THE SPECTRUM PROBLEM II: TOTALLY TRANSCENDENTAL AND INFINITE DEPTH ${ }^{+}$

BY
SAHARON SHELAH

Abstract

We examine the main gap for the class of models of totally transcendental first-order theories, and compute the number of $\boldsymbol{\aleph}_{s}$-saturated models of power \boldsymbol{X}_{α} of a superstable T without the dop which is shallow but of depth $\geqq \omega$.

§1. Totally transcendental T

Hypothesis. $\quad T$ is totally transcendental.
We want to redo [2] for the class of models, instead of the $\boldsymbol{F}_{\boldsymbol{x}_{0}}^{a}$-saturated models, hence replacing $\boldsymbol{F}_{\boldsymbol{N}_{0}}^{a}$ by $\boldsymbol{F}_{\kappa_{0}}^{\prime}$ everywhere. The price is that we assume T is totally transcendental. We shall omit $\boldsymbol{F}_{\boldsymbol{\alpha}_{0}}^{\prime}$ in expressions like " $\boldsymbol{F}_{\boldsymbol{N}_{0}}$-atomic".
1.1. Lemma. Suppose $N \subseteq M \subseteq M^{\prime}, M \neq M^{\prime}$. Then for some $a \in M^{\prime}-M$, $\operatorname{tp}(a, M)$ does not fork over N or $\operatorname{tp}\left(a, M^{\prime}\right)$ is orthogonal to N. In fact the type is strongly regular, and if it does not fork over $N, \operatorname{tp}(a, N)$ too is strongly regular.

Proof. Among the formulas $\phi(x, \bar{a})$ such that $\bar{a} \in N, \phi(M, \bar{a}) \neq \phi\left(M^{\prime}, \bar{a}\right)$ choose one with minimal $\alpha=R\left[\phi(x, \bar{a}), L, \mathbf{N}_{0}\right] ; \alpha$ is $<\infty$ because T is totally transcendental, $\phi(x, \bar{a})$ exists as $x=x$ satisfies the requirement, and $\alpha \geqq 0$ as $\phi(M, \bar{a}) \neq \phi\left(M^{\prime}, \bar{a}\right)$ implies $\exists x \phi(x, \bar{a})$, and w.l.o.g. $\operatorname{Mlt}\left[\phi(x, \bar{a}), L, \mathbb{N}_{0}\right]=1$.
Among the formulas $\psi(x, \bar{b})$ such that $\bar{a} \subseteq \bar{b}, \bar{b} \in M, \psi(M, \bar{a}) \subseteq \phi(M, \bar{a})$, $\psi(M, \bar{b}) \neq \psi\left(M^{\prime}, \bar{b}\right)$ choose one with minimal $\beta=R\left[\psi(x, \bar{b}), L, \mathbf{N}_{0}\right]$.

As before $0 \leqq \beta<\infty, \operatorname{Mlt}\left[\psi(x, \bar{b}), L, \boldsymbol{\kappa}_{0}\right]=1, \psi(x, \bar{b})$ exists since $\phi(x, \bar{a})$ satisfies the requirements. Choose $c \in M^{\prime}-M$ such that $\vDash \psi[c, \bar{b}]$ so by V 3.19 (and 3.18, Ex. 3.10) $\operatorname{tp}(c, M)$ is strongly regular and choose an indiscernible set

