *D*, every stable countable *T* with the f.c.p. is not \triangleleft -minimal (by 4.1A) nor \triangleleft -maximal (by 4.1). By [13] Th. 3.9A or Keisler [6], p. 44, 45 there is such *T*.

§ 5. Saturation of Ultralimits

For every M and D, there is an elementary embedding of M into $M^{I}/D-a \rightarrow f_{a}/D$ where $f_{a}(i) = a$ for every $i \in I$. Hence we can look at M^{I}/D as an elementary extension of M; and can repeat extending the models by taking ultrapowers and at limit stages take union. So we get an increasing elementary extension of models, which are ultralimits of M. For simplicity, all the ultrapowers will be with the same ultrafilter D. This notion was defined and investigated in Kochen [11], Keisler [9] §5.

Let us make the definition more precise.

5.1. Definition. UL(M, D, α) will be defined by induction on α , such that for $\beta < \alpha$, UL(M, D, β) is an elementary submodel of UL(M, D, α).

- 1) for $\alpha = 0$, UL(M, D, α) = M
- 2) for α a limit ordinal, UL(M, D, α) = U UL(M, D, β)
- 3) for $\alpha = \beta + 1$, UL(M, D, α) will be isomorphic to UL(M, D, β)^{*I*}/D, and the isomorphism F_{β} takes each $f_{\alpha}/D \in UL(M, D, \beta)$ to $\alpha \in UL(M, D, \beta) \subset UL(M, D, \alpha)$ (f_{α} is defined Ly $f_{\alpha}(i) = \alpha$).

Notation: At most of the time *M* and *D* are fixed, we let $M_{\alpha} = UL(M, D, \alpha)$ and F_{α} the isomorphism mentioned in 3). We assume also *M* is a model of *T*.

Clearly we can assume that for every α , β , UL(M, D, $\alpha + \beta$) = UL(M_{α} , D, β).

We shall try here to find how compact the ultralimits are, by properties of the oridnal, the ultrafilter and the the theory of the model. As $M_{\alpha+1}$ is isomorphic to $\mathcal{M}^{l}_{\alpha}/D$, we shall restrict ourselves to \mathcal{M}_{δ} for limit ordinals δ .

The following theorem is well known.

Theorem 5.1. If the cofinality of δ , $cf(\delta)$, is μ , and for every $\lambda < \mu$. D is (\aleph_0, λ) -regular, then M_{δ} is μ -compact.

Proof. Let p be a type over M_{δ} of cardinality $<\mu$. Then clearly p is a type over M_{δ} for some $\beta < \delta$. As D is $(\aleph_0, |p|)$ -regular, p is realized in

106

§5. Saturation of Ultralimits

 $M_{\beta+1}$ (see, e.g. Keisler [6], Sec. 1), hence p is realized in M_{δ} . So every type over M_{δ} of cardinality $<\mu$ is realized in M_{δ} ; hence M_{δ} is μ -compact.

Theorem 5.2. If T is unstable, $\mu = cf(\delta)$ then M_{δ} is not μ^{\dagger} compact.

Proof. As mentioned in Section 1, M_1 should be \aleph_1 -compact (remember we deal only with \aleph_1 -incomplete ultrafilters). As T is unstable, by [13], Th. 2.13, (1), (3); there is a formula $\varphi(x, \overline{y})$ and sequences $\overline{a^0}$, $\overline{a^0}$, ..., $\overline{a^n}$, ... from M_1 (all of the length of \overline{y}) such that:

for every $m < \omega$, $\{\varphi(x, \bar{a}_n)^{\text{if } (n \ge m)} : n < \omega\}$

is consistent over M_1 .

As $cf(\delta) = \mu$, let $\delta = \bigcup_{k < \mu} \alpha_k$, where $k < l < \mu$ implies $1 < \alpha_k < \alpha_l$. We shall now define by induction on k sequence \overline{a}^k such that

- 1) $\bar{a}^k \in M_{\alpha k+1}, \ \bar{a}^k \notin M_{\alpha k}$,
- 2) { $\neg \varphi(x, \bar{a}_n): n < \omega$ } \cup { $\varphi(x, \bar{a}^k)$ } is not realized by any element of M_{α_k} ,
- 3) for every $m < \omega$, $p_k^m = \{\varphi(x, \bar{a}_n)^{\text{if}(n \ge m)} : n < \omega\} \cup \{\varphi(x, \bar{a}^l) : l \le k\}$ is consistent (over $M_{\alpha r} + 1$).

