DIFFERENTIALLY CLOSED FIELDS

BY
SAHARON SHELAH

Abstract

We prove that even the prime, differentially closed field of characteristic zero, is not minimal; that over every differential radical field of characteristic p, there is a closed prime one, and that the theory of closed differential radical fields is stable.

Introduction

Let T_{d} be the theory of differential fields, that is, the axioms of fields in addition to the following axioms on the (abstract) differentiation operator:

$$
\begin{aligned}
D(x+y) & =D x+D y \\
D(x y) & =(D x) y+x D y .
\end{aligned}
$$

Let an upper index indicate the characteristic of the field.
T_{d} is a natural generalization of the theory of fields which Ritt [4] invented. It is natural to look for an analog to the algebraic closure of a field. Seidenberg [7] has done algebraic work along these lines. Using his work, Robinson [5] showed that T_{d}^{0} has a model completion $T_{d c}^{0}$ (that is, the theory of differentially closed fields of characteristic zero). Thus every T_{d}^{0}-field can be extended to a $T_{d c}^{0}$-field, however Robinson does not give an explicit set of axioms for $T_{d c}^{0}$. Blum [1] showed that the following axioms suffice:
(1) T_{d}^{0}
(2) For differential polynomials P_{1}, P_{2} (in single variable y) of order m_{1}, m_{2}, for $m_{1}>m_{2}$, there is a solution of $P_{1}=0$ which is not a solution of $P_{2}=0$, and there is a solution of $P_{2}=0$, provided that P_{2} has degree greater than zero.

Blum also showed that $T_{d c}^{0}$ is totally transcendental, and the maximal Morley rank is ω hence over every T_{d}^{0}-field there is a prime $T_{d c}^{0}$-field. (See Morely [3], or [6] for example.) By a general result of [10] (or [7], for example) this prime $T_{d c}^{0}$-field is unique. However here we answer a question of Blum (which appears in [6]) by showing that the prime $T_{d c}^{0}$-field is not necessarily minimal. This shows that the analogy with algebraically closed fields fails. The proof indicates to me (in contrast to Sacks [6, p. 307]) the following conjecture.

Conjecture 1.

(i) For every $m<\omega$ there is a $T_{d}{ }^{0}$-field F, and a differential polynomial $P(y)$ of order m with coefficients in F such that the Morley rank of $P(y)=0$ is 1 , (or at least less than m) and that even P has integer coefficients.
(ii) Moreover, there is a differential polynomial of order 0 (less than m), $P_{1}(y) \neq 0$, such that if y_{1}, \cdots, y_{n} are solutions of $P(y)=0 \wedge P_{1}(y) \neq 0$ and $P_{2}\left(y_{1}, \cdots, D^{i} y_{j}, \cdots\right)_{i<m}=0$, where P_{2} is a polynomial with coefficients in F, then P_{2} is the zero polynomial. (ii) implies (i).

Let us try to generalize to partial differentiation. Then we have a field with n differential operators, D_{1}, \cdots, D_{n}, satisfying in addition, that $D_{i} D_{j} y=D_{j} D_{i} y$. But nothing new results. When the characteristic of the field is zero, we obtain a model completion with elimination of quantifiers, which is totally transcendental and has maximal Morley rank ωn. I am quite sure that for characteristic p as well, this does not make any essential difference. If we add $D_{n}, n<\omega$, we arrive at a stable but not superstable theory.

We also show that although $T_{d c}^{0}$ is trivial in some aspects, when we allow cardinality quantifiers, it becomes complex. Hence $T_{d c}^{0}$ has 2^{λ} non-isomorphic models in every $\lambda>\aleph_{0}$.

Conjecture 2. $T_{d c}^{0}$ has $2^{*_{0}}$ non-isomorphic models of power \aleph_{0}.
Wood [13], again using Seidenberg [7] deals with $T_{d}{ }^{p}$ for $p>0$. (Notice that here if an element a has a p-th root, then it is constant, that is, $D a=0$.) Wood showed that T_{d}^{p} does not have the amalgamation property. However, if we add the axiom

$$
\left[D x=0 \rightarrow\left(r(x)^{p}=y\right)\right] \wedge[D x \neq 0 \rightarrow r(x)=0]
$$

and obtain $T_{r d}^{p}$ (that is, the theory of radical differential fields of characteristic p), then it has the amalgamation property, and has a model completion $T_{\text {rdc }}^{p}$, which has elimination of quantifiers. (A T_{d}^{p}-field F can be expanded to a $T_{r d}^{p}$-field if
$D a=0 \rightarrow(\exists x)\left(x^{p}=a\right)$ for $a \in F$, and the expansion is unique; thus we do not differentiate strictly between the field and its expansion.) Wood showed that, unlike $F_{d c}^{0}, T_{r d c}^{p}$ is not totally transcendental, hence the existence of a prime $T_{\text {rdc }}^{p}$-field remains an open question. Wood and the author independently solved the question (the author proved it after [9] but before [14] were submitted, see [15]). We do not know however, whether Conjecture 3 holds.

Note. Some of the results of this paper were previously announced in [9].
Conjecture 3. The prime $T_{r d c}^{p}$-field over any $T_{r d c}^{p}$ is unique.
By small changes in [13] it follows that $T_{r d c}^{p}$ is not superstable (see [12]).

1. The non-minimality of the prime differentially closed field

Now we state the main lemma of this section.
Lemma 4. Let F be a differential field of characteristic zero, $y_{1}, \cdots y_{n}$ distinct nonzero solution (in F) of

$$
D y=\frac{y}{1+y}
$$

If $P\left(x_{1}, \cdots, x_{n}\right)$ is a polynomial with rational coefficients and, in F, $P\left(y_{1}, \cdots, y_{n}\right)=0$, then P is identically zero.

Proof.
Stage (i). Without loss of generality, assume F includes the field F_{0} of algebraic numbers. We suppose $y_{1}, \cdots, y_{n+1} \in F$ are distinct and not zero, $P_{0}\left(y_{1}, \cdots, y_{n+1}\right)=0, P_{0}\left(x_{1}, \cdots, x_{n+1}\right)$ is a nontrivial polynomial with algebraic coefficients and we shall arrive at a contradiction. Without loss of generality, n is minimal; for this n the degree of P_{0} in x_{n+1} is minimal and then the degree of P_{0} is minimal. Hence $P_{0}\left(y_{1}, \cdots, y_{n}, x\right)$ is indecomposable over $F_{0}\left(y_{1}, \cdots, y_{n}\right)$, and y_{1}, \cdots, y_{n} are transcendentally independent over F_{0}.

