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ULTRAFILTERS ON ω—THEIR IDEALS AND THEIR
CARDINAL CHARACTERISTICS

JÖRG BRENDLE AND SAHARON SHELAH

Abstract. For a free ultrafilter U on ω we study several cardinal character-
istics which describe part of the combinatorial structure of U . We provide
various consistency results; e.g. we show how to force simultaneously many
characters and many π–characters. We also investigate two ideals on the Baire
space ωω naturally related to U and calculate cardinal coefficients of these
ideals in terms of cardinal characteristics of the underlying ultrafilter.

Introduction

Let U be a non–principal ultrafilter on the natural numbers ω. Recall that U is
a P–point iff for all countable A ⊆ U there is U ∈ U with U \A being finite for all
A ∈ A. U is said to be rapid iff for all f ∈ ωω there is U ∈ U with |U ∩ f(n)| ≤ n
for all n ∈ ω. U is called Ramsey iff given any partition 〈An; n ∈ ω〉 of ω, there
is either n ∈ ω with An ∈ U or U ∈ U with |An ∩ U | ≤ 1 for all n ∈ ω. It is
well–known (and easily seen) that Ramsey ultrafilters are both rapid and P–point.

With U we can associate ideals on the real numbers (more exactly, on the Baire
space ωω) in various ways. One way of doing this results in the well–known ideal
r0
U of Ramsey null sets with respect to U (see §2 for the definition). Another,

less known, ideal related to U was introduced by Louveau in [Lo] and shown to
coincide with both the meager and the nowhere dense ideals on ωω with respect
to a topology somewhat finer than the standard topology (see §3 for details). This
ideal which we call `0

U is related to Laver forcing with U , LU [Bl 1], in a way similar
to the connection between r0

U and Mathias forcing with U , MU . Furthermore, `0
U

and r0
U coincide in case U is a Ramsey ultrafilter [Lo], as do LU and MU [Bl 1].

A natural problem which has, in fact, been studied for many ideals I on the reals
[BJ 1] is to figure out the relationship between certain cardinal coefficients of I as
well as to determine their possible values. An example of such a cardinal coefficient
is the additivity of I, add(I), that is, the size of the smallest subfamily of I whose
union is not in I; another one, the uniformity of I, non(I), is the cardinality of
the least set of reals which does not belong to I (see §2 for more such coefficients).
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2644 JÖRG BRENDLE AND SAHARON SHELAH

One of the goals of this work is to carry out such an investigation for I being either
`0
U or r0

U . (In fact, this was the original motivation for this paper.)
In sections 2 and 3 of this paper we reduce this problem to a corresponding

problem about cardinal characteristics of the underlying ultrafilter U , by actually
calculating the ideal coefficients in terms of the latter as well as of two other car-
dinal invariants of the continuum, the unbounding number b and the dominating
number d (see §1 for the definitions). Here, by a cardinal characteristic of U , we
mean a cardinal number describing part of the combinatorial structure of U , such
as the character of U , χ(U), that is, the size of the smallest subfamily F of U such
that each member of U contains some member of F — or the π–character of U ,
πχ(U), the cardinality of the least F ⊆ [ω]ω such that each element of U contains
an element of F (see §1 for details). We show for example that non(r0

U ) = πχ(U)
(Theorem 1(c) in §2) or that the uniformity of `0

U can be expressed as the maximum
of d and some cardinal closely related to πχ(U) (Theorem 2(c) in §3). The interest
of such characterizations lies in the fact that, unlike the ideal coefficients, the ultra-
filter characteristics have been studied previously, in particular in connection with
ongoing research on βω (see e.g. [vM]) but also in investigations of the cofinality of
ultraproducts of the form ωω/U , and so already established results on the latter can
be used to show something on the former. Furthermore, the ultrafilter characteris-
tics as well as the classical cardinal invariants of the continuum are combinatorially
simpler objects than the ideal coefficients and thus easier to calculate in any given
model of set theory. Accordingly, we investigate the ultrafilter characteristics in
the remainder of our work (§§1, 4 – 7).

It turns out that only rather elementary facts about these characteristics and
their relationship to other cardinal invariants can be proved in ZFC. Most of these
results which we expound in section 1 are well–known. To make our paper self–
contained, we include proofs. (For the consequences of these ZFC–results on the
ideal coefficients, see the corollaries in sections 2 and 3.)

This leaves the field wide open for independence results of various sorts to which
the main body of the present paper (sections 4 to 7) is devoted. First, we deal
with distinguishing between different coefficients for a fixed Ramsey ultrafilter U .
Most questions one would ask in this direction have been solved long ago (see §§1
and 4). The remaining case, to force a Ramsey ultrafilter U with πχ(U) < χ(U),
is taken care of in a rather straightforward construction in Theorem 3 in section 4.
Next, we are concerned with producing simultaneously many different ultrafilters
for which a fixed cardinal characteristic assumes many different values. For one of
our cardinals, this has been done by Louveau ([Lo], see also §1) under MA long ago.
For the others, it is a much more difficult problem which we tackle in sections 5
and 6. For example we show that given a set of uncountable cardinals R in a model
of GCH , we can force that for each λ ∈ R there is an ultrafilter U with πχ(U) = λ
(Theorem 4(a) and Corollary 5.5). Similarly, given a set of cardinals of uncountable
cofinality R, such a model can be extended to one which has an ultrafilter (even
a P–point) U with χ(U) = λ for all λ ∈ R (Theorem 5 and Corollary 6.1). For
quite many years, R. Frankiewicz, S. Shelah and P. Zbierski have planned to write
a paper proving this for regulars (i.e. for any set of regulars R, there is a forcing
extension with a P–point with character λ for each λ ∈ R). The proof of Theorem 5
can be extended in various ways, e.g. to make all the ultrafilters Ramsey (Corollary
6.2) or to prove a dual result (Theorem 7). It is an elegant combination of a ccc–
iteration and an Easton product. Results on characters and π–characters like those
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ULTRAFILTERS ON ω—IDEALS AND CARDINAL CHARACTERISTICS 2645

described in sections 5 and 6 are interesting, not just because they shed light on
the ideal coefficients studied in section 2 and 3, but also because χ and πχ play
a role in the topological investigation of βω (see [vM]). Finally, in section 7 we
explore the connection between the ultrafilter characteristics and the reaping and
splitting numbers r and s (see §1 for the definitions). Using iterated forcing we
show (Theorem 8) that a result of Balcar and Simon ([BS], see also Proposition
7.1) which says that r is the minimum of the π–characters cannot be dualized to
a corresponding statement about s. The main technical device of the proof is a
careful analysis of LU–names for reals where U is a Ramsey ultrafilter.

We close with a list of open problems in section 8.
All sections of this work from section 2 onwards depend on section 1, but can be

read independently of each other; however, §3 uses the basic definitions of §2, and
sections 5 and 6 are closely intertwined.

Notational remarks and some prerequisites. We refer to standard texts like
[Je] or [Ku] for any undefined notion. c stands for the cardinality of the continuum.
cf(κ) is the cofinality of the cardinal κ. Given a function f , dom(f) is its domain,
rng(f) its range, and if A ⊆ dom(f), then f�A is the restriction of f to A and
f [A] := rng(f�A) is the image of A under f . ∀∞n means for all but finitely many
n, and ∃∞n is used for there are infinitely many n.

[ω]ω ([ω]<ω, respectively) denotes the infinite (finite, resp.) subsets of ω; ω↑ω

(ω↑<ω, resp.) stands for the strictly increasing functions from ω to ω (for the strictly
increasing finite sequences of natural numbers, resp.). Identifying subsets of ω with
their increasing enumerations naturally identifies [ω]ω and ω↑ω. We reserve letters
like σ, τ for elements of ω<ω and ω↑<ω, and letters like s, t for elements of [ω]<ω.
ˆ is used for concatenation of sequences (e.g., σ 〈̂n〉). Given a tree T ⊆ ω<ω, we
denote by stem(T ) its stem, and by [T ] := {f ∈ ωω; ∀n (f�n ∈ T )} the set of its
branches. Given σ ∈ T , we let Tσ := {τ ∈ T ; τ ⊆ σ ∨ σ ⊆ τ}, the restriction of
T to σ, and succT (σ) := {n ∈ ω; σ 〈̂n〉 ∈ T }. For A, B ⊆ ω, we say A ⊆∗ B (A is
almost included in B) iff A \B is finite. If A ⊆ [ω]ω and B ∈ [ω]ω satisfies B ⊆∗ A
for all A ∈ A, we call B a pseudointersection of A. A sequence T = 〈Tα; α < κ〉
is called a κ–tower (or tower of height κ) iff Tβ ⊆∗ Tα for β ≥ α and T has no
pseudointersection.

Concerning forcing, let P be a p.o. in the ground model V . P–names are denoted
by symbols like ḟ , Ẋ, ..., and for their interpretations in the generic extension V [G],
we use f = ḟ [G], X = Ẋ[G]... We often confuse Boolean–valued models V P and
the corresponding forcing extensions V [G] where G is P–generic over V . P is called
σ–centered iff there are Pn ⊆ P with

⋃
n Pn = P and, for all n and F ⊆ Pn finite,

there is q ∈ P with q ≤ p for all p ∈ F . ? is used for two–step iteration (e.g.
P ? Q̇). If 〈Pα, Q̇α; α < κ〉 (where κ is a limit ordinal) is an iterated forcing
construction with limit Pκ (see [B] or [Je 1] for details) and Gκ is Pκ–generic, we
let Gα = Gκ ∩ Pα be the restriction of the generic, and Vα = V [Gα] = V Pα stands
for the intermediate extension. In Vα, P[α,κ) denotes the rest of the iteration. Cκ

(where κ is any ordinal) stands for the p.o. adding κ Cohen reals. For sections 5
and 6, we assume familiarity with Easton forcing (see [Je] or [Ku]) and the ways in
which it can be factored. In particular, we use that if P is ccc and Q is ω1–closed
(in V ), then P is still ccc in V Q and Q is ω1–distributive in V P. Recall that a p.o. Q
is called λ–distributive iff the intersection of fewer than λ open dense subsets of Q
is open dense. In section 7, we shall need basic facts about club sets in ω1: that the
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2646 JÖRG BRENDLE AND SAHARON SHELAH

intersection of a countable family of clubs is club, that given clubs {Cα; α < ω1},
their diagonal intersection {β ∈ ω1; ∀α < β (β ∈ Cα)} is club, and that if P is
ccc and 
P “Ċ is club”, then there is a club D in the ground model such that

P “D ⊆ Ċ” (see [Ku, chapter II, §6 and chapter VII, (H1)].