If we shall succeed in defining the \bar{a}^k 's then clearly by 3) $p = \{ \neg \varphi(x, \bar{a}_n) : n < \omega \} \cup \{ \varphi(x, \bar{a}^l) : l < \mu \}$ is consistent (over M_{δ}), because every finite subset of p is a subtype of p_k^m . On the other hand if p is realized in M_{δ} , then it is realized in M_{β} for some $\beta < \delta$, so there is $k < \operatorname{cf}(\delta)$. $\beta < \alpha_k < \delta$. Hence p is realized in M_{α_k} , contradiction to 2). Hence p is a consistent type over M_{δ} , which M_{δ} omits, and $|p| = \aleph_0 + \mu < \mu^*$. So M_{δ} is not μ^* -compact.

It remains only to define \bar{a}^k , assuming \bar{a}^l for l < k has been defined. As D is \aleph_1 -incomplete there are $I_n \in D$, $I_{n+1} \subset I_n$, $I_0 = I$, $\bigcap_{\substack{n < \omega \\ n < \omega}} I_n = \emptyset$. Let us define $\bar{a} \in M_{\alpha k}^{-1}/D$: if $i \in I_n - I_{n+1}$, then $\bar{a}[i] = \bar{a}_n$, so $\bar{a} = \langle \bar{a}[i] : i \in I\rangle_i D$, and $\bar{a}^k = F_{\alpha k}(\bar{a})$. Let us check conditions 1), 2), 3) are satisfied.

Clearly $\bar{a}^k \in M_{\alpha_k+1}$. Now for any $n < \omega$, $\{i \in I : \bar{a}[i] = \bar{a}_n\} = I_n - I_{n+1} \notin D$ hence $\bar{a}^k \notin M_{\alpha_k}$. So 1) is satisfied.

S. Shelah, Saturation of ultrapowers and Keisler's order

For proving 2) suppose $c \in M_{\alpha_k}$ realizes $q = \{ \neg \varphi(x, \bar{a}_n) : n < \omega \} \cup \{ \varphi(x, \bar{a}^k) \}$. Then

$$\{i: M_{\alpha_k} \models \varphi \left[F^{-1}(c)[i], \bar{a}[i] \right] \} \in D$$

that is

$$\{i: M_{\alpha k} \models \varphi[c, \tilde{a}[i]]\} \in D.$$

Hence for some $i, M_{\alpha k} \models \varphi[c, \overline{a}[i]]$, and $\overline{a}[i] = \overline{a}_n$ for some n. But as $M_{\alpha k+1}$ elementarily extend $M_{\alpha k}, M_{\alpha k+1} \models \varphi[c, \overline{a}[i]]$. So c does not realize q, contradiction, hence 2) holds. Part 3) has a similar proof. So we finish the definition and the proof.

5.2. Definition. Let $\mu(D)$ be the first cardinal μ such that D is μ -descendingly complete, that is, μ is the first cardinality such that $I_k \in D$, $k < l \Rightarrow I_l \subset I_k$, implies $\bigcap_{k < \mu} I_k \neq \emptyset$ (equivalently $\bigcap_{k < \mu} I_k \notin D$).

Notice if D is (\aleph_0, κ) regular, then $\kappa < \mu(D)$; also $\mu(D) \le |H|^*$. Note also that $\mu(D)$ should be regular.

Theorem 5.3. If $\mu \leq \mu(D)$, $\mu \leq ci(\delta)$ then M_{δ} is μ -compact.

Remark. I don't know whether this is known.

Proof. Let p be a type over M_5 , $|p| < \mu$, and we shall prove that p is realized in M_5 , and so prove the theorem.

As $|p| < \mu \le cf(\delta)$, p is a type over M_{α} for some $\alpha < \delta$. Let $|p| = \aleph_{\beta}$. We shall prove by induction on $\gamma \le \beta$, that

(*) every subtype of p of cardinality $\leq \aleph_{\gamma}$ is realized in $M_{\alpha+\gamma+1}$.

As $\beta \leq \aleph_{\beta} = |p| < \mu \leq cf(\delta)$, $\alpha + \beta + 1 < \delta$, hence by proving this we shall prove that *p* is realized in M_{δ} .