[^0]$\left\{\bar{b}_{n} \wedge\left\langle c_{\eta}\right\rangle: n<\omega\right\}$ based on $N, \bar{b}_{0} \wedge\left\langle c_{0}\right\rangle=\bar{b}^{\wedge}\langle c\rangle$. Note that $\operatorname{tp}(c, M)$ is the stationarization of $\operatorname{tp}(c, \bar{b})$ over M, hence if $\operatorname{tp}(c, \bar{b})$ is orthogonal to N we get the desired conclusion. Also if $\alpha=\beta$ we finish, so we can assume $\beta<\alpha$. So assume $\operatorname{tp}(c, \bar{b})$ is not orthogonal to N, then by $V 3.4 \operatorname{tp}\left(c_{n}, \bar{b}_{n}\right)(n<\omega)$ are pairwise not orthogonal. The types $\operatorname{tp}\left(c_{n}, \bar{b}_{n}\right)$ cannot be pairwise parallel, or then $\operatorname{tp}(c, M)$ does not fork over N, and we would finish the proof. So we assume $\operatorname{tp}\left(c_{n}, \bar{b}_{n}\right)$ ($n<\omega$) are pairwise not parallel. Hence, by V 2.7 we can find $n, c_{i, 1}(l<3, i \leqq n)$ such that
(i) $c_{i, l}$ realizes the stationarization of $\operatorname{tp}\left(c_{l}, \bar{b}_{1}\right)$ over $N \cup \bigcup_{m<3} \bar{b}_{m}$ so $\vDash \psi\left[c_{i, l}, \bar{b}_{m}\right]$ iff $l=m$,
(ii) $\left\{c_{i, l}: i \leqq n, l<3\right.$ but $\left.(i, l) \neq(n, 1),(n, 2)\right\}$ is independent over $N \cup \bigcup_{m<3} \bar{b}_{m}$,
(iii) $c_{n, 0}=c$,
(iv) $\vDash \theta\left[c_{n, 0}, c_{n, 1}, \cdots, c_{i, t}, \cdots, \bar{b}_{1}, \cdots, \bar{d}\right]_{i<n, l=0,1}$ $\vDash \theta\left[c_{n .0}, c_{n .2}, \cdots, c_{i, l}, \cdots, b_{1}, \cdots, \bar{d}\right]_{i<n, l=0,2}$
where $\bar{d} \in N$, and $\theta\left(x, c_{n, m}, \cdots, c_{i, 1}, \cdots, \bar{b}_{1}, \cdots, \bar{d}\right)$ (for $m=1,2$) forks over M; and so w.l.o.g. for every $c_{n, m}^{\prime}, \cdots$
$$
R\left[\theta\left(x, c_{n, m}^{\prime}, \cdots\right), \theta, 2\right]<n^{*}=R[\operatorname{tp}(c, M), \theta, 2]=R[\operatorname{tp}(c, \bar{b}), \theta, 2]
$$

Now remember that every type which does not fork over a model is finitely satisfiable in it (III 0.1). So we can define first $b_{1}^{\prime}, \bar{b}_{2}^{\prime} \in N$, then $c_{i, 1}^{\prime} \in M$ $(i<n, l<3)$ (letting $\bar{b}_{0}^{\prime}=\bar{b}=\bar{b}_{0} \in M$) and at last define $c_{n, 1}^{\prime}, c_{n, 2}^{\prime} \in M^{\prime}$, each time preserving all relevant information (define the exact demands looking at what follows for what is needed, and go in the reverse order of the definition).

Then by (iv), $\operatorname{tp}\left(c, M \cup\left\{c_{n, l}^{\prime}\right\}\right)$ forks over M (for $l=1,2$), hence $c_{n, l}^{\prime} \in M^{\prime}-M$, and of course $\vDash \psi\left[c_{n, l}^{\prime}, \bar{b}_{i}^{\prime}\right] \wedge \neg \psi\left[c_{n, l}^{\prime}, \bar{b}_{3-1}^{\prime}\right]$ for $l=1,2$.

Now the formula $\psi\left(x, \bar{b}_{i}^{\prime}\right) \wedge \neg \psi\left(x, b_{3-1}^{\prime}\right)$ satisfies the requirements on $\phi(x, \bar{a})$ and $\psi\left(x, \bar{b}_{i}^{\prime}\right) \vdash \phi(x, \bar{a})$, hence by α 's minimality, $R\left[\psi\left(x, \bar{b}_{1}^{\prime}\right) \wedge \neg \psi\left(x, b_{3-1}^{\prime}\right), L, \mathcal{N}_{0}\right]$ is α. However, we have two such formulas $(l=1, l=2)$, both extend $\psi(x, \bar{b})$ and are contradictory, But this contradicts $\operatorname{Mlt}\left[\phi(x, \bar{a}), L, \boldsymbol{N}_{0}\right]=1$.
1.2. Claim. (1) Suppose $N \subseteq A, p \in S^{m}(N)$ is orthogonal to $\operatorname{tp}_{*}(A, N)$ and M is prime over A; then p is orthogonal to $\operatorname{tp}_{*}(M, N)$.
(2) Suppose $N \subseteq M, \operatorname{tp}(\bar{a}, M)$ is regular not orthogonal to N, and M^{\prime} is prime over $M \cup \bar{a}$. Then there is $b \in M, \operatorname{tp}(b, M)$ does not fork over N.

