SATURATION OF ULTRAPOWERS AND KEISLER'S ORDER

Saharon SHELAH
The Hebrew Unbursity, Jerustem
Princton Unitersity, Princeton
University of Colformia at Los Angeles

Received 5 Marci: 1971 *

We try here to find the connection between how saturated is, or can be an ultrapower, and some properties of the theory of the model and of the ultratilter. We deal also with similar problems for ultralimits, ultraproducts, limitultrapowers: and the existence of categorical pseudoelementary calsses contained in given elementary classes. In another formulation, this is equivalen to the investigation of Keisler's order \triangle, and a generalization \triangleleft^{*} defired here (see Def. 1.3 in § 1). Another generalization which was suggested - replacing ultrapowers by reduced limit powers. is not checked here. Almost all the results here (and more) appear in Shelah [13] §0. F, G (together with historicai remakrs) and they appeared previously in the rotices [15], [16]. We soived here, partially, question 25 (of Keisler), from Chang and Keisler [4]; and, equivalently, some quest'ons and conjectures from Keisler [6]. The different sections here are quite uncomected, but $\S 4$ depends heavily on [13].

In Section § 1 we define notation. In Section § 2, we investigate \triangleleft for uncountable theories. We find a way to deduce from theorems about \checkmark on countable theories theorems about \triangleleft for uncountable theories. We proved that there is a non \triangleleft-minimal nor \triangleleft-maximal theory (2.13 A), and that if G.C.H. fails (i.e. there is at least one $\lambda, 2^{\lambda}>\lambda^{+}$), then there are two 0 -incomparable theories (Th. 2.13B). (Those results answer questions of Keisler).

In Section §3, we mainly prove that certain ultrapowers are not saturated.

Section $\$ 4$ contains the main results. We affirm a conjeeture of Keisler; characterizing countable \triangleleft-minimal theories. We prove that if G.C.H. fails, there is a countable non Δ-minimal non $<$-maximal theory (Th. 4.10, 4.11). We find for models of countable stable theories. almost exactly how saturated are their ultrapowers (Th. 4.1). We iso
 class of educts of models of T_{1} to the language of T is categorical in some $\lambda>\left|T_{1}\right|$.

In Section §5, we find, quite accurately, how saturated are ultralimits.

§ 1. Notatione

Be shall mostly use the notations in Shelah [13] § 1 . T will be a complete Birst-order the sry with equality and with no finite models. The first-order language generated from L by adding the predicates R_{1}, \ldots and the symbol functions $G_{1} \ldots$ is denoted by $\mathrm{L} \cup\left\{R_{1}, \ldots, G_{1}, \ldots\right\}$. Ultrafilters will be denoted by D, and we assume they are non-principal uniforn and s_{1}-incomplete. and D will be over l, if not mentioned otherwise. We shall use freely tos theorem (see e.g. [1] or [4] on ultrapowers and ultraproducts). Elements of I will be denoted by i, s, t. In an abuse of notation if, for example, M_{i} is an L-model, $\mathrm{L}_{1}=\mathrm{I} \cup\{P\}$, P_{i} a relation over $\left|M_{i}\right|$ for every $i \in I$, then $\left(M_{i} . P_{i}\right)$ is an L_{1}-model and if $N=\prod_{i \in I} M_{i} / D$ then $(N, F, V)=\prod_{i \in I}\left(M_{i}, P_{i}\right) / D$. We shall denote elements of $\prod_{i \in I} M_{i} / D$ also as indexed sets $\left(a_{i}: i \in I\right)$ and not always as equivalence classes of such indexed sets. Also if $a \in N=\prod_{i \in I I} A_{i} / D$, then $\left.a=\left\langle a_{i} i\right\rangle: i \in l\right\rangle$ and for $\left.a=\left\langle a_{0}, \ldots a_{n}\right\rangle, \bar{a} \mid i\right]=\left\langle a_{0}[i], \ldots, a_{n}[i j\rangle\right.$. For $a \in M^{\prime} / D$, eq $(a)=\{\langle s, t): a[s]=a[t]\}$, and for a filter G over $I \times I$, M_{D}^{l} / G is a submodel of $M^{I / D}$, whose set of elements is $\left\{a \in M^{I} / D\right.$: eq(a) $\in C$]. This is defined and investigated in Keisler [9].

An ultrafilter D is (μ, λ)-regular if there is a family of λ subsets of I, which belong to D. and the intersection of every μ sets from the family is empty. D is regular it it is $\left(\kappa_{0}, 1 / 1\right)$-regular.

For a model M the set $p=\left\{o_{k}\left(\vec{x}, a^{k}\right): k<k_{0}\right\}\left(a^{k} \in \mid A M\right)$ is consistent over M, if for every finite $w \subset k_{0}, M \vDash(\exists \bar{x}) \wedge_{k \in w} \varphi_{k}\left(\bar{x}, \bar{a}^{k}\right)$. Such a consistent set is called a type over M. If all the \vec{a}^{k} are from $A, A \subset|M|$, then p is a type over A. A sequence \bar{r} realizes p if $\varphi(\bar{x}, \bar{a}) \in p$ implies $M=\varphi[\bar{c}, \bar{a}] . M$ realizes p if some $\bar{c} \in|M|$ realizes p, and if M does not realize p, it omits p.
M is λ-compact if it realizes every consistent type (over it) of cardinality $<\lambda ; M$ is λ-saturated if it realizes every (consistent) type over any subset $A \subset|M||A|<\lambda$. By Keisler [8] D is λ-good iff for every M, M^{I} / D is λ-compact; and every (\aleph_{1}-incomplete) D is \aleph_{1}-good, but not $|I|^{+*}$.good. D is called good if it is $\left.I\right|^{+}$-good. M is λ-universal, if every set of λ formulas which is finitely satisfied in M is satisfied in $M . M$ is $(<\lambda)$-universal if for every $\mu<\lambda M$ is μ-universal.

By [5] (or sce e.g. [1], [4] or 16]) for every D_{1}, D_{2} over I_{1}, I_{2} we can define the ultrafilter $D_{1} \times D_{2}$ over $I_{1} \times I_{2}$ such that for every M,
$M^{I_{1} \times I_{2}} / D_{1} \times D_{2}$ is isomorphic to $\left(M^{I} / D_{1}\right)^{I 2} / D_{2}$. If D_{1}, D_{2} are regular. then $D_{1} \times D_{2}$ is regular, and for every $\lambda, D_{1} \times D_{2}$ is $\lambda \cdot \operatorname{good}$ if D_{2} is λ good (see Keisler [10]).

After Keisler [6] we define:
1.1. Definition. $T_{1} \triangleleft_{\lambda} T_{2}$ provided that: for every models M_{1}, M_{2} of T_{1}, T_{2}, and (\mathcal{N}_{0}, λ)-regular ultrafilter D over λ. if $\Lambda_{2}^{\lambda /} /$) is λ^{*}-compact. then M_{1}^{λ} / D is λ^{+}-compact.

1.2. Definition. $T_{1} \triangleleft T_{2}$ if for every $\lambda . T_{1} \triangleleft_{\lambda} T_{2}$.

A generalization of \triangleleft is
1.3. Definition. $T_{1}<l^{*} T_{2}$ if for every I, D, G, λ and $\left(\lambda^{*}+i \|^{*}\right)$-sat rated models M_{1}, M_{2} of T_{1}, T_{2}, if $M_{2 D}^{l} \mid G$ is λ^{*}-compact then $M_{1 D}^{l} \mid G$ is λ^{*} compact.

Keisler [6] shows: $T \triangleleft T(2,1 a)$. T is \mathcal{J}_{2}-minmal iff for every regular D over λ, and model A of $\Gamma . M^{\lambda / D}$ is λ^{*}-compact ($\$ 4$) and the theory of equality is $\left\langle_{\lambda}\right.$-minimal: and T is \triangleleft_{λ}-maximal iff for every non-good. (κ_{0}, λ)-regular D over λ, and model M of $T, V^{\lambda / D}$ is not λ^{*}-compac:. and e.g. the theory of numbers is G_{λ}-maximal (Th. 3.1). He also shows that for $\lambda>\kappa_{0}$, no theory is both α_{λ}-minimal and \triangleleft_{λ}-maximal.

\$2. Keisler's order for uncountable theories

Remark on notations.
We shall assume that different theories have languages without any common predicate or function synbol. So writing a formula. it is clear to what unique language it belongs. Let Φ denote an (indexed) set of formulas $\varphi(\vec{x})$; with repetitions possibly. $\Phi \mathrm{i}$; of $\mathrm{L}=\mathrm{L}(T)$ if it is a set of formulas which belongs to L. We write $\Phi \subset \ldots$
2.1. Definition. $G:\left\langle\Phi_{1}, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ holds, where $\Phi_{1} \subset \mathcal{L}\left(T_{1}\right)$, $\Phi_{2} \subset L\left(T_{2}\right)$, provided that $\Phi_{1}=\left\{\varphi_{k}\left(\bar{x}, \bar{B}^{k}\right): k<k_{0}\right\} G\left[\varphi_{k}\left(\bar{x}, \bar{z}^{k}\right)\right]=$ $\Psi_{k}\left(\bar{y}, z_{k}\right) \leq \Phi_{2}, l(\bar{x})=m_{1}, l(\bar{y})=m_{2}$, and for every model M_{1} of T_{1}, $a^{k} \in\left|M_{1}\right|, T_{2}$ has a model M_{2}, and $\vec{b}^{k} \in\left|M_{2}\right|$ such that:
for every $w \subset k_{0} \quad\left(=\left\{I: l<k_{0}\right\}\right)$
$\left\{\varphi_{k}\left(x, a^{k}\right): k \in w\right\}$ is consistent over M_{1}
iff $\left\{\Psi_{k}\left(0, b^{k}\right): k \in w\right\}$ is con isient over M_{2}.
2.2. Definition. $\left\langle\Phi_{1}, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ blds if there is G such that $G:\left(\Phi_{1}, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ holds.

Remarks. A) Clearly by the compactne is theorem $G:\left\langle\Phi_{1}, m_{1}\right\rangle \leq$ $\left\langle\Phi_{2}, m_{2}\right\rangle$ holds iff for every : inite $\Phi \subset \Phi_{1}, G \mid \Phi:\left\langle\Phi, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ holds. B) In Definition 2.1 we can take M_{1}, M_{2} as fixed λ-universal models.

Lemma 2.1. A) If $\left.\left(\Phi_{1}, m_{1}\right)<\Phi_{2}, m_{2}\right\rangle, \Phi^{1} \subset \Phi_{1}, \Phi_{2} \subset \Phi^{2}$ then $\left\langle\Phi^{1}, m_{1}\right\rangle \leq\left\langle\Phi^{2}, m_{2}\right\rangle$.
B) If $\Phi^{1}\left(\Phi^{2}\right)$ is the clostre of $\Phi_{1}\left(\Phi_{2}\right)$ under conjunction and disiunction: then $\left\langle\Phi_{1}, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ implies $\left\langle\Phi^{1}, m_{1}\right\rangle \leq\left\langle\Phi^{2}, m_{2}\right\rangle$.
c) If $\left(\Phi_{1}, m_{1}\right) \leq\left\langle\Phi_{2}, m_{2}\right\rangle$, and $\left\langle\Phi_{2}, m_{2}\right\rangle \leq\left\langle\Phi_{3}, m_{3}\right\rangle$ then $\left\langle\Phi_{1}, m_{1}\right\rangle \leq$ $\left\langle\Phi_{3}, m_{3}\right.$.

Proof. Immediate.
Theorem 2.2. A) If for every $\Phi_{1} \subset \mathcal{L}\left(T_{1}\right),\left|\Phi_{1}\right| \leq \lambda$ there is $\Phi_{2} \subset \mathrm{~L}\left(T_{2}\right)$ and $m_{2}<\omega$ such that $\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$ then $T_{1} \triangleleft_{\lambda} T_{2}$.
B) From the hypothesis of A) we can conclude: if M_{1} is a κ-compact model of $T_{1}, M_{2} a\left(\langle\kappa)\right.$-universal model of $T_{2} . D a(\kappa, \lambda)-r e g u l a r ~ u l t r a-~$ filter over μ, and M_{2}^{μ} / D is λ^{*}-compact, then M_{1}^{μ} / D is λ^{*}-compact.
C) In B) if M_{1} is λ^{+}-compact. $M_{2} \lambda$-universal, then the regularity of D is superfluous.
D) In the hypothesis of A) (and also B), C) we can replace "for every $\Phi_{1} \subset L\left(T_{1}\right), "$ by "for cvery $\Phi_{1} \in K$ " where K is a class of sets of formulas of $\mathrm{L}(T)$ such that:
if N_{1} is a non- λ^{+}-compact model of T_{1}, then there is a type $p=$ $\left\{\varphi_{k}\left(x, \bar{a}^{k}\right): k<k_{0} \leq \lambda\right\}$ over N_{1} which N_{1} omit and $\left\{\varphi_{k}\left(x, \bar{y}^{k}\right)\right.$:
$\left.k<k_{0}\right\} \subset \Phi \in K$ for some $\boldsymbol{\Phi}$.
Remark. This and Theorem 2.5 generalize Keisler [6]. Th. 2.1, p. 29. The generalization [6], Th. 2.3, p. 33, is seemingly incorrect. (On the one hand assume too little - an assumption like 2.2. and conclusion like 2.5; and on the other hand the pattern includes superfluous intormation). Nevertheless, the generalization goes easily.

Proof. We shall prove only the conclusion of C) by the hypothesis of D). The other cases follow or have similar proofs (or, alternatively, using Keisler [6], p. 29, Th, 2.1). So suppose M_{1} is a λ^{*}-compact model of T_{1}, M_{2} a λ-unversal model of T_{2}, D an ultrafilter over $\kappa, M_{2}^{\mu} / D$ is λ^{+}compact; and we should p ove M_{1}^{μ} / D is λ^{*}-compact. Suppose this is not so, and we shall get a cor tradiction.

As $N_{1}=M_{1}^{\mu} / D$ is not λ^{\prime} - ompact, it omits a type (over $\left.N_{1}\right) p=$ $\left\{\varphi_{k}\left(x, \bar{a}^{k}\right): k<k_{0} \leq \lambda\right\}$. By the definition of K, we can assume $\Phi=$ $\left\{\varphi_{k}\left(x, \bar{y}^{k}\right) ; k<k_{0}\right\} \subset \Phi_{1} \in K$. By assumption there are $\Phi_{2} \subset \mathcal{L}\left(T_{2}\right)$, $G, m_{2}<\omega$, such that $G:\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$. By Lemma 2.1A we can assume $\Phi=\Phi_{1}$. Let $G\left[\varphi_{k}\left(x, \bar{y}^{k}\right)\right]=\Psi_{k}\left(\bar{x}, \bar{z}^{k}\right)\left(l(\bar{x})=m_{2}\right)$.

By Definition 2.1, remembering M_{2} is λ-universal. for every $i<\mu$ there are $\vec{b}^{k}[i] \in\left|M_{2}\right|, k<k_{0}$ such that:
for every $w \subset k_{\rho}$.
$\left\{\varphi_{k}\left(x, \vec{a}^{k}[i]\right): k \in w\right\}$ is consistent over M_{1}
iff $\left\{\Psi_{k}\left(\bar{x}, \bar{b}^{k}[1]\right): k \in w\right\}$ is consistent over M_{2}.
As $\bar{b}^{k}[i]$ is defined for every $i<\mu . \bar{b}^{k} \in M_{2} / D$ is also defined.

Let $q=\left\{\Psi_{k}\left(\bar{x}, b^{k}\right): k<k_{0}\right\}$. and we shall show q is consistent over M_{2}. For let $w \subset k_{0},|w|<\mathcal{N}_{0}$. We should prove $\vDash(\exists x) \wedge_{k \in w} \Psi_{k}\left(\bar{x}, b^{k}\right)$. This follows from tos theorem, definition of $b^{k}[i]$ and consistency of p.

So $\left\{\Psi_{k}\left(x, \overline{b^{k}}\right): k \in w\right\}$ is consistent over $M_{2} D$. As this is true for every finite $w \subset k_{0} . q$ is consistent over V_{2} / D.