Stage (ii). Let us look at the function $x=y+\ln y$. Clearly, for real $y>0$, $y+\ln y$ is an increasing function whose range is the set of real numbers; let its inverse be $y=f(x)$. Thus $f(x)$ is defined for every real x; it increases with x and as $x \rightarrow-\infty, f(x) \rightarrow 0$. As $f(x)+\ln f(x)=x, e^{f(x)} f(x)=e^{x}$, hence for $x \rightarrow-\infty$ $e^{o(1)} f(x)=e^{x}$ or $f(x)=e^{x}(1+o(1))$. The function $f(x)$ is also defined for complex arguments, and then it is holomorphic but it is not single valued.

Stage (iii). Look at the differential equation $d y / d x=y /(1+y)($ for $y \neq 0)$ or equivalently $(1+y) / y d y=d x$ or $d y / y+d y=d x$ or $\ln y+y=x+c$ or $y=f(x+c)$. Thus if $y=g(t)$ is a function with complex values defined for all
negative real numbers $t<t_{0}$, and if it is a solution of the equation, then for some complex c and branch of $f, g(t)=f(t+c)$ for every such t. Because, if $t_{1}<t_{0}$, $g\left(t_{1}\right) \neq 0,-1$, choose $c_{1}=g\left(t_{1}\right)+\ln g\left(t_{1}\right)-t_{1} ;$ then for a proper branch of f, $g\left(t_{1}\right)=f\left(t_{1}+c_{1}\right)$. Hence by the uniqueness theorem $g(t)=f(t+c)$ for a neighborhood of t_{1}, and hence for all $t<t_{0}$. (We choose $g\left(t_{1}\right) \neq 0$ to make $f\left(g\left(t_{1}\right)\right)$ well defined, and $g\left(t_{1}\right) \neq-1$ to avoid the branching point when $\left.d / d y(y+\ln g(y))=0\right)$. As $g(t)$ for $t<t_{1}$ cannot take always the values $0,-1$, we are through (remember that we assume $y \neq 0$).

Looking at $y+\ln y=x+c$, we know that

$$
\begin{equation*}
\text { if } x \rightarrow-\infty \text { then either } y \rightarrow-\infty \text { or } y \rightarrow 0 . \tag{3}
\end{equation*}
$$

If $y \rightarrow-\infty, y=x+O(\ln x)$.
If $y \rightarrow 0$, then as before, $y=e^{x+c}(1+o(1))$.
Stage (iv). Choose real negative numbers a_{1}, \cdots, a_{n} such that $f\left(a_{1}\right), \cdots, f\left(a_{n}\right)$ will be algebraic numbers which are linearly independent over the rationals. By Lindemann's theorem (see [8])

$$
e^{f\left(a_{1}\right)}, \cdots, e^{f\left(a_{n}\right)}
$$

are transcendentally independent Since $f\left(a_{i}\right)$ are algebraic $\neq 0$, and $e^{f(x)} f(x)=e^{x}$; also $e^{a_{1}}, \cdots, e^{a_{n}}$ are transcendentally independent.

Stage (v). If $P\left(x_{1}, \cdots, x_{n}\right)$ is nontrivial, polynomial with algebraic coefficients, then for some $t_{1}<0 P\left(f\left(t+a_{1}\right), \cdots f\left(t+a_{n}\right)\right) \neq 0$ for all $t<t_{1}$. Suppose not. Let us see what will be the dominant term when $t \rightarrow-\infty$. If P has a free constant as $t \rightarrow-\infty, f\left(t+a_{i}\right) \rightarrow 0$ (see Stage (ii)). This is a contradiction. Now let $P\left(x_{1}, \cdots, x_{n}\right)=\Sigma_{\eta \in I} c_{\eta} \prod_{i=1}^{n} x_{i}^{\eta(i)}$, for c_{η} algebraic, $\eta(i)$ natural numbers.

Then $f\left(t+a_{i}\right)=\exp \left(t+a_{i}\right)(1+o(1))$,

$$
\begin{aligned}
& f\left(t+a_{i}\right)^{n}=\exp \left(n t+n a_{i}\right)(1+o(1)) \\
& \prod_{i=1}^{n} f\left(t+a_{i}\right)^{\eta(i)}=\exp ([\Sigma \eta(i)] t) \exp \left(\Sigma \eta(i) a_{i}\right)(1+o(1))
\end{aligned}
$$

As $t \rightarrow-\infty$, clearly the dominant terms will be those with minimal $\Sigma \eta(i)$, say m. Let $J=\left\{\eta \in I: \Sigma_{i=1}^{n} \eta(i)=m\right\}$ so for some $\eta^{\prime} \in J c_{\eta^{\prime}} \neq 0$.

$$
\begin{aligned}
P\left(\cdots, f\left(t+a_{i}\right), \cdots\right)= & \sum_{\eta \in J} c_{\eta} \exp (m t) \exp \left(\Sigma \eta(i) a_{i}\right)(1+o(1))+O(\exp ((m+1) t)) \\
= & \left.\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} \exp \left(\Sigma \eta(i) a_{i}\right)\right) \exp (m t)(1+o(1)) \\
& +O(\exp (t(m+1))
\end{aligned}
$$

For this to be zero for arbitrarily small $t<0$, necessarily

$$
0=\sum_{\eta \in J} c_{\eta} \exp \left(\Sigma \eta(i) a_{i}\right)=\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n}\left(\exp \left(a_{i}\right)\right)^{\eta(i)}
$$

As $\eta^{\prime} \in J, c_{\eta^{\prime}} \neq 0$, this contradicts the transcendental independence of the $e^{a_{i}}$ (see Stage (iv)).

Stage (vi). By (v), $P_{0}\left(f\left(t+a_{1}\right), \cdots, f\left(t+a_{n}\right), y\right)=0$ as an equation in y, has a solution $y=g(t)$ for each $t<t_{0}$, for some t_{0} (make the leading coefficient nonzero). Also we can assume that for $t<t_{0}$, the resultant of this polynomial is not zero. (If it is identically zero as a polynomial in $f\left(t+a_{i}\right), P_{0}\left(x_{1}, \cdots, x_{n+1}\right)$ will be decomposable over $F_{0}\left(x_{1}, \cdots, x_{n}\right)$, contradicting the minimality of the degree of P_{0} in x_{n+1}.)

Thus we can choose one branch of the solution $y=g(t)$ hence, clearly, g is an analytic function.