More notation will be introduced when needed.

On the genesis of this paper and acknowledgements. The first author is very
much indebted to the members of the logic group at Charles University, Praha, to
Bohuslav Balcar, Petr Simon and Egbert Thümmel for introducing him to the
world of characters and π–characters, and to the latter for explaining to him how
the cardinal characteristics of r0

U could be read off from those of U in case U
is a Ramsey ultrafilter. He gratefully acknowledges support from the Center for
Theoretical Study for his stay in January/February 1995, and thanks Bohuslav
Balcar for having invited him. A preliminary version of this paper, by the first
author only, was circulated in late 1995. It consisted of sections 2 to 4 and 7 of
the present work and one more section, the results of which have been superseded.
Unfortunately, it contained several inaccuracies and a few basic results were not
mentioned.

The main bulk of the important results in sections 5 and 6 were proved by the
second author in September 1996 while the first author was visiting him at Rutgers
University. Section 1 is a joint work. We thank Alan Dow, Martin Goldstern
and Claude Laflamme for comments. We also thank the referee for many valuable
suggestions and for detecting a gap in the original proof of Theorem 3.

1. Setting the stage — some cardinal characteristics

of ultrafilters

Let U be a non–principal ultrafilter on the natural numbers ω. We define the
following four cardinal invariants associated with U .

p(U) = min{|A|; A ⊆ U ∧ ¬∃B ∈ U ∀A ∈ A (B ⊆∗ A)},
πp(U) = min{|A|; A ⊆ U ∧ ¬∃B ∈ [ω]ω ∀A ∈ A (B ⊆∗ A)},
πχ(U) = min{|A|; A ⊆ [ω]ω ∧ ∀B ∈ U ∃A ∈ A (A ⊆∗ B)},
χ(U) = min{|A|; A ⊆ U ∧ ∀B ∈ U ∃A ∈ A (A ⊆∗ B)}.

The definition of p is dual to the one of χ; similarly πp and πχ are dual. Therefore we
can expect a strong symmetry when studying these cardinals. Note that p(U) ≥ ω1

is equivalent to saying U is a P–point. Ultrafilters with πp(U) ≥ κ are called
pseudo–Pκ–points in [Ny]. πχ(U) is referred to as π–character, and χ(U) is known
as the character of the ultrafilter U . Furthermore, a familyA which has the property
in the definition of πχ(U) (χ(U), respectively) is called a π–base (base, resp.) of U .
Both these cardinals have been studied intensively, see e.g. [BK], [BS], [BlS], [Ny]
and [vM].

It is easy to see that for any ultrafilter U , the following hold: ω ≤ p(U) ≤ πp(U),
πχ(U) ≤ χ(U) ≤ c, and ω1 ≤ πp(U). Furthermore, p(U) is a regular cardinal,
and we have cf(πχ(U)) ≥ p(U). (The same holds with πχ replaced by χ, see
Proposition 1.4 below for a stronger result.) To obtain more restrictions on the
possible values, and on the possible cofinalities, of these cardinals, we need to
introduce some classical cardinal coefficients of the continuum. For f, g ∈ ωω, we
say g eventually dominates f (f ≤∗ g, in symbols) iff f(n) ≤ g(n) holds for almost
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ULTRAFILTERS ON ω—IDEALS AND CARDINAL CHARACTERISTICS 2647

all n ∈ ω. If U is an ultrafilter, we say g U–dominates f (f ≤U g, in symbols) iff
{n; f(n) ≤ g(n)} ∈ U .

b = min{|F|; F ⊆ ωω ∧ ∀g ∈ ωω ∃f ∈ F (f 6≤∗ g)},
d = min{|F|; F ⊆ ωω ∧ ∀g ∈ ωω ∃f ∈ F (g ≤∗ f)},
s = min{|A|; A ⊆ [ω]ω ∧ ∀B ∈ [ω]ω ∃A ∈ A (|A ∩B| = |(ω \A) ∩B| = ω)},
r = min{|A|; A ⊆ [ω]ω ∧ ∀B ∈ [ω]ω ∃A ∈ A (A ⊆∗ B ∨ A ⊆∗ ω \B)},
p = minU πp(U)

and

cof(ωω/U) = min{|F|; F ⊆ ωω ∧ ∀g ∈ ωω ∃f ∈ F (g ≤U f)}.

b and d are dual, and so are s and r. b is called (un)bounding number, d is referred
to as dominating number, s is known as splitting number, r is called either reaping
number or refinement number, and p is the pseudointersection number. cof(ωω/U)
which is self–dual is called the cofinality of the ultraproduct ωω/U . Families like
F and A in the defining clauses of the first four of these numbers are referred
to as unbounding, dominating, splitting and reaping families, respectively. It is
known that p and b are regular, that ω1 ≤ p ≤ b ≤ cf(d), that p ≤ s ≤ d ≤ c,
and that b ≤ r ≤ c (see [vD] and [Va]). Also recall that p = c is equivalent to
MA(σ–centered) [Be], Martin’s axiom for σ–centered p.o.’s; thus all of these cardi-
nals equal c under MA.

Concerning the relationship to the ultrafilter invariants, we see easily that πp(U)
≤ s and r ≤ πχ(U) for all ultrafilters U . Also, MA implies πp(U) = c for all U ,
while there are (under MA) Ramsey ultrafilters U with p(U) = κ for all regular
ω1 ≤ κ ≤ c [Lo, Théorèmes 3.9 et 3.12]. Furthermore, cof(ωω/U) is regular and
b ≤ cof(ωω/U) ≤ d; for more results on cof(ωω/U) see [Bl], [Ca], [Ny], [SS] and
the recent [BlM]. The following proposition which relates the cofinality of ωω/U to
other invariants is well–known. We include a proof for completeness’ sake.

Proposition 1.1 (Nyikos [Ny, Theorem 1(i) and 3(i)], see also [Bl, Theorem 16]).
(a) If πχ(U) < d, then cof(ωω/U) = d. Equivalently, max{πχ(U), cof(ωω/U)} ≥ d.
(b) If πp(U) > b, then cof(ωω/U) = b. Equivalently, min{πp(U), cof(ωω/U)} ≤ b.

Proof. Given f ∈ ωω and A ∈ [ω]ω define fA ∈ ωω by

fA(n) := min{f(k); k ≥ n and k ∈ A},

and note that if g ∈ ωω is strictly increasing with g ≤U f , then g ≤∗ fA for any
A ⊆∗ {n; g(n) ≤ f(n)} ∈ U . (?)

(a) If {fα; α < cof(ωω/U)} is cofinal modulo U and {Aβ; β < πχ(U)} is a
π–base, then {fα

Aβ
; α < cof(ωω/U) and β < πχ(U)} is dominating by (?).

(b) If κ < min{πp(U), cof(ωω/U)} and {gα; α < κ} ⊆ ωω are strictly increasing,
then find f ∈ ωω with gα ≤U f for all α. Put Aα = {n; gα(n) ≤ f(n)} ∈ U , and
find A ⊆∗ Aα for all α. By (?), we get gα ≤∗ fA for all α, and the gα are not
unbounded.

Since we always have πp(U) ≤ d and πχ(U) ≥ b, we infer immediately

Corollary 1.2. (Nyikos [Ny, Theorem 3 (viii)]). For any ultrafilter U , we have ei-
ther πp(U) ≤ b or πχ(U) ≥ d.

Corollary 1.3. πp(U) ≤ πχ(U) holds for any ultrafilter U .
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2648 JÖRG BRENDLE AND SAHARON SHELAH

We thus see that the four ultrafilter characteristics defined at the beginning are,
in fact, linearly ordered.

Unfortunately, we shall need some more ultrafilter coefficients whose definition
is not as nice as one of the four above. The reason for introducing these cardinals
will become clear in §§2 and 3.

p′(U) = min{|A|; A ⊆ U ∧ ∀B̄ ∈ [U ]ω ∃A ∈ A ∀B ∈ B̄ (B 6⊆∗ A)},
πχσ(U) = min{|A|; A ⊆ [ω]ω ∧ ∀B̄ ∈ [U ]ω ∃A ∈ A ∀B ∈ B̄ (A ⊆∗ B)},
χσ(U) = min{|A|; A ⊆ [U ]ω ∧ ∀B̄ ∈ [U ]ω ∃Ā ∈ A ∀B ∈ B̄ ∃A ∈ Ā (A ⊆∗ B)}.

There is again some symmetry. For example, the cardinal which is dual to p′(U)
can be defined as

χ′(U) = min{|A|; A ⊆ [U ]ω ∧ ∀B ∈ U ∃Ā ∈ A ∃A ∈ Ā (A ⊆∗ B)}.

Of course, we have χ′(U) = χ(U), and thus get nothing new. Similarly, the primed
version of πχ(U), as well as the σ–versions of p(U) and πp(U), give us nothing new.
One could define a primed version of πp(U), but we won’t need it. Concerning the
possible values of the primed cardinal, we note that ω1 ≤ p′(U) ≤ πp(U) as well
as p(U) ≤ p′(U). Furthermore, p′(U) is regular, and we have the following result
which might be folklore.

Proposition 1.4. cf(χ(U)) ≥ p′(U). In particular χ(U) has uncountable cofinal-
ity.

Proof. First note that if 〈Fn; n ∈ ω〉 is a strictly increasing sequence of proper filters
on ω, then F =

⋃
n Fn is not an ultrafilter. To see this, choose a strictly decreasing

sequence 〈An; n ∈ ω〉 of subsets of ω such that A0 = ω and An+1 ∈ Fn+1 \ Fn for
all n. Let B =

⋃
n(A2n+1 \ A2n+2) and C =

⋃
n(A2n \ A2n+1). Thus B ∪ C = ω.