Now as H_{2} / D is λ^{*}-compact. there is a sequence \bar{c} from it that realizes a. We shall prove that p is realized in M_{1}^{μ} / D. and get the contradiction. Let for $i<\mu$

$$
w[i]=\left\{k<n_{0}: M_{2} \vDash \Psi_{k}\left[\bar{c}[i] \cdot \bar{b}^{k}[i]\right]\right\} .
$$

Clearly $a[i]=\left\{\Psi_{k}\left(x, b^{k}[i]\right): k \in w[i]\right\}$ is consistent. So, as before, by the definition of the $b^{k}[i]$, also $p(i]=\left\{\varphi_{k}\left(x, a^{k}[i]\right): k \in w[i]\right\}$ is consistent over $M_{1}, A s M_{1}$ is λ^{*}-compact there is $c[i]$ that realizes $p[i]$. So $c \in M_{1}^{\mu} / D$ is defined. Now for every $k<\hat{k}_{0}: M_{2}^{\mu} / D \vDash \Psi_{k}\left[\bar{c}, \bar{b}^{k}\right]$ (By the definition of c. Hence:

$$
\begin{aligned}
& \left\{i<\mu: M_{2} \| \Psi_{k}[c \mid i], b^{k}[i]\right\} \in D \quad \text { or } \\
& \{i<\mu: k \in w\{i]\} \in D \quad \text { so by the definition of } c[i] \\
& \left\{i<\mu: M_{1}=\varphi_{k}\left[c[i], \vec{a}^{k}[i]\right]\right\} \in D \quad \text { hence } \\
& M_{1}^{u} / D \vDash \varphi_{k}\left\{c a^{k}\right] .
\end{aligned}
$$

So c realizes , contradiction.
2.3. Definition. Let $\Phi_{1} \subset L\left(T_{1}\right), \Phi_{2} \subset L\left(T_{2}\right) . \Phi_{1}=\left\{\varphi_{k}\left(\bar{\because}, \bar{y}^{k}\right): k<k_{0}\right\}$, $l(\bar{x})=m_{1}: G$ a function $G\left[\varphi_{k}\left(\bar{x}, z^{k}\right)\right]=\Psi_{k}\left(\bar{v}, z_{k}\right) \in \Phi_{2}, l(\bar{y})=m_{2}$.

Then $G:\left\langle\Phi_{1}, m_{1}\right\rangle \leq^{*}\left\langle\Phi_{2}, m_{2}\right\rangle$ if for every model M_{1} of T_{1}, and $a_{n}^{k} \in M_{1}$, there are a model M_{2} of T_{2}, and $\bar{b}_{n}^{k} \in M_{2}\left(k<k_{c}, n<\omega\right)$ such that:

> for every $w \subset k_{0} \times \omega$
> $\left\{\varphi_{k}\left(\vec{x}, \bar{a}_{l}^{k}\right):\langle k, D \in w\}\right.$ is consistent over M_{1}
> iff $\left\{\Psi_{k}\left(\bar{y}, \bar{b}_{n}^{k}\right):(k, n \in w\}\right.$ is consistent over M_{2}
2.4. Definition. Let $\left\langle\Phi_{1}, m_{1}\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle$ holds if for some G, $G:\left(\Phi_{1}, m_{1}\right) \leq *\left\langle\Phi_{2}, m_{2}\right\rangle$ holds.

Lemma 2.3. A) In Definition 2.3, we can replace ω by any $\alpha>\omega$.
B) $G:\left\langle\Phi_{1}, m_{1}\right\rangle \leq *\left(\Phi_{2}, m_{2}\right\rangle$ implies $G:\left\langle\Phi_{1}, m_{1}\right\rangle \leq\left(\Phi_{2}, m_{2}\right\rangle$
C) $\left\langle\Phi_{1}, m_{1}\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle$ implies $\left\langle\Phi_{1}, m_{1}\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$
D) If Φ_{1}, Φ^{1} contain the same formulas (with a different number of repetitions) th:'n

$$
\left\langle\Phi_{1}, m_{1}\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle \Leftrightarrow\left\langle\Phi^{1}, m_{1}\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle
$$

E) If $\Phi^{1} \subset \Phi_{1}, \Phi_{2} \subset \Phi^{2}$ then $\left\langle\Phi_{1}, m_{1}\right\rangle \leq^{*}\left\langle\Phi \Phi_{2}, m_{2}\right\rangle$ implies $\left\langle\Phi^{1}, m_{1}\right\rangle \leq *\left\langle\omega^{2}, m_{2}\right\rangle$.
F) $\left\langle\Phi_{1}, m_{1}\right\rangle \leq *\left\langle\Phi_{1}, m_{1}\right\rangle($ by the identity map $)$.

Proof. Immediate.
Lemma 2.4. The following statements about T_{1}, T_{2} are cquivalent.
A) For evety $\Phi_{1} \subset \mathcal{L}\left(T_{1}\right)$ there are $\Phi_{2} \subset \mathcal{L}\left(T_{2}\right)$ and $m_{2}<\omega$ such that $\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$.
B) For every $\Phi_{1} \subset \mathrm{~L}\left(T_{1}\right),\left|\Phi_{1}\right| \leq\left|T_{1}\right|+\left|T_{2}\right|^{+}$there are $\Phi_{2} \subset \mathrm{~L}\left(T_{2}\right)$ and m_{2} such that $\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$.
C) For every $\Phi_{1} \subset L\left(T_{1}\right)$ there are $\Phi_{2} \subset L\left(T_{2}\right)$ and m_{2} such that $\left\langle\Phi_{1}, 1\right\rangle \leq *\left(\Phi_{2}, m_{2}\right)$.
D) For eiery $\Phi_{1} \subset \mathrm{~L}\left(7_{1}\right),\left|\Phi_{1}\right| \leq\left|T_{1}\right|$ there are $\Phi_{2} \subset \mathrm{~L}\left(T_{2}\right)$ and m_{2} such that $\left\langle\dot{\varphi}_{1}, 1\right\rangle \leq *\left\langle\Phi_{2}, \cdot n_{2}\right\rangle$.
E) Let Φ_{0} be the set of formulas $\left.\alpha x, y\right) \in \mathrm{L}\left(T_{1}\right)\left(\right.$ cleary $\left.\left|\Phi_{0}\right|=\left|T_{1}\right|\right)$. There are $\Phi_{2} \subset L\left(T_{2}\right), m_{2}$ such that $\left\langle\Phi_{0}, 1\right\rangle \leq{ }^{*}\left\langle\Phi_{2}, m_{2}\right\rangle$.

Proof. Clearly $A \rightarrow B, C \rightarrow D \rightarrow E$. So we sh uld prove $B \rightarrow C, E \rightarrow A$ only.

Suppose E holds. and we shall prove A). Let $\Phi_{1} \subset \mathrm{~L}\left(\tilde{i}_{1}\right)$: clearly Φ_{1} has a subset Φ such that every formula which appears in $\Phi_{:}$appears in Φ exactly once. Hence $\Phi \subset \Phi_{0}[$ of E$)$], so by Lemma $2.3 \mathrm{E}\langle\Phi, 1\rangle \leq *$ $\left\langle\Phi_{2}, m_{2}\right\rangle\left[\Phi_{2}\right.$ - of E $\left.)\right]$. By Lemma 2.3D also $\left\langle\Phi_{1}, 1\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle$. and so by $2.3 \mathrm{C}\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, m_{2}\right\rangle$. So A) holds.

Now suppose that B) holds, and we shall prove C). Let $\lambda=\left|T_{1}\right|+\left|T_{2}\right|^{+}$, and let $\Phi_{1} \subset \mathrm{~L}\left(T_{1}\right)$. We should prove that there are $\Phi_{2} \subset \mathrm{~L}\left(T_{2}\right), m_{2}$ such that $\left(\Phi_{1}, 1\right) \leq *\left(\Phi_{2}, m_{2}\right)$. By Lemma 2.3D we can assume without loss of generality that no formula appears in Φ_{1} twice, hence $\left|\Phi_{1}\right| \leq$
$\left|T_{1}\right| \leq \lambda$. Let $\Phi_{1}=\left\{\varphi_{k}\left(x, \vec{v}^{k}\right): k<k_{0}\right\}$. Let $\Phi^{\prime} \subset \mathrm{L}\left(T_{1}\right)$ be such that every formula of $\mathrm{L}\left(T_{1}\right)$ appears in it exactly $\mid T_{2}{ }^{+}$times. By B$)$ there are $\Phi_{2} \subset L\left(T_{2}\right), m_{2}$ and G such that $G:\left\langle\Phi^{1}, 1\right\rangle<\left\langle\Phi_{2}, m_{2}\right\rangle$. Now each formula $\varphi_{k}\left(x_{,}, P^{k}\right) \in L(T)$ appears in $\phi^{1}\left|T_{2}\right|^{+}$times, but there are $\left|T_{2}\right|$ formulas in $L\left(T_{2}\right)$. So for some $\Psi_{k}\left(\cdots, z^{k}\right) \in L\left(T_{2}\right)$. for $\left|T_{2}\right|^{+}$appearances of $\varphi_{k}\left(x, y^{k}\right)$ in $\Phi^{1}, G\left[\varphi_{k}\left(x, y^{k}\right)\right]=\Psi_{k}\left(x, z^{k}\right)$. So define $G_{1}: \Phi_{1} \rightarrow \Phi_{2}$ by $G_{1}\left[\varphi_{k}\left(x, \bar{y}^{k}\right)\right]=\Psi_{k}\left(\vec{x}, \bar{z}^{k}\right)$. It is easy to check that $G_{1}:\left\langle\Phi_{1}, 1\right) \leq *$ (Φ_{2}, m_{2}).

Theorem 2.5. A) If Φ_{0} is the set of all formulas in $\mathrm{L}\left(T_{1}\right)$, and for some $\Phi_{2} \subset \mathrm{~L}\left(T_{2}\right), m_{2}<\omega,\left\langle\Phi_{0}, 1\right\rangle \leq *\left\langle\Phi_{2}, m_{2}\right\rangle$ then $T_{1} \triangleleft^{*} T_{2}$.
B) In fact it saffices to demand that there are $\Phi_{i} i<i_{0}$ such that: if M_{1} is a mon- λ^{*} compact model of T_{1}, then there is a type p over M_{1}, $p=\left\{\varphi_{k}\left(x, a^{k}\right): k^{*}<k_{0}<\lambda^{*}\right\}$. such that for some $i<i_{0}$ every $\varphi_{k}\left(x, y^{k}\right) \in \Phi_{i}$: and there are $\Phi_{2, i} \subset \mathrm{~L}\left(T_{2}\right) m_{2, i}<\omega$ such that $\left\langle\Phi_{i}, 1\right\rangle \leq *\left(\Phi_{2, i}, m_{2, i}\right\rangle$.

Proof. It is very similar to that of Theorem 2.2. so we omit it. The only differences between the proofs are that here we cannot treat each $i<\mu$ separately, but all together; and that we use $\leq *$ instead of \leq and Lemmas 2.3. 2.4 are also used.

Theorem 2.6. A) If T has the strict order p. (see Shelah [13], Def. 4.2) then $T_{\text {ord }} \triangleleft^{*} T$. hence $T_{\text {ord }} \triangleleft T$. Also the other conclusions of 2.2 hold for $T_{1}=T_{\text {ord }}, T_{2}=T$.
B) If T has the independence p (Shelah [13], Def. 4.1) then $T_{\text {ind }}<^{*}$ T hence $T_{\text {ind }}$ 17. Also the wher conclusion of 2.2 holds for $T_{1}=T_{\text {ind }}$, $T_{2}=T$.
C) If T is : instable (Shelah [13], Def. 2.1D) the:، $T_{\text {ind }} \triangleleft^{*} T$ or $T_{\text {ord }}$ < $^{*} T$ (or both hold).

Remark. $T_{\text {ord }}$ is the theory of the rational order. $T_{\text {ind }}$ is defined in [13] Th. 4.7.

Proof. A) and B) imply C) by [13], Th. 4.1. Now it is easy to check that for $T_{\text {ord }}, i_{0}=1, \Phi_{y}=\{x<y, 7 x<y\}$ satisfies the requirement of $2.5 B$; and for $T_{\text {ind }} . \Phi_{9}=\left\{P(x), z_{1} E x, 7 z_{2} E x\right\}, \Phi_{1}=\left\{\neg P(x), x E z_{1}\right.$, $\left.7 x E z_{2}\right\}, i_{0}=2$ satisfy those requirements. Hence the conclusion follows by 2.5 B .
2.5. Definition. A complete theory T is simple if it satisfies the following.
A) In $\mathrm{L}(T)$ there are one two-place predicate $x E y$, and one-place predicates. For every model M of T, E^{3} is an equivalence relation over $|M|$. (Also the equality sign $\in \mathrm{L}(T)$). For a model M of $T, a \in M$ let

$$
\begin{aligned}
{[a]_{M} } & =\{b \in M: M \vDash b E a, \text { for every predicate } P(x) \text { of } L(T), \\
& M \vDash P(a) \equiv P(b\}\} .
\end{aligned}
$$

B) There is a model M of T such that for every $a \in M,[a]_{M}$ is infinite.
C) There is a model M of T such that for every $a \in M$. there are infinitely many $b \in M$ from different E-equivalence classes which realize the same type.

Lemma 2.7. Let T be a simple theory.
A) If M is a model of $T, a \in M$, then any permuration of $|a|_{M}$ is an automorphism of M.
B) Every formula (of $\mathrm{L}(T)$) is equivalent to a boolean conbination of formulas of the following forms

$$
\begin{aligned}
& \text { 1) } x=y, \quad \text { 2) } x E y \quad \text { 3) } P(x) \\
& \text { 4) }(\exists y)\left[x E y \wedge \wedge \wedge_{j \wedge n} P_{j}(y) \wedge \wedge_{j<m}^{\wedge} 7 P^{j}(y)\right]
\end{aligned}
$$

C) T is stable in every $\lambda \geq 2^{T}$ (stable - see [13]. Def. 2.1D). So T is superstable.

Proof. Immediate.
Lemma 2.8. Suppose M is a non λ^{*}-compact model of a simple theory T. Then M omit a type p (over M) which is of one of the following forms.

1) $p=\{x E a\} \cup\left\{P_{k}(x)^{n_{1}(\theta)}: l<l_{0} \leq \min (\lambda,|T|\} \cup\left\{x \neq c_{k}: k<k_{0} \leq \lambda\right\}\right.$
2) $p=\left\{P_{k}(x)^{r_{1}(l)}: i<l_{0} \leq \min (\lambda, \mid T)\right\} \cup p_{0} \cup\left\{7 x E c_{k}: k<k_{0} \leq \lambda\right\}$
where p_{0} consist of formulas of the fourth forn: from Lemma 2.7B, and negations of such formulas. (η is a sequence of ones and reroes, $\varphi^{0}=\varphi$. $\left.\varphi^{\prime}=7 \varphi\right)$

Proof. As M is not λ^{+}-compact, M omiss a 1 -type $q,|q| \leq \lambda$. Without lose of generality suppose $|\mathrm{L}(T)| \leq|q|+s_{0}=|q|$, because otherwise we can replace M by an appropriate reduct. So theie is $A \subset|M|$, $|A| \leq|q| \leq \lambda$ such that q is a type over A, so there is a type $q_{1} \in S(A)$, $q \subset q_{1}$, and clearly q_{1} is also omitted.

It is clear that if $q_{2} \subset q_{1}$ and:

$$
\begin{aligned}
& \text { for every } \varphi \in q_{1} \text { there are } \Psi_{1}, \ldots, \Psi_{n} \in q_{2} \text { such that } \\
& M \vDash(\forall x)\left[\wedge_{m=1}^{n} \Psi_{n} \rightarrow \varphi\right](x \cdots \text { the only free variable in } \\
& \text { the formulas of } \left.q_{1}\right) \text {. }
\end{aligned}
$$

then M omits also q_{2}.
So if q_{2} is a subtype of q_{1} consisting of the formulas of the forms mentioned in 2.7 B and their negations. then clearly M omits q_{2}.

Now our proof split to two cases. sccording to whether some $x E a$ belong to q_{2} or not.