Stage (vii). g is a solution of $D y=y /(1+y)$.
Let $P_{0}=\Sigma_{\eta \in I} c_{\eta} \prod_{i=1}^{n+1} x_{i}^{\eta(i)}$ (c_{η} algebraic, $\eta(i)$ natural numbers). Note that if $h(t)$ solves $D y=y /(1+y)$, then $(d / d t) h(t)^{m}=h(t)^{m}[m /(1+h(t))]$. Then

$$
\begin{aligned}
0= & \frac{d}{d t} P_{0}\left(f\left(t+a_{1}\right), \cdots, f\left(t+a_{n}\right), g(t)\right) \\
= & \sum_{\eta \in I}\left[c_{\eta} \prod_{i=1}^{n} f\left(t+a_{i}\right)^{\eta(i)} g(t)^{\eta(n+1)}\left(\sum_{i=1}^{n} \frac{\eta(i)}{1+f\left(t+a_{i}\right)}\right)\right] \\
& +\sum_{\eta \in I}\left[c_{\eta} \prod_{i=1}^{n} f\left(t+a_{i}\right)^{\eta(i)} g(t)^{\eta(n+1)-1} \eta(n+1)\right] \frac{d g(t)}{d t} .
\end{aligned}
$$

The coefficient of $d g(t) / d t$ is $(d / d y) P_{0}\left(x_{1}, \cdots, x_{n}, y\right)$. As for all $t<t_{0}$ the resultant of $P_{0}\left(f\left(t+a_{1}\right), \cdots, f\left(t+a_{n}\right), y\right)$ is not zero, it has no common root with its derivative. So from the above-mentioned equality we can solve $d g / d t$ (si nce the $a_{i}^{\prime} \mathrm{s}$ are real $f\left(t+a_{i}\right)>0$, hence $1+f\left(t+a_{i}\right) \neq 0$.) Thus, $d g / d t$ $=P_{1}\left(\cdots f\left(t+a_{i}\right) \cdots, g(t)\right) / P_{2}\left(\cdots, f\left(t+a_{i}\right), \cdots, g(t)\right)$. In the same way, in the differential field F,

$$
D y_{n+1}=P_{1}\left(\cdots, y_{i}, \cdots, y_{n+1}\right) / P_{2}\left(\cdots, y_{i}, \cdots, y_{n+1}\right)
$$

On the other hand $D y_{n+1}=y_{n+1} /\left(1+y_{n+1}\right)$, so define

$$
P_{3}\left(y_{1}, \cdots, y_{n+1}\right) \equiv P_{1}\left(y_{1}, \cdots, y_{n+1}\right)\left(1+y_{n+1}\right)-P_{2}\left(y_{1}, \cdots, y_{n+1}\right) y_{n+1}=0
$$

As n was minimal, y_{1}, \cdots, y_{n} were transcendentally independent. Hence the
polynomial $P_{3}\left(y_{1}, \cdots, y_{n}, x\right)$ is divisible by $P_{0}\left(y_{1}, \cdots, y_{n}, x\right)$. (The quotient has coefficients in $F_{0}\left(y_{1} \cdots, y_{n}\right)$ and we can assume no denominator becomes zero when we replace y_{i} by $f\left(t+a_{i}\right) t<t_{0}$. So $P_{3}\left(f\left(t+a_{i}\right), \cdots, f\left(t+a_{n}\right), g(t)\right)=0$ or equivalently $d g(t) / d t=g(t) /(1+g(t))$.

Stage (viii). For some b and proper branch of $f, g(t)=f(t+b)$ for every $t<t_{0}$; and
(a) $f(t+b)=t+O(\ln |t|)$ for $t \rightarrow-\infty$ or
(b) $f(t+b)=e^{t+b}(1+o(1))$ for $t \rightarrow-\infty$.

We obtain this result by combining stages (iii) and (vii) and (3).
We shall now contradict possibility (a). What will be the dominant part of $P_{0}\left(f\left(t+a_{1}\right), \cdots, f\left(t+a_{n}\right), f(t+b)\right)$ (which is identically zero)?

If $P_{0}\left(x_{1}, \cdots, x_{n+1}\right)$ has a term $c_{1} x_{n+1}^{m}, m \geqq 0 \quad c_{1} \neq 0$, letting m be the maximal one, we obtain

$$
P_{0}\left(f\left(t+a_{1}\right), \cdots f\left(t+a_{n}\right), f(t+b)\right)=c_{1} t^{m}+O\left(t^{m-1} \ln |t|\right)
$$

(Remember $f(t)=e^{t}(1+o(n))$ for $t \rightarrow-\infty$). This goes to infinity when $t \rightarrow-\infty$ a contradiction, so there is no such term. Let

$$
P_{0}\left(x_{1}, \cdots x_{n+1}\right)=\sum_{\eta \in I} c_{\eta} \prod_{i=1}^{n+1} x_{i}^{\eta(i)}
$$

where c_{η} are algebraic. Then this equals

$$
\begin{equation*}
\sum_{\eta \in i} c_{\eta} \prod_{i=1}^{n} \exp \left(\left(t+a_{i}\right) \eta(i)\right) t^{\eta(n+1)}(1+o(1)) \tag{4}
\end{equation*}
$$

so the dominant terms are those with $\sum_{i=1}^{n} \eta(i)$ minimal, say m, and among them, those with maximal $\eta(n+1)$, say k. So letting $J=\{\eta \in I: \Sigma \eta(i)=m, \eta(i+1)$ $=k\}$, (4) equals

$$
\left(\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n} \exp \left(a_{i} \eta(i)\right)\right) e^{m t} \cdot t^{k}(1+o(1))
$$

Hence necessarily $\Sigma_{\eta \in J} c_{\eta} \prod_{i=1}^{n}\left(\exp \left(a_{i}\right)\right)^{\eta(i)}=0$, contradicting Stage (iv).
So, necessarily, (b) holds.
Stage (ix). Let $a_{n+1}=b$; by the last stage $f\left(t+a_{i}\right)=\exp \left(t+a_{i}\right)(1+o(1))$ for $1 \leqq i \leqq n+1$.

As $P_{0}\left(\cdots, f\left(t+a_{i}\right), \cdots\right)=0$ and the dominant part of it for $t \rightarrow-\infty$ is

$$
\left(\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n}\left(\exp \left(a_{i}\right)^{\eta(i)}\right) \exp \left(t \Sigma_{\eta(i)}\right)\right.
$$

(J is the set of $\eta \in I$ with minimal $\Sigma \eta(i)$ so

$$
P_{4}\left(x_{1}, \cdots, x_{n+1}\right)=\sum_{\eta \in J} c_{\eta} \prod_{i=1}^{n+1} x_{i}^{\eta(i)}
$$

is homegeneous) then necessarily $P_{4}\left(\cdots, e^{a_{i}}, \cdots\right)=0$, that is, $e^{a_{t}}, \cdots, e^{a_{n+1}}$ are transcendentally dependent. As P_{4} is homogeneous, for every t,

$$
P_{4}\left(\cdots, e^{t+a_{t}}, \cdots\right)=0 \text { or }
$$

(a) $P_{4}\left(\cdots, f\left(t+a_{i}\right) \exp \left(f\left(t+a_{i}\right)\right), \cdots\right)=0$; but also
(b) $P_{0}\left(\cdots, f\left(t+a_{i}\right), \cdots\right)=0$.