Remark. Note in 1.2(1) that this is stronger than weak orthogonality. A similar claim holds for $\boldsymbol{F}_{\kappa}^{t}$ (i.e., $N \boldsymbol{F}_{.}^{\prime}$-saturated, $M \boldsymbol{F}_{\kappa}^{t}$-primary).

Proof. (1) It suffices to prove that if $\operatorname{tp}(\bar{a}, A)$ is isolated, then $\operatorname{tp}_{*}(A \cup \bar{a}, N)$, p are orthogonal. Let M be $F_{\kappa_{0}}^{a}$-saturated, $N \subseteq M, \operatorname{tp}_{*}(M, A)$ does not fork over
N, hence $(A, A \cup M)$ satisfies the Tarski-Vaught condition. Let p^{\prime} be the stationarization of p over M. As $p, \operatorname{tp}_{*}(A, N)$ are orthogonal, clearly p^{\prime}, $\operatorname{tp}_{*}(A, M)$ are weakly orthogonal. Easily $\operatorname{tp}(\bar{a}, A) \vdash \operatorname{tp}(\bar{a}, M \cup A)$, hence by V 3.2 $\operatorname{tp}_{*}(A \cup \bar{a}, M), p^{\prime}$ are weakly orthogonal, hence orthogonal, but p, p^{\prime} are parallel and so are $\operatorname{tp}_{*}(A \cup \bar{a}, M), \operatorname{tp}_{*}(A \cup \bar{a}, N)$ so we finish.
(2) If the conclusion fails, then by 1.1 for some $b \in M^{\prime}, q=\operatorname{tp}(b, M)$ is orthogonal to N. Then q is orthogonal to $\operatorname{tp}(\bar{a}, M)$ hence by $1.2(1), \operatorname{tp}_{*}\left(M^{\prime}, M\right), q$ are orthogonal; contradiction.
1.3. Claim. Suppose $N \subseteq N_{0}, N_{1}$, and $N_{0}, N_{1} \subseteq M$ and $\left\{N_{0}, N_{1}\right\}$ is independent over N. Then at least one of the following occurs:
(a) M is prime and minimal over $N_{0} \cup N_{1}$;
(b) there is $\bar{a} \in M, \bar{a} \notin N, \operatorname{tp}\left(\bar{a}, N_{0} \cup N_{1}\right)$ does not fork over N;
(c) there is $l \in\{0,1\}$ and $\bar{a} \in M, \bar{a} \notin N, \operatorname{tp}\left(\bar{a}, N_{i}\right)$ is orthogonal to N and $\operatorname{tp}\left(\bar{a}, N_{0} \cup N_{1}\right)$ does not fork over N_{l};
(d) there is $\bar{a} \in M, N_{0} \cup N_{1} \subseteq M^{\prime} \subseteq M, \bar{a} \notin M^{\prime}, M^{\prime}$ prime over $N_{0} \cup N_{1}$, and $\operatorname{tp}\left(\bar{a}, M^{\prime}\right)$ is orthogonal to N_{0} and to N_{1}.