Case I. $x E a \in q_{2}$. Clearly no formula $x=c$ belongs to q_{2} (otherwise c will realize q_{2}). So for every $c \in A,(x \neq c) \in q_{1} \in S(A)$ hence $(x \neq c) \in$ q_{2}. Clearly if $\varphi=x E a_{1} \in q_{2}$ then as q_{2} is consistent over M, $M \vDash(\forall x)|x E a \rightarrow \varphi|$. Similarly if $\varphi=7 x E a_{1} \in q_{2} \cdot M \vDash(\forall x)(x E a \rightarrow \varphi)$.

Similar implications hold if $\varphi \in q_{2}$ is of the form $(\exists y)\left[x E y \wedge \wedge_{l} P_{l}(y) \wedge \underset{l}{\wedge} \not P^{\prime}(y)\right]$ or its negation. So if p is the subtype of q_{2} consisting of the formulas $x E a . P_{k}(x)$ [if $\left.P_{k}(x) \in q_{2}\right] \neg P_{k}(x)$ [if $\neg P_{k}(x) \in q_{2}$] and $x \neq c$ for $c \in A$ then M omits p, and p is of the form 1): and $|p| \leq\left|q_{1}\right| \leq \lambda$.

Case II. For no a $x \in a \in p$. Clearly for every $c \in A, x \neq c, 7 x E c \in q_{2}$ and $M F(\forall x)(7 x E c \rightarrow x \neq c)$ Hence it is clear that $p=q_{2}-\{x \neq c$: $c \in A\}$ is omitted in M and it is of the form 2).

Lemma 2.9. If M is a λ-compact model of a simple theory T. and $N=$ $M_{D}^{I} \mid G$ is $|T|^{+}$-compact then N is λ-compact. (In fact it is $\lambda_{D}^{J} \mid G$-compact.)

Proof. If $\lambda \leq|T|^{+}$, then there is nothing to be proved. So suppose $\lambda>|T|$. Assume N is not λ-compact and we shall get a contradiction. By the previous lemma we can assume V omits a type p which is of one of the ferms mentioned there. So we have two cases.

Case I. M omits p (which is consistent over M) where

$$
p=\{x E a\} \cup\left\{P_{l}(x)^{n(n)}: l<|T|\right\} \cup\left\{x \neq c_{k}: k<k_{0}<\lambda\right\}
$$

(there are $\mid T i$ one place predicates in $|T|$): clearly it suffices to prove that at least λ-elements of N realize p_{1}, where

$$
p_{1}=\{x E a\} \cup\left\{P_{l}(x)^{n(n}: l<|T|\right\} .
$$

As $\left|p_{1}\right| \leq|T|$ and N is $|T|^{+}$compact, some $l \in N$ realize p_{1}. As H is λ-compact, for every $i \in I,[b[i]]_{M}$ is a ser of cardinality λ. So we can define for every $k<\lambda, i \in I$, an element $b_{k}\{i] \in M$ such that: $k \neq l \Rightarrow b_{k}[i] \neq b_{l}[i]: b[i]=b[j] \Rightarrow b_{k}[i]=t_{k}[j]$. Hence for every k, $b_{k} \in|M|^{\prime}$ is defined, and eq $\left(b_{k}\right)=\operatorname{eq}(b) \in G$ hence $b_{k} \in N$. It is also clear that each ${ }_{k}$ belonss to $[3]_{N}$ and $k \neq 1=b_{k} \neq b_{l}$. As every element in $[b]_{N}$ realizes i_{i}, p_{1} is realized $\geq \lambda$ tines in N. Hence p is realized in N, contradictio:

Case II. M omits p which is of form 2) from L mma 2.8. The proof is similar to that of Case I. except that here we should find λ non- E-equivaient elements of N realizing a type over the e npty set. Here we use part C) of Definition 2.5 instead of Part B).

The proof that N is $\lambda_{D}^{I} \mid G$-compact is simila, so we omit it.
Corollary 2.10. A) A simple countable theory is $4^{*-m i n i m a l . ~ a n d ~}$ hence \triangleleft-minimal.
B) if M is a model of a simple theory T, D a $|T|^{+}$good altrafilter on μ, therr M^{μ} / D is \aleph_{0}^{μ} / D-compact. Honce if D is $\left.\aleph_{0} \cdot \mu\right)$-regular. M^{μ} / D is 2^{μ}-compact.

Proof. Immediate.

Theorem 2.11. For every theory T_{1} and cardinal λ there is a simple theory T_{2} such that $T_{1} \mathcal{J}_{\lambda} T_{2} \triangleleft_{\lambda} T_{1}$. If $\left|T_{1}\right| \leq \lambda$ then also $\left|T_{2}\right| \leq \lambda$. Moreover if D is a $\left(\mathrm{N}_{0}, \lambda\right)$-regular ultrafilter over μ, M_{1} a model of T_{1}, M_{2} a model of r_{2} then M_{1}^{μ} / D is λ^{*} compact iff M_{2}^{μ} / D is λ^{*}-compact.

Proof. We shall deal only witn the case $\left|T_{1}\right| \leq \lambda$. The other case follows from Theorem 2.12.

Let Φ_{1} be the ser of formulas of T_{1} each repeated λ times. Clearly $\left|\Phi_{1}\right|=\lambda$. It is also clear that if for some $\Phi_{2} \subset L\left(T_{2}\right),\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, 1\right\rangle$ then $T_{1} \triangleleft_{\lambda} T_{2}$. (Because if $\Phi^{1} \subset \mathrm{~L}\left(T_{1}\right),\left|\Phi^{1}\right| \leq \lambda$ then $\Phi^{1} \subset \Phi_{1}$, and our conclusion follows by 2.1, 2.2).

Let $\Phi_{1}=\left\{\varphi_{k}\left(x, y^{2 h}\right): k<\lambda\right\}$.
We shall nov defiec a model M_{2}, and T_{2} will be its theory. We list the properties of M_{2} we need, and it is trivial that M_{2} exists:

1) The realiti, ofs of M_{2} are an equivalence relation $E=E^{M_{2}}$, and for each $k<\lambda$ a monadic relation $P_{k}=\rho_{k}^{M / 2}$.
2) For every $a \in M_{2} \cdot\left\{\left.a\right|_{M_{2}}\right.$ is infinite.

$$
\begin{aligned}
& \|\left. a\right|_{M_{2}}=\left\{b: b \in M_{2}, a E b . \text { and } P_{k}(a) \equiv P_{k}(b)\right. \\
& \text { for every } k<\lambda\} \mid
\end{aligned}
$$

3) For every model M_{1} of T_{1} and $\bar{a}_{k} \in M_{1}, k<\lambda$ there are infinitely many $a \in M_{2}$ such that they are not E-equivalent and
(*) for every $w \subset \lambda, \eta \in \lambda 2$

$$
\begin{aligned}
& \left\{\varphi_{k}\left(x \cdot \bar{a}_{k} v^{n(k)}: k \in w\right\} \text { is consistent ove: } M i_{1},\right. \text { iff } \\
& \left\{x E a \wedge P_{k}(x)^{n(k)}: k \in w\right\} \text { is consistent over } M_{2}
\end{aligned}
$$

4) For every $a \in M_{2}$ there are a model M_{1} of T_{1} and $\bar{a}_{k} \in M_{1} \quad k<\lambda$ such that (*) holds.

Remark. We can replace "for every M_{1} " by a fixed λ-universal model M_{1} of T_{1}.

Now let T_{2} be the theory of M_{2}. Clearly T_{2} is simple, $\left|T_{2}\right|=\lambda$. Let $\Phi_{2}=\left\{x E y \wedge P_{k}(x): k<\lambda\right\}$.

By 3) in the Definition of $M_{2},\left\langle\Phi_{1}, 1\right\rangle \leq\left\langle\Phi_{2}, 1\right)$. Hence by 2.2A $T_{1} \triangleleft_{\lambda} T_{2}$. By 2.2B, if D is $\left(\kappa_{0}, \lambda\right)$-regular, over I; M_{2}^{\prime} / D is λ^{*}-compact implies M_{1}^{I} / D^{D} is λ^{+}-compact. We sh uld prove that M_{2}^{l} / D is not λ^{*}-compact implies M_{1}^{I} / D is not λ^{+}-compact. By Lemma 2.8 there are two cases. Case I. $N_{2}=M_{2}^{l} / D$ omits a type p (which is consistent over N_{2})

$$
p=\{x E a\} \cup\left\{P_{k}(x)^{n(k)}: k \in w \subset \lambda\right\} \cup\left\{x \neq c_{k}: k<k_{0} \leq \lambda\right\}
$$

By extending the type we can assume $w=\lambda$. Let $p_{1}=\{x E a\} \cup\left\{P_{k}(x)\right)^{n}(k)$ $k<\lambda\}$.

As in the proof of Lemma 2.9 it follows that N_{2} omits p_{1}. By condition 4) in the definition of M_{2},

$$
\left.\left.《 x E a \wedge P_{k}(x)^{n(k)}: k<\lambda, 1\right\rangle \leq\left\langle\varphi_{k}(x,)^{k} m(k): k<\lambda\right), 1\right\rangle
$$

(We extend $\mathrm{L}\left(T_{\lambda}\right)$ to include a temporarily, and also extend Γ_{A} accordingly.) So by Theorem 2.2. m fact. $M_{1}^{l} D$ is also not λ^{*}-compact.

Case II. M_{2}^{\prime} / D omits $p\left[p_{0}\right.$ as in 2.8. 2) $]$.

$$
p=\left\{P_{\kappa}(x)^{m^{(k)}}: k \in w \subset \lambda\right\} \cup\left\{7 x E c_{k}: k<k_{1} \leq \lambda\right\} \cup p_{0}
$$

Let $p_{1}=\left\{p_{k}(x)^{n(k)}: k \in w \subset \lambda\right\} \cup p_{0}$.
By the proof of $2.9,1_{2}^{\prime} / D$ omits p_{1}. But by Keisler 161 . Th. 1.5. M_{2}^{I} / D is λ-universal. contradiction.

Theorem 2.12. For every set $\left\{T_{k}: k<k_{0}\right\}$ of theories there is at least upper bound for each of the orderings $4^{*}, ~ \wedge . \triangleleft_{\lambda}$. Its cardinality is $\leq \Sigma_{k}\left|T_{k}\right|$.

Proof. Let $Q_{k}, k<k_{0}$ be k_{0} new one-place predicates. Let

$$
\begin{aligned}
T=\{ & \left.\neg(\Xi x)\left[Q_{k}(x) \wedge Q_{l}(x)\right]: k, l<k_{0}, k \neq l\right\} \cup\left\{\Psi^{Q_{k}}: \Psi \in T_{k} .\right. \\
& \left.k<k_{0}\right\} \cup\left\{(\forall x _ { 1 } \ldots x _ { n }) \left[R\left(x_{1} \ldots \ldots, x_{n}\right) \rightarrow\right.\right. \\
& \left.\left.\wedge_{i=1}^{n} Q_{k}\left(x_{i}\right)\right]: R \text { of } L\left(T_{k}\right)\right\}
\end{aligned}
$$

$[\Psi Q$ is Ψ relativized to $Q-(\exists x) \varphi$ is replaced by $(\exists x)(Q(x) \wedge \varphi)]$.
It is clear that T satisfies our demands.

Using the last two theorems we can prove many properties of the order \langle between theories. if we know something about the order among comntable theories.

Theorem 2.13. A) For every λ there is a simple theory $T_{\lambda},\left|T_{\lambda}\right|=\lambda$ such that T_{λ} is d_{λ}-maximal. Hence if $\lambda<\mu, T_{\lambda}<T_{\mu}$ but not $T_{\mu} \triangleleft T_{\lambda}$. So there is an (uncountable) theory which is not \langle-mimimal nor \langle maximal.
B) If there is a countable theory T which is not $<$-minimal nor $<-$ maximal (see Th. 4.11) then there are -incomparable theories.

Proof. A) Let T^{1} be the (full) theory of numbers. By Keisler [6] T^{1} is A-maximal, and if M^{\prime} is a model of $T^{1} . D$ an (N_{0}, λ)-regular ultrafilter on λ, then $\left(M^{1}\right)^{\lambda / D}$ is λ^{*}-saturated iff D is λ^{+}-good. By 2.11 , for every λ there is a simple theory $T_{\lambda},\left|T_{\lambda}\right|=\lambda$, such that $T^{1}<_{\lambda} T_{\lambda} \mathcal{J}_{\lambda} 7^{\prime 1}$. By the construction (and also by Th. 2.11 itself) it is clear that for $\lambda<\mu$, $T_{\lambda} \triangleleft T_{\mu}$. Not $T_{\mu} \triangleleft T_{\lambda}$. follow from the existence of λ^{+}-good but not λ^{+*} good (κ_{0}, μ)-regular ultrafilters on μ.

This is by 2.10 B and the definitions. The existence of such D follows from Kunen [12], and Keisler [10].
B) By 4.1B we can choose such T. such that if M is any model of T, D a $\left(\aleph_{0}, \lambda\right)$-regular ultrafilter over λ, then M^{λ} / D is not λ^{+}-compact iff for some $n_{i}, \aleph_{0} \leq \Pi n_{i} / D \leq \lambda$. Hence by $2.10 \mathrm{~B}\left(M_{1}\right.$ from 2.11$) M_{1}^{I} / D$ is μ^{+}-compact, but M^{l} / D is not μ^{+}-compact. So not $T \triangleleft T_{\lambda}$.

On the other hand as T is not maximal, there is an ultrafilter D over a set l, such that D is not good, but $\aleph_{0} \leq \Pi n_{i} / D \Rightarrow|I|<\Pi n_{i} / D$. Define $\lambda=|I|$. So M_{1}^{I} / D is $|I|^{+}$-compact, but as D is not good, $\lambda=|I|, M^{I} / D$ is not $1 / 1=$ compact. So not $T_{\lambda}<T_{\mu}$.

Conjecture. Every theory is the least upper bound of a set of $\leq 2^{N_{0}}$ countable theories and a simple theory of cardinality $|T|$.

§ 3. Unsaturated Ultrapowers

Theorem 3.1. Let T be with the f.c.p., $\mu=\Pi m_{i} / D . D$ an ultrafilter over 1 . Then M^{I} / D is not μ^{+}-compact. hence is not $\left(2^{h}\right)^{+}$-compact.

Remark. The f.c.p. was first defined in Keister [6], p. 38. This is essentially Theorem 4.1. p. 39 Keisler (6), and we repeat it for completeness only.

Proof. Let $\lambda=\min \left\{\Pi n_{i} / D: \Pi n_{i} / D \geq N_{0}\right\}$ and $\lambda=\Pi n_{i} / D$. By the definition of f.c.p., there is a formula $\varphi(x, \bar{y})$ of $L(T)$, such that for arbitrarily large natural numbers n, the following holds:
(*) there are $\bar{a}_{n}^{0}, \ldots, \bar{a}_{n}^{\text {P- }}$ such that

$$
n-1
$$

$$
M \vDash \neg(\exists x) \wedge \varphi\left(x, \vec{a}_{n}^{i}\right)
$$

$$
i=0
$$

$n 1$
and for $j<n M \vDash(\exists x) \wedge_{\substack{i=0 \\ i \neq i}} Q\left(x, a_{n}^{i}\right)$
Let for every $i \in I, f(i)$ be the maximal number $\leq n_{i}$ for which (*) holds. Hence $f(i) \leq n_{i}$, hence $\Pi f(i) / D \leq \Pi n_{i} / D=\lambda$. On the other hand for every n^{0} there is $n^{1} \geq n^{0}$ for which (${ }^{*}$) holds. So $n_{i} \geq n^{1}$ implies $f(i) \geq n^{1} \geq n^{0}$. So

$$
\left\{i: n_{i} \geq n^{\prime}\right\} \subset\left\{i: f(i) \geq n^{1}\right\} \subset\left\{i: f(i) \geq n^{0}\right\}
$$

As $\Pi n_{i} / D \geq \aleph_{0},\left\{i \cdot n_{i} \geq n^{1}\right\} \in D$. hence $\left\{i: f(i) \geq n^{0}\right\} \in D$. hence $\Pi f(i) / D \geq n^{0}$. As n^{0} is arbitrary, $\Pi f(i) / D \geq N_{0}$. so by the definition of $\lambda, \Pi f(i) / D=\lambda$.