Assume that B ∈ F . Then B ∈ Fn for some n. Hence also An ∩ B ∈ Fn and
An+1 ∩ B ∈ Fn+1. If n is even, we see An ∩ B ⊆ An+1 6∈ Fn; if n is odd, we
have An+1 ∩ B ⊆ An+2 6∈ Fn+1, a contradiction in both cases. Therefore B /∈ F .
Similarly we show C /∈ F , and F is not an ultrafilter.

Now let κ be regular uncountable and assume 〈Fα; α < κ〉 is a strictly increasing
sequence of proper filters on ω with F =

⋃
αFα. Choose Aα+1 ∈ Fα+1\Fα. Assume

there are countably many Bn ∈ F such that for all α there is n with Bn ⊆ Aα+1.
Then for some α0 < κ, Bn ∈ Fα0 for all n, a contradiction to the choice of Aα0+1.
Hence we see that cf(χ(U)) ≥ p′(U) for any ultrafilter U .

Also notice that p(U) = p′(U) iff U is P–point. In particular, there are (in ZFC)
ultrafilters U with p′(U) > p(U). Under MA this can be strengthened to

Proposition 1.5. (MA) For each regular cardinal κ with ω1 ≤ κ ≤ c, there is an
ultrafilter U with p(U) = ω and p′(U) = κ.

Proof. By Louveau’s Theorem quoted above, there is an ultrafilter V with p(V) = κ.
Let Xn := {n} × ω denote the vertical strips. We define an ultrafilter U on ω × ω
by

X ∈ U ⇐⇒ {n; {m; 〈n, m〉 ∈ X} ∈ V} ∈ V .

(We shall use again this type of construction in §5.) Note that the sets Yn :=⋃
k≥n Xk witness p(U) = ω.
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We are left with proving p′(U) = κ. Given A ∈ U , put An = {m; 〈n, m〉 ∈ A}
and let BA = {n; An ∈ V} ∈ V . Notice that if A ⊆∗ A′ then also BA ⊆∗ BA′ .

First take λ < κ and let 〈Aα; α < λ〉 be a sequence from U . By p(V) = κ, find
B ∈ V with B ⊆∗ BAα for all α. Find Cn ∈ V such that Cn ⊆∗ Aα,n for all α with
Aα,n ∈ V . Finally find f ∈ ωω with f(n) ≥ max(Cn \ Aα,n) for almost all n with
Aα,n ∈ V , and all α. Then put Dn =

⋃
k≥n,k∈B{k} × (Ck \ f(k)) ∈ U . It is now

easy to check that for each α < λ there is n with Dn ⊆∗ Aα. Hence p′(U) ≥ κ.
Conversely, let 〈Bα; α < κ〉 witness p(V) = κ, and put Aα =

⋃
n∈Bα

Xn. If we
had Dn ∈ U such that for all α there is n with Dn ⊆∗ Aα, then we would also get
BDn ⊆∗ Bα, a contradiction. Thus 〈Aα; α < κ〉 witnesses p′(U) ≤ κ.

On the other hand, it is easy to see that there is always an ultrafilter U with
p′(U) = ω1 (simply take A = {Aα; α < ω1} strictly ⊆∗–decreasing, let I be the
ideal of pseudointersections of A, and extend A to an ultrafilter U with U ∩I = ∅).
This should be seen as dual to the well–known fact (see e.g. [vM, Theorem 4.4.2])
that there is always an ultrafilter U with χ(U) = c.

To get more restrictions on the possible values of the σ–versions of our ultrafilter
characteristics, recall the following cardinal invariants.

rσ = min{|A|; A ⊆ [ω]ω ∧
∀B̄ ∈ [[ω]ω]ω ∃A ∈ A ∀B ∈ B̄ (A ⊆∗ B ∨ A ⊆∗ (ω \B))},

par = min{|Π|; Π ⊆ 2[ω]2 ∧ ∀A ∈ [ω]ω ∃π ∈ Π with π[[A \ n]2] = 2 for all n},
hom = min{|A|; A ⊆ [ω]ω ∧ for all partitions π : [ω]2 → 2 there is A ∈ A

such that A is homogeneous for π (that is, |π[[A]2]| = 1)}.
The partition cardinals par and hom were introduced by Blass [Bl 2, section 6]. It
is known that par = min{s, b} and that hom = max{rσ, d} (see [Bl 2, Theorems
16 and 17], [Br, Proposition 4.2]). We see easily that c ≥ χσ(U) ≥ πχσ(U) ≥
rσ, χσ(U) ≥ χ(U), πχσ(U) ≥ πχ(U), cf(πχσ(U)) ≥ p′(U), cf(χσ(U)) ≥ p′(U),
and that πχσ(U) = πχ(U) as well as χσ(U) = χ(U) for P–points U . We do not
know whether χσ(U) > χ(U) is consistent (see §8 (1)), but we shall encounter
ultrafilters U with πχσ(U) > πχ(U) in section 5. The following proposition is
simply a reformulation of the well–known fact that Mathias forcing with a non–P–
point adds a dominating real. We include a proof for completeness’ sake.

Proposition 1.6. (Canjar, Nyikos, Ketonen, see [Ca 1, Lemma 4]). Let U be an
ultrafilter on ω which is not a P–point. Then:

(a) πp(U) ≤ b;
(b) πχσ(U) ≥ d and χ(U) ≥ d.

Proof. Let {An; n ∈ ω} ⊆ U be decreasing with no infinite pseudointersection in
U ; i.e. An+1 ⊆ An and |An \ An+1| = ω for all n ∈ ω. Given f ∈ ω↑ω, let Af ∈ U
be such that min(Af ∩ (An \ An+1)) ≥ f(n) for all n ∈ ω. Given A ∈ [ω]ω, define
fA(n) ∈ ω by first finding the least k ≥ n with A ∩ (Ak \ Ak+1) 6= ∅, if it exists,
and then putting fA(n) = min(A ∩ (Ak \Ak+1)); otherwise let fA(n) = 0.

(a) Let κ < πp(U), {fα; α < κ} ⊆ ω↑ω. Let B be a pseudointersection of the
family {An; n ∈ ω} ∪ {Afα ; α < κ}. It is easy to see that fB eventually dominates
all fα.

(b) Let {Aα; α < πχσ(U)} be a πσ–base of U . Given f ∈ ω↑ω, let α be
such that Aα ⊆∗ Af ∩ An for all n. Then fAα eventually dominates f . Thus
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{fAα ; α < πχσ(U)} is dominating. In case the Aα form a base, argue similarly:
choose α such that Aα ⊆∗ Af , etc.

We will see in 5.4 that πχσ and χ cannot be replaced by πχ in (b), in general.
We notice that the above result is also true for rapid ultrafilters — with an even
easier argument. However, it may fail in general (see the main results of [BlS] and
[BlS 1]). The following proposition has a flavor similar to Bartoszyński’s classical
(and much more intricate) result [Ba] that if cov(measure) ≤ b, then cov(measure)
has uncountable cofinality.

Proposition 1.7. If πp(U) ≤ b, then cf(πp(U)) ≥ ω1.

Proof. Assume λ has countable cofinality and πp(U) ≥ λ. We shall show πp(U) > λ.
Choose A ⊆ U of size λ. Then A =

⋃
nAn where |An| < λ and An ⊆ An+1. Hence

we can find Xn ∈ [ω]ω with Xn ⊆∗ A for all A ∈ An. For A ∈ An choose a function
fA ∈ ωω with Xk \ A ⊆ fA(k) for k ≥ n. By assumption λ < b; hence there is
f ∈ ωω with f ≥∗ fA for all A ∈ A. Put X := {min(Xk \ f(k)); k ∈ ω}. It’s easy
to check that X ⊆∗ A for all A ∈ A, and we’re done.

Proposition 1.6 and 1.7 together yield:

Corollary 1.8. If U is either not a P–point or a rapid ultrafilter, then πp(U) has
uncountable cofinality.

For later use (§§2 and 3) we mention the following characterization of χσ(U).

Lemma 1.9. χσ(U) = min{|A|; A ⊆ Uω ∧ ∀〈Bn; n ∈ ω〉 ⊆ U ∃〈An; n ∈ ω〉 ∈
A ∀n (An ⊆∗ Bn)}.

Proof. Denote the cardinal on the right–hand side by χ̄σ(U). χσ(U) ≤ χ̄σ(U) is
trivial. To see the converse, note that for P–points U , both cardinals coincide with
the character. Hence assume U is not P–point; then d ≤ χσ(U) by Proposition 1.6.
Let {fβ; β < d} be a dominating family which is closed under finite modifications
(i.e. whenever f ∈ ωω agrees with some fβ on all but finitely many places, then
f = fγ for some γ < d), and let {Āα; α < χσ(U)} be a σ–base of U . Let
〈Aα,n; n ∈ ω〉 enumerate Āα; without loss Aα,n+1 ⊆∗ Aα,n. Put A′

α,β,n = Aα,fβ(n);
we leave it to the reader to verify that {〈A′

α,β,n; n ∈ ω〉; α < χσ(U), β < d} satisfies
the defining clause of χ̄σ(U).

2. Characterizations of the coefficients of the Ramsey ideal

Let I be a non–trivial ideal on the Baire space ωω (or on one of its homeomorphic
copies, [ω]ω or ω↑ω) containing all singletons. F ⊆ I is a base of I iff given A ∈ I
there is B ∈ F with A ⊆ B. We introduce the following four cardinal invariants
associated with I.

add(I) = min{|F|; F ⊆ I ∧
⋃
F 6∈ I},

cov(I) = min{|F|; F ⊆ I ∧
⋃
F = ωω},

non(I) = min{|F |; F ⊆ ωω ∧ F 6∈ I},
cof(I) = min{|F|; F ⊆ I ∧ F is a base of I}.

These cardinals are referred to as additivity, covering, uniformity and cofinality,
respectively. They have been studied intensively in case I is either the ideal of
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Lebesgue null sets or the ideal of meager sets [BJ 1] and in some other cases
as well. We note that one always has add(I) ≤ cov(I) ≤ cof(I) and add(I) ≤
non(I) ≤ cof(I); furthermore, add(I) is regular, and cf(non(I)) ≥ add(I), as well
as cf(cof(I)) ≥ add(I).