Proof. Choose $M^{\prime} \subseteq M$ prime over $N_{0} \cup N_{1}$. If $M^{\prime}=M$ is also minimal then (a) holds. If $M^{\prime}=M$ but it is not minimal, there is $M^{\prime \prime}, N_{0} \cup N_{1} \subseteq M^{\prime \prime} \varsubsetneqq M^{\prime}$, so w.l.o.g. $M^{\prime} \neq M$. Apply 1.1 to N, M^{\prime}, M so there is $\bar{a} \in M, \bar{a} \notin M^{\prime}, \operatorname{tp}\left(\bar{a}, M^{\prime}\right)$ does not fork over N or $\operatorname{tp}\left(\bar{a}, M^{\prime}\right)$ is orthogonal to N. In the first case (b) holds. In the second case w.l.o.g. M is prime over $M^{\prime} \cup \bar{a}$, so by $1.2(1)$ for every $\bar{a}^{\prime} \in M$, $\operatorname{tp}\left(\bar{a}^{\prime}, M^{\prime}\right)$ is orthogonal to N. Apply 1.1 to N_{0}, M^{\prime}, M, so there is $\bar{a}_{0} \in M$, $\bar{a}_{0} \notin M^{\prime}$ such that $\operatorname{tp}\left(\bar{a}_{0}, M^{\prime}\right)$ does not fork over N_{0} or is orthogonal to N_{0}. In the first case (c) holds, in the second case we can w.l.o.g. assume that for every $\bar{a}^{\prime} \in M \operatorname{tp}\left(\bar{a}^{\prime}, M^{\prime}\right)$ is orthogonal to N_{0} (by $1.2(1)$, as before). Now apply 1.1 to N_{1}, M^{\prime}, M and we either get that (c) holds or that w.l.o.g. for every $\bar{a}^{\prime} \in M$, $\operatorname{tp}\left(\bar{a}^{\prime}, M^{\prime}\right)$ is orthogonal to N_{1}. In the last case any $\bar{a} \in M-M^{\prime}$ satisfies (d), so we finish.

1.4. Claim. If T does not have the dop, then in 1.3 , case (d) is impossible.

Proof. Choose $F_{\boldsymbol{N}_{0}}^{a}$-saturated $N^{*}, N_{0}^{*}, N_{1}^{*}$ such that $N \subseteq N^{*}, \operatorname{tp}\left(N^{*}, M\right)$ does not fork over N, and $N^{*} \cup N_{l} \subseteq N_{1}^{*}, \operatorname{tp}\left(N_{1}^{*}, M \cup N_{1-l}\right)$ does not fork over $N_{1} \cup N_{0}^{*}$.

By the uniqueness, the prime model M^{\prime} is $\boldsymbol{F}_{\boldsymbol{N}_{0}}^{\prime}$-constructible over $N_{0} \cup N_{1}$.
Clearly ($N_{0} \cup N_{1}, N_{0}^{*} \cup N_{1}^{*}$) satisfies the Tarski-Vaught condition. Now if $\bar{b} \in M^{\prime}, \operatorname{tp}\left(\bar{b}, N_{0} \cup N_{1}\right)$ is isolated hence $\operatorname{tp}\left(\bar{b}, N_{0} \cup N_{1}\right) \vdash \operatorname{tp}\left(\bar{b}, N_{0}^{*} \cup N_{1}^{*}\right)$, and so $\operatorname{tp}\left(\bar{b}, N_{0}^{*} \cup N_{1}^{*}\right)$ is isolated. We can easily conclude that M^{\prime} is $\boldsymbol{F}_{\boldsymbol{N}_{0}}^{t}$-constructible
over $N_{0}^{*} \cup N_{1}^{*}$. Hence there is $M^{*}, F_{\boldsymbol{*}_{0}}^{a}$-prime over $N_{0}^{*} \cup N_{1}^{*}, M^{\prime} \subseteq M^{*}$. W.l.o.g. $\operatorname{tp}\left(\vec{a}, M^{*}\right)$ does not fork over M^{\prime}, hence if we prove that $\operatorname{tp}\left(\bar{a}, M^{\prime}\right)$ is orthogonal to N_{0}^{*} and to N_{1}^{*} we get a contradiction by [2] §2. Let $l \in\{0,1\}$; clearly $\operatorname{tp}_{*}\left(N_{1}^{*}, M^{\prime}\right)$ does not fork over N_{l}, and so by [2] $1.1 \operatorname{tp}\left(\bar{a}, M^{\prime}\right)$ is orthogonal to N_{1}^{*}, so we finish.
1.5. Claim. (1) Suppose $N \subseteq M, \bar{a} \notin M, M^{\prime}$ is prime over $M \cup \bar{a}$. Then there is $b \in M^{\prime}-M, \operatorname{tp}(b, M)$ does not fork over $N, \operatorname{tp}(b, N)$ strongly regular and not orthogonal to $\operatorname{tp}(\bar{a}, M)$, provided that
(a) $\operatorname{tp}(\bar{a}, M)$ is regular not orthogonal to N, or at least
(b) $\operatorname{tp}(\bar{a}, M)$ is orthogonal to every $p \in S^{m}\left(M^{\prime}\right)$ which is orthogonal to N.
(2) Every type which is not orthogonal to N is not orthogonal to some strongly regular $p \in S^{m}(N)$.