Suppose we have proved (*) for every $\gamma_1 < \gamma$. Hence every subtype of p of cardinality $<\aleph_{\gamma}$ is realized in $M_{\alpha+\gamma}$ (remember every model is \aleph_0 -compact, hence every finite subtype of p is realized in M_{α}). Let q be any subtype of p of cardinality \aleph_{γ} . $q = \{\varphi_k(x, \bar{a}_k): k < \aleph_{\gamma}\}$, and we should prove q is realized in $M_{\alpha+\gamma+1}$. By the induction hypothesis for every $k < \aleph_{\gamma}$, there is $c_k \in M_{\alpha+\gamma}$ which realize $\{\varphi_l(x, \bar{a}_l): l < k\}$. As

108

$$\begin{split} &\aleph_{\gamma} \leq |p| \leq \mu \leq \mu(D) \text{ there is a decreasing sequence } I_{k}, k \leq \aleph_{\gamma}, I_{k} \in D \\ &\bigcap_{\substack{k \leq \aleph_{\gamma} \\ \text{ if } i \in \bigcap_{\substack{l < k}} I_{l} - I_{k} \text{ then } c[i] = c_{k} \text{ (clearly } c \text{ is well defined). Now clearly } \\ &F_{\alpha+\gamma}(c) \in M_{\alpha+\gamma+1} \text{ realize } q \text{, as for every } k \leq \aleph_{\gamma} \end{split}$$

$$\{i: M_{\alpha+\gamma} \models \varphi[c|i], d_k\}\} \supset \{i: i \in \bigcap_{j \le l} I_j - I_l, l > k\} = I_{k+1} \in D$$

109

So q is realized in $M_{\alpha+\gamma+1}$; so p is realized in M_{δ} .

5.3. Definition. A model N strongly omits a type p (over it) if no sub-type of p of cardinality |p| is realized in N.

Lemma 5.4. A) *If M strongly omits* $p |p| = \mu(D)$, *then also M*₁ *strongly omits p.*

B) If M_{α} strongly omits p, $|p| = \mu(D)$, $\alpha < \beta$ then also M_{β} strongly omits p.

C) In A), B) instead of $|p| = \mu(D)$, it suffices to assume that there are no $I_k \in D$ for k < |p|, $k < l \Rightarrow I_l \subset I_k$, $\bigcap_{k < |p|} I_k = \emptyset$; and |p| is regular.

Proof. We shall prove A), as B), C) have similar proofs.

Suppose A) fails, so $c_1 \in M_1$ realize $q \in p$, |q| = |p|. Let $c_1 = F_0(c)$, $q = \{\varphi_k(x, \bar{a}_k) : k < |q|\}$. So clearly for every k < |q| = |p|

$$\{i : i \in I, M \vdash \varphi_k[c[i], \bar{a}_k]\} \in D$$

It is also cleat that for every $i \in I$

$$q(.) = \{\varphi_k(x, \bar{a}_k) : M \vDash \varphi_k[c[i], \bar{a}_k]\}$$

is a subtype of q, hence of p, which is realized in M; hence |q(i)| < |p|. As $|p| = \mu(D)$ is regular, for every $i \in I$ there is a bound k(i) < |p| to $\{k: M \models \varphi_k[c[i], \tilde{a}_k]\}$. Let, for $l < |p|, I_l = \{i: k(i) \ge l\}$. Clearly I_l , l < |q| is a decreasing sequence, and by the definition of k(i), $\bigcap_{\substack{l < |p| \\ l < |p|}} I_l = \emptyset$. In addition each $I_l \in D$ as $I_l = \{i: k(i) \ge l\} \supset \{i: M \models \varphi_l[c[i], \tilde{a}_l]\} \in D$. So we get a contradiction to the definition of $\mu(D)$. 110

Theorem 5.5. If T is unstable, $\delta \ge \mu(D)$, then M_{δ} is not $\mu(D)^*$ -compact. Moreover there is a type over $M_{\mu(D)}$ of cardinality $\mu(D)$ which M_{δ} strongly omits.

Proof. As it is similar to 5.2, 5.7 we omit it.

Conclusion 5.6. If T is unstable, $\mu = \min(cf(\delta) | \mu(D))$, then M_{δ} is maximally μ -compact.

Proof. Immediate by 5.2, 5.3, and 5.5.