Given an ultrafilter U on ω, we define the Mathias forcing associated with U ,
MU [Ma], as follows. Conditions are pairs (r, U) with r ∈ [ω]<ω and U ∈ U
such that max(r) < min(U). We put (s, V ) ≤ (r, U) iff s ⊇ r, V ⊆ U and
s \ r ⊆ U . The Mathias p.o. is σ–centered and hence ccc. It generically adds a real
m ∈ [ω]ω which is almost included in all members of U . For (r, U) ∈ MU , we let
[r, U ] = {A ∈ [ω]ω; r ⊆ A ⊆ r∪U}. The ideal of nowhere Ramsey sets with respect
to U (or Ramsey null sets) r0

U consists of all X ⊆ [ω]ω such that given (r, U) ∈ MU
there is (r, V ) ≤ (r, U) with X ∩ [r, V ] = ∅. We notice that the connection between
Mathias forcing and the Ramsey ideal is like the one between Cohen (random, resp.)
forcing and the meager (null, resp.) ideal.

The main goal of this section is to characterize the four cardinal coefficients
introduced above for the ideal r0

U in terms of the cardinals in section 1. This extends
a result of Louveau who had already proved that the additivity of r0

U coincides with
p(U). For our characterizations we shall need

Lemma 2.1. (Louveau, [Lo, Lemme 3.3]). Let U be a P–point and φ : [ω]<ω → U .
Then there is U ∈ U such that {s ∈ [ω]<ω; U \ s ⊆ φ(s)} is cofinal in [ω]<ω.

Proof. We include a proof to make the paper self–contained. Assume U and φ are
as required. Since U is a P–point, there is U ∈ U with U ⊆∗ φ(s) for all s ∈ [ω]<ω.
Construct recursively finite sets Ai ⊆ U for i ∈ ω by putting A0 := U \ φ(∅) and
Ai+1 := U \

⋂
{φ(s); max(s) ≤ max(Ai)}. Then either we have U \

⋃
i Ai ∈ U ,

and this set is as required; or
⋃

i Ai ∈ U , and one of the sets
⋃

i(A2i+1 \ A2i),⋃
i(A2i \A2i−1) lies in U and satisfies the conclusion of the lemma.

Theorem 1. Let U be an ultrafilter on ω. Then:
(a) (Louveau [Lo, Théorème 3.7]) add(r0

U ) = p(U);
(b) cov(r0

U ) = πp(U);
(c) non(r0

U ) = πχ(U);
(d) cof(r0

U ) = χσ(U).

In case U is a Ramsey ultrafilter, (a) through (d) were proved by Egbert Thümmel.
(Note that χ(U) = χσ(U) in this case.)

Proof. Before plunging into the details, we describe natural ways of assigning sets
in the ideal to sets in the ultrafilter, and vice–versa. Given A ∈ U , let X = X(A) :=
{B ∈ [ω]ω; B 6⊆∗ A} and note that X(A) = [ω]ω\

⋃
s∈[ω]<ω [s, A\(max(s)+1)] ∈ r0

U .
Conversely, given Y ∈ r0

U , we can find a sequence 〈Bs ∈ U ; s ∈ [ω]<ω〉 such that
Bs ⊆ ω \ (max(s) + 1), Bs ⊆ Bt for t ⊆ s and Y ⊆ Y (〈Bs; s ∈ [ω]<ω〉) :=
[ω]ω \

⋃
s[s, Bs] ∈ r0

U . Thus sets of the form Y (〈Bs〉) form a base of the ideal r0
U ,

and it suffices to deal with such sets in order to prove the theorem. We shall do
this without further mention. Also, whenever dealing with sequences 〈As ∈ U ; s ∈
[ω]<ω〉 we shall tacitly assume that As ⊆ ω \ (max(s) + 1) and As ⊆ At for t ⊆ s.
We group dual results together.

(a) and (d); the inequalities add(r0
U ) ≤ p(U) and cof(r0

U ) ≥ χσ(U). Let
{Aα; α < p(U)} ⊆ U be a witness for p(U). Let Xα = X(Aα). To see that
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α Xα 6∈ r0

U , fix Y = Y (〈Bs〉) ∈ r0
U . There is α < p(U) with y := B∅ \ Aα being

infinite. This means y ∈ Xα \ Y , and we’re done.
For the second inequality, notice that given 〈At ∈ U ; t ∈ [ω]<ω〉 and 〈Bt ∈

U ; t ∈ [ω]<ω〉 with A∅ coinfinite and Bt \ As infinite for some s and all t, we can
construct y ∈ Y (〈At〉) \ Y (〈Bt〉) as follows: choose k > max(s) such that k 6∈ A∅,
and let y := s ∪ {k} ∪ Bs∪{k} ∈ [s ∪ {k}, Bs∪{k}]; then y 6∈ [t, At] for t ⊆ s by the
choice of k, and y 6∈ [t, At] for t ⊇ s by the properties of As. (?)

Now let {Yα; α < cof(r0
U )} be a base of the ideal r0

U . Without loss Yα =
Y (〈Bα,s〉) with all Bα,s ∈ U . Fix Ā ∈ [U ]ω; making its sets smaller, if necessary,
we may assume that Ā = {As; s ∈ [ω]<ω} with As ⊆ At for t ⊆ s and A∅ being
coinfinite. Let Y := Y (〈As〉), and choose α < cof(r0

U ) with Y ⊆ Yα. By (?) we get
that for all A ∈ Ā, there is s with Bα,s ⊆∗ A, and we’re done.

The inequalities add(r0
U ) ≥ p(U) and cof(r0

U ) ≤ χσ(U). We distinguish two
cases. First assume U is not a P–point. Then the first inequality is trivial by
p(U) = ω. Concerning the second, let {{Aα,s; s ∈ [ω]<ω}; α < χσ(U)} be a σ–base
of U , recall from Proposition 1.6 that χσ(U) ≥ d, let {fβ : [ω]<ω → ω; β < d}
be a dominating family which is closed under finite modifications, and put Yα,β :=
Y (〈Aα,s \ fβ(s)〉). We claim that {Yα,β ; α < χσ(U), β < d} is a base of r0

U . For
given Y = Y (〈Bs〉) ∈ r0

U with Bs ∈ U for all s, we can find first (by Lemma 1.9)
an α with Aα,s ⊆∗ Bs for all s and then a β with Aα,s \ fβ(s) ⊆ Bs for all s. This
easily entails Y ⊆ Yα,β .

Now suppose U is a P–point. Given 〈Bs ∈ U ; s ∈ [ω]<ω〉 satisfying, additionally,
Bs = Bt for s and t with max(s) = max(t) (and thus Bs ⊆ Bt for s, t with
max(t) ≤ max(s)), as well as A ∈ U such that {s ∈ [ω]<ω; A \ s ⊆ Bs} is cofinal
in [ω]<ω, we have Y (〈Bs〉) ⊆ X(A). (??) To see this, fix s ∈ [ω]<ω, and take
an arbitrary y ∈ [s, A \ (max(s) + 1)]. Find t ⊇ s with A \ t ⊆ Bt. Letting
k := max(t) + 1, we get y \ k ⊆ A \ k ⊆ Bt ⊆ By∩k which entails y ∈ [y ∩ k, By∩k].

Given κ < p(U) and {Yα; α < κ} ⊆ r0
U where Yα = Y (〈Bα,s〉) with all Bα,s ∈ U ,

we find, by Lemma 2.1, A ∈ U such that {s ∈ [ω]<ω; A \ s ⊆ Bα,s} is cofinal in
[ω]<ω for all α. Thus

⋃
α Yα ⊆ X(A) ∈ r0

U by (??). Dually, if {Aα; α < χ(U)} is
a base of U , we claim that the sets Xα = X(Aα) form a base of our ideal. To see
this, take Y = Y (〈Bs〉) ∈ r0

U where Bs ∈ U . By Lemma 2.1 find α < χ(U) such
that {s ∈ [ω]<ω; Aα \ s ⊆ Bs} is cofinal in [ω]<ω, and conclude by (??).

(b) and (c); the inequalities cov(r0
U ) ≤ πp(U) and non(r0

U ) ≥ πχ(U). This is
easy. Given a witness {Aα ∈ U ; α < πp(U)} for πp(U), let Xα = X(Aα). The Xα

cover the reals, for, given x ∈ [ω]ω, there is α with x 6⊆∗ Aα which entails x ∈ Xα.
Dually, given {xα ∈ [ω]ω; α < non(r0

U )} 6∈ r0
U and A ∈ U , there is α < non(r0

U ) with
xα /∈ X(A) which means that xα ⊆∗ A. This shows that the xα form a π–base of
U .

The inequalities cov(r0
U ) ≥ πp(U) and non(r0

U ) ≤ πχ(U). We prove the second
inequality first. Let {xα ∈ [ω]ω; α < πχ(U)} be a π–base of U . Given n ∈ ω, let
xα,n = xα \ n. We note that {xα,n; α < πχ(U), n ∈ ω} 6∈ r0

U , because, given
Y = Y (〈Bs〉) ∈ r0

U with all Bs ∈ U , we find α with xα ⊆∗ B∅ and thus n ∈ ω with
xα,n ⊆ B∅, that is xα,n 6∈ Y .

Next, let κ < πp(U) and {Yα; α < κ} ⊆ r0
U ; without loss Yα = Y (〈Bα,s〉) with

Bα,s ∈ U . We want to show that the Yα’s do not cover the reals. We distinguish
two cases.

First assume U is not a P–point. By assumption, we find x ∈ [ω]ω with x ⊆∗ Bα,s

for all α and all s. Define gα : ω → x for α < κ recursively by

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:642



ULTRAFILTERS ON ω—IDEALS AND CARDINAL CHARACTERISTICS 2653

gα(0) := min{k; x \ k ⊆ Bα,∅}, k

gα(n + 1) := min{k; x \ k ⊆
⋂

s⊆gα(n)+1

Bα,s}.

By Proposition 1.6, we find g : ω → x strictly increasing and eventually dominating
all gα’s. Put y := rng(g). To complete the argument, we shall show that y 6∈

⋃
α Yα.

Fix α. Let n0 be minimal with g(n) ≥ gα(n) for all n ≥ n0, and put s := {g(i); i <
n0}. It is easy to see that y ∈ [s, Bα,s].