Stage (x). We choose a_{1}, \cdots, a_{n}, only so that $P^{i}\left(\cdots, a_{i}, \cdots, \cdots, e^{a_{i}}, \cdots\right) \neq 0$ for a specific finite set of pol nomials P^{i} with algebraic coefficients. Thus there is an $\varepsilon>0$ and t_{0}^{\prime} so that every $a_{i} \in\left(a_{i}-\varepsilon, a_{i}^{\prime}+\varepsilon\right)$ will satisfy the same demands for $t<t_{0}^{\prime}$, hence all our conclusions, in particular the existence of a_{n+1}^{\prime}. Hence for $t<t_{0}^{\prime}$ (by (a), (b) from stage (ix))
(a) $P_{4}\left(\cdots, f\left(t+a_{i}^{\prime}\right) \exp \left(f\left(t+a_{i}^{\prime}\right)\right), \cdots\right)=0$ and
(b) $P_{0}\left(\cdots, f\left(t+a_{i}^{\prime}\right), \cdots\right)=0$.

Let k_{1} be the degree of $P_{0}\left(x_{1}, \cdots x_{n+1}\right)$, and k_{2} be the dimension of the field F_{1} generated by the coefficients of P_{0} over the rationals.

Now choose $t^{*}<t_{0}^{\prime}$ so that $t^{*}+a_{i}+\varepsilon<t_{0}^{\prime}$; and choose a_{i}^{\prime} in $\left(a_{i}^{\prime}-\varepsilon, a_{i}+\varepsilon\right)$ so that $f\left(t^{*}+a_{i}^{\prime}\right), i=1, n$ are algebraic but not linearly dependent over the rationals and moreover $f\left(t^{*}+a_{i}^{\prime}\right)=q_{i}^{1}+q_{i}^{2} a^{i}, q_{i}^{1}, q_{i}^{2}$ rationals, $q_{i}^{2} \neq 0$ and a^{i} is the $p^{(i)}-$ root of 2 where $p^{(1)}>k_{1} k_{2}, p^{(i+1)}>\prod_{i \leqq i} p^{(j)} k_{1}, p^{(t)}$ natural numbers.

By (b) $f\left(t^{*}+a_{n+1}^{\prime}\right)$ is algebraic over $f\left(t^{*}+a_{i}^{\prime}\right), i=1, n$; hence algebraic, and $\exp \left(f\left(t^{*}+a_{i}^{\prime}\right)\right), i=1, n$ are transcendentally independent by Lindman theorem, but $\exp \left(f\left(t+a_{n+1}^{\prime}\right)\right)$ depends on them, by (a).

By (a) and Lindman's theorem (see [8]), $f\left(t^{*}+a_{n+1}^{\prime}\right)$ is linearly dependent on $a_{1}^{\prime}, \cdots, a_{n}^{\prime}$ over the rationals, hence for rationals $q_{i}, f\left(t^{*}+a_{n+1}^{\prime}\right)=\Sigma_{i=1}^{n} q_{i} f\left(t^{*}+a_{i}^{\prime}\right)$. We can substitute this in $P_{0}\left(\cdots, f\left(t^{*}+a_{i}^{\prime}\right), \cdots\right)=0$ and obtain $P_{5}\left(f\left(t^{*}+a_{1}^{\prime}\right)\right.$, $\left.\cdots, f\left(t^{*}+a_{n}^{\prime}\right)\right)=0$, where P_{5} is a polynomial over F_{1}, and the degree of P_{5} is $\leqq k_{1}$. This implies that P_{5} is identically zero by dimensional consideration, and the condition on the set of $p^{(i)}$.

If we substitute in $P_{0}\left(x_{1}, \cdots, x_{n+1}\right) x_{n+1}=\sum q_{i} x_{i}$, we obtain the zero polynomial. By the minimality of the degree of P_{0} in x_{n+1}, and in general, we can assume $P_{0}\left(x_{1}, \cdots, x_{n+1}\right)=x_{n+1}-\sum q_{i} x_{i}$.

Stage (xi). Now

$$
y_{n+1}=\sum_{i=1}^{n} q_{i} y_{i} \text { for } q_{i} \text { complex rationals. }
$$

Hence

$$
\begin{aligned}
D y_{n+1} & =\sum_{i=1}^{n} q_{i} D y_{i}=\sum_{i=1}^{n} q_{i} \frac{y_{i}}{1+y_{i}}=D y_{n+1}=\frac{y_{n+1}}{1+y_{n+1}} \\
& =\sum_{i=1}^{n} q_{i} \frac{y_{i}}{1+y_{i}}=\sum_{i=1}^{n} q_{i} y_{i} /\left(1+\sum_{i=1}^{n} q_{i} y_{i}\right)
\end{aligned}
$$

As y_{1}, \cdots, y_{n} are transcendentally independent, this is an identity so it holds if we substitute for the set of y_{i} complex numbers. If $i \neq j, q_{i} \neq 0, q_{j} \neq 0$ set $y_{i}=-1+\varepsilon$, $y_{j} \neq-1,-\left(1+q_{i} y_{i}\right) 1 / q_{j}$ and $y_{k}=0$ for $k \neq i, j$. Then we obtain a contradiction as $\varepsilon \rightarrow 0$. Thus $n=1, y_{2}=y_{n+1}=q_{1} y_{1}$, and

$$
q_{1} \frac{y_{1}}{1+y_{1}}=\frac{q_{1} y_{1}}{1+q_{1} y_{1}}
$$

For $y_{1} \neq 0$ we obtain $q_{1}=0$ or $q_{1}=1$. If $q_{1}=0, y_{2}=0$; if $q_{1}=1, y_{2}=y_{1}$, a contradiction in any case.

Theorem 5. The prime differentially closed field is not minimal. (It is the prime $T_{d c}^{0}$-field over the field of rational numbers.)

Proof. Let F be that field. The equation $D y=y /(1+y)$ is not an algebraic formula since in some $T_{d c}^{0}$-field (of functions) it has infinitely many solutions. Hence it has infinitely many nonzero solutions $y_{i} \in F, i<\omega$. Since the theory $T_{d c}^{0}$ has elimination of quantifiers, clearly the $\left\{y_{i}: i<\omega\right\}$ is an indiscernible set, hence by [10] (or see for example [6]), F is not minimal. (The elaboration for this particular case is easy: there is a field $F^{\prime} \subseteq F$ prime over the field generated by $\left\{y_{2 i}: i<\omega\right\}$, and $F^{\prime} \neq F$ as $y_{2 t+1} \notin F^{\prime}$).