Proof. (1) Easily (a) implies (b), so assume (b) holds. By 1.1 there is $b \in M^{\prime}-M$ as required except that maybe $\operatorname{tp}(b, M)$ is orthogonal to N. But then by $(\mathrm{b}) \operatorname{tp}(b, M), \operatorname{tp}(\bar{a}, M)$ are orthogonal, hence by $1.2, \operatorname{tp}(b, M), \operatorname{tp}_{*}\left(M^{\prime}, M\right)$ are orthogonal, hence weakly orthogonal; contradiction.
(2) Easy.
1.6. Theorem. The lemmas [2] 3.1, 3.2 hold for $\boldsymbol{F}_{\kappa_{1}}^{\mathrm{j}}$-primeness.

Proof. Straightforward: when in $\S 3$ we use the failure of the dop, we here use $1.3,1.4$, and where in 1.3 we used $V 1.12$ here we use 1.5 .

As there are at least as many models as there are $\boldsymbol{F}_{\aleph_{0}}^{a}$-saturated models, obviously (by [2] 2.5, [2] 5.1)
1.7. Theorem. If Thas the dop or is deep, then $I(\lambda, T)=2^{\lambda}$ for $\lambda \geqq \lambda(T)+\boldsymbol{\kappa}_{1}$. Now we shall deal with [2] §4.
1.8. Definition. $K_{\lambda}^{x}=\left\{\left(N, N^{\prime}, \bar{a}\right): N \subseteq N^{\prime}\right.$ are $\boldsymbol{F}_{\lambda}^{x}$-saturated models, $\bar{a} \in N$, $\bar{a} \notin N^{\prime}, N^{\prime}$ is $\boldsymbol{F}_{\lambda}^{x}$-atomic over $\left.N \cup \bar{a}\right\}, K_{\lambda}^{r x x}=\left\{\left(N, N^{\prime}, \bar{a}\right) \in K_{\lambda}^{x}: \operatorname{tp}(\bar{a}, N)\right.$ is regular $\}$.

> 1.9. Lemma. (1) If $\left(N, N^{\prime}, \bar{a}\right) \in K, K \in\left\{K_{\kappa_{0}}^{\prime}, K_{\lambda}^{\prime}, K_{\lambda}^{\prime \cdot t}\right\}$ then $\operatorname{Dp}\left(\left(N, N^{\prime}, \bar{a}\right), K\right)$ $\leqq \operatorname{Dp}\left(\operatorname{tp}(\bar{a}, N), K_{\kappa_{0}}^{a}\right)$.
(2) If in (1), N is $\boldsymbol{F}_{\kappa_{0}}^{a}$-saturated, then $\operatorname{Dp}\left(\left(N, N^{\prime}, \bar{a}\right), K\right)=\operatorname{Dp}\left(\operatorname{tp}(\bar{a}, N), K_{\boldsymbol{N}_{0}}^{\text {ra, }}\right)$.