Finally assume U is a P–point. By Lemma 2.1 we find Aα ∈ U such that
{s ∈ [ω]<ω; Aα \ s ⊆ Bα,s} is cofinal in [ω]<ω. By assumption we find y ∈ [ω]ω

with y ⊆∗ Aα for all α. We show again y 6∈
⋃

α Yα. Fix α and choose s ∈ [ω]<ω

with y \ s ⊆ Aα. Find t ⊇ s with Aα \ t ⊆ Bα,t. Then, letting k := max(t) + 1,
we have y \ k ⊆ Aα \ k ⊆ Bα,t ⊆ Bα,y∩k which implies y ∈ [y ∩ k, Bα,y∩k]. This
completes the proof of the theorem.

Corollary 2.2. Let U be an ultrafilter on ω. Then:
(a) add(r0

U ) ≤ cov(r0
U ) ≤ non(r0

U ) ≤ cof(r0
U ).

(b) p ≤ cov(r0
U ); in particular, MA implies that cov(r0

U ) = c.
(c) cf(cof(r0

U )) ≥ ω1.

Proof. All this follows from the theorem and the results in §1, in particular Corol-
lary 1.3 and Proposition 1.4.

The fact that the cardinal coefficients of ccc–ideals of the form r0
U are linearly

ordered distinguishes them from the ccc–ideals of meager and null sets (see [BJ 1]).
Note, however, that the cardinal coefficients of the closely related, but non–ccc,
ideal of Ramsey null sets [El] (nowhere Ramsey sets) r0 are also linearly ordered.
Namely, one has add(r0) = cov(r0) = h ≤ non(r0) = c < cof(r0) where h is as usual
the distributivity number of P(ω)/fin (this is due to Plewik [Pl]).

Results with a flavor similar to our Theorem 1 were established independently by
Matet [M, section 10]. He considers a situation which is both more general (filters on
arbitrary regular κ instead of ultrafilters on ω) and more restricted (combinatorial
properties imposed on the filters) so that our results are, to some extent, orthogonal.

For more results on the coefficients of r0
U , see, in particular, Theorem 3, Theorem

4(c) and Corollary 6.5.

3. Characterizations of the coefficients of the Louveau ideal

A tree T ⊆ ω↑<ω is called Laver tree iff for all σ ∈ T with σ ⊇ stem(T ), the
set succT (σ) := {n ∈ ω; σ 〈̂n〉 ∈ T } is infinite. Given an ultrafilter U on ω, we
define the Laver forcing associated with U , LU (see [Bl 1, section 5] or [JS, section
1]), as follows. Conditions are Laver trees T ⊆ ω↑<ω such that for all σ ∈ T with
σ ⊇ stem(T ), we have succT (σ) ∈ U . We put S ≤ T iff S ⊆ T ; furthermore S ≤0 T
iff S ≤ T and stem(S) = stem(T ). The Laver p.o. is again a σ–centered p.o. The
Louveau ideal `0

U consists of all X ⊆ ω↑ω such that given T ∈ LU there is S ≤ T
with X ∩ [S] = ∅ [Lo]. Louveau proved that `0

U is a σ–ideal and that there is a
topology G∞U on ω↑ω, finer than the usual topology, such that `0

U is the ideal of
the G∞U nowhere dense sets which coincides with the G∞U meager sets [Lo, 1.11 et
1.12]. (This should be compared with Ellentuck’s classical results [El] on nowhere
Ramsey sets.) He also showed that `0

U = r0
U in case U is a Ramsey ultrafilter [Lo,

Propositions 1.3 et 3.1]. In the same vein, Blass [Bl 1, pp. 238–239] and Judah
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and Shelah [JS, Theorem 1.20] observed that LU and MU are forcing equivalent for
Ramsey U .

We are now heading for characterizations of the cardinals add, cov, non and cof
for `0

U in terms of the characteristics of U introduced in section 1.

Theorem 2. Let U be an ultrafilter on ω. Then:
(a) add(`0

U ) = min{p′(U), b};
(b) cov(`0

U) = min{πp(U), b};
(c) non(`0

U ) = max{πχσ(U), d};
(d) cof(`0

U) = max{χσ(U), d}.

Proof. As in the proof of Theorem 1, we shall stress the symmetry of the arguments,
and start by fixing some notation concerning the correspondence between sets in U
and sets in `0

U . For A ∈ U , let X = X(A) := {y ∈ ω↑ω; ∃∞n (y(n) /∈ A)}; given
additionally σ ∈ ω↑<ω, let T = Tσ(A) be the Laver tree with stem σ and succT (τ) =
A \ (τ(|τ | − 1) + 1) for σ ⊆ τ ∈ T . Then we have X(A) = ω↑ω \

⋃
σ∈ω↑<ω [Tσ(A)] ∈

`0
U . Conversely, given Y ∈ `0

U , we can find a sequence 〈Bσ ∈ U ; σ ∈ ω↑<ω〉
satisfying Bσ ⊆ ω \ (σ(|σ| − 1) + 1) and Bσ ⊆ Bτ for τ ⊆ σ, and such that
Y ⊆ Y (〈Bσ〉) := ω↑ω \

⋃
σ[Tσ(〈Bτ 〉)], where Tσ(〈Bτ 〉) is the Laver tree T with stem

σ and succT (τ) = Bτ for σ ⊆ τ ∈ T . Again, we use this convention without further
comment.

(a) and (d); the inequalities add(`0
U) ≤ p′(U) and cof(`0

U) ≥ χσ(U). Notice
first that given 〈Aτ ∈ U ; τ ∈ ω↑<ω〉 and 〈Bτ ∈ U ; τ ∈ ω↑<ω〉, if y ∈ ω↑ω satisfies
y(i) ∈ By�i \Ay�i for almost all i, then y ∈ Y (〈Aτ 〉) \ Y (〈Bτ 〉). (?)

Let {Aα; α < p′(U)} be a witness for p′(U). We show that
⋃

α Xα 6∈ `0
U where

Xα = X(Aα). This is easy, for, given Y = Y (〈Bτ 〉) with Bτ ∈ U , we find α with
Bτ 6⊆∗ Aα for all τ , and then construct y ∈ ω↑ω with y(i) ∈ By�i \Aα for all i. This
gives Xα 6⊆ Y by (?).

Dually, let {Yα; α < cof(`0
U)} be a base of `0

U ; without loss Yα = Y (〈Bα,σ〉) with
Bα,σ ∈ U . We claim that the B̄α = {Bα,σ; σ ∈ ω↑<ω} form a witness for χσ(U).
Let Ā = {Aσ; σ ∈ ω↑<ω} ∈ [U ]ω be given, and find α with Y := Y (〈Aσ〉) ⊆ Yα.
Assume there were τ ∈ ω↑<ω with Bα,σ 6⊆∗ Aτ for all σ; then we could construct
y ∈ ω↑ω with τ ⊆ y and y(i) ∈ Bα,y�i \ Ay�i for all i ≥ |τ |; this would contradict
Y ⊆ Yα by (?). Thus for all A ∈ Ā we find B ∈ B̄α with B ⊆∗ A, and we’re done.

The inequalities add(`0
U ) ≥ min{p′(U), b} and cof(`0

U ) ≤ max{χσ(U), d}.
First note that given 〈Aτ ∈ U ; τ ∈ ω↑<ω〉 and 〈Bτ ∈ U ; τ ∈ ω↑<ω〉 with Bτ ⊆ Aτ

for almost all τ , we have Y (〈Aτ 〉) ⊆ Y (〈Bτ 〉). (??) Let 〈τn; n ∈ ω〉 enumerate
ω↑<ω.

Let κ < min{p′(U), b}, and let Yα ∈ `0
U for α < κ. Assume Yα = Y (〈Aα,σ〉)

where Aα,σ ∈ U . By κ < p′(U) find 〈Bn ∈ U ; n ∈ ω〉 such that for all α, τ , there is
n with Bn ⊆∗ Aα,τ . Without loss, Bn+1 ⊆ Bn for all n. Define gα : ω → ω by

gα(n) := min{m; Bm ⊆∗ Aα,τn}.

Since κ < b, we can find g ∈ ωω eventually dominating all gα. Thus we have
Bg(n) ⊆∗ Aα,τn for all α and almost all n. Define a function hα for all n with
Bg(n) ⊆∗ Aα,τn by

hα(n) := min{m; Bg(n) \m ⊆ Aα,τn}.
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Let h eventually dominate all hα. Then Bg(n) \ h(n) ⊆ Aα,τn for all α and almost
all n. Put Bτn = Bg(n) \ h(n). By (??) we have Yα ⊆ Y (〈Bτ 〉) for all α, and⋃

α Yα ∈ `0
U follows.

Dually, let {{Bα,τ ; τ ∈ ω↑<ω}; α < χσ(U)} be a σ–base of U , and let {fα :
ω↑<ω → ω; α < d} be a dominating family. For α < χσ(U) and β < d, let
Yα,β := Y (〈Bα,τ \ fβ(τ)〉). Given Y = Y (〈Aτ 〉) ∈ `0

U with Aτ ∈ U , first find (by
Lemma 1.9) α with Bα,τ ⊆∗ Aτ for all τ , and then β with Bα,τ \ fβ(τ) ⊆ Aτ for
almost all τ . By (??) we have Y ⊆ Yα,β , and thus the Yα,β form a base of the ideal
`0
U .

(b) and (c); the inequalities cov(`0
U ) ≤ b and non(`0

U ) ≥ d. Given f ∈ ωω and
τ ∈ ω↑<ω let Bf,τ := ω \max{τ(|τ |−1)+1, f(|τ |)} and Yf := Y (〈Bf,τ 〉). We easily
see that, given an unbounded family {fα ∈ ωω; α < b}, we have

⋃
α Yfα = ω↑ω.

Dually, if {fα ∈ ω↑ω; α < non(`0
U )} 6∈ `0

U , then for each f ∈ ωω there is α with
fα 6∈ Yf which means that f ≤∗ fα; hence the fα form a dominating family. (Notice
that this is just a reformulation of the well–known fact that any Laver–like forcing
adds a dominating real.)