Lemma 6. Let F be a differential field; $\{f, g\}$ differentially independent elements of F. Let y_{1}, \cdots, y_{n}, be distinct nonzero solutions of $D y=y f /(1+y)$; y^{1}, \cdots, y^{m} be distinct nonzero solutions of $D y=(y /(1+y)) g$. Then for no nontrivial polynomial P with rational coefficients, $P\left(y_{1}, \cdots, y_{n}, y^{ \pm}, \cdots, y^{m}\right)=0$.

Proof. Similar to that of Theorem 5.
Remark. No doubt the restrictions on f, g can be weakened.
Theorem 7. For every $\lambda>\aleph_{0}, T_{d c}^{0}$ has 2^{λ} non-isomorphic fields of pow?r λ.
Proof. Let F be a differentially closed field of power $\lambda, f_{3}, g_{i} \in F$, and $\left\{f_{i}: i<\lambda\right\} \cup\left\{g_{i}: i<\lambda\right\}$ a differentially independent set with F prime over it.

Let $\phi\left(x_{1}, x_{2}\right)=\left[D x_{1}=\left(x_{1} /\left(1+x_{1}\right)\right) x_{2}\right]$. By Lemma 6, if y is a new element satisfying $\phi\left(y, f_{i} g_{j}\right), F^{\prime}$ the prime differentially closed field over $F(y)$, and $\langle h, l\rangle \neq\langle i, j\rangle$ then no $y^{\prime} \in F^{\prime}-F$ satisfies $\phi\left(y^{\prime}, f_{h} g_{l}\right)$. By repeating, we can obtain for any binary relation R over λ a field F_{R} such that

$$
\begin{aligned}
& \left|\left\{y \in F_{R}: \phi\left(y, f_{i} g_{j}\right)\right\}\right|=\aleph_{1} \text { iff }\langle i, j\rangle \in R \text { iff } \\
& \left|\left\{y \in F_{R}: \phi\left(y, f_{i} g_{j}\right)\right\}\right| \neq \aleph_{0} .
\end{aligned}
$$

Then by [11] the result follows easily.

2. On the existence of $T_{r d c}^{p}$-prime field over $T_{r d}^{p}$-field

Theorem 8. Over every differential radical field of characteristic p ($=T_{r d}^{p}$-field) there is a prime differentially closed radical field $\left(=T_{r d c}\right.$-field).

Proof.
Stage (i). By Morley [3] (or see [6]) it suffices to prove the following. (Remember that by Wood [13], $T_{r d c}^{p}$ has elimination of quantifiers.)

Let F be a $T_{r d}^{p}$-field and let $\phi(x)$ be a consistent formula with parameters from F. Then there is a consistent formula $\psi(x)$ with parameters from F such that $\psi(x) \rightarrow \phi(x)$ and $\psi(x)$ defines an isolated type, that is, if y satisfies ψ, then the structure of $F_{r d}(y)$ (the $T_{r d}^{p}$-field generated by F, y) is uniquely defined. Without loss of generality, ϕ is a quantifier-free formula and moreover it is a conjunction of atomic formulas and negation of action formulas.

We can also assume without loss of generality that F is separately closed.
Stage (ii). Let $F^{\prime} \supseteq F$ be a $T_{r d}^{p}$-field in which y satisfies $\phi(x)$. Let $\tau_{0}=\tau_{0}(y)=y$ and $\tau_{1}=\tau_{1}(y), \cdots, \tau_{n}=\tau_{n}(y)$ be the terms appearing (maybe as subterms)in $\phi(y)$ which are of the form $r(\cdots)$. (Remember r is the p th root.) Let $n(i)$ be the highest n such that $D^{n} \tau_{i}$ appear in ϕ. We can assume without loss of generality that in ϕ there appears no term of the form $D\left(\sigma_{1}+\sigma_{2}\right)$ or $D\left(\sigma_{1} \sigma_{2}\right)$ (since then we could simplify it); and that if $r(\sigma)$ appears in it, then one of the conjuncts of ϕ is $D \sigma=0$

Thus if $F \subseteq F^{\prime \prime} \subseteq F^{\prime}, F^{\prime \prime}$ is a T^{p}-field and $D^{j} \tau_{i}(y) \in F^{\prime \prime}$ for $j \leqq n(i)$, then $\phi(y)$ is meaningful in $F^{\prime \prime}$.

Stage (iii). We derive ϕ^{\prime} from ϕ by adding to it for each $i \leqq n$ a conjunct as follows:
(a) If there is an $m=m(i)$ such that $D^{m} \tau_{i}(y)$ is in the separable closure of $F_{i}^{\prime}=F\left(\cdots, D^{j} \tau_{k}(y), \cdots, D^{l} \tau_{i}(y), \cdots\right)_{k<i l<m}$ then let $P_{i}(x)=\Sigma_{l} \sigma_{l}^{i} x^{l}$ be an indecomposable polynomial over F_{i}^{\prime} of which $D^{m} \tau_{i}(y)$ is a root. Then the conjunct will be $\sum_{l} \sigma_{l}^{i}\left[D^{m} \tau_{i}(y)\right]^{l}=0 \wedge \sigma \neq 0$ where σ is the resultant of $P_{i}(x)$.

This guarantees that $D^{l} \tau_{i}(y), l \geqq m$ is in $F_{i}\left(D^{m} \tau_{i}(y)\right)$ and that $D^{m} \tau_{i}(y)$ is separably algebraic over F_{i}.
(b) If there is not such an m, we add nothing.

Stage (iv). Let $F^{\prime \prime} \subseteq F^{\prime}$ be the T^{p}-field generated by F and $D^{j} \tau_{i}(y)$ for $j \leqq n(i)$ (that is, generated only by the field operations). Supplement it by defining $D\left(D^{n(i)} \tau_{i}(y)\right)=0$, if i satisfies (b) above; we obtain a T_{d}^{p}-field F^{*} and by [7] there is a $T_{r d}^{p}$-field $F^{* *} \supseteq F^{*}$. Add to ϕ^{\prime}, for each such i, the conjunct $D^{n(i)+1} \tau_{i}(x)=0$ to obtain $\phi^{\prime \prime}$.

Stage (v). Now case (a) of Stage (iii) always occurs, hence we can express each $D^{J} \tau_{i}(y)(j>n(i))$ by a polynomial in $\left\{D_{k} \tau_{(}(y): k \leqq n(l), l \leqq n(i)\right\}$ with coefficients in F. Add to $\phi^{\prime \prime}$ conjuncts so that the trancendence rank of $F\left(\cdots, D^{k} \tau_{e}(y), \cdots\right)$ $=F_{d}\left(\tau_{0}(y), \cdots, \tau_{n}(y)\right)$ is minimal. For each $j \leqq n(i)$, if $D^{j} \tau_{i}(y)$ is algebraically dependent on $\left\{D^{l} \tau_{k}(y): k<i\right.$ or $\left.k=i, l<j\right\}$, then we obtain $\phi^{\prime \prime \prime}$ by adding conjuncts to ϕ to make the degree of the polynomial it solves as small as possible.