Remark. Look at [2] Definition 4.1, 4.3, Lemma 4.4.
Proof. (1) For simplicity we concentrate on $K=K_{\kappa_{0}}^{t}$, we prove by induction on α that if $\left(N_{x}, N_{x}^{\prime}, \bar{a}\right) \in K_{\kappa_{0}}^{x}, N_{t} \subseteq N_{a}, N_{t}^{\prime} \subseteq N_{a}^{\prime},\left\{N_{a}, N_{t}^{\prime}\right\}$ is independent over N_{t}, then

$$
\operatorname{Dp}\left(\left(N_{t}, N_{t}^{\prime}, \bar{a}\right), K_{\kappa_{0}}^{\prime}\right) \geqq \alpha \quad \text { implies } \quad \operatorname{Dp}\left(\left(N_{a}, N_{a}^{\prime}, \bar{a}\right), K_{\kappa_{0}}^{a}\right) \geqq \alpha .
$$

For α zero, limit or successor of limit there is no problem. So let $\alpha=\beta+1, \beta$ non-limit.

So there is $\bar{b} \notin N_{t}^{\prime}, \operatorname{tp}\left(\bar{b}, N_{t}^{\prime}\right)$ orthogonal to N_{t}, and $N_{t}^{\prime \prime}$ prime over $N_{t}^{\prime} \cup \bar{b}$, $\operatorname{Dp}\left(\left(N_{t}^{\prime}, N_{t}^{\prime \prime}, \bar{b}\right), K_{\kappa_{0}}^{\prime}\right) \geqq \beta$.
W.l.o.g. $\operatorname{tp}\left(\bar{b}, N_{a}^{\prime}\right)$ does not fork over N_{t}^{\prime}. Then $N_{t}^{\prime \prime}$ is $\boldsymbol{F}_{\kappa_{0}}^{\prime}$-constructible over $N_{a}^{\prime} \cup \bar{b}$, hence there is $N_{a}^{\prime \prime} F_{\kappa_{0}}^{a}$-prime over $N_{a}^{\prime} \cup \bar{a}, N_{t}^{\prime \prime} \subseteq N_{a}^{\prime \prime}$.

Now use the induction hypothesis.
(2) For each tree I (of sequences of ordinals) satisfying $\langle i\rangle \in I$ iff $i=0$, $\mathrm{Dp}\left(\rangle, I)=\operatorname{Dp}\left(\operatorname{tp}(\bar{a}, N), K_{\kappa_{0}}^{a}\right)\right.$, we can find a $\boldsymbol{F}_{\boldsymbol{\kappa}_{0}}^{a}$-representation $\left\langle N_{\eta}^{I}, \bar{a}_{\eta}^{I}: \eta \in I\right\rangle$, such that $N_{(,)}^{I}=N, \bar{a}_{(\rangle)}^{I}=\bar{a}$, and let M_{I} be $F_{\boldsymbol{N}_{0}}^{a}$-prime over $U_{n \in I} N_{\eta}^{I}$. By the proof of [2] 3.1, there is no $\bar{b} \in M_{I}-N,\{\bar{b}, \bar{a}\}$ independent over N. Hence by 1.6, M_{I} has an $\boldsymbol{F}_{\kappa_{0}}^{\prime}$-representation $\left.\left\langle M_{\eta}^{I}, \bar{a}_{\eta}^{I}: \eta \in J_{I}\right\rangle, M_{\langle }^{I}\right\rangle=N, \bar{a}_{\langle 0\rangle}^{I}=\bar{a} .\langle i\rangle \in J_{I} \Leftrightarrow i=$ 0 . Now counting the number of M_{I} for $|I|=\boldsymbol{N}_{\alpha}, \alpha$ large enough, $\alpha<\boldsymbol{N}_{\alpha}$, $|\alpha|=|\alpha|^{|i T|}$, we get the missing inequality.
1.10. Theorem. If T is shallow without the dop then $I\left(\mathcal{N}_{\alpha}, T\right) \leqq \boldsymbol{\beth}_{\gamma}\left(|\alpha|^{|T|}\right)$ where $\gamma=\mathrm{Dp}\left(T, K_{*_{0}}^{t}\right)$.

Proof. By 1.6, just like [2] 4.7.