Let $P^{i}=\left\{\bar{a}_{f(0}^{0}, \ldots, \bar{a}_{f(i)}^{(i)}\right\}$. It is easy to see tha: the models (M. P^{i}) satisfy the following sentences

$$
\begin{equation*}
\urcorner(\exists x)(\forall \bar{y})[P(\bar{y}) \rightarrow \varphi(x ; \bar{y})] \tag{i}
\end{equation*}
$$

(ii)

$$
(\forall \bar{y})[P(\bar{y}) \rightarrow(\exists x)(\forall z)(P(\bar{z}) \wedge \bar{y} \neq \bar{z} \rightarrow \varphi(x ; z))] .
$$

Let $\left(N, P^{\prime}\right) \cdot I_{i}\left(M, P^{i}\right) / D$. Clearly $\left|P^{N}\right|=\Pi|P| / D=\Pi f(i) / D=\lambda$.
As the sentences (i), (ii) are satisfied by every ($M . P^{i}$), they are satisfied by $\left(N, P^{N}\right)$. So $p=\left\{\varphi(x, \bar{a}): \bar{a} \in P^{N}\right\}$ is a type over N, (by (ii)) but is omitted (by (i)), and $|p|=\left|p^{N}\right|=\lambda \leq \mu$. So N is not μ^{+}-compact.

Theorem 3.2. Let $1 t$ be a model of $T . T$ has the f.c.p. . Let $\varphi(x ; y) \in L(T)$, ata P. the set of $n<\omega$ for whish (${ }^{*}$) (from 3.1) is satisfied, is infinite. $\operatorname{Let}\left(N_{1},<, P^{j}\right)=(\omega,<, P)_{D}^{\prime}\left|G, a \in P^{V}, \mu=|\{b \in N: b<a\}|\right.$. Then orer $M_{D}^{l} \mid G$ there is a type $p .|p|=\mu$, which is omitted, but $q \subset p$, $q \neq p \Rightarrow q$ is reali.ed. Moreover, p consists of formulas of the form $\varphi(x, \bar{u})$ onty.

Proo: Clear from 3.1.

Theorem 3.3. Let M be a model of an wastable theory $T, \Pi_{i \in I} m_{i} / D<2^{\lambda}$. Then μ^{\prime} / D is med λ^{*}-compas.

Proof. Let $\mu=\operatorname{lnin}\left\{\Pi n^{i} / D: \Pi n^{i} / D>N_{0}\right\}, \mu=1 \mathrm{~L} n^{i} / D<2^{\lambda}, n_{i}=\left[\log _{2} n^{i}-1\right]$ ($[x]$ - the integal part of x). Clearly $\aleph_{0} \leq \Pi n_{i} / D \leq \Pi n^{i} / D=\mu$, hence by the detinition of $\mu . \Pi n_{i} / D=\mu$. By [13]. Th. 4.1A there is a formula $\varphi=\varphi(x ; \bar{y}) \in L(T)$ which has the strict order p, or the independence p. For simplicity let $\varphi=\varphi(x ; y)$.

By the definitions for every $i \in I$ there are elements $a_{i}^{0}, \ldots, a_{i}^{n-1}$ of M such that:
(i) if φ has the independence p, then for every $w \subset n_{i}$,

$$
\left\{\varphi\left(x, a_{i}^{k}\right)^{\text {if }(k \in \dot{E})}: k<n_{i}\right\} \text { is consistent over } M
$$

(ii) if φ has not the independence p, (hence has the strict order p) for $k . l<n_{i}$

$$
M \vDash(\exists x)\left[\neg \varphi\left(x, a_{i}^{k}\right) \wedge \varphi\left(x, a_{i}^{l}\right)\right] \text { iff } k<l
$$

Let $P_{i}=\left\{a_{i}^{k}: k<n_{i}\right\}$, and $S_{i} \subset|M|$ be such that:
(1) for every $a \in M$ there is $b \in S_{i}$ such that:

$$
\text { for every } c \in P_{i}, M \vDash \varphi[a, c] \equiv \varphi[b, c]
$$

(2) there are no $a, b \in S_{i}, a \neq b$, such that:

$$
c \in P_{i} \Rightarrow M \vDash \varphi[a, c] \equiv \varphi[b, c]
$$

Clearly $n_{i} \leq\left|S_{i}\right| \leq 2^{n_{i}} \leq n^{i}$ as $\left|P_{i}\right|=n_{i}$. Let $N=M^{I} / D,\left(N, P^{N}, S^{v}\right)=$ $\Pi_{i \in I}\left(M, P_{i}, S_{i}\right) / D$. Clearly $\left|P^{V}\right|=\Pi\left|P_{i}\right| / D=\Pi \mid n_{i} / D=\mu$, and $\left|S^{A}\right|=$ $\Pi\left|S_{i}\right| / D \leq \Pi n^{i} / D=\mu,\left|S^{v}\right| \geq \Pi n_{i} / D=\mu$, so $\left|S^{v}\right|=\mu$.

Now we split the proof to two cases.
Case I. $\varphi(x ; y)$ has the independence p. I.et $\lambda_{1}=\min (\lambda . \mu)$ and choose $A \subset P^{N},|A|=\lambda_{1}$. By the definition of the P_{i} 's, clearly for every $B \subset A$. $p_{B}=\left\{\varphi(x, a){ }^{\mathrm{if}}(a \in B): a \in A\right\}$ is consistent over N. Now by the definition of the S_{i}, if p_{B} is realized in N. it is realized by some element of S^{V}.
Hence the number of types μ_{B}. which are realized in N is $\leq|S|=\mu$ (because $B_{1} \neq B_{2}$ implies no elements realized both $p_{B_{1}}$ and $p_{B_{2}}$). On the other hand the number of such types is $|\{B: B \subset A\}|=2 A \mid=2,2$, Clearly $2^{\mu}>\mu$, and by hypothesis and detimition of $\mu, \lambda^{\lambda}>\mu$: hence $2^{\lambda_{1}}>\mu$. So for some $B \subset A, N$ omit p_{B}, and as $\left|p_{B}\right|=\lambda_{1} \leq \lambda, N$ is not λ^{+}-compact.

Case II. $\varphi(x, y)$ has not the independence p. hence has the strict order p.
Let us assume N is λ^{*} compact.
Clearly the formula $y<z=(\exists x)[7 \varphi(x, y) \wedge \varphi(x, z)]$ define an order on P^{N}. It is easily seen that for every $a \in N$, either $c \in P^{V} \Rightarrow N \vDash \varphi(a, c)$ or there is $\} \in \mathcal{E}^{V}$ suct that $c \in P^{V} \Rightarrow N \vDash \varphi(a, \therefore) \equiv b<c$ (as the corresponding sentence holds in every $\left(M . P_{i}\right)$). Hence if there is a set of formulas $\{P(x)\} \cup\left\{x<c: c \in C_{1} \subset P^{V}\right\} \cup\left\{c<x: c \in C_{2} \subset P^{N}\right\}$ which is finitely satisfied in (N, P^{N}, S^{v}) but not realized in it. then V will not be λ^{+}-compact, contradiction. So there is no such set of formulas.

Now we define by induction on $l(\eta), \eta \in^{\lambda>2} 2$ elements $a_{n} b_{n} \in p^{N}$ such that:

$$
n
$$

(1) for every $n,(N, P) \vDash\left(\exists y_{1} \ldots y_{n}\right)\left[\wedge P\left(y_{i}\right) \wedge a_{n} \wedge y_{1} \wedge y_{1}<y_{2} \wedge \ldots\right.$ $i=1$

$$
\ldots \wedge y_{n}<b_{n}[
$$

(2) if $k<l(\eta)$ then $a_{n+k}<a_{\eta}<h_{\eta}<b_{\eta, i k}$
(3) $a_{\eta(0)}<b_{\eta(0)}<a_{\eta\{1)}<b_{\eta(1)}$

Clearly the definition is pessithe hence

$$
2^{\lambda}>\mu=\left|p^{N}\right| \geq\left|\left\{a_{\eta}: \eta \in^{\lambda} 2\right\}\right|=\left|\left\{\eta: \eta \in \mathcal{N}^{\lambda} 2\right\}\right|=2 \lambda
$$

contradiction. So M^{2} / D is not λ^{*}-compact, also in the second case.

Theorem 3.4. Suppose T has the strict order p, , is a λ^{+}-tmiversal model of $7 . D$ an (κ_{0}. λ)regular whafilter on λ. Then $M^{\lambda / D}$ is not λ^{++}-compact. Femarks. :) this theorem was proved incenendently by Keisler and the author.
2) The demand of λ^{*}-universality of M is necessary, because by an
 that there is an ultrafilter D on ω such that got any countable model $\therefore f$ of a countable language. $1 / \omega / D$ is saturated.

Also. for a wealer cesult that follows from ZFC, see [17].
Proof Let $\mu=\sum_{\left(\lambda^{\wedge}\right)}$. Note that $\mu^{\lambda}=\mu, \mu^{\lambda^{+}}>\mu$. and w.I.o.g. $\mu>|T|$. If M^{λ} / D is not λ^{-}-compact, the theotem holds. So assume it is λ^{*}-compact. So by Theorm 2.6. if N is a model of $T_{\text {ord }}$ (the theory of dense order) then λ^{l} / D is λ^{*}-compact. Let $J=\omega>\left(\mu^{*}+\mu\right),\left(\mu^{*}\right.$ is μ with inverse order). Let $<$ order J by the lexicographic order. Note that $\langle J,<\rangle$ satisfies
(i) J is dense without last and first element
(ii) $s<t, s, t \in J$ implies there are s_{i}, t_{i}. $i<\mu$ such that

$$
i<j<\mu \Rightarrow s<s_{i}<t_{i}<s_{j}<t_{j}<t .
$$

W.Log. assume $M_{\text {is }} \mu^{*}$-saturated. Now as T has the strict order p, and M is universal. there is $\varphi(\vec{x}, \vec{J}) \in L(T)$ and $\bar{a}_{s} \in|M|$ for $s \in J$ such that.
(iii) $\left.M \vDash(\exists \bar{x}) \mid \neg \varphi\left(\bar{x}, \bar{a}_{s}\right) \wedge \varphi\left(\bar{x}, \bar{a}_{t}\right)\right]$ iff $s<t$.

Let $P^{n}=\left\{a_{s}: s \in I\right\},<^{M}=\left\{\left\langle a_{s}, a_{f}\right\}: s<t\right\}$, and $\left(N, F^{v},<^{N}\right)=$ (M, $\left.P^{M},<^{M}\right)^{M} D$. Note that $<^{M}$ order P^{M} is in a dense order without first and last element, hence ($P^{N},<^{N}$) is λ^{+}-saturated. Notice that also (ii) is satisfied by ($P^{N},<^{N}$). So we can deine $\bar{a}_{\eta}, \bar{b}_{\eta} \in P^{N}$ for $\eta \in^{\lambda^{+}>} \mu$ such that:
(A) If $k<l(\eta), \tau=\eta \mid k$ then $\bar{a}_{\mathrm{r}}<\vec{\theta}_{\eta}<\bar{b}_{\eta}<\bar{b}_{r}$
(B) If $i<k<\mu$, then $\bar{a}_{n-\infty}<\bar{b}_{\eta(\alpha)}<\bar{a}_{\eta(k)}<\bar{b}_{n\{(\hat{j}}$.

Now for every $\eta \in^{\lambda} \mu$, the tym

$$
p_{\eta}=\left\{\neg \varphi\left(\bar{x}, \bar{a}_{r \mid l}\right): l<\lambda^{\prime}\right\} \cup\left\{\varphi\left(x, b_{n+f}\right): l<\lambda^{*}\right\}
$$

is consistent over N, and $\left|p_{\eta}\right|=\lambda^{+}$. If any η_{η} is omitted - the conclusion of the theorem holds. So p_{η} is reanized by ζ_{η}, and clearly $\eta, \tau \in{ }^{\lambda+} \mu$, $\eta_{1} \neq \tau$ implies $c_{n} \neq c_{2}$. As in the poot of heorem 3.3 (the use of S) we see that in N at mos: μ types $\subset\left\{\varphi(\vec{X}, a): i \in 2, a \in P^{v}\right\}$ are realized. Contradiction.

Lemma 3.5. If T is $\triangleleft_{\lambda}-m i n i m a l$, n, then T is $\triangleleft_{\mu}-$ minimal.
Proof. By Keisler [6] T is not Δ_{κ} mimimal iff there is an ($\left.\kappa_{0}, \kappa\right)$-regular ultrafilter D on κ, and a model M mi T such th it M^{κ} / D is not κ^{*}-compact. Assume T is not \triangleleft_{μ}-minimal. So flare is a $\left(\kappa_{0}, \mu\right)$-regular ultrafilter on μ, and a model M of T such that $M_{w^{\prime}} / D$ is not μ^{*}-compact. Let D_{1} be a $\left(\kappa_{0}, \lambda\right)$-regular ultrafilter on $\lambda, D_{2}=D_{2} \times D . I=\lambda \times \mu$, so D_{2} is an ultrafilter on $I, 1 / I=\lambda D_{2}$ is κ_{0}, λ, hegular and $M^{t} / D_{2}=\left(M^{\lambda / D} D_{1}\right)^{\mu} D$ is not μ^{*}-compact.

Hence not λ^{*}-comact. So T is 1 nt $Q_{,}$-mimmat Contadiction.

§ 4. Saturation of ultrapowers and categoricity of pseudo-elementary classes

Theorem 4.1. Let The countable theors. M_{i} a model of Tor every iEl. and D an witrafiticr over I. Let $N=I_{R=1} M_{i} / D$. Then
A) If T has not the $\mathrm{f} . \mathrm{c} \mathrm{p}, \mathrm{\lambda}=\mathrm{N}_{0}^{1} / D$. then.$V$ is λ-saturated
B) If T is stable and has the f.c.p. then N is max λ-saturated where

$$
\lambda=\min \left\{\Pi n_{i} / D: \Pi n_{i} i D \geq \kappa_{0}\right\}
$$

C) If Thas not the f.c.p.. cach H_{i} is μ saturated. and

$$
\lambda=\mu^{I / D} \text { then } V \text { is } \lambda \text {-saturated. }
$$

D) For everw fimite $\triangle C L(T)$ let

$$
\begin{aligned}
& \lambda_{i}(\Delta)=\min \left\{|p|: p \text { is } \Delta-1-t y p e \text { over } M_{i}\right. \text { which is } \\
& \text { onitted by } \left.M_{i}\right\}
\end{aligned}
$$

$$
\lambda^{*}=\min \left\{\Pi \lambda_{i}(\Delta) / D: \Delta \subset L(T),|\Delta|<\aleph_{0}\right\}
$$

Let λ be the first cardinal. $\lambda=\Pi \lambda^{i / D}$:or some λ^{i}, and for every finite $\Delta \subset \mathrm{L}(T),\left\{i: \lambda^{i} \leq \lambda_{i}(\Delta)\right\} \in D$.

Then if T has not the f.c.p., N is λ-saturated, but not $\left(\lambda^{*}\right)^{*}$-saturated. Remarks. 1) Clearly the results, except D, are the best possible. For example in A). if we choose the M_{i} as countable models, t :en $\|N\|=$ $\kappa_{0}^{\prime} / D=\lambda$, hence V is not λ^{+}-saturated.
2) lustead demanding T is countable, we can demand D is $|T|^{+}$-good. By Theorem 2. 3 this is necessary.

Proof. Notice: as T is countable. for every model M of T and cardinality $\kappa>K_{C}, M$ is κ-compact iff M is κ-saturated.

Now in case B), N is not λ^{*}-saturated by Theorem 3.1. Similarly we can prove in Case D) N is not $\left(\lambda^{*}\right)^{+}$-saturated. So it remains to prove that in all cases N is λ-saturated.

Clearly V is N_{1}-saturated. By [13] Th. 5.16 , as T is countable and
stable, it suffices to prove:
if $\left\{c_{i}: i<\omega\right\} \subset|N|$ is an indiscernible set ([13]. Def. 5.1, 5.2), then it can be extended in N to an indiscernible set of cardinality λ.