Without loss of generality let y in F^{\prime} satisfy $\psi(y) \equiv \phi^{\prime \prime \prime}(y)$.
Now ψ completely determines the structure of

$$
F^{\prime \prime}={ }^{d f} F\left(\cdots, D^{j} \tau_{i}(y), \cdots\right)_{j \leqq n(i), i \leqq n}=F_{d}\left(\tau_{0}(y), \cdots, \tau_{n}(y)\right) .
$$

If $F^{\prime \prime}$ is a $T_{r d}^{p}$-field, then we are through. This is equivalent to saying that $c \in F^{\prime \prime}-F, D c=0$ implies c has a p root in $F^{\prime \prime}$.

Stage (vi). Suppose $c \in F^{\prime \prime}-F, D c=0$ but c has no p root in $F^{\prime \prime}$. We arrive at a contradiction.

Let $c=P_{0}\left(\cdots, D^{J} \tau_{i}(y), \cdots\right)$, where P_{0} is a polynomial over F. Now if in Stage (v) we had also added $P_{0}\left(\cdots, D^{j} \tau_{i}(x), \cdots\right)=b$ for any $b \in F$ to $\phi^{\prime \prime}(x)$, the transcendence rank of $F_{d}\left(\tau_{0}(y), \cdots\right)$ would have become smaller. We have not done it because it is impossible. In other words, letting

$$
\theta_{0}\left(x_{1}\right)=(\exists x)\left(x_{1}=P_{0}\left(\cdots, D^{J} \tau_{l}(x), \cdots\right) \wedge \psi(x)\right)
$$

and $F^{c} \supseteq F^{\prime \prime}$ be a $T_{\mathrm{rd}}^{\boldsymbol{p}}$-field, then for no $b \in F, F^{c} \vDash \theta_{0}(b)$. As $T_{\mathrm{rdc}}^{\boldsymbol{p}}$ has elimination of quantifiers for some quantifier-free $\theta_{1}\left(x_{1}\right), T_{r d c}^{p} \vdash\left(\forall x_{1}\right)\left[\theta_{1}\left(x_{1}\right) \equiv \theta_{0}\left(x_{1}\right)\right]$. Without loss of generality, F^{c} is $|F|^{+}$-saturated.

Stage (vii). Let $F^{0} \subseteq F$ be the prime field (that is, the one generated by 1) and let $a_{n} \in F$, for $n<\omega$, be distinct elements which are in the separable closure of F^{0} in F. Clearly $F \vDash \neg \theta_{1}\left(a_{n}\right) \wedge D a_{n}=0$. By the compactness theorem there is an element $a \in F^{c}-F, F^{c} \vDash \neg \theta_{1}(a) \wedge D(a)=0$. Let F^{1} be the separable closure of $F_{r d}^{0}(a)$ in F^{c} and let F^{2} be the separable closure of $F^{0}(c)$ in $F^{\prime \prime}$. Clearly for $b \in F^{2}$ $D b=0$, and there is an embedding $f: F^{2} \rightarrow F^{1}, f(c)=a$ which is the identity on F^{*} (see below). Let F^{3} be the closure of F^{1} to a $T_{r d}$-subfield of F^{c}. Notice that $F^{*}=\left\{b \in F^{c}: b\right.$ is separably algebraic over $\left.F^{0}\right\}$ is a $T_{r d}$-field; hence F^{*} is algebraically closed. The diagram is shown in Fig. 1 (arrows denote inclusion).

Fig. 1

Notice that:
(a) ([7]) although the amalgamation property does not hold for T_{d}^{p}-fields in general, if

1. $g_{1}: F^{\delta} \rightarrow F_{\alpha}, g_{2}: F^{\delta} \rightarrow F_{\beta}$ are embeddings of T_{d}^{p}-fields, and
2. $b \in F^{\delta}, D b=0$ but has no p-th root in F^{δ} implies $g_{1}(b)$ has no p-th root in F_{α},
3. no $b \in F_{a}-g_{1}\left(F^{\delta}\right)$ is the root of a separable polynomial over $g_{1}\left(F^{\delta}\right)$, then there is a T_{d}^{\prime}-field F_{γ}, and embeddings $f_{1}: F_{g} \rightarrow F_{\gamma}, f_{2}=F_{\beta} \rightarrow F_{\gamma}$ such that $f_{1} g_{1}=f_{2} g_{2}$, and without loss of generality for example f_{1} is the identity.
(b) If $b \in F^{2}$, and b has no p-th root in F^{2} then b has no p-th root in $F^{\prime \prime}$. Because, without loss of generality, $b \notin F^{*}$. Suppose b has a p-th root in $F^{\prime \prime}$. Then $\Sigma_{j<n}\left(\Sigma_{i<n(j)} t_{i j} c^{i}\right) b^{j}=0, t_{i j} \in F^{0}$ where $\Sigma_{j<n}\left(\Sigma_{i<n(j)} t_{i j} c^{l}\right) x^{j}$ is indecomposable, and for some $j \neq 0(\bmod p) \Sigma_{i} t_{i j} c^{i} \neq 0\left(\right.$ because $\left.b \in F^{2}\right)$. We can assume $n, n(j)$ are minimal. As c, $b \notin F^{*}$, they are transcendental over F_{0}, hence $\Sigma_{i j} t_{i j} x^{j} y^{j}$ is indecomposable over F^{0}, and $\Sigma_{i}\left(\Sigma_{j} t_{i j} b^{f}\right) x^{l}$ is indecomposable over F^{0}. Then in
$F^{c}, \quad \Sigma_{i j} t_{i j} r(c)^{i} r(b)^{j}=0$ (remember $r\left(t_{i j}\right)=t_{i j}$ as $t_{i j} \in F^{0}$). Since $r(b) \in F^{\prime \prime}$, $\Sigma_{j} t_{i j} r(b)^{j} \in F^{\prime \prime}$ but $r(c)$ cannot be separably algebraic over $F^{\prime \prime}$. Now $i \neq 0(\bmod p)$ implies $\Sigma_{j} t_{i j} r(b)^{j}=0$, hence $\Sigma_{j} t_{i j} b^{j}=0$ and $t_{i j}=0$ (as b is not algebraic over F^{0}). Thus $\Sigma_{i j} t_{p i} c^{p i} b^{j}=0$, and in $F^{\prime \prime}, \Sigma_{i, j} t_{p i j} c^{i} r(b)^{j}=0$, so $r(b)$ is separably algebraic over F^{2} and $r(b) \in F^{\prime \prime}-F^{2}$, and we have finished.
(c) No $b \in F^{\prime \prime}-F^{2}$ is the root of a separable polynomial over F^{2}, because F^{2} is the separable closure of $F(c)$ in $F^{\prime \prime}$.