5.4. Definition. T satisfies $(C * \lambda)$ if: there are an increasing sequence of sets A_k , $\kappa \leq \lambda$; a type $p \in S(A_{\lambda})$ ([13], sec. 1) such that for every $k < \lambda$ there is a formula $\varphi_k(x, \overline{y_k})$ and a infinite-indiscernible set over A_k ([13], Def. 5.2), $\{\overline{a}_{k,n} : n < \omega\}$ such that $\overline{a}_{k,0}, \overline{a}_{k,1} \in A_{k+1}$, and $\neg \varphi_k(x, \overline{a}_{k,0}), \varphi_k(x, \overline{a}_{k,1}) \in p$.

5.5. Definition. $\kappa(T)$ is the first cardinality κ such that T does not satisfy $(C * \kappa)$.

Remark. $(C * \lambda)$ was defined and investigated in [14]. By [14], Th. 4.4 for stable *T*, and $\lambda \ge 2^{|T|}$; *T* is stable in λ iff $\lambda = \sum_{k \le \kappa(T)} \lambda^k$.

Theorem 5.7. If $\kappa(T) > \mu = \min[\mu(D), c!(\delta)]$ T is stable. <u>then</u> M_{δ} is maximally μ -compact

Proof. By Theorem 5.3, M_{δ} is μ -compact, so we should prove only that M_{δ} is not μ^{+} -compact. By hypothesis T satisfies $(C * \mu)$, so there are A_{k} . $k \leq \mu, p \in S(A_{\lambda}), \varphi_{k}(x, \overline{y}_{k})$, and $\overline{a}_{kn}, k < \mu, n < \omega$; such that

 $k < l \Rightarrow A_k \subset A_l; \{\overline{a}_{k,n} : n < \omega\}$ is an indiscernible set over $A_k, \overline{a}_{k,0}, \overline{a}_{k,1} \in A_{k+1}$ and $\neg \varphi_k(x, \overline{a}_{k,0}), \varphi_k(x, \overline{a}_{k,1}) \in p$.

Clearly it suffices to prove the theorem for the case L = L(T) is the minimal language containing all the formulas $\varphi_k(x, \overline{y}_k)$; so $|L| \le \mu$.

Choose $\alpha_k < \delta$ for $k < cf(\delta)$ such that $\delta = \bigcup_{k < f(\delta)} \alpha_k$.

Let us define: a function H is elementary if for every $\varphi \in L, a_1, ..., a_n$:

§5, Saturation of Ultralimits

$$\models \varphi[a_1, ..., a_n]$$
 iff $\models \varphi[H(a_1), ..., H(a_n)]$

and let

$$H(\langle a_1, ..., a_n \rangle) = \langle H(a_1), ..., H(a_n) \rangle.$$

Now we define by induction an increasing sequence of elementary functions H_k and ordinals $\beta_k \leq \delta$ for $k \leq \mu$ such that:

- 1) the domain of H_k is U Range $(\bar{a}_{l0}, \bar{a}_{l,1})$
- 2) the range of H_{k} is included in M_{ak} , $\beta_{k} \ge \alpha_{k}$
- 3) if $k < l < \mu$, then $\beta_k < \beta_l < \delta$, and for every $c \in M_{\beta_k}$,

$$M_8 \models \varphi_l[c, H_{l+1}(\bar{a}_{l,0})] \cong \varphi_l[c, H_{l+1}(\bar{a}_{l,1})]$$

For k = 0, H_k will be the void function, $\beta_0 = \alpha_0$.

For a limit ordinal k, $\mathcal{H}_k = \bigcup_{l \leq i} \mathcal{H}_l$, $\beta_k = \max(\alpha_k, \bigcup_{l \leq k} \beta_l)$. [If $k \leq \mu$, $\beta_k \leq \mu$ because $\mu \leq \operatorname{cf}(\delta)$].

Suppose F_k , β_k are defined, $k \le \mu$, and we shall define H_{k+1} , β_{k+1} . We first show:

(*) there is β < δ such that we can extend H_k to an elementary function H* from Dom H_k ∪ U {Range ā_{k,n}: n < ω} into M_β.