§2. Infinite depth

Hypothesis. T is superstable shallow and without the dop.
Here we get lower bounds for $I\left(\mathcal{N}_{\alpha}, T\right), I_{\kappa_{\beta}}^{a}\left(\mathcal{N}_{\alpha}, T\right)$ for the case mentioned in the title.

At first glance it may look surprising that as long as $\beta<\alpha$ its value has no influence. The point is that, if $l . y\left\langle N_{\eta}, a_{\eta}: \eta \in I\right\rangle$ is an $F_{\boldsymbol{N}_{0}}^{a}$-representation of an $\boldsymbol{F}_{\boldsymbol{N}_{\beta}}^{a}$-saturated model, we know that each $\eta \in I^{-}$has $\geqq \mathcal{N}_{\beta}$ immediate successors, but there is no restriction on how many immediate successors of $\eta \in\left(I^{-}\right)^{-}$ have $\boldsymbol{N}_{\beta+1}$ immediate successors.

Note that for countable T, the situation is considerably simplified. More generally if \mathcal{N}_{α} is big enough (if $|T|<\boldsymbol{\Xi}_{\omega}$-always) we get the exact number.
2.1. Theorem. Suppose $\mathcal{N}_{\alpha}>\lambda(T)+\mathcal{K}_{1}, \alpha \geqq \omega, \operatorname{Dp}(T) \geqq \omega, \beta<\alpha$ then $I_{\kappa_{\beta}}^{a}\left(\mathcal{K}_{\alpha}, T\right) \geqq \boldsymbol{\Xi}_{\mathrm{Dp}(T)}\left(|\alpha|+\mathcal{N}_{0}\right.$.
2.1A. Remark. (1) We should have written $\min \left\{\boldsymbol{\beth}_{\mathrm{Dp}(T)}(\alpha), 2^{\kappa}{ }^{\alpha}\right\}$, but we shall ignore this for notational simplicity.
(2) If $|T|<\boldsymbol{I}_{n}$ for some n, or even $|T|<\boldsymbol{I}_{\alpha}, \alpha+\mathrm{Dp}(T)=\mathrm{Dp}(T)$, the equality holds.
(3) The theorem, of course, holds for $I_{\alpha_{\beta}}^{\prime}$ when T is totally transcendental, and similarly for $2.1 \mathrm{~A}(2)$.

Proof. We shall define for every $W=\left(N, N^{\prime}, \bar{a}\right) \in K_{\kappa_{0}}^{r}$ such that N is $\boldsymbol{F}_{\kappa_{0}}^{a}$-prime over ϕ a set $H(W)$ and a partition of it $\left\langle H_{\zeta}(W): \zeta<\zeta_{W}\right\rangle$, and an $\boldsymbol{F}_{\boldsymbol{\alpha}_{0}}^{a}$-representation $\left\langle N_{\eta}^{W, Y}, a_{\eta}^{W, Y}: \eta \in I^{W, Y}\right\rangle$ for any $Y \in H(W)$. The definition is by induction on the depth $\zeta=\operatorname{Dp}\left(N, N^{\prime}, \bar{a}\right)$. For notational simplicity assume $\operatorname{Dp}(T)<\boldsymbol{\Xi}_{\omega}$ and $\operatorname{Dp}(T) \leqq \boldsymbol{N}_{\alpha}+1$.
$\zeta=0$. Let $H(W)=\left\{\boldsymbol{N}_{\beta}, \boldsymbol{N}_{\alpha}\right\}, I^{W \cdot \boldsymbol{N}_{\alpha}}=\left\{\langle\quad\rangle,\langle i\rangle: i<\boldsymbol{N}_{\alpha}\right\}, \quad I^{W \cdot \boldsymbol{N}_{\beta}}=\{\langle\quad\rangle,\langle i\rangle: i<$ $\left.\boldsymbol{N}_{\beta}\right\}, N_{\langle }^{W, Y}=N$.
$\left\{\bar{a}_{\eta}^{W, Y}: \eta \in I^{W, Y}\right\}$ is an independent set over N of sequences realizing $\operatorname{tp}(\bar{a}, N)$, and $N_{\eta}^{W, Y}$ is $\boldsymbol{F}_{\alpha_{0}}^{a}$-prime over $N \cup \bar{a}_{\eta}^{W, Y}$, for $\eta \in I^{W, Y}-\left\{\langle \rangle\right.$. Let $\zeta_{W}=1$.
$\zeta=1$. Let $V=\left(N^{\prime}, N^{\prime \prime}, \bar{a}^{\prime}\right) \in K^{r}$ be such that $N^{\prime}<_{N} N^{\prime \prime}, \operatorname{Dp}\left(N^{\prime}, N^{\prime \prime}, \bar{a}^{\prime}\right)=0$. Let $H(W)=\left\{\left\langle\chi, I^{V, \kappa_{\alpha}}\right\rangle: 0 \leqq \chi \leqq \boldsymbol{N}_{\alpha}\right\}$ (so χ may be finite) and if $Y=\left\langle\chi, I^{V, \kappa_{\alpha}}\right\rangle$ then