For every $i \in I$ let us choose a family S_{i} of subsets of $\left|H_{i}\right|$ such that:

1) $\left|S_{i}\right|=\left\|M_{i}\right\|$
2) every finite subset of $\left|M_{i}\right|$ belongs to S_{i}
3) for every finite $\Delta \subset L(T), n<\omega$, if $w \in S_{i}$ is $\Delta-n$ indisermble set,
$0 \leq \mu \leq\left\|M_{i}\right\|$ and there is a $\Delta-n$-indiscemible set w^{\prime}. "C " $\mathrm{C} \mid M_{i} \|$.
$\left|w^{\prime}\right|=\mu$, then there is $w^{\prime \prime} \in S_{i},\left|w^{\prime \prime}\right|=\mu, w \subset w^{\prime \prime} \subset\left|M_{i}\right|$ and $w^{\prime \prime}$ is
$\Delta-n$-indiscernible set.
Let $\left|M_{i}\right|=\left\{a_{j}^{i}: j<\left\|M_{i}\right\|\right\} . S_{i}=\left\{w_{j}^{i}: j<\| M_{i}\right.$. Let us define the relation \in^{i} on $\left|M_{i}\right|: \in^{i}=\left\{\left(a_{j}^{i}, a_{k}^{i}\right): a_{j}^{i} \in w_{k}^{i}\right\}$. We shall write $x \in y$ instoad of $\in(x, y)$. In the language $\mathrm{L}=\mathrm{L}(T) \cup\{\in\}$, clearly there is a formula $\varphi_{\Delta, n}(x)$ meaning $\{y: y \in x\}$ is a $\Delta-n$-indiscerable set. for evely finite Δ, n.

Now for every $i \in l$ we define p_{Δ} according to the part of the theorem we want to prove; in
A) $P^{i}=\left\{a_{k}^{i}:\left|w_{k}^{i}\right| \geq w_{0}\right\}$, in
B) $P^{i}=\left\{a_{k}^{i}: k<\left\|M_{i}\right\|\right\}=\left|M_{i}\right|$, n
C) $P^{i}=\left\{a_{k}^{i}:\left|w_{k}^{i}\right| \geq \mu\right\}$, in
D) $P^{i}=\left\{a_{k}^{i}:\left|w_{k}^{i}\right| \geq \lambda^{i}\right\}$
where λ^{i} are defined sui h that $\Pi \lambda^{i} / D \geq \lambda$. and for every finiti Δ,
$\left\{i: \lambda^{i} \leq \lambda_{i}(\Delta)\right\} \in D$.
Now the followirg hold
(*) For every finite Δ © $\quad(T), n<\omega$ there is $n=m(\Delta, n)<\omega$ such that the set $0^{*} i$'s for which the following holds belongs to D :
(**) For every $\Delta-n$-indiscemible set $w_{k}^{i},\left|w_{k}^{i}\right| \geq m$, there is a $\Delta-n-$ indiscernible set $w_{j}^{i}, w_{j}^{i} \subset w_{j}^{i} \in P^{i}$.

Let us prove it. In part B) it is trivial. In the other parts T has not the f.c.p., so in part A) it follows from [13] Th. 5.5 C . in port C) from 5.5 B . and in part D. from the proof of Th. 5.5 A in [13]. Not ce that except in D$)\left({ }^{* *}\right)$ holds for every i.

Now clearly (${ }^{* *}$) is equivalent to a first-order sentence in $L^{*}=$ $\mathrm{L} \cup\{\in\} \cup\{P\}$. Let $N^{\prime}=\left(N, \in^{v}, P^{V}\right)=M\left(M_{i} . E^{i} . P^{i}\right) / D$. Clearly N^{*} is \aleph_{1}-saturated.

By (*) clearly the sentences corresponding to (**) are satisfied by N^{\prime}. Remember we say it suffices to prove that $\left\{c_{i}: i<\omega\right\}$ can be extended in N to an indiscernible set of cardinality λ. As $\left\{c_{i}: i<\omega\right\}$ is an indiscernible set. for every Δ. n it is a $\Delta-n$-indisc mible set. Hence every finite subset of

$$
\begin{aligned}
p= & \{c, \varepsilon v: i<\omega\} \cup\left\{\varphi_{\mathrm{A}}(x):\right\rfloor \subset L(T), \\
& \left.|\Delta|<\aleph_{0} \cdot n<\omega\right\} \cup\{P(\omega)\}
\end{aligned}
$$

is satisfies in N^{\prime}, hence p is satisfied in N, say by b. As for every Δ, n. $V^{\prime \prime} \vDash \varphi_{\Delta n}(b)$, clearly $:=\left\{a \in|N|: N^{\prime} \vDash a \in b\right\}$ is an indiscernible set. and of course $\left\{c_{i}: i<\omega\right\} \subset N$. As $N=f|b|$, and $|w|>\left|\left\{c_{i}: i<\omega\right\}\right|=$ N_{0}. elcarly hil $\geq \lambda$ (the check for each part is easy). So we prove the theorem.

It will be more satisfactory if in 4.1D. $:=\lambda^{*}$. (This holds if $M_{i}=A^{\prime}$). For this it suftices to prove

Combecture A. Let $\left.\langle I,<\rangle=\langle\mu,<\rangle^{I} /\right\rangle$. $(<-$ the natural order on ordinals.) For $a \in J$, |et $|a|=|\{b \in I: b<a\}|$. Suppose $a_{n} \in J$ for $n<\omega,\left|a_{n}\right|=$ $\left|a_{0}\right|$. Then there is $a \in J, a \leq a_{n}$ and $|a|=\left|a_{0}\right|$.

Theotem 4.2. Let il be a λ-compact model of $T,|T| \leq|I|, N=M^{I} \mid D$. If \boldsymbol{N} is ($\left.2^{(t)}\right)^{*}$-compact. then N is $\lambda^{1 / D-s a t u r a t e d . ~}$

Remorks. I) This affirms conjectute 4D or Keisler [6], p. 41, which says that \because is λ-saturated.
2) For countable T, this theorem follows from Theorems 3.1, 4.:C.
3) Here the proof works also for Σ_{1}-complete ultrafilter D.

Proof. As N is ($\left.2^{(t)}\right)^{\prime}$-compact, by $3.1, T$ has not the f.c.p. Hence T is stable ($[13]$. Th. 3.8A). As N is ($\left.2^{(f)}\right)^{*}$-compact, $|I| \leq|T|$, clearly every infinite indiscemible set can be extended to one with cardinality $\geq\left(2^{21}\right)^{*}$. By [13], 5.16 and 5.11 (remembering that by 113$] \mathrm{Th} .4 .1 \mathrm{~A}$ T has rot the independence p). It suffices to prove that:

If w_{1} is an indiscernible set in.,$\left|w_{1}^{\prime}\right| \geq\left(2^{l /}\right)^{+}$, then there is an indiscernible set $W_{2} .\left|W_{1} \cap W_{2}\right| \geq \kappa_{0} .\left|W_{2}\right| \geq \lambda^{I} / D$.

Let $\left\{a_{k}: k<\left(2^{[/)^{+}}\right\} \subset w_{1}\right.$. Now the following statement will be proved later.
${ }^{(*)}$ there is an infinite $w \subset\left(2^{i /}\right)^{*}$ such that for every $i \in I,\left\{a_{R}|i|: k \in w\right\}$ is an indiscernible set in M.

We can assume $\lambda>|T|$, as otherwise the conclusion of the theorem is trivial. For every $i \in I$ let P^{i} be a maximal indisecrnible set $\left\{a_{k}[i]\right.$: $k \in w\} \subset P^{i} \subset|M|$. As,$M$ is λ-compact, $\lambda>|T|$, clearly $\left|P^{\prime}\right|>\lambda$. Let $\left(N, P^{N}\right)=1\left(M, P^{i}\right) / D$. Clearly $|P|=\Pi\left|P^{i}\right| / D>\lambda^{I / D}$. Now for every finite $\Delta \subset \mathrm{L}(T), n<\omega$, the statement " P is a $\Delta-n$-indiscernible set" is elementary, hence P is an indiscernible set. So $P \subset \| M,\left\{a_{k}: k \in w\right\} \subset P$. hence $\left|P \cap W_{1}\right| \geq\left|\left\{a_{k}: k \in w\right\}\right| \geq N_{0}$. So P satisfies the conditions for w_{2}. Hence we should prove only (*).

As T is siable, by [13]. Th. 2.13, $|B| \leq 2 /$ implies $|S(B)|<\left(2^{T}\right)^{T}=$ $2^{|l|}$. It is also clear that for $B_{i} \subset|M|,\left|B_{i}\right| \leq 2$, for every $i \in I$: $\left|\Pi_{i \in I} S\left(B_{i}\right)\right|=\Pi_{i \in I}\left|S\left(B_{i}\right)\right| \leq\left(2^{2}\right)^{i /}=2^{i /}$.

Define for $k \leq I I I^{+}$, sets $w_{k} \subset\left(2^{\prime \prime}\right)^{\circ}$ by induction:

1) $w_{0}=\{ \}, w_{\delta}=\bigcup \bigcup_{l<\delta} w_{l}$ for a limit udinal δ.
2) Let w_{α} be defined Then for every $l<\left(2^{\prime}\right)^{+}$there is a minque $k \in w_{\alpha+1}$ such that: for every $i \in l, a_{k}[i], a_{i}[i]$ realizes the same type in M over $\left\{a_{j}[i]: j \in w_{\alpha}\right\}$.
Clearly for every $k,\left|w_{k}\right| \leq 2^{n}$. Choose $\alpha_{0}<\left(2^{d i}\right)^{*}, \alpha_{0} \notin w_{j}$. For every $\alpha<|I|^{+}$. let k_{α} be the ordinal such that for every $i \in I, a_{\alpha_{0}}[i]$. $a_{k_{\alpha}}[i]$ realizes the same ype over $\left\{a_{j}[i]: j \in w_{\alpha}\right\}$ and $k_{a} \in w_{\alpha+1}$. Clearly for every $i, \alpha \leq \beta<\gamma<\| I^{*}, a_{k_{\beta}}[i], a_{k_{\gamma}}[i]$ tealizes the same type in M over $\left\{a_{k l}: l<\alpha\right\}$.

By [13], Th. 5.17, for every i, there is $l(i)<\| \|^{*}$ such that $\left\{a_{k_{\alpha}}[i]\right.$: $\left.l(i) \leq \alpha<I I^{+}\right\}$is an indiscernible set. Let $l_{0}=\sup _{i \in\}} l(i) . w=\left\{k_{\alpha}: l_{0} \leqslant\right.$ $\left.\alpha<\mid I I^{+}\right\}$. Clearly this is the w required in (*).

Remark. We can in fact find such w of cardinality $\left(2^{\prime \prime}\right)^{*}$
Theorem 4.3. If T is countable, superstable and has not the f.c.p., then there is $T_{1}, T \subset T_{1},\left|T_{1}\right|=2^{*}{ }^{0}$ such that $\mathrm{PC}\left(T_{1}, T\right)$ is categorical in every cardinality $\geq 2^{\mathrm{N}^{0}}$. Morever every model in $\mathrm{PC}\left(T_{1}, T\right)$ of cardinality $>\kappa_{0}$ is soturated.

Remark. PC($\left.T_{1}, T\right)$ is the class of reduets to $L(T)$ of models of T_{1}. Note that by Theorem 4.8 , and by [13] Section 0 G.7, G.10: the theorem is the best possible.

Proof. Let M be a countable model of T. We expand M to M_{1} by adc ing names for all the possible relations and functions over $\mid \mathrm{M} / \mathrm{I}$ (i.e. M_{1} is a complete model. Let L_{1} be the language of M_{1}, and T_{1} the theory of H_{1} (i.e. the set of sentences from L_{1} that M_{1} satisfied). Clearly T_{1} contains its Skolem functions.

Let N_{1} be any uncountable model of T_{1}, and let V be the reduct of N_{1} to $L(T)$. It suffices to prove that N is saturated (as by Moriey and Vaught [18], every two saturated models of the same complete theory, which are of the same cardinality are isomorphic . So let p be any $1-$ type over $N .|p|<H N H$, and it sulfies to pove that p is realized in N.

Let p_{1} be any extension of p to a comple te type over $|N|$. and let $\varphi(x, a) \in p_{1}$, be such that $\operatorname{Deg}\{\varphi(x, a)\}=$ Deg, p_{1}. (see [13], Def. 6.3, Lemma 6.2A, 6.2B). Let $M \mid=\left\{a_{i}: i<\omega\right\}$, and let $c_{i}, i<\omega$ be individual constants in L_{1} such that $c_{i}^{3 /}=a_{i}$, Clearly there $i s a^{0} \in\left|N_{1}\right|, a^{0} \neq c_{i}^{N_{i}}$ for $i<\omega$. Define $A=\left\{I^{N}:\left\{a, a^{0}\right\}: F\right.$ a function symbol in $\left.L_{1}\right\}$. Clearly the submodel N_{1}^{*} of $N_{1},\left|N_{1}^{*}\right|=A$, is an elementary submodel if N_{1} (by the definition of T_{1} and Tarski--Vaught Test). Lei N^{*} be the reduct of N_{1}^{*} io LT . Clearly N^{*} is an elementary submodel of N. We shall show now
(*) N: is N_{1} compact, hence N^{*} is N_{1}-saturated.
So let q be a countable type over N_{1}^{*}, and we should prove it is realized in N_{1}^{*}. Let $\left.q=\left\{\varphi_{i}, x, a_{0}^{i}, \ldots, a_{n i}^{i}\right): i<\omega\right\}$.

As every $a_{j}^{i} \in A$, for some $F_{i j} \in L_{1}, a_{j}^{i}=F_{i, j}^{M}\left\lceil\bar{a}, a^{0}\right]$. So by substituting we get $q=\left\{\Psi_{i}\left(x, \bar{a}, a^{0}\right): i<\omega\right\}$. Remembering $|M|=\left\{a_{i} \cdot i<\omega\right\}, c_{i}^{M}=$ a_{i}, M_{1} is complete; it is clear that then is a function symbol G in L_{1} such that for every a_{n}, \bar{b}, b^{0} from $\mid M, G^{M_{1}}\left(a_{n}, \bar{b}, b^{0}\right)$ realizes $\left\{\Psi_{i}\left(x, \bar{b}, b^{0}\right): i<m\right\}$ for the maximal possible $m \leq n$. Clearly for every n

$$
\begin{aligned}
M_{1}= & (\forall z)(\forall 1)\left[\begin{array}{l}
n 1 \\
\wedge_{i=0}^{n}, y_{i} \varepsilon_{i} \wedge(\exists x) \wedge_{i=0}^{n} \Psi_{i}(x, z) \rightarrow \\
\end{array}\right. \\
& \wedge_{i=0}^{n-1} \Psi_{i}\left(G\left(, y_{i}, z\right)\right]
\end{aligned}
$$

As $a^{0} \neq c_{i}^{N^{*}}$ for $i<\omega$, clearly $G^{V^{*}}\left(a^{0}, \bar{a}, a^{0}\right)$ realizes q. So we prove (*).
As N^{*} is κ_{1}-saturated; by [13], 6.8A. 6.8D, we can find $B \subset C^{*}$. $|B|=\kappa_{0}$ such that $p_{1} \mid B$ is fixed ($[13]$, Def. 6.5), and we can define $b_{i} \in N^{*}$ for $i<\omega$, such that b_{i} realize: $p_{1} \mid\left(B \cup\left\{b_{j}: j<i\right\}\right.$). By the definition of a fixed type we c.n define $b_{j}, \omega<i<\omega+\omega=\omega$ such that b_{i} realizes over $|N| \cup\left\{b_{i}: j<i\right\}$ a type $p_{i}, p_{1} \subset p_{i}$, Deg $p_{1}=\operatorname{Deg} p_{i} \cdot B y$ [13], Th. 6.12A, $\left\{b_{i}: i<\omega 2\right\}$ is an indiscernible set over B. By |13| Th. 4.1 T has not the independence p. So $\theta(x, c) \in p_{1}$ implics $=0\left|b_{i}, c\right|$ for $\omega<i<\omega 2$. So $\left\{i<\omega 2\right.$: $\left.=\theta\left\{b_{i}, \bar{c}\right]\right\}$ is infinite, so by [13]. Th. 5.9. $\left\{i<\omega 2: \vDash \neg \theta\left\{b_{i}, \bar{c}\right]\right\}$ is finite, so $\left\{i<\omega: \vDash \neg \theta\left\{b_{i}, \bar{c}\right]\right\}$ is finite. So if W is an indiscernible set in $N . b_{i} \in W$ for $i<\omega$, then $0(x, \bar{c}) \in p_{1}$ implies $\{b \in W: N \vDash 7 \theta(b, \bar{c})\}$ is finite. So clearly it suffices to prove that $\left\{b_{i}: i<\omega\right\}$ can be extended in $N\left(\right.$ not $\left.N_{1}\right)$ to an indiscermible set of cardinality $\|N\|$. (Because then all but $\leq|p|+s_{0}$ elements of the set will realize p.)