Stage (viii). Combine (a), (b), (c), and f: $F^{2} \rightarrow F^{1}$ from Stage (v).
Let $F^{\delta}=F^{2}, F_{\alpha}=F^{\prime \prime}, F_{\beta}=F^{3}, g_{1}=$ the identity, $g_{2}=f$. Then by (b), (c), (2) and (3) of (a) hold. Hence there are $a T_{r d c}^{p}$-field $F_{\gamma} \supseteq F^{\prime \prime}$ and an embedding $g: F^{3} \rightarrow F_{\gamma}$ such that $g f=$ identity, hence $g(a)=c$. Now $F^{3} \vDash \neg \theta_{1}(a)$ (we chose a in this way) hence $F_{\gamma} \vDash \neg \theta_{1}(c)$, hence $F_{\gamma} \vDash \neg \theta_{0}(c)$. But $F_{\gamma} \supseteq F^{\prime \prime}$, so $F_{\gamma} \vDash \theta_{0}(c)$, a contradiction.
Q.E.D.

3. Stability of $T_{r d e}^{p}$

Theorem 9. $T_{\text {rdc }}^{p}$ is stable.
Proof.
Stage (i). Suppose $F^{1} \subseteq F^{2}$ are $T_{r d c}^{p}$-fields, $\left|F^{1}\right| \leqq \lambda$. We should prove that the set of types elements of F^{2} realized over F^{1} is $\leqq \lambda^{N_{0}}$. For each $y \in F^{2}$ choose a countable field $F_{y} \subseteq F^{2}$ such that
(a) F_{y} is a countable $T_{r d c}^{p}$-field, $y \in F_{y}$,
(b) $F_{y} \cap F^{1}$ is a $T_{r d c}^{p}$-field,
(c) if $a_{1}, \cdots, a_{n} \in F_{y}$ are linearly dependent over F_{1}, then they are linearly dependent over $F_{y} \cap F^{\mathbf{1}}$.

Let F^{y} be the field ($=T_{d}^{p}$-field) generated by $F_{y} \cup F^{1}$.
Stage (ii). Now define an equivalence relation over F^{2} :

$$
y_{1} \sim y_{2} \text { iff } F_{y_{1}} \cap F^{1}=F_{y_{2}} \cap F^{1}
$$

and there is an isomorphism f from $F_{y_{1}}$ onto $F_{y_{2},} f\left(y_{1}\right)=y_{2}, f$ restricted to ($F_{y_{1}} \cap F^{1}$) $=$ identity.

Clearly \sim has $\leqq \lambda^{K_{0}}$ equivalence classes; if $y_{1} \sim y_{2}$ then we can extend the corresponding f to an isomorphism from $F^{y_{1}}$ onto $F^{y_{1}}$ which is the identity over F^{1}. If $F^{y_{1}}$ is a $T_{r d}^{p}$-field this implies (as $T_{r d c}^{p}$ has elimination of quantifiers) that y_{1}, y_{2} realize the same type over F^{1}. Hence it suffices to prove

Let $F=F_{y} \cap F^{1}, F_{1}=F_{y}, F_{2}=F^{1}$.
Remark. In fact we have more than the needed information to prove that the T_{d}^{p}-field F^{y}, generated by F_{1}, F_{2}, is a $T_{r d}^{p}$-field.

Stage (iii). Suppose $c^{*} \in F^{y}, D c=0$ but c has no p-th root in F^{y}. Thus $c^{*}=\Sigma a_{i} b_{i} / \sum a^{i} b^{i}, a_{i}, a^{i} \in F_{1}, b_{i}, b^{i} \in F_{2}$. Then $c=\Sigma a_{i}^{\prime \prime} b_{i}^{\prime \prime} /\left(\Sigma^{n} a_{i}^{\prime} b_{i}^{\prime}\right)^{p}$, and clearly $D\left(\sum_{i} a_{i}^{\prime \prime} b_{i}^{\prime \prime}\right)=0$. So without loss of generality $c=\sum_{i=1}^{n} a_{i} b_{i}, a_{i} \in F_{1}, b_{t} \in F_{2}$. Choose the sets a_{i}, b_{i} so that n is minimal. This implies that
(a) $\left\{a_{1}, \cdots, a_{n}\right\}$ are linearly independent over F,
(b) b_{1}, \cdots, b_{n} are linearly independent over F. Hence
(c) $\left\{a_{i} b_{j}: i, j \leqq n\right\}$ are linearly independent over F.

Proof of (c). If $\Sigma_{i, j} t_{i, j} a_{i} b_{i}=0, t_{i, j} \in F$ then $\Sigma_{i} a_{i}\left(\Sigma_{j} t_{i, j} b_{j}\right)=0$. Since the $a_{i} \in F_{1}$ are linearly independent over F they are also linearly independent over F_{2} (by Stages (a)-(c)); thus $\Sigma_{j} t_{i, j} b_{j}=0$ and hence $t_{i, j}=0$.

Stage (iv).
(a) $D a_{i}$ is linearly dependent on $\left\{a_{1}, \cdots, a_{n}\right\}$ over F;
(b) $D b_{i}$ is linearly dependent on $\left\{b_{1}, \cdots, b_{n}\right\}$ over F.

Proof. Choose $1 \leqq i_{1}<\cdots<i_{l} \leqq n$ such that $\left\{a_{1}, \cdots, a_{n}, D a_{i_{1}}, \cdots, D a_{i_{1}}\right\}$ is linearly independent over F, and each $D a_{i}$ depends on it over F. Choose similarly $1 \leqq j_{1}<\cdots<j_{k} \leqq n$ such that $\left\{b_{1}, \cdots, b_{n}, D b_{j_{1}}, \cdots, D b_{j_{k}}\right\}$ is linearly independent over F but each $D b_{j}$ depends on it over F.

$$
0=D c=\sum_{i} a_{i} D b_{i}+\sum_{i}\left(D a_{i}\right) b_{i}
$$

Substitute the expressions of $D a_{i}, i \notin\left\{i_{1}, \cdots, i_{j}\right\}$, and for $D b_{j}, j \notin\left\{j_{1}, \cdots, j_{k}\right\}$, and collect the terms. Then as in (iii) the coefficient of each $a_{i} b_{j}, a_{i} D b_{j},\left(D a_{i_{m}}\right) b_{j}$ is zero. If $l>0$ the coefficient of $\left(D a_{i_{1}}\right) b_{1}$ is 1 , a contradiction. Thus $l=0$, and similarly $k=0$. Hence for some $t_{j}^{l} \in F, s_{j}^{i} \in F, D a_{l}=\Sigma_{j} t_{j}^{l} a_{j} D b_{i}=\Sigma s_{j}^{i} b_{j}$.