$$
I^{W, Y}=\{\langle\quad\rangle\} \cup\left\{(\gamma\rangle^{\wedge} \eta: \eta \in I^{V, \kappa_{\alpha}} \text { and } \gamma<\chi \text { or } \eta \in I^{V, \boldsymbol{N}_{s}} \text { and } \chi \leqq \gamma<\boldsymbol{N}_{\alpha}\right\}
$$

and define the representation accordingly, and let $\zeta_{w}=1$.
$\zeta=\xi+1, \xi$ successor. Let $V=\left(N^{\prime}, N^{\prime \prime}, \bar{a}^{\prime \prime}\right) \in K^{\prime}, N^{\prime}<_{N} N^{\prime \prime}, \operatorname{Dp}\left(N^{\prime}, N^{\prime \prime}, \bar{a}^{\prime \prime}\right)$
$=\xi$. We let $H(W) \subseteq\left\{Y: Y \subseteq H_{0}(V),|Y| \leqq N_{\alpha}\right\}$ be such that:
(a) $|H(W)|=\operatorname{Min}\left\{\left|\mathscr{P}\left(H_{0}(V)\right)\right|, 2^{\kappa}\right\}$,
(b) all $Z \in H(W)$ have the same power $\leqq \mathcal{N}_{\alpha}$,
(c) for every $Z \in H(W)$, any two members have an infinite symmetric difference.

Let for $Z \in H(W), Z=\left\{Y_{i}: i<i_{0}\right\}$,

$$
I^{z, w}=\{\langle \rangle\} \cup\left\{\left\langle\omega_{\alpha} i+j\right\rangle^{\wedge} \eta: i<i_{0}, j<\mathcal{N}_{\alpha} \text { and } \eta \in I^{v, Y_{i}}\right\}
$$

and the representation is defined accordingly.
What about the partition? As we shall see $H(W)$ is infinite, so let $\zeta_{W}=$ $|H(W)|+1, H_{\xi}(W)$ have power $|H(w)|$ for every $\xi<\zeta_{w}$.
$\zeta=\delta+1, \delta$ limit. There is a set $S \subseteq\{i+1: i<\delta\}$, unbounded, and for every $\alpha \in S, V(\alpha)=\left(N^{\prime}, N_{\gamma}^{\prime \prime}, \bar{a}_{\gamma}\right) \in K_{\alpha_{0}}^{r}, N^{\prime}<_{N} N_{\gamma}^{\prime \prime}, \operatorname{Dp}\left(N^{\prime}, N_{\gamma}^{\prime \prime}, \bar{a}_{\gamma}\right)=\gamma$. As $\operatorname{Dp}(T)$ was assumed to be smaller than $\mathcal{N}_{\alpha}+1$, and by the computation below, $\mathrm{Dp}(W) \in$ $S \Rightarrow \mathrm{Dp}(T)<|H(W)|)$. Let

[^0]: + This research was supported by the United States-Israel Binational Science Foundation.
 Received September 5, 1980 and in revised form June 3, 1982