Let S be a family of subsets of $|M|$ such that

1) $|S|=N_{0}$
2) every timite subset of 1 If betongs to S.
3) If W is a finite $\Delta-\mu$-indiscernible subset of M. (Δ a finite subset of L_{1}). and $I W$ can be extended to an infinite $\Delta-n$-indiscemible set in M. then there is such extension which belongs to S.

Let $S=\left\{w_{i}: i<\omega^{2}\right.$, and noting $|M|=\left\{a_{i}: i<\omega\right\}$ let $\in^{M}=\left\{a_{i} a_{i}\right\}$: $\left.a_{i} \in W_{j}\right\} \cdot P^{M_{1}}=\left\{a_{j}: W_{j} \mid=B_{0}\right\}$, where \in, P helongs to L_{1} and let $F \in \mathrm{~L}_{1}$ be such that for every $e_{i} \in P^{M_{1}}, r^{M_{1}}\left(r, a_{j}\right)$ is a function from W_{j} onto $|M|$; and we write $x \in y$ instead of $\in(x, y)$. Clearly for every finite $\Delta \subset \mathcal{L}(T), n<\omega$, there is a formula $\varphi_{\mathrm{an}}(x)$ in E_{1} saying that $\{y: y \in x\}$ is a $\Delta-n$-indiscernible set. Let

$$
\begin{aligned}
q= & \left\{\varphi_{\Delta, n}(x): \Delta \cup \mathrm{L}(T), n<\omega,|\Delta|<x_{d}\right\} \cup \\
& \cup\left\{b_{i} \in x: i<\omega\right\} \cup\{P(x)\} .
\end{aligned}
$$

It suffices to prove that q is consistent over N_{1}^{*}. Because as N_{1}^{*} is N_{1}. compaci, q is realized, by some element $h \in N_{1}^{*}$. Hence $W=\left\{c \in N_{1}\right.$; $\left.N_{1} \vDash c \in b\right\}$ is an indiscernible set $a s N_{1}^{*} \vDash \varphi_{\Delta n}(b), N_{1}^{*}$ is an elementary submodel of N_{1}). Cleariy $b_{i} \in \boldsymbol{H}^{\prime}$ for $i<\omega$. Also $|n|=\| N$ as $N_{1} \vDash P[b]$ [using $F^{N_{1}}(x, b)$).

Now in order to prove that q is consistem over V_{1}^{*} it suffices to prove that every tinite subset of it is consistent. By [13]. Lemma 5. IC instead of a finite number of $\varphi_{د, n}(x)$ we can take one. So it suffices to prove the consistency of

$$
q^{\prime}=\left\{P(x), \varphi_{a, n}(x)\right\} \cup\left\{b_{i} \in x: i<m<\omega\right\} .
$$

By [13] Lemma 5.5 C for every finite Δ, n there is $r=r(\Delta, n)<\omega$ such that: if $m \geq r,\left\{b_{0} \ldots, b_{m}\right\}$ is a $\Delta-n$-indiscernible set in M, then there is an infinite $\Delta-n$-indiscernible set in M which extends $\left\{b_{0}, \ldots, b_{m}\right\}$. So for $r \geq r(\Delta, n)$

$$
\begin{aligned}
H_{1} & \vDash(\forall x)\left(\vee y_{0} \ldots y_{r}\right)\left[\left(\wedge y_{i} \neq y_{i} \wedge \varphi_{\Delta n}(x) \wedge \wedge_{i \leq r} y_{i} \in x\right) \rightarrow\right. \\
& \left.\rightarrow(\exists r)\left(\varphi_{\Delta n}(r) \wedge P(y) \wedge \wedge_{i \leq r} y_{i} \in y\right)\right]
\end{aligned}
$$

This clearly implies the consistency of q^{\prime}. as $\left\{b_{i}: i<\omega\right\}$ is an indiscomble set (in l(T)) and forevery $c_{1} \ldots c_{n} \in N_{1}$ there is $c \in N_{1}$ such that $N_{1} F(\forall x)\left(x \in c \equiv V_{i=1}^{u} x=c_{i}\right)$.

The following theorems have similar proofs, so we omit them.
Theorem 4.4. A) If T is countable, without the f.c.p., and stable in \aleph_{0} (i.e. tetally transcondental) then there is $T_{1}, T \subset T_{1},\left|T_{1}\right|=\aleph_{0}$, such that $\operatorname{PCC} T_{1}, T$ is categorical in ever $\lambda \geq N_{0}$. and every model of it is saturated.
B) If T has the (e.p.. is coumtable and stable in $\kappa_{0}, \lambda .2^{N_{0}}$ then there is $T_{1}, T \subset T_{1}, \mid=1=\lambda$ such that $\mathrm{PC}\left(T_{1}, \bar{T}\right.$ is catcgorical in λ and ever model o' it of carcinality λ is saturated.

Theorem 4.5. If T is coumtable and superstable, then the ere is $T_{1}, T \subset T_{1}$. $\left|T_{1}\right|=2{ }^{*} 0$ such that $\mathrm{PC}\left(T_{1}, T\right)$ is categorical in $2^{* 0}$, anc every model of it of cardinaliy $2^{\mathrm{N}_{0}}$ is saturated.

Remark. We use the following fact: if M_{1} is a complete model, which expands ($\omega .<\rangle, N_{1}$ is an uncountable model of the theory of M_{1}. $a \in\left|N_{1}\right|,\left|\left\{b \in N_{1}: b<a\right\}\right| \geq N_{0}$ the; $\left|\left\{b \in N_{1}: b<a\right\}\right| \geq 2^{N_{0}}$.

Theorem 4.6. Let M be a model of a countable and superstable theor: $T, N=M_{D}^{I} \mid G,\|N\|>\aleph_{0}, v^{\prime} \neq M$. Then
A) N is \beth_{1}-saturated.
B) If T has not the f.c.p., M is λ-compact then N is $\lambda_{D}^{b} \mid G$-compact.
C) If $\left\langle J,\langle \rangle=\left\langle\omega,\langle \rangle_{D}^{I}\right| G\right.$. and for $\left.n o s \in J, \mathbb{N}_{0} \leq\right|\{b \in J:(J,\langle \rangle \vDash b<$ $a\} \mid<\lambda$, then N is λ-sathrated.

Theorem 4.7. A) Let M be a countable model of a stable theory T which has the f.c.p., and $\Delta \subset \mathrm{L}(T)$ be finite. Let po be $\Delta-1-t \mathrm{pe}$ e ower $N=M_{D}^{I} \mid G$ which is omitted by $N:$ but every $q \subset p .|q|<|p|$ is realized by N; and $|p|$ is regular. Then there is

$$
s \in\{\omega+1,<\}_{D}^{I} \mid G \text { such that }|p|=\left|\left\{t:\{\omega+1,\rangle_{D}^{\prime} \mid G \vDash t<s\right\}\right|
$$

Remark. 1) This theorem is a converse to Theorem 3.2.
2) For uncountable M, we should replace $\omega+1$ by $\lambda+1, \lambda=\|M\|$.

Proof. By [13] Th. 5.9A there are finite Δ_{1}. n_{1} sach that:
$\left.{ }^{*}\right)$ If $\varphi(x, \bar{y}) \in \Delta,\left\{a_{i}: i<\alpha\right\}$ is a $\Delta_{1}-n_{1}$-indicemble set in N then for every \bar{b} from N either $\left\{\left\{i<\alpha: N \vDash \varphi\left|a_{i}, \bar{b}\right|\right\} \mid<n_{1}\right.$ or $\left|\left\{i<\alpha: N=7 \varphi\left[a_{i}, \bar{b}\right]\right\}\right| \cdots n_{1}$.

By [13]. Th. 5.10 there are finite Δ_{2}, n_{2} such that
(**) (i) every $\Delta_{2}-n_{2}$-indiscernible set is a $\Delta_{1}-n_{1}$-indiscernible set.

$$
n_{2} \geq n_{1} .
$$

(ii) if W_{i} is a $\Delta_{i}-n$-indiscernible set in $N, i=1,2$ and $\left|W_{1} \cap W_{2}\right| \geq n_{2}$ $\operatorname{dim}\left(W_{2}, \Delta_{2}, n_{2}, N\right) \geq N_{0}$ then $\operatorname{dim}\left(W_{1}, \Delta_{1}, n_{1}, N\right) \geq$ $\operatorname{dim}\left(W_{2}, \Delta_{2}, n_{2}, N\right)([13]$, Def. 5.4 define dim).
Similarly we can define finite Δ_{3}, n_{3} which will relate to Δ_{2}, n_{2} just as Δ_{2}, n_{2} selate to Δ_{i}, n_{1}.

Now let $p=\left\{\varphi_{i}\left(x, \overline{a^{i}}\right): i<|p|\right\}$. (So for every $i, \varphi_{i}(x, \bar{y})$ belongs to Δ. or is the negation of a formula from Δ.) For every $j<p$ let $p_{j}=$ $\left\{\varphi_{i}\left(x, \overrightarrow{a^{i}}\right): i<j\right\}$. By our assumption each p_{j} is realized by some $b_{j} \in N$. As $|p|$ is regular, by [13], Th. 5.8 there is $w \subset|p|,|w|=|p|$ such that $W_{1}=\left\{b_{j}: j \in w\right\}$ is $\Delta_{3}-n_{3}$-indiscernible set (hence also $\Delta_{2}-n_{2}$ - and $\Delta_{1}-n_{1}$-indiscemible set). Clearly $\operatorname{din}\left(W_{1}, \Delta_{1}, n_{1}, N\right) \geq|p|$ Let is prove that the equality holds. Otherwise there is $h^{\prime \prime}, w_{1} \subset w^{\prime},\left|w^{\prime}\right|>|p|$ and
H^{1} is also $\Delta_{1}-n_{1}$-indiscemible. Now $\varphi_{i}\left(x, a^{i}\right) \in p$ implies $i<j<|p| \Rightarrow$ $N \mid=\varphi_{i}\left[b_{i}, a^{i}\right]$, hence $\mid\left\{b \in W_{1}:=\varphi_{i}\left[b, a^{i}\right]\right\} \geq \sim_{0}$ hence $\left\{\left\{b \in W^{1}\right.\right.$: $\left.F=\varphi_{i}\left\{b, \bar{a}^{i}\right]\right\} \mid \geq N_{0}$. hence by (*) $\left|\left\{b \in W^{1}: N \vDash 7 \varphi_{i}\left[b, \bar{a}^{i}\right]\right\}\right|<n_{1}$. So the number of $b \in W^{1}$ which do not ralize p is $\leq n_{i}|p|<\left|1^{\prime 1}\right|$, so p is realized in N. Contradiction. So $\operatorname{dim}\left(H_{1}^{\prime}, \Delta_{1}, H_{1}, N\right)=|p|$.

Let us choose in M any countable set $p^{M}=\left\{a_{i}: i<\omega\right\}$, and define an order relation $<M=\left\{\left\langle a_{i}, a_{j}\right\}: i<j\right\}($ we write $\kappa<y$ instead $<(x, y)$). We also define a relation Q^{H} such that: if $\left\{c_{1}, \ldots, c_{n}\right\}$ is a $\Delta_{2}-n_{2}$-indiscernible set in M, then $\left\{c \in M:\left\langle c, c_{1}, \ldots, c_{n_{3}}\right\rangle \in Q^{M}\right\}$ is a maximal $\Delta_{2^{-}}$ n_{2}-indiscemible set in M, and it includes $c_{1} \ldots, c_{n_{3}}$. Let us define also a function F^{M} such tha: for every $c_{1}, \ldots, c_{n\}} \in M$, let $W=\{c \in M$: $\left.\left\langle c, c_{1}, \ldots, c_{n}\right\rangle \in Q^{M}\right\}$: now $|4|=r<\omega$ implies $A^{M}\left(c_{1}, \ldots, c_{n_{3}}\right)=a_{r+1}$ and $|W| \geq N_{0}$ implies $P^{M}\left(c_{1}, \ldots, c_{n 3}\right)=a_{\omega}$. We also define H^{M} such that if $H^{3 /}\left(c_{1}, \ldots, c_{n 3}\right)=a_{r+1}, M^{M /}\left(x_{n} c_{1}, \ldots, c_{n 3}\right)$ will be a one-to-one function from $\left\{a_{i}: i<r\right\}$ onto $\left\{c \in M:\left\langle c, c_{1}, \ldots, c_{n}\right\rangle \in Q^{M}\right\}$; and if $F^{M}\left(c_{1}, \ldots, c_{n}\right)=a_{\omega}, H^{M}\left(x, c_{1}, \ldots, c_{n \xi}\right.$, will be a one-to-one function from $\left\{a_{i} ;<\omega\right\}$ onto $\left\{c \in M:\left(c, c_{1}, \ldots, c_{n_{3}}\right\} \in Q^{M}\right\}$. Let

$$
N_{1}=\left(N \cdot P^{N} \cdot<^{N}, R^{V} \cdot Q^{V} \cdot H^{N}\right)=\left(M, P^{M},<^{M} \cdot F^{M}, Q^{M} \cdot H^{M}\right)_{D}^{I} \mid G
$$

Let us choose n_{3} different element of $W_{1}(\subset|N|)-c_{1}, \ldots, c_{n_{3}}$. Let $W_{2}=\left\{c \in\left|N_{1}\right|: N_{1} \vDash Q\left[c, c_{1}, \ldots, c_{n}\right]\right\}$. Clearly W_{2} is a maximal $\Delta_{2}{ }^{-}$ n_{2}-indiscemible set, hence $\operatorname{dim}\left(w_{2}, \Delta_{2} \cdot n_{2}, N\right)=\left|w_{2}\right|$. Let $a=F^{V_{1}}\left[c_{1}, \ldots c_{n 3}\right]$, and $\lambda=\left|\left\{b \in P^{N_{1}}: N_{1} \vDash b<a\right\}\right|$. Clearly, (using in) $\left|w_{2}\right|=\lambda$. It is also clear that $c_{1}, \ldots, c_{3} \in W_{2}$, hence $\left|w_{1} \cap W_{2}\right|=n_{3}$.

As W_{1}^{\prime} is $\Delta_{i}-n_{i}$-indiscermole set for $i=1,2,3$.

$$
\begin{equation*}
|p|=\left|w_{1}\right| \leq \operatorname{dim}\left(w_{1}^{\prime}, n_{3}, \Delta_{3}, N\right) \leq \operatorname{dim}\left(w_{1}, \Delta_{1}, n_{1}, N\right)=|p| \tag{i}
\end{equation*}
$$

As $\left|w_{2} \cap w_{2}\right| \geq n_{3}$, and w_{3} is infinite, by the definition of $\Delta_{3} n_{3}$.
(ii) $\mid w_{2}=\operatorname{dim}\left(w_{2}, \Delta_{2}, n_{2}, N\right) \geq \operatorname{dim}\left(w_{1}, \Delta_{3}, n_{3}, N\right)$

Hence I_{2} is infinite. $\leqslant \mathrm{s}\left|\mathrm{w}_{1} \cap W_{2}\right| \geq n_{3} \geq{ }_{2}$, by (**).
(iii) $\operatorname{dim}\left(w_{1}, \Delta_{1}, n_{1}, \bar{N}\right) \geq \operatorname{dim}\left(w_{2}, \Delta_{2}, n_{2}, N\right)$.

By (i), (ii). (iii), $|p|=\operatorname{dim}\left(W_{1}, \Delta_{1}, n_{1}, N\right)=\left|W_{2}\right|=\lambda$. So we prove the theorem: $|p|=\lambda$ Remark: We could choose $P^{M}=|M|$.