The inequalities cov(`0
U ) ≤ πp(U) and non(`0

U ) ≥ πχσ(U). Notice first that,
given a sequence 〈Bn ∈ U ; n ∈ ω〉 with Bn+1 ⊆ Bn for all n, if we put Bσ :=
B|σ| \ (σ(|σ| − 1) + 1) and Y := Y (〈Bσ〉), then y ∈ ω↑ω \ Y entails rng(y) ⊆∗ Bn

for all n. (†)
Thus, given a witness {Aα; α < πp(U)} for πp(U), we must have

⋃
α X(Aα) =

ω↑ω (for, if y were not in the union, rng(y) would be a pseudointersection). Simi-
larly, if {yα ∈ ω↑ω; α < non(`0

U )} 6∈ `0
U , then for each 〈Bn〉 as in (†), there is α with

yα 6∈ Y (〈Bσ〉), and thus yα ⊆∗ Bn for all n. This shows the yα form a πσ–base of
U .

The inequalities cov(`0
U) ≥ min{πp(U), b} and non(`0

U) ≤ max{πχσ(U), d}.
This is quite similar to the other two inequalities involving min and max (see above).
Given 〈Aτ ∈ U ; τ ∈ ω↑<ω〉 and 〈Bτ ∈ [ω]ω; τ ∈ ω↑<ω〉 with Bτ ⊆ Aτ for almost all
τ , we have that any real y ∈ ω↑ω with y(i) ∈ By�i for all i does not lie in Y (〈Aτ 〉).
(‡)

Let κ < min{πp(U), b}, and let Yα = Y (〈Aα,σ〉) ∈ `0
U with Aα,σ ∈ U for α < κ.

First find B ∈ [ω]ω with B ⊆∗ Aα,σ for all α and σ, then define gα : ω↑<ω → ω by

gα(τ) := min{m; B \m ⊆ Aα,τ}.

Let g : ω↑<ω → ω eventually dominate all gα, and put Bτ := B \ g(τ). By (‡) we
can construct a real not in

⋃
α Yα, and the family we started with is not a covering

family.
Dually, let {Bα; α < πχσ(U)} be πσ–base of U , and let {fα : ω↑<ω → ω; α < d}

be a dominating family. For α < πχσ(U) and β < d choose a real y = yα,β ∈ ω↑ω

with y(i) ∈ Bα \ fβ(y�i). Given Y = Y (〈Aτ 〉) ∈ `0
U , first find α with Bα ⊆∗ Aτ

for all τ , and then β with Bα \ fβ(τ) ⊆ Aτ for almost all τ . By (‡) we know that
yα,β 6∈ Y , and thus {yα,β; α < πχσ(U), β < d} 6∈ `0

U . This concludes the proof of
the theorem.

Corollary 3.1. Let U be an ultrafilter on ω. Then:
(a) add(`0

U ) ≤ cov(`0
U ) ≤ non(`0

U ) ≤ cof(`0
U ).

(b) p ≤ cov(`0
U ); in particular, MA implies that cov(`0

U) = c.
(c) cov(`0

U) ≤ par and non(`0
U ) ≥ hom.

(d) cf(cov(`0
U )) ≥ ω1.
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Proof. All this is immediate from the theorem and the results concerning b, d, p, s,
rσ, par and hom mentioned in §1, in particular Corollary 1.3 and Proposition 1.7.

Note that, since `0
U is a σ–ideal, both non(`0

U ) and cof(`0
U ) necessarily have

uncountable cofinality. Again, the cardinal coefficients are linearly ordered, like
those for the related non–ccc Laver ideal `0 (see [GRSS]) or those for the ccc–ideal
of meager sets in the dominating topology (see [LR]); the latter topology in fact
sits strictly in between the standard topology on ω↑ω and Louveau’s topology G∞U
which is relevant here.

Distinguishing the two cases whether or not U is a P–point, we get somewhat
nicer characterizations, by 1.6 and other remarks in §1.

Corollary 3.2. Assume U is a P–point. Then:
(a) add(`0

U ) = min{p(U), b};
(b) cov(`0

U) = min{πp(U), b};
(c) non(`0

U ) = max{πχ(U), d};
(d) cof(`0

U) = max{χ(U), d}.
Assume U is not a P–point. Then:

(a) add(`0
U ) = p′(U);

(b) cov(`0
U) = πp(U);

(c) non(`0
U ) = πχσ(U);

(d) cof(`0
U) = χσ(U).

For rapid P–points, the formulae get still simpler, and, in fact, the invariants for
the Ramsey ideal and the Louveau ideal coincide. In view of Louveau’s r0

U = `0
U for

Ramsey ultrafilters U , Theorem 2 provides an alternative way for calculating the
coeffients of r0

U .
We close this section with a diagram showing the relations between the cardinal

invariants considered in this work.

p(U)

ω ω1 p

ṕ (U) πp(U) s d hom

rσ πχσ(U) χσ(U)

non( U) cof( U) c

add( U) cov( U) par b r πχ(U) χ(U)0 0

00

Cardinals get larger when one moves up and to the right. Dotted lines around
three cardinals say that one of them is the minimum or the maximum of the others
for any ultrafilter U (which one of these alternatives holds being clear from the
context). For ease of reading, we omitted the inequality πp(U) ≤ πχ(U).

4. Distinguishing the coefficients

Let U be a Ramsey ultrafilter. Since, by previous results,

cov(r0
U ) = πp(U) ≤ b ≤ d ≤ πχ(U) = non(r0

U ),
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we can easily get the consistency of there is a Ramsey ultrafilter U with cov(r0
U ) <

non(r0
U ). For example, this can be achieved by adjoining ω2 Cohen reals to a model

of CH . Furthermore, as mentioned in §1, Louveau proved that MA entails the
existence of a Ramsey ultrafilter U with

add(r0
U ) = p(U) = ω1 < c = πp(U) = cov(r0

U ).

We complete this cycle of results by showing the remaining consistency:

Theorem 3. It is consistent with ZFC that there is a Ramsey ultrafilter U with
non(r0

U ) = πχ(U) < χ(U) = cof(r0
U ).

This answers half of the question in [Br, subsection 4.1]. As suggested by the
referee, we note that this consistency has been well–known if one doesn’t insist on
U ’s Ramseyness (to see this either use the Goldstern–Shelah model [GS] showing
the consistency of r < u := minU χ(U) and appeal to Proposition 7.1 below, or use
the Bell–Kunen model [BK] (cf. Remark 4.2 below)).

Proof. We start with a model V of CH and perform a finite support iteration
〈Pα, Q̇α; α < ω1〉 of ccc p.o.’s. We build up the Ramsey ultrafilter U of Vω1 along
the iteration as a tower of ultrafilters; in stage 2 · α + 1, we shall have the Ramsey
ultrafilter U2·α+1 in the model V2·α+1. The details are as follows.

Stage α, α odd. In Vα, we let Qα = MUα (Mathias forcing with the Ramsey
ultrafilter Uα, see §2 for details). Denote by mα ∈ [ω]ω ∩ Vα+1 the generic Mathias
real (which satisfies mα ⊆∗ U for all U ∈ Uα).

Stage α, α even. In Vα, we let Qα = Cω2 , the p.o. for adding ω2 Cohen reals.
In Vα+1, we use the ω2 Cohen reals to produce the Ramsey ultrafilter Uα+1 which
extends either the filter Fα generated by

⋃
γ<α U2·γ+1 (in case α is a limit) or the

filter Fα generated by Uα−1 and ω \ mα−1 (in case α is successor) or the cofinite
filter F0 (in case α = 0). This is a standard construction (see, e.g., [Ca 2, Theorem
2], [BJ, §3] or [St, Theorem 5.2]) which we repeat to make later arguments more
transparent.

Let Vα,β , β ≤ ω2, denote the model obtained by adding β of the Cohen reals (so
Vα,0 = Vα and Vα,ω2 = Vα+1). In Vα+1 enumerate the partitions of ω into infinite
subsets as 〈〈Xα,β,n; n ∈ ω〉; β < ω2〉 such that 〈Xα,β,n; n ∈ ω〉 ∈ Vα,β . Let Uα,0

be a careful extension of Fα to an ultrafilter of Vα,0 (careful will be defined later).
Fix β ≤ ω2, and assume Uα,γ , a tower of ultrafilters in the respective models Vα,γ ,
has been constructed. In case cf(β) > ω, we let Uα,β =

⋃
γ<β Uα,γ and in case

cf(β) = ω, Uα,β is a careful extension of
⋃

γ<β Uα,γ to the model Vα,β . In case
β = γ + 1 do the following.

If
⋃

k<n Xα,γ,k ∈ Uα,γ for some n, we think of Cohen forcing C as adjoining a
subset of ω, called cα,γ , in the usual way. Call such cα,γ of the first kind. Otherwise,
think of Cohen forcing C as adjoining a subset cα,γ of ω with |cα,γ ∩Xα,γ,n| = 1 for
all n. Call such cα,γ of the second kind. Then, by genericity, cα,γ ∩U is infinite for
all U ∈ Uα,γ . In both cases, let Uα,β be a careful extension of the filter generated
by Uα,γ and cα,γ to an ultrafilter in Vα,β .

This completes the construction of the Ramsey ultrafilter U =
⋃

α<ω1
U2·α+1 in

the resulting model Vω1 . The ω1 Mathias reals mα witness πχ(U) = ω1. Thus we
are left with showing χ(U) = ω2. One inequality is clear because c = ω2. To see
the other one, we have to make precise what we mean by careful.
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Let I be the family of subsets I of ω for which we can find pairwise disjoint finite
sets Fα ⊆ ω1 × ω2, α < ω1, such that

∀α < ω1 I ⊆∗ ⋃
(β,γ)∈Fα

cβ,γ,

where the cβ,γ denote the Cohen reals as explained above. Clearly, I is an ideal
(in Vω1). Let Iα,β = I ∩ Vα,β for even α < ω1 and β ≤ ω2. Note that the above
definition of I also makes sense, with the obvious adjustments, in each model Vα,β .
Call the resulting ideal IVα,β . Then one has IVα,β = Iα,β , and thus Iα,β ∈ Vα,β .