Stage (v). Let

$$
\begin{equation*}
D x_{i}=\sum_{j=1}^{n} u_{j}^{j} x_{j}, i<n ; u_{j}^{i} \in F \tag{6}
\end{equation*}
$$

or, in short, $D \bar{x}=U \bar{x}, \bar{x}$ is a vector of length n, U an $n \times n$ matrix. Then there are solutions $\bar{a}_{0}, \cdots, \bar{a}_{m}$ (for $m<n$) in F such that for any other solution \bar{a} from F^{2} there are $d_{0}, \cdots, d_{m} \in F^{2}, D d_{i}=0$ such that $\bar{a}=\Sigma_{1 \leqq m} d_{i} \bar{a}_{i}$. Let $\bar{a}_{0}, \cdots, \bar{a}_{m}$ be a
maximal set of solutions of (6) which are linearly independent over F (as vectors). Let \tilde{a} be any other solution from F. (This is sufficient as F is an elementary submodel of F^{2}.) Then

$$
\begin{aligned}
\bar{a} & =\sum_{i \leq m} d_{i} \bar{a}_{i} \text { for some } d_{i} \in F^{2} \text { and } \\
U \bar{a} & =D \bar{a}=D\left(\sum_{i} d_{i} \bar{a}_{i}\right)=\sum_{i} D\left(d_{i}\right) \tilde{a}_{i}+\sum_{i} d_{i} D \bar{a}_{i} \\
& =\sum_{i}\left(D d_{i}\right) \bar{a}_{i}+\sum_{i} d_{i}\left(U \bar{a}_{i}\right)=\sum_{i}\left(D d_{i}\right) \bar{a}_{i}+U\left(\sum_{i} d_{i} \bar{a}_{i}\right) \\
& =\Sigma\left(D d_{i}\right) \bar{a}_{i}+U \bar{a} .
\end{aligned}
$$

Thus $\Sigma_{i}\left(D d_{i}\right) \bar{a}_{i}=0, D d_{i} \in F$. Since the set of \bar{a}_{i} was linearly independent in F, and F is an elementary submodel of F^{2}, and since $T_{r d c}^{p}$ is model-complete, the set of \tilde{a}_{i} is linearly independent in F^{2}. Hence $D d_{i}=0$. The same holds for F_{1}, F_{2} instead of F^{2}.

Stage (vi). Combining the conclusions of (iv), (v), we arrive at the following representations:

$$
\begin{aligned}
& a_{i}=\sum_{j} a_{j}^{i} d_{j} \text { for } \alpha_{j}^{i} \in F, d_{j} \in F_{1}, D d_{j}=0, j<n_{1} . \\
& b_{i}=\sum_{j} \beta_{j}^{i} e_{j} \text { for } \beta_{j}^{i} \in F, e_{j} \in F_{2}, D e_{j}=0, j<n_{2}
\end{aligned}
$$

Hence

$$
c=\Sigma \gamma_{j}^{i} d_{i} e_{j} \text { for } \gamma_{j}^{i} \in F, d_{i} \in F_{1}, e_{j} \in F_{2}, D d_{i}=D e_{j}=0
$$

Choose such representation with minimal n_{1}; among those with minimal n_{1}, choose a representation with a minimal n_{2}. Hence the set of d_{i} is linearly independent over F and also the e_{j} are linearly independent over F.

Hence, as in Stage (iii), $\left\{d_{i} e_{j}: i<n_{1}, j<n_{2}\right\}$ is linearly independent over F. Now since

$$
0=D c=\sum_{i, j}\left(D \gamma_{j}^{i}\right) d_{i} e_{j}\left(\text { as } D d_{i}=D e_{j}=0\right)
$$

and $D \gamma_{j}^{i} \in F$, clearly $D \gamma_{j}^{i}=0$. Thus γ_{j}^{i} have a p-th root in F, d_{i} has a p-th root in F_{1}, and e_{j} has a p-th root in F_{2}. Thus

$$
r(c)=\sum_{i, j} r\left(\gamma_{j}^{l}\right) r\left(d_{i}\right) r\left(e_{j}\right) \in\left(\text { the field generated by } F_{1}, F_{2}\right)
$$

Q.E.D.

Acknowledgement

I would like to thank Y. Kannai for suggesting that I try, for Section 1, differential equations with transcendental first-integral (when I presented him with the problem in "differential equations theory" terms); and to thank B. Weiss and Y. Hirshfeld for helpful discussions.

AdDed in proof

1. The non-minimality of the prime $T_{d c}^{0}$-field was also proved, independently by Rosenlicht [5a].
2. Wood [14], [15] also gives a nice set of axioms of $T_{r d c}^{p}$.
3. The answer to Conjecture 3 is positive.

References

1. L. Blum, Generalized Algebraic Structures: Model Theoretic Approach, Ph. D. thesis, M. I. T., 1968.
2. N. Jacobson, Lectures in Abstract Algebra III, Van Nostrand, Princeton, N. J., 1964.

2a. E. R. Kolchin, Constrained extension of differential fields (to appear).
3. M. D. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538.
4. J. F. Ritt, Differential algebra, Amer. Math. Soc. Coiloquium Publ 33 (1950).
5. A. Robinson, On the concept of a differentially closed field, Bull. Res. Council Israel, Sect. F. 8 (1959), 113-128.

5a. M. Rosenlict, The non-minimality of the differential closure, Pacific J. Math. (to appear).
6. G. Sacks, Saturated Mddel Theory, Benjamin, Reading, Mass., 1972.
7. A. Seidenberg, An elimination theory for differential algebra, Univ. California Publ. Math. (new Series) 3 (1964), 31-66.
8. C. L. Siegel, Transcendental numbers, Annals of Math. Studies, 16 Princeton Univ. Press, 1949.
9. S. Shelah, Differentially closed fields, Notices Amer. Math. Soc. 20 (1973), A-444.
10. S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107-113.
11. S. Shelah, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math 9 (1971), 473-487.
12. S. Shelah, Stability, superstability and the f. c. p. model-theoretic properties of formulas in first order theory, Annals of Math. Logic 3 (1971), 271-362.
13. C. Wood, The model theory of differential fields of characteristic $p \neq 0$ Proc. Amer. Math. Soc. 40 (1973), 577-584.
14. C. Wood, Prime model extensions of differential fields, characteristic $p \neq 0$. Notices Amer. Math. Soc. 20 (1973), p. A-445.
15. C. Wood, Prime model extensions for differential fields of characteristic $p \neq 0$ (to appear).