Conjecture 4 B . The theorem holds also if $|p|$ is singular.
Theorem 4.8. Suppose T is stable and has the f.c.p. L ef $N_{2} \geq\left|T_{1}\right|+N_{B}$. $\kappa_{3}=2^{\aleph_{0}}$, and $T \subset T_{1}$. Then in $\mathrm{PC}\left(T_{1}, T\right)$ there are at leas 2 anonisomorphic models of cardinality N_{α}.

Proof. Follows immediately from Theorems $3.1,4.8$, (and 4.14 if N_{s} is singular) depending on the following.

For $s \in P$, where $P \subset J,<$ order J, define $\mid s=\{t: J,<) \leqslant t<s\}$ $\operatorname{SP}(\langle J,<, P\rangle)=\left\{|s|: s \in P,|s|\right.$ is infinite and regular, or $\left.\mid s=2^{\prime} 0\right\}$.

Let K be a set of regular cardinals $\geq 2^{N} 0$, and may be also 2°, and assume there is a greatest cardinal in K, and let P be a set of natural numbers. Then there are $I, D . G$ such that

$$
K=\operatorname{SP}\left(\langle\omega,<, P\rangle_{D}^{l} \mid G\right) . \aleph_{o D}^{l} \mid G=\max \{\lambda: \lambda \in K\} .
$$

Theorem 4.9. If T is not Δ_{λ}-mininut, then it is not \mathcal{G}_{3}-minimal for every $\mu \geq \min \left(2^{|T|}, \lambda\right.$).

Remark. If T is countable. stable and with the f.e.p. T is A_{λ}-minimal iff; $<2^{*} 0$.

Proof. If $\mu \geq \lambda$, the conclusion follows by Lemma 3.5. So we can assume $\lambda=\mu \geq 2^{T i}$, and by the same lemma it suffices to prove the theorem for the case $\mu=2^{\mid T}$. So let $\lambda>\mu=2^{I T}$. T is α_{μ}-minimal but not ${\underset{A}{\lambda}}$ minimal.

As T is not d_{λ}-minimal, 'y Keisier [0] there is an (κ_{0}. λ)-regular ultrafilter Γ over λ, such that for every model N of $T, N \cdot / D$ is not λ^{*} compact. Let M be a λ^{*}-saturated model of $T:\left\{I_{k}: k<\lambda\right\} \subset D$ a family of sets. the intersection of any infinite subfamily of it is empty.

Suppose first M^{λ} / D is not $|T|^{*}$ compact. Then there is $A \subset \| M^{\lambda} / D \mid$, $|A| \leq|T|$. such that M^{A} / D omit a type over A. Without loss of generality there is eq $\subset \lambda \times \lambda$. such that for every $a \in A, ~$ eq(a) \supset eq and eq has $|T|$ equivalence classes. Let G be the filter over $\lambda \times \lambda$ generated by eq. Then also $M_{D}^{\lambda} \mid G$ is not $\mid T I^{*}$-compact. and clealy for some filter D_{1} over $|T|, M_{D}^{\lambda} \mid G$ is isomorphic to $M^{T / D_{1}}$; so T is not d_{T} - minimal hence not \triangleleft_{μ}-minimal.

Assume now $M^{\lambda / D}$ is $\mid T^{+}$-saturated. By $|1.3|, 5.16$. there is an indis-
cermible set $W^{\prime=}\left\{a_{n}: n<\omega\right\}$ in $M^{2} / D . \operatorname{dim}\left(W^{\prime}, M\right)<\lambda$. Withoat loss of geacrality there is an equivalence relation eq $C \lambda \times \lambda$ with $\leq|T|$ equivalence classes such that eq $\left(a_{n}\right) \supset$ eq for $n<\omega$. Let G be the filter over $\lambda \times \lambda$ generated by eq. Clearly $M_{D}^{\lambda} \mid G$ is an elementary submodel of M^{A} / D (Keisler [9]) and $W^{\prime} \subset M_{D}^{A} \mid G$. It is also clear that for some ulitafilter D_{1} ofer $17\left|, M_{D}^{\lambda}\right| G, N=M^{T} / D_{1}$ are isomorphic, $A s M$ is λ^{*}-saturated, $\lambda>2^{27}$. it suffices to prowe $M_{D} \mid \theta$ is not $\left(2^{17^{7}}\right)^{+}$-saturated. If it was. by Lemma 4.2 it will be λ^{*}-saturated, hence $\lambda \geq \operatorname{dim}\left(W, A^{\lambda} / D\right) \geq$ $\operatorname{dim}\left(W^{\prime} \cdot M_{D}^{\lambda}(G) \geq \lambda^{*}\right.$. Contradiction.

Now we shall try to deduce some results on \triangle.
Theorem 4.10. A) Let T be commable. T is \leqslant mimimal iff T has not the f.c.p.
B) For $\lambda>2^{n}$. I is \cup_{λ}-minimal iff T has not the f.e.p.
C) If $\aleph_{0}<\lambda<2^{N_{0}}<2 \lambda, T$ is $\triangleleft_{\lambda}-$ minimal iff T is stable.
D) If $\aleph_{0}<\lambda<2^{x_{0}}$. then if T is stable, it is $\triangleleft_{\lambda}-$ minimal, and if it is $\triangleleft_{\lambda}-$ minimal it has not the strict order p.

Proof. A. B) Follow from 4.1A and from 3.1 with product of ultrafilters.
C) Follows from 4.1 A . B and from 3.3 with product of ultrafilters.
D) Follows from 4.1 A . B and from 4.4 with product of uitrafilters.

Theorem 4.11. There is a non- - -minimal or $<$-maximal countable theo$\because T$. iff there is a non-good ultrafilter D, such that $\lambda=\Pi n_{i} / D \geq \aleph_{0}$ implies $\lambda>1 / 1$ (if G.C.H fails, there is such D).

Proof. If there is no such D. by 4.1 every T with the f.c.p. is \langle-maximal; so by 4 . 10 A every countable theory is either \checkmark-minimal or \triangleleft-maximal. If there is such D. every stable coun able T with the f.c.p. is not Δ minimal (by 4.1A) nor $4-$ maximal (by 4.1). By [13] Th. 3.9A or Keisler [6] , p, 44, 45 there is such T.

§ 5. Saturation of Ultralimits

For every M and D, there is an elementary cmbedding of M into $M^{I} / D-a \rightarrow f_{a} / D$ where $f_{a}(i)=a$ for every $i \in I$. Hence we can look at M^{I} / D as an elementary extension of M and can repeat extending the models by taking ultrapowers and at limit stages take union. So we get an increasing elementary extension of mocls, which are ultralimits of M. For simplicity, all the ultrapowers will be with the same ultrafilter D. This notion was defined and investigated in Kochen [111, Keisler [9] §5.

Let us make the definition more precise.
5.1. Definition. UL (M, D, α) will be defined by induction on α, such that for $\beta<\alpha, \mathrm{UL}(M, D, \beta)$ is an elementary submodel of UL (M, D, α).

1) for $\alpha=0, \mathrm{UL}(M, D, \alpha)=M$
2) for α a limit ordinal, UL(M.D. α) $=\mathrm{U}$ UL(M. D. β)
3) for $\alpha=\beta+1$, UL (M, D, α) will be isomorphe to UL(M, $D, \beta)^{i} / D$, and the isomorphism F_{β} takes each $f_{a} / D \in \mathrm{UL}(M, D . \beta)$ to $a \in \mathrm{UL}(M, D, \beta) \subset \mathrm{UL}(M, D, \alpha)\left(f_{a}\right.$ is defined $\left.\operatorname{ly} f_{a}(i)=a\right)$.

Notation: At most of tre time M and D are fixed, we let $H_{\alpha}=$ $\mathrm{UL}(M, D, \alpha)$ and F_{α} th isomorphism mentioned in 3). We assume also M is a model of T.

Clearly we can assume that for every α, β. UL $(M, D, \alpha+\beta)=$ $\mathrm{UL}\left(M_{\alpha}, D, \beta\right)$.

We shall try here to find how compact the ultralimits are, by properties of the oridnal, the ultrafilter and the the theory of the model. As $M_{\alpha+1}$ is isomorphic to M_{α}^{I} / D. we shall restrict ourselves to M_{s} for limit ordinals δ.

The following theorem is well known.
Theorem 5.1. If the cofinality of $\delta, \mathrm{cf}(\delta)$, is μ. and for every $\lambda<\mu . D$ is (\aleph_{0}, λ)-reguiar, then M_{δ} is μ-compact.

Proof. Let p be a type over M_{δ} of cardinality $<\mu$. Then clearly p is a type over M_{β} for some $\beta<\delta$. As D is (\aleph_{0} ! p))reguler, p is realized in
$M_{\beta+1}$ (see, e.g. Keisler [6], Sec. 1), hence p is realized in M_{s}. So every type over M_{δ} of cardinality $<\mu$ is realized in M_{δ}; hence M_{δ} is μ-compact.

Theorem 5.2. If Tis mastable, $\mu=\bar{c}(\delta)$ then M_{s} is not μ^{+}compact.
Proof. As mentioned in Section $1, M_{1}$ should be κ_{1}-compact (remember we deal onlv with N_{1}-incomplete ultrafilters). As T is unstable, by [13], Th. 2.13, (1), (3); there is a formula $\varphi(x, \bar{y})$ and sequences $\bar{a}^{0}, \bar{a}^{0}, \ldots$, \bar{a}^{n}, \ldots from M_{1} (all of the length of \bar{y}) such that:

$$
\text { for every } m<\omega,\left\{\varphi\left(x, \bar{a}_{n}\right)^{\text {if } n \geq m)}: n<\omega\right\}
$$

is consistent over M_{1}.

$$
\text { Asct }(\delta)=\mu, \text { let } \delta=\underset{k<\mu}{U} \alpha_{k}, \text { where } k<1<\mu \text { implies } 1<\alpha_{k}<\alpha_{l}
$$

We shall now define by induction on k sequence \bar{a}^{k} such that

1) $\bar{a}^{k} \in M_{\alpha_{k}+1}, \bar{a}^{k} \& M_{\alpha_{k}}$.
2) $\left\{7 \varphi\left(x, \bar{a}_{n}\right): n<\omega\right\} \cup\left\{\varphi\left(x, \bar{a}^{k}\right)\right\}$ is not realized by any e'ement of $M_{a,}$,
3) for every $m<\omega, p_{k}^{m}=\left\{\varphi\left(x, \bar{a}_{n}\right)^{\text {if }(n \geq m)}: n<\omega\right\} \cup\{\varphi(x, \bar{a}): l \leq k\}$ is coasistent (over $M_{\alpha_{k}}+1$).
If we shall succeed in defining the \bar{a}^{k} 's then clearly by 3) $p=$ $\left\{7 \varphi\left(x, \bar{a}_{n}\right): n<\omega\right\} \cup\{\varphi(x, \bar{a}): l<\mu\}$ is consistent (over M_{i}), hecause every finite subsat of p is a subtype of p_{k}^{m}. On the other hand if p is realized in M_{δ}, then it is realized in M_{β} for some $\beta<\delta$, so there is $k<\operatorname{cf}(\delta) . \beta<\alpha_{k}<\delta$. Hence p is realized in $M_{\alpha_{k}}$, contradiction to 2). Hence p is a consistent type over M_{δ}, which M_{δ} omits, and $|p|=\aleph_{0}+$ $\mu<\mu^{*}$. So M_{s} is not μ^{*}-compact.

It remains only to define \bar{a}^{k}, assuming \bar{a}^{l} for $l<k$ has been defined. As D is N_{1}-incomplete there are $I_{n} \in D, I_{n+1} \subset I_{n}, I_{0}=I, \cap I_{n}=\emptyset$. Let us define $\bar{a} \in M_{\alpha k}^{l} / D:$ if $i \in I_{n}-I_{n+1}$, then $\bar{a}[i]=\bar{a}_{n}$, so $\bar{a}=\langle\bar{a}[i]$: $i \in I)_{i} D$, and $\bar{a}^{k}=F_{\alpha-}(\bar{a})$. Let us check conditions 1$), 2,3$) are satisfied.

Clearly $\bar{a}^{k} \in M_{\alpha k+1}$. Now for any $n<\omega,\left\{i \in I: \bar{a}[i]=\bar{a}_{n}\right\}=I_{n}-$ $I_{n+1} \notin D$ hence $\bar{a}^{k} \notin M_{c k}$. So 1) is satisfied.

For proving 2) suppose $c \in M_{\alpha_{k}}$ realizes $q=\left\{7 \varphi\left(x, \bar{a}_{n}\right): n<\omega\right\} \cup$ $\left\{\varphi\left(x, \bar{a}^{k}\right)\right\}$. Then

$$
\left\{i: M_{\alpha_{k}} \vDash \varphi\left[F^{-1}(c)[i], \bar{a}[i]\right]\right\} \in D
$$

that is

$$
\left\{i: M_{\alpha_{k}} \vDash \varphi[c, a[i]]\right\} \in D .
$$

Hence for some $i, M_{c_{k}} \vDash \varphi[c, \bar{a}[i]]$, and $\bar{a}[i]=\bar{a}$, for some n. But as $M_{\alpha_{k}+1}$ elementarily extend $M_{\alpha k} \cdot M_{\alpha k+1} \vDash \varphi[c, \bar{a}[i]]$. So c does not realize q, contradiction, hence 2) holds. Part 3) has a similar proof. So we finish the definition and the proof.
5.2. Definition. Let $\mu(D)$ be the first ca dinal μ such that D is μ-descendingly complete, that is, μ is the first cardinality such that $t_{k} \in D$.
$k<l \Rightarrow I_{l} \subset I_{k}$, implies $\bigcap_{k<\mu} I_{k} \neq 0$ (cquivalenti. $\left.\cap_{k<\mu} I_{\lambda} \in D\right)$.
Notice if D is $\left(\kappa_{0}, \kappa\right)$ reghar, then $\kappa<\mu(D)$ also $\mu(D)<I I T$. Note also that $\mu(D)$ should be regular.

Theorem 5.3. If $\mu \leq \mu(D), \mu \leq \mathrm{c}(\delta)$ then I_{s} is μ-compact.
Remark. I don't know whether this is known.
Proof. Let p be a type ove $M_{5},|p|<\mu$. and w wall prove that p is realized in M_{δ}, and so prove the theorem.

As $|p|<\mu \leq \operatorname{cf}(\delta), p$ is a type over M_{α} for scme $\alpha<\delta$. Let $|p|=x_{\beta}$. We shall prove by induction on $\gamma \leq \beta$, that
$\left(^{*}\right.$) every subtype of p of cardinality $\leq s$, is realized in $H_{\alpha+,+1}$.
As $\beta \leq \mathrm{s}_{\beta}=|p|<\mu \leq \operatorname{cf}(\delta), \alpha+\beta+1<\delta$. hence by proving this we shall prove that p is realized in M_{δ}.

Suppose we have proved (*) for every $\gamma_{1}<\gamma$. Hence every subtype of p of cardinality $<\kappa_{\gamma}$ is realized in $M_{\alpha+\gamma}$ (remember every model is \aleph_{0}-compact, hence every finite subtype of p is realized in M_{α}. Let q be any subtype of p of cardinality $\kappa, . q=\left\{\varphi_{k}\left(x, \ddot{a}_{k}\right): k<N_{\gamma}\right\}$, and we shoudl prove q is realized in $M_{\alpha+\gamma+1}$. By the induction hypothesis for every $k<\aleph_{\gamma}$, there is $c_{k} \in M_{\alpha+\gamma}$ which realize $\left\{\boldsymbol{v}_{i}\left(x, \bar{a}_{l}\right): l<k\right\}$. As
$\pi_{\gamma}<1 \rho<\mu<\mu(D)$ there is a decreasing sequence $I_{k}, k<N_{\gamma}, I_{k} \in D$
$\cap \quad I_{k}=0$. and $I_{0}=I$. Let us define $c \in\left(M_{\beta+\gamma+1}\right)^{I} / D$:
 $F_{a+}(c) \in M_{a+\gamma+1}$ realize q, as for cuery $K<N_{2}$

$$
\left\{i: M_{a+1} \vDash \varphi|c| i\left|, a_{k}\right|\right\} \supset\left\{i: i \in \cap_{j<i} l_{j}-I_{l}, l>k\right\}=I_{k+1} \in D
$$

So q is realized in $M_{\alpha+\gamma+1}$; so p is realized in M_{δ}.
5.3. Definition. A model N strongly omits a type p (over it) if no subtype of p of cardinality $|p|$ is realized in N.