(The inclusion “ ⊆ ” is obvious. To see “ ⊇ ”, note first that if I ∈ Vα,β and
I ⊆∗ ⋃

(γ,δ)∈F cγ,δ, then I ⊆∗ ⋃
(γ,δ)∈F ′ cγ,δ where F ′ = F ∩ ((α× ω2)∪ ({α}× β)),

by Cohenness of the cγ,δ. Now assume (still in Vα,β) that p 
[(α,β),ω1) “I ∈ İ as
witnessed by Ḟζ , ζ < ω1”. Find pζ ≤ p (in Vα,β) such that pζ decides Ḟζ , say
pζ 
[(α,β),ω1) Ḟζ = Fζ . By the previous remark we may assume Fζ ⊆ (α × ω2) ∪
({α}× β). Since all the factors of the iteration satisfy Knaster’s condition, so does
the quotient P[(α,β),ω1). Thus we may assume without loss that the pζ are pairwise
compatible. Hence the Fζ are pairwise disjoint. Therefore I ∈ IVα,β as required.)

We shall guarantee while extending the ultrafilter that

Uα,β ∩ Iα,β = ∅ for all even α < ω1 and all β ≤ ω2.(?)

Such extensions will be called careful. We have various cases to consider to see that
this can be done.

(1) Successor step. Assume that Uα,β ∩ Iα,β = ∅ (where α < ω1 is even and
β < ω2). Since Vα,β+1 is an extension by one Cohen real, we certainly have
〈Uα,β〉∩Iα,β+1 = ∅ where 〈Uα,β〉 denotes the filter generated by Uα,β in Vα,β+1.
Next notice that cα,β ∩U 6∈ Iα,β+1 for all U ∈ Uα,β . (†) To see this, fix such
U . Assume cα,β is of the second kind. Put Un = U \

⋃
k<n Xα,β,k. All Un lie in

Uα,β and thus not in Iα,β+1. Now note that whenever F ⊆ (α×ω2)∪({α}×β)
is finite with cα,β∩U ⊆∗ ⋃

(γ,δ)∈F cγ,δ, then by Cohenness Un ⊆∗ ⋃
(γ,δ)∈F cγ,δ

for some n. If cα,β is of the first kind, the argument is even easier. This shows
(†). Now we can easily extend the filter generated by Uα,β and cα,β to an
ultrafilter Uα,β+1 such that Uα,β+1 ∩ Iα,β+1 = ∅.

(2) Limit step. Let α be even, and β a limit ordinal. If β > 0, assume that
Uα,γ ∩ Iα,γ = ∅ for γ < β. In case cf(β) > ω we get Uα,β ∩ Iα,β = ∅ because
any U ∈ Uα,β lies already in Vα,γ for some γ < β, and thus cannot be almost
contained in the union of finitely many Cohen reals added at a later stage.
If β = 0 and α non–limit, it remains to see that ω \ mα−1 ∩ U 6∈ Iα,0 for
all U ∈ Uα−1 which is similar to, but easier than, the argument for the cγ,δ

in (1). Whether or not α is limit and whether cf(β) = ω or β = 0, we can
extend the given filter easily to Uα,β such that Uα,β ∩ Iα,β = ∅.

(1) and (2) clearly entail (?). If we had χ(U) ≤ ω1, we could find U ∈ U which
is almost included in ω2 of the Cohen reals which we added to U in the course of
the construction, and this would contradict (?). Thus χ(U) ≥ ω2, and the proof is
complete.

Remark 4.1. ω1 and ω2 in the above proof can be replaced by arbitrary regular
κ < λ. The argument is the same: χ(U) ≤ λ by c = λ, χ(U) ≥ λ by (?), πχ(U) ≤ κ
by the κ Mathias reals and πχ(U) ≥ κ by the fact that the iteration has length κ
which implies πχ(U) ≥ d ≥ cov(meager) ≥ κ (where the first two inequalitites are
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in ZFC). Here, cov(meager) denotes the smallest size of a family of meager sets
covering the reals. It is well–known (and easy to see) that d ≥ cov(meager).

Remark 4.2. The method of the proof of Theorem 3 can also be used to show there
is a Ramsey ultrafilter U with χ(U) = c in the Bell–Kunen model (see [BK]; this
model is gotten by a finite support iteration of ccc p.o.’s of length ωω1 over a model
of CH , forcing MA for small p.o.’s at limit steps of the form ωα+1; it satisfies
c = ωω1 and πχ(V) = ω1 for all ultrafilters V). Hence it is consistent that there is
a Ramsey ultrafilter U with πχ(U) = ω1 < ωω1 = χ(U).

5. A plethora of π–characters

This section is devoted to understanding the spectrum of possible values for
the π–character and clearing up the relationship between π–character and πσ–
character. For this, we need to discuss two ultrafilter constructions. First, let V
and Vn be ultrafilters on ω, and define an ultrafilter U on ω × ω by

X ∈ U ⇐⇒ {n; {m; 〈n, m〉 ∈ X} ∈ Vn} ∈ V .

(Note that we used this construction already once in the proof of Proposition 1.5.)
We call U the V–sum of the Vn, U =

∑
V Vn. In case all Vn are the same ultrafilter

W , we write U = V ×W and call it the product of V and W . Then we have:

Proposition 5.1. (a) min{πχ(V),
∑

V πχ(Vn)} ≤ πχ(U) ≤
∑

V πχ(Vn).
(b) If U = V ×W, we have πχ(U) = πχ(W).
(c) πχσ(U) ≥ πχσ(V).
(d) If U = V ×W, we have πχσ(U) = max{πχσ(V), πχσ(W), d}.

Here, given cardinals λα, α ∈ R, and an ultrafilter D on R,
∑

D λα denotes the
D–limit of the λα, that is the least cardinal κ such that {α; λα ≤ κ} ∈ D.

Proof. For the purposes of this proof, let Xn = {n} × ω denote the vertical strips.
(a) The second inequality is easy, for we can take the union of π–bases of the

appropriate Vn’s (considered as ultrafilters on the Xn’s) as a π–base for U . For the
first inequality, let κ < min and A = {Aα; α < κ} ⊆ [ω×ω]ω. We want to show A
is not a π–base of U . Without loss, all Aα are either contained in one Xn or intersect
each Xn at most once. For the second kind of Aα, let Bα = {n; Aα ∩ Xn 6= ∅}.
There is C ∈ V such that the Aα of the first kind are not a π–base of Vn for n ∈ C;
let Dn ∈ Vn witness this. Since the Bα don’t form a π–base of V , choose E ⊆ C
witnessing this. We now see easily that Aα 6⊆∗ ⋃

n∈E{n} ×Dn ∈ U , as required.
(b) By (a) it suffices to prove that πχ(U) ≥ πχ(W). Let κ < πχ(W), and

A = {Aα; α < κ} ⊆ [ω × ω]ω. We want to show A is not a π–base of U . For this
simply let Bα = {m; 〈n, m〉 ∈ Aα for some n}, find C ∈ W which does not almost
contain any of the Bα which are infinite, and note that Aα 6⊆∗ {〈n, m〉; m > n and
m ∈ C} ∈ U (for any α), as required. (Note that the same argument shows that
πχ(U) ≥ πχ(f(U)) for all ultrafilters U and all finite–to–one functions f .)

(c) This is easy, for given a πσ–base A of U , the family {BA; A ∈ A} ∩ [ω]ω

where BA = {n; A ∩Xn 6= ∅} is a πσ–base of V .
(d) By (c) we know πχσ(U) ≥ πχσ(V); πχσ(U) ≥ πχσ(W) is proved as in (b);

finally, πχσ(U) ≥ d follows from Proposition 1.6 because U is not a P–point. So
we are left with showing that πχσ(U) ≤ max.

For this choose πσ–bases {Aα; α < max} of W and {Bβ; β < max} of V , as
well as a dominating family {fγ ; γ < max}. Put Cα,β,γ = {〈n, m〉; n ∈ Bβ and
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m = min(Aα \ fγ(n)}. To see that the Cα,β,γ form a πσ–base of U , take Dk ∈ U ,
put Ek = {n; {m; 〈n, m〉 ∈ Dk} ∈ W} ∈ V , and find β with Bβ ⊆∗ Ek for all k.
Also let Fk,n = {m; 〈n, m〉 ∈ Dk} ∈ W for n ∈ Ek, and find α with Aα ⊆∗ Fk,n for
all k, n. Define gk ∈ ωω such that Aα ⊆ Fk,n \ gk(n) for all n, and find γ such that
fγ ≥∗ gk for all k. It is now easy to see that Cα,β,γ ⊆∗ Dk for all k.

Another ultrafilter construction goes as follows: let λ be a regular uncountable
cardinal, let T = 〈Tα; α < λ〉 be a tower, let Vα, α < λ, be ultrafilters on ω with
Tα ∈ Vα, and let D be a uniform ultrafilter on λ. Define U as the D–limit of the
Vα, i.e.

U ∈ U ⇐⇒ {α; U ∈ Vα} ∈ D.

Then:

Proposition 5.2. λ ≤ πχ(U) ≤ λ ·
∑

D πχ(Vα).

Proof. Note that T ⊆ U . Since T has no pseudointersection, πχ(U) ≥ λ is imme-
diate. To see the other inequality, let Aα be π–bases of the Vα for appropriate α’s.
Then

⋃
αAα is a π–base of U . This shows πχ(U) ≤ λ ·

∑
D πχ(Vα).

As an immediate consequence we see

Corollary 5.3. Let κ < λ be regular uncountable cardinals such that there is an
ultrafilter V with πχ(V) = κ and a tower of height λ. Then there is an ultrafilter U
with πχ(U) = λ.

Theorem 4. (a) Let R be a set of regular uncountable cardinals in V |= GCH.
Then there is a forcing notion P such that

V P |= “for all λ ∈ R there is an ultrafilter U such that πχ(U) = λ”.

(b) It is consistent that there is an ultrafilter U with πχ(U) < πχσ(U). More
explicitly, given κ < λ regular uncountable, we can force πχ(U) = κ and πχσ(U) = λ
for some ultrafilter U .

(c) It is consistent that there is an ultrafilter U with πχ(U) = non(r0
U ) = ωω. In

particular πχ(U) = non(r0
U ) consistently has countable cofinality.