If $\mu = \aleph_0$, this is true, as for every N, N^I/D is \aleph_1 -compact, so $\beta = \beta_k + 1$ will suffice. So assume $\mu > \aleph_0$. We define now by induction on n an increasing sequence of functions H^n from Dom $H_k \cup \mathbb{U}$ {Range $\bar{a}_{k,m} : m < n$ } into M_{δ} . If we have defined H^n , and cannot define H_{n+1} , this means M_{δ} is not μ^* -compact [as it omits

$$\{\varphi(\bar{x}, F(\bar{c})) : \varphi \in \mathbb{L}, \bar{c} \in \text{Dom } H^n, \vDash \varphi[\bar{a}_{kn}, \bar{c}]\}\}$$

and so the conclusion of the theorem holds. So we can assume H^n is defined for every *n* and let $H^* = \bigcup_{\substack{n < \omega \\ n < \omega}} H^n$. Clearly H^* is an elementary function, with the appropriate domain into M_{δ} . As μ is regular (as $\mu(D)$, cf (δ) are regular) $\mu > \aleph_0$, H^* is into M_{δ} for some $\beta < \delta$.

So we proved (*).

Define $\beta_{k+1} = \max(\beta, \alpha_k)$. Let $I_n \in D$, $I_n \supset I_{n+1}$, $I_0 = I$. $\bigcap_{\substack{n < \omega \\ n < \omega}} I_n = \emptyset$ (they exist as D is \aleph_1 -incomplete). Define $H_{k+1}(\bar{a}_{k,0}, \bar{a}_{k,1}) \in M_{\beta_k+1}$ as $F_{\beta_k}(\bar{c})$, where $\bar{c} \in M_{\beta_k}{}^l/D$ is defined as follows: if $i \in I_n - I_{n+1}$, $\bar{c}[i] = H^*(\bar{a}_{k,n}, \bar{a}_{k,n+1})$. It is easy to verify H_{k+1} , β_{k+1} satisfies the induction conditions.

Now

$$p = \{\varphi_{k}, \dots, H_{k+1}(\bar{a}_{k,0})\} \equiv \neg \varphi_k(x, H_{k+1}(\bar{a}_{k+1})): k < \mu\}$$

is a consistent type over M_{β_n} , and it is strongly omitted by $M_{\beta_{\mu}}$. As $\beta_{\mu} \leq \delta$, by Lemma 5.4, also M_{δ} omits the type, so M is not μ^* -compact.

It is natural to conjecture that if $\kappa(T) \leq \mu$, $\mu = \min[\mu(D), cf(\delta)]$, and, $\alpha, \beta < \delta \Rightarrow \alpha + \beta < \delta$, then M_{δ} is UL(\aleph_0, D, δ)-saturated (UL(\aleph_0, D, δ) the cardinality of UL(M, D, δ) for every countable M) [this would generalize 4.1A]. But this is not true. T may be superstable [$\kappa(T) = \aleph_0$] or even simple [Def. 2) and M or M_1 will omit strongly a type of cardinality $\mu(D)$. However

Theorem 5.8. Suppose $\kappa(T) \leq \min[\mu(D), cf(\delta)]$, *D* is $(\aleph_0, |T|)$ -regular ultrafilter; $\alpha, \beta < \delta \Rightarrow \alpha + \beta < \delta$. Then M_{δ} is λ -saturated, where $\lambda = UL(\aleph_0, D, \delta)$.

Remark. 1) For every δ_1 there are δ_2 , δ ; $\delta_1 = \delta_2 + \delta$; $\alpha, \beta < \delta = \alpha + \beta < \delta$, and UL(*M*, *D*, δ_1) = UL(M_{δ_2} , *D*, δ_1). So the restriction on δ is natural.

2) Clearly $\lambda > |T|$, so it suffices to prove M_{δ} is λ -compact.

Proof. Let p be a type over M_{δ} , $|p| < \lambda$. We should prove p is realized in M_{δ} . Let q be any extension of p in $S(|M_{\delta}|)$.