Lemma 5.4. A) If M sirongly omits $p|p|=\mu(D)$, then also M_{1} strongly omitsp
B) If M_{a} strongly omits $p,|p|=\mu(D), \alpha<\beta$ then also M_{β} strongly omits p.
() $\ln \mathrm{A}, \mathrm{B}$) insteat of $|p|=\mu(D)$, it sufices to assume that there are $n I_{k} \in D$ for $k<|p|, k<1 \Rightarrow I_{1} \subset I_{k}, \cap_{k<i p 1} I_{k}=\emptyset ;$ and $|p|$ is
regular.

Proof. We shall prove A), as B). C) have similar proofs.
Suppose A) fails. so $c_{1} \in M_{1}$ realize $q \subset p \cdot|q|=|p|$. Let $c_{1}=F_{0}(c)$, $q=\left\{p_{k}\left(x, a_{k}\right): k<|q|\right\}$. So clearly for every $k<|q|=|p|$

$$
\left\{i:: \in 1, M i=\varphi_{k}\left[c[i], \bar{a}_{k}\right]\right\} \in D
$$

It is also clea that for every $i \in I$

$$
q()=\left\{\varphi_{k}\left(x, \bar{a}_{k}\right): M \vDash \varphi_{k}\left[c[i], \bar{a}_{k}\right]\right\}
$$

is a subtype of q. hence of p, whicl is realized in M; hence $|q(i)|<|p|$. As $|p|=\mu(D)$ is regular, for every $i \in I$ there is a bound $k(i)<|p|$ to $\left\{k: M \mid=\varphi_{k}\left[c[i], \tilde{a}_{k}\right]\right\}$. Let, for $l<|p|, I_{l}=\{i: k(i) \geq l\}$. Clearly I_{l}, $l<|q|$ is a decreasing sequence, and by the definition of $k(i), \cap I_{l}=\emptyset$.
In addition each $I_{i} \in D$ as $I_{l}=\{i: k(i) \geq l\} \supset\left\{i: M \vDash \varphi_{l}\left[c[i], \bar{a}_{l}\right]\right\} \in D$.
So we ge a contradiction to the definition of $\mu(D)$.

Theorem 5.5. If T is unstable, $\delta \geq \mu(D)$, then M_{δ} is not $\mu(D)^{*}$-compact. Moreover there is a type over $M_{\mu(D)}$ of carsinlity $\mu(D)$ which $M_{\text {, }}$ strongly omits.

Proof. As it is similar to $5.2,5.7$ we omit it.
Conclusion 5.6. If T is unstable, $\mu=\min (c f(\delta) \mu(D))$, then ψ_{s} is maximal'y μ-compact.

Proof. Immediate by 5.2, 5.3. and 5.5 .
5.4. Definition. T satisfies $(C * \lambda)$ if: there are an increasing sequence of sets $A_{k}, \kappa \leq \lambda$; a type $p \in S\left(A_{\lambda}\right)([13]$, sec. 1) such that for every $k<\lambda$ there is a formula $\varphi_{k}\left(x, \bar{y}_{k}\right)$ and a infimite-indiscemible set over $A_{k}\left([13]\right.$, Def. 5.2), $\left\{\bar{a}_{k, n}: n<\omega\right\}$ such that $\bar{a}_{k, 0} \cdot \bar{a}_{k, 1} \in A_{k+1}$, and $\neg \varphi_{k}\left(x, \bar{a}_{k, 0}\right), \varphi_{k}\left(x, \bar{a}_{k, 1}\right) \in p$.
5.5. Definition. $\kappa(7)$ is the first cardinality κ such that T does not atisfy ($C * \kappa$).

Remark. (C*入) was defined and investigated in [14]. By [14], Th. 4.4 for stable T, and $\lambda \geq 2^{7}$. T is stable in λ iff $\lambda=\Sigma_{\lambda<\kappa(n} \lambda^{*}$.

Theorer 5.7. If $\kappa(T)>\mu=\min [\mu(D), c(\delta)] T$ is stable. then M_{s} is maximally μ-compact

Proof. By Theorem 5.3, M_{δ} is μ-compact, so we should prove only that M_{δ} is not μ^{+}-compact. By hypothesis T satisfies ($C * \mu$), so there are A_{k}. $k \leq \mu, p \in S\left(A_{\lambda}\right), \varphi_{k}\left(x, \bar{y}_{k}\right)$ and $\bar{a}_{k n}, k<\mu, n<\omega$; such that $\left.k<l \Rightarrow A_{k} \subset A_{i} ; \bar{a}_{k, n}: n<\omega\right\}$ is an indiscernible set over $A_{k}, \bar{a}_{k, 0}, \bar{a}_{k, 1} \in A_{k+1}$ and $7 \varphi_{k}\left(x, \bar{a}_{k, 0}\right), \varphi_{k}\left(x, \bar{a}_{k, 1}\right) \in p$.

Clearly it suffices to prove the theorem for the case $\mathrm{L}=\mathrm{L}(T)$ is the minimal language containing all the formulas $\varphi_{k}\left(x . \bar{y}_{k}\right)$: so $|L| \leq \mu$.

Choose $\alpha_{k}<\delta$ for $k<\operatorname{cf}(\delta)$ such that $\delta=\underset{k<\mathcal{L}(\delta)}{ } \alpha_{k}$.
Let us define: a function H is elementary if for every $\varphi \in$ L. $a_{1} \ldots . . a_{n}$:

$$
\left.\vDash \varphi \mid a_{1}, \ldots, a_{n}\right] \text { ifr } \vDash \varphi\left[H\left(a_{1}\right) \ldots . \ldots\left(a_{n}\right)\right]
$$

and let

$$
H\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\left\langle H\left(a_{1}\right), \ldots . H\left(a_{n}\right)\right\rangle
$$

Now we define by mduction an increasing sequence of elementary functions μ_{k} and ordinals $\beta_{k}<\delta$ for $k<\mu$ such that:

1) the domain of H_{k} is $\cup \operatorname{Range}\left(a_{l 0}-\bar{a}_{l, 1}\right)$
2) the range of H_{k} is included in $M_{\beta k} \cdot \beta_{k} \geq \alpha_{k}$
3) if $k<l<\mu$, then $\beta_{k}<\beta_{l}<\delta$. and for every $c \in M_{\beta_{k}}$,

$$
M_{s} \vDash \varphi_{i}\left|c, H_{l+1}\left(a_{l, 0}\right)\right| \equiv \varphi_{i}\left|c, H_{l+1}\left(a_{l, 1}\right)\right|
$$

For $k=0 . H_{k}$ will be the void function, $\beta_{0}=\alpha_{0}$.

Sievose $F_{k} \cdot \beta_{k}$ are defined, $k<\mu$, and we shall define $H_{k+1} \cdot \beta_{k+1}$. We first show:
(*) there is $\beta<\delta$ such that we \because ex extend H_{k} to an elementary function H^{*} from Dom $H_{k} \cup \cup\left\{\right.$ Range $\left.\bar{a}_{k, n}: n<\omega\right\}$ into M_{β}.
If $\mu=s_{0}$. this is true as for sv ary $N . N^{I / D}$ is \aleph_{1}-compact, so $\beta=\beta_{k}+1$ will suffice. So assume $\mu>\kappa_{0}$. W 2 define now by induction on n an increasing sequence of functions H^{n} from Dom $H_{k} \cup \cup$ \{Range $\bar{a}_{k . m}: m<n$ \} into H_{δ}. If we have defined H^{n}. and cannot define H_{n+1}, this means M_{δ} is not μ^{*}-compact las it omits

$$
\left.\left\{\varphi(\overline{\mathrm{x}}, F(\bar{c})): \varphi \in \mathrm{L}, \bar{c} \in \operatorname{Dom} H^{n}, \vDash \varphi\left[\bar{a}_{k, n}, \bar{c}\right]\right\}\right]
$$

and so the conclusion of the theorem holds. So we can assume H^{n} is defined for every n and let $H^{*}=\bigcup_{n<\omega} H^{n}$. Clearly H^{*} is an elementary function, with the appropriate domain into M_{δ}. As μ is regular (as $\mu(D)$, of (δ) are regular) $\mu>\kappa_{0}, H^{*}$ is into M_{β} for some $\beta<\delta$.

So we proved (*).

Define $\beta_{k+1}=\max \left(\beta, \alpha_{k}\right)$. Let $I_{n} \in D, I_{n} \supset I_{n+1}, I_{0}=I . \cap \quad I_{n}=0$ (they exist as D is κ_{1}-incomplete). Define $H_{k+1}\left(a_{k, 0} a_{k, 1}\right) \in M_{j k+1}$ as $F_{\beta_{k}}(\bar{c})$, where $\bar{c} \in M_{\beta_{k}} / D D$ is defined as follows: if $i \in I_{n}-I_{n+1} \cdot \overline{[}[i]=$ $H^{*}\left(\bar{a}_{k, n}{ }^{n} \bar{a}_{k, n+1}\right)$. It is easy to verify H_{k+1}, β_{k+1} satisfies the induction conditions.

Now

$$
\left.p=\left\{\varphi_{k} \ldots, H_{k+1}\left(\bar{a}_{k, 0}\right)\right) \equiv 7 \varphi_{k}\left(r, H_{k+1}\left(a_{k+1}\right)\right): k<\mu\right\}
$$

is a consistent type over $M_{\beta_{n}}$, and it is strongly omitted by $M_{\beta_{\mu}}$. As $\beta_{\mu} \leq \delta$, by Lemma 5.4, also M_{δ} omits the type so M is not μ^{*} - compact.

It is natural to conjecture that if $\kappa(T) \leq \mu, \mu=\min [\mu(D), c f(\delta)]$. and. $\alpha, \beta<\delta \Rightarrow \alpha+\beta<\delta$, then M_{δ} is UL($\mathrm{N}_{0} . D . \delta$-saturated (UL $\left(\mathrm{N}_{0}, D, \delta\right)$ the cardinality of UL(M.D. δ) for every countable M) |this would generalize 4.1 A$]$. But this is not true. T may be superstable $\left[\kappa(T)=\kappa_{0}\right.$] or even simple [Def. 2) and M or H_{1} will omit strongly a type of cardinality $\mu(D)$. However

Theorem 5.8. Suppose $\kappa(T) \leq \min [\mu(D)$, ct $(\delta)]$, D is $\left(\kappa_{0},|T|\right)$ regular ultrafilter; $\alpha . \beta<\delta \Rightarrow \alpha+\beta<\delta$. Then M_{δ} is λ-saturated, where $\lambda=U L\left(N_{0}, D, \delta\right)$.

Remark. 1) For ev ry δ_{1} there are $\delta_{2}, \delta ; \delta_{1}=\delta_{2}+\delta: \alpha, \beta<\delta=\alpha+$ $\beta<\delta$, and $\mathrm{UL}\left(M, D, i_{1}\right)=\mathrm{UL}\left(M_{\delta_{2}}, D . \delta_{1}\right)$. So the restriction on δ is natural.
2) Clearly $\lambda>|T|$, so it suffices to prove M_{δ} is λ-compact.

Proof. Let p be a type over $M_{\delta},|p|<\lambda$. We should prove p is realized in M_{δ}. Let q be any extension of p in $S\left(M M_{\delta}\right)$.

Notice that if $|B|<\kappa(T) \leq \operatorname{cf}(\delta), B \subset M_{\delta}$, then for some $\alpha<\delta$, $B \subset M_{\alpha}$. Hence by Shelah [19] there is $\alpha<\delta$ s.t. for every $\varphi=\varphi(x, \bar{D} \in$ L, $\operatorname{Rank}_{\varphi}(q \mid \varphi)=\operatorname{Rank}_{\varphi}\left[\left(q \mid M_{\alpha}\right) \mid \varphi\right]$ (sec [13]. Def. 2.4. 2.5. and Th.
$2.13, p l \varphi$ is the maximal φ-type contained in $p, p / A$ - the maximal type over A contained in p). So by (13], 2.5B; there is a set $B \subset M_{\alpha},|B| \leq T$. such that for every $\varphi \cdot \operatorname{Rank}_{\varphi}(q \mid \varphi)=\operatorname{Rank}_{\varphi}[(q \mid B) \mid \varphi]$. Now we can define a_{n} for $n<\omega$ such that:

1) a_{n} realizes $q \|\left(B \cup\left\{a_{m}: m<n\right\}\right)$
2) if $\delta>\omega, a_{n} \in M I_{\gamma+n+1}$

As D is $\left(N_{0},|T|\right)$-regular, this is possible, As in the proof of 4.1, and in [13], 5.16, it follows that:
if $\varphi(x, b) \in q$, then $\left\{n<\omega: \vDash 7 \varphi\left(a_{n}, \bar{b}\right)\right\}$ is finite,
and $\left\{a_{n}: n<\omega\right\}$ is an indiscernible set over B.
Suppose for a moment $\delta>\omega$. Let $P=\left\{a_{n}: n<\omega\right\} \subset M_{\alpha+\omega}$ (as $\alpha<\delta, \omega<\delta: \alpha+\omega<\delta)$ Let $\left.\left(M_{\delta}, P^{5}\right)=\mathrm{UL}\left(M_{\alpha+\omega}, P\right), D, \delta\right)$ (remember $\delta=a+\omega+\delta$). Clearly p^{∞} extends P and i a an indiscernible set over ϕ. So $\varphi(x, b) \in p$ implies $\varphi(x, b) \in q$ implies $\left\{a: a \in P^{\delta}, \vDash 7 \varphi(a, \bar{b})\right\}$ is finite. So all except $|p| \cdot N_{0}<\lambda$ members of P^{5} realize p. As $\left|P^{\delta}\right|=$ $U L\left(N_{0}, D, \delta\right)=\lambda$, the theorem follows and we remain only with the case $\delta=\omega$; and we can define the a_{n} 's simultaneously in $M_{\alpha+1}$ and the proof goos in the same way.

References

[1] J.L. Bell and A.B. Slomson, Models and ultraproducts (North-Helland, Amsterdam, 1969),
[2] M. Benda, Reduced filters and Boolean ultrapowers. Ph.D. Thesis, Unaz rity of Wisconsin. 1970.
[3] M. Benda, On reduced products and filters, Amats of Math. Logic 4 (1972) 1-29.
[4] C.C. Chang and H.J. Keisler, Model Theory (Northllolland. Amsterdam. 1972)
[5] T. Frayne, A. Morel and D. Scoth. Reducce drect products, Fumi, Math. S1 (1902) 195 228.
[6] H.J. Keisler, Ultraproducts which are not saturated. I. Symb. Iogic. 3.2 1196 ?]. 23 to.
[7] H.J. Kciser, Good ideals in filed of sets, Amals of Math. 79 (1964) 338 359.
[8] H.J. Keisler, Ultraproducts and saturated models. Koninkl. Nederl. Akademic van Wetenschappen, Proceedings Series A 67 and Indag. Math. 26 (1964) 178- 186.
[9] H.J. Keisler, Limit ultrapowers, Trans. A.M.S. 1071963)382-408.
[10] H.J. Keisler, Ideals with preseribed degree of goodness Anuals of Math. 81 (1965) 112? 116.
[11] S. Kochen, Ultraproducts in the theory of models, Amals Math. 72 1961) 221. 262.
[12] K. Kunen, Ultrafilters and independent sets, to appear in A.M.S. Trans.
[13] S. Shelah. Stability, the f.e.p., and superstability; model theoretic propertics of formulas in first crder rgeory, Annals of Math. Logic 3 (1971) 271 -362.
[14] S. Sheah, Finite diagrems stable in power, Annals of Math. I ogic, 2 (1970)69 118.
[15] S. Shelah, On unsaturated ultrapowers. Notices of A.M.S. 10 (190,9) 970.
[16] S. Shelah, On elementary chasses conaming eategorical peodocementary dases. Notices of A.M.S. 17 (1970) 674.
[17] S. Shelah, Every two ciemenary equivalent modets have isomotphic ultrapowers, Istaet J. Math. 10 (1971) 224-233.
[18] M.D. Morley and R.L. Vaught. Homogeneous miversal modets, Mah. Sa and. 11:1062) 37-57.
[19] S. Shelai, Lectures notes by R. Gail. UCL A. Spring 1071.