Notice that if $|B| < \kappa(T) \le cf(\delta)$, $B \subset M_{\delta}$, then for some $\alpha < \delta$, $B \subset M_{\alpha}$. Hence by Shelah [19] there is $\alpha < \delta$ s.t. for every $\varphi = \varphi(x, \overline{y}) \in$ L, $\operatorname{Rank}_{\varphi}(q|\varphi) = \operatorname{Rank}_{\varphi}[(q|M_{\alpha})|\varphi]$ (sec [13], Def. 2.4, 2.5, and Th. 2.13, $p|\varphi$ is the maximal φ -type contained in p, p|A - the maximal type over A contained in p). So by [13], 2.5B; there is a set $B \subset M_{\alpha}$, $|B| \le T$. such that for every φ , $\operatorname{Rank}_{\varphi}(q|\varphi) = \operatorname{Rank}_{\varphi}[(q|B)|\varphi]$. Now we can define a_n for $n < \omega$ such that:

Sh:14

112

§5. Saturation of Ultralimits

1) a_n realizes $q \mid (B \cup \{a_m : m < n\})$

2) if $\delta > \omega$, $a_n \in M_{\alpha+n+1}$

As D is $(\aleph_0, |T|)$ -regular, this is possible. As in the proof of 4.1, and in $\{13\}, 5.16$, it follows that:

if $\varphi(x, \overline{b}) \in q$, then $\{n < \omega : \models \neg \varphi(a_n, \overline{b})\}$ is finite, and $\{a_n : n < \omega\}$ is an indiscernible set over *B*.

Suppose for a moment $\delta > \omega$. Let $P = \{a_n : n < \omega\} \subset M_{\alpha+\omega}$ (as $\alpha < \delta, \omega < \delta; \alpha + \omega < \delta$). Let $(M_{\delta}, P^{\delta}) = \text{UL}((M_{\alpha+\omega}, P), D, \delta)$ (remember $\delta = \alpha + \omega + \delta$). Clearly P^{δ} extends P and is an indiscernible set over ϕ . So $\varphi(x, \overline{b}) \in p$ implies $\varphi(x, \overline{b}) \in q$ implies $\{c: a \in P^{\delta}, \models \neg \varphi(a, \overline{b})\}$ is finite. So all except $|p| \cdot \aleph_0 < \lambda$ members of P^{δ} realize p. As $|P^{\delta}| = \text{UL}(\aleph_0, D, \delta) = \lambda$, the theorem follows and we remain only with the case $\delta = \omega$; and we can define the a_n 's simultaneously in $M_{\alpha+1}$ and the proof goes in the same way.

References

- [1] J.L. Bell and A.B. Slomson, Models and ultraproducts (North-Holland, Amsterdam, 1969).
- [2] M. Benda, Reduced filters and Boolean ultrapowers. Ph.D. Thesis, University of Wisconsin, 1970.
- [3] M. Benda, On reduced products and filters. Annals of Math. Logic 4 (1972) 1-29.
- [4] C.C. Chang and H.J. Keisler, Model Theory (North-Holland, Amsterdam, 1972)
- [5] T. Frayne, A. Morel and D. Scott, Reduced direct products, Fund. Math. 51 (1952) 195 228.
- [6] H.J. Keisler, Ultraproducts which are not saturated, J. Symb. Logic, 32 (1967), 23-46.
- [7] H.J. Keisler, Good ideals in filed of sets, Annals of Math. 79 (1964) 338-359.
- [8] H.J. Keisler, Ultraproducts and saturated models, Koninkl. Nederl. Akademie van Wetenschappen, Proceedings Series A 67 and Indag. Math. 26 (1964) 178-186.
- [9] H.J. Keisler, Limit ultrapowers, Trans. A.M.S. 107 (1963) 382-408.
- [10] H.J. Keisler, Ideals with prescribed degree of goodness. Annals of Math. 81 (1965) 112-116.
- [11] S. Kochen, Ultraproducts in the theory of models, Annals Math. 72 (1961) 221-262.
- [12] K. Kunen, Ultrafilters and independent sets, to appear in A.M.S. Trans.
- [13] S. Shelah, Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order regory, Annals of Math. Logic 3 (1971) 271-362.
- [14] S. Sheiah, Finite diagrams stable in power, Annals of Math. Logic, 2 (1970) 69-118.
- [15] S. Shelah, On unsaturated ultrapowers, Notices of A.M.S., 16 (1969) 979.
- [16] S. Shelah, On elementary classes containing categorical pseudo-elementary classes. Notices of A.M.S. 17 (1970) 674.
- [17] S. Shelah, Every two elementary equivalent models have isomorphic ultrapowers, Israel J. Math. 10 (1971) 224-233.
- [18] M.D. Morley and R.L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962) 37-57.
- [19] S. Shelah, Lectures notes by R. Gail, UCLA, Spring 1971.