Proof. (a) We plan to adjoin an ultrafilter U with πχ(U) = ω1 and towers Tλ

of height λ for each λ ∈ R. Then the result will follow by 5.3. Note that the
consistency of the existence of towers of different heights was proved by Dordal
[Do 1, section 2] with essentially the same argument.

Let µ > sup(R)+ be a regular cardinal. We shall have P = P0 × P1 where P0

is the Easton product which adds µ subsets to λ for each λ ∈ R and P1 is a ccc

forcing notion. Since P1 is still ccc in V P0
, cofinalities and cardinals are preserved.

P1 is an iteration P2 ? Ṗ3 where P2 is the finite support product of the forcings
Qλ, λ ∈ R, which add families {Cλ

η ; η ∈ 2<λ} of infinite subsets of ω such that

• η ⊆ θ implies Cλ
θ ⊆∗ Cλ

η and
• Cλ

η̂ 〈0〉 ∩ Cλ
η̂ 〈1〉 is finite,

with finite conditions (see the proof of Theorem 5 for a similar, but more compli-
cated, forcing). In V P2

, P3 is a finite support iteration of length ω1 of Mathias
forcings with an ultrafilter (see §§2 and 4) which adds an ultrafilter U all of whose
cardinal coefficients are equal to ω1. (Alternatively, we could define P3 in V P0×P2

.)
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Since P0 is still ω1–distributive over V P1
, it doesn’t add reals, and U still is an

ultrafilter with πχ(U) = ω1 in V P (?). Also, in V P we have c < µ, but 2λ = µ for
all λ ∈ R. Given f ∈ 2λ with f�α ∈ V for all α < λ,

Tf = {Cλ
f�α; α < λ}

forms a ⊆∗–decreasing chain. Because of the Easton product, we have µ such Tf ’s
for each λ. Since c < µ, not all of them can have a pseudointersection. Hence, for
each λ ∈ R, there is a tower Tλ of height λ (??). (In fact, a density argument shows
none of them has a pseudointersection, see the proof of Theorem 5.) By Corollary
5.3 as well as (?) and (??), we have, for each λ ∈ R, an ultrafilter V with πχ(V) = λ.

(b) By [BlS] we know it is consistent there is a P–point V with κ = πχ(V) =
πχσ(V) < d = λ. Put U = V × V . Then πχ(U) = πχ(V) = κ by 5.1 (b) and
πχσ(U) = d = λ by 5.1 (d). (Instead of [BlS], the ultrafilters gotten in the con-
struction in Theorem 5 could be used for this consistency.)

(c) By (a) we can force ultrafilters Vα for all regular α with ω1 ≤ α ≤ ωω+1.
Then U =

∑
Vωω+1

Vn satisfies πχ(U) = ωω, by 5.1 (a).

We conclude this section with the discussion of several refinements of Theorem
4. The construction in part (b) of the above proof also shows that the result in
Lemma 1.6 is sharp and cannot be improved.

Corollary 5.4. It is consistent there is an ultrafilter U which is not a P–point such
that πχ(U) < d.

The result in Theorem 4 (a) will be superseded by Theorem 5 in the next section.
We still gave its proof because it is much simpler and also because of the following
two consequences of the construction which we cannot get from Theorem 5.

Corollary 5.5. In the statement of Theorem 4 (a), we can delete the word “regu-
lar”.

Proof. Assume without loss that whenever λ ∈ R is singular, then R∩λ is cofinal in
λ. We show the construction in the proof of Theorem 4 (a) produces an ultrafilter
U with πχ(U) = λ.

For µ ∈ R ∩ λ we added towers Tµ = 〈Tα,µ; α < µ〉 such that
⋃

µ∈R∩λ Tµ is a
filter base (this is immediate from the definition of the forcing P2). Put S = {F ; F
is a finite subset of {〈α, µ〉; α < µ and µ ∈ R ∩ λ}}. Clearly |S| = λ. For
F ∈ S let VF be an ultrafilter on

⋂
〈α,µ〉∈F Tα,µ with πχ(VF ) = ω1. Let D be a

uniform ultrafilter on S such that for any F ∈ S, {G ∈ S; G ⊇ F} ∈ D. Put
U = limD VF = {X ⊆ ω; {F ∈ S; X ∈ VF } ∈ D}. We have to show πχ(U) = λ.
This is no more than an elaboration of the argument in Proposition 5.2.

πχ(U) ≤ λ is immediate since the union of the π–bases of the VF is a π–base
of U . To see πχ(U) ≥ λ, it suffices to show that Tµ ⊆ U for each µ ∈ R ∩ λ. Fix
α < µ. As {G ∈ S; G 3 〈α, µ〉} ∈ D and Tα,µ ∈ VG for any G ∈ S with 〈α, µ〉 ∈ G,
it follows that Tα,µ ∈ U , as required.

Corollary 5.6. In Theorem 4 (a), we can additionally demand that the dominating
number d is an arbitrary regular uncountable cardinal. In particular, there may be
many different π–characters below d.

Proof. Simply replace the forcing P3 in the proof of Theorem 4 (a) by the forcing
from [BlS] which adds an ultrafilter U with χ(U) = ω1 while forcing d = κ where κ
is an arbitrary regular cardinal.
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6. The spectral problem

By Louveau’s Theorem mentioned in §1, we know it is consistent that there are
simultaneously ultrafilters with many different values for p. The same is true for
πχ, as proved in the preceding section. We now complete this cycle of results by
showing how to get the consistency of the simultaneous existence of many ultrafilter
characters and, dually, of many values for πp.

Theorem 5. Let R be a set of regular uncountable cardinals in V |= GCH. Then
there is a forcing notion P such that

V P |= “for all λ ∈ R there is an ultrafilter U such that χ(U) = πχ(U) = λ”.

In fact, the ultrafilters we construct in the proof are all P–points.

Proof. We plan to adjoin, for each λ ∈ R, a matrix 〈Eα
λ,γ ; α < ω1, γ < λ〉 of subsets

of ω such that the following conditions are met:
(i) 〈Eα

λ,γ ; γ < λ〉 forms a tower;
(ii) α < β < ω1 entails Eβ

λ,γ ⊆∗ Eα
λ,γ ;

(iii) for each X ⊆ ω we find a pair 〈α, γ〉 such that either Eα
λ,γ ⊆∗ X or Eα

λ,γ ⊆∗

ω \X .
Clearly, this is enough: all three conditions imply the matrix generates an ultrafilter,
we get χ(U) ≤ λ by the size of the matrix, and (i) entails πχ(U) ≥ λ.

We now describe the forcing we use. We shall have P = P0 × P1 where P1 is ccc
and P0 is the Easton product of the forcing notions adding one subset of λ with
conditions of size < λ for λ ∈ R. Since P0 is ω1–closed, it preserves the ccc of P1,
and thus P preserves cofinalities and cardinals. However, we shall look at P as first
forcing with P1 and then with P0. In V P1

, the closure property of P0 is lost, but it
is still ω1–distributive.

To define P1, put

µ =

{
sup(R) if this has uncountable cofinality,

sup(R)+ otherwise.

Let ζ = µ · ω1, and let {Aλ; λ ∈ R} be a partition of ζ such that

|Aλ ∩ [µ · β, µ(β + 1))| = µ

for each β < ω1. P1 shall be a finite support iteration 〈Pα, Q̇α; α < ζ〉 of ccc p.o.’s
such that


α “|Q̇α| ≤ µ”

for all α < ζ. Since we have GCH in the ground model, this implies V P1 |= c ≤ µ
so that we can enumerate the names of subsets of ω arising in the extension in order
type ζ. More explicitly, we shall have a sequence 〈Ẋα; α < ζ〉 such that

• 
α “Ẋα ⊆ ω” and
• whenever Ẋ is a Pα–name for a subset of ω and λ ∈ R, then there is β ≥ α,

β ∈ Aλ, such that


β “Ẋ = Ẋβ”.

Clearly this can be done.
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Along the iteration, we want to add, for λ ∈ R and α ∈ Aλ, a system 〈Cα
η ; η ∈

2<λ ∩ V 〉 of infinite subsets of ω lying in V Pα+1 such that
(1) η ⊆ θ implies Cα

θ ⊆∗ Cα
η ;

(2) Cα
η̂ 〈0〉 ∩ Cα

η̂ 〈1〉 is finite;
(3) if α < β both belong to Aλ, then Cβ

η ⊆∗ Cα
η ;

(4) in V Pα+1 , the set {η ∈ 2<λ∩V ; Cα
η ⊆∗ Xα or Cα

η ∩Xα is finite} is dense (and
open) in 2<λ ∩ V .

In (4), Xα denotes, of course, the interpretation of Ẋα in V Pα+1 .
We are ready to describe the factors Qα of the iteration. Fix α and work in V Pα .

We distinguish two cases:
Case 1. α = min(Aλ) or cf(Aλ ∩ α) ≥ ω.
Qα consists of pairs 〈s, F 〉 where F ⊆ Aλ ∩ α is finite (the second part of the

condition is missing in case α = min(Aλ)) and s is a finite partial function with
dom(s) ⊆ 2<λ ∩V and such that s(η) ⊆ ω is finite for all η ∈ dom(s). We stipulate
〈s, F 〉 ≤ 〈t, G〉 iff G ⊆ F , dom(t) ⊆ dom(s) and t(η) ⊆ s(η) for all η ∈ dom(t) as
well as
•1 if η ⊆ θ belong to dom(t), then s(θ) \ t(θ) ⊆ s(η) \ t(η);
•2 if η 〈̂0〉, η̂ 〈1〉 ∈ dom(t), then s(η 〈̂0〉) \ t(η 〈̂0〉) and s(η 〈̂1〉) \ t(η 〈̂1〉) are

disjoint;
•3 if α ∈ G and η ∈ dom(t), then s(η) \ t(η) ⊆ Cα

η .

This forcing is easily seen to be ccc, and it adds a system 〈Dα
η ; η ∈ 2<λ ∩ V 〉 of

subsets of ω which satisfies (1) through (3) above by •1 through •3.
Case 2. β = max(α ∩Aλ).
Let Qα be the trivial ordering, and define Dα

η := Cβ
η for all η ∈ 2<λ ∩ V .

This completes the construction of the Qα, and, hence, of the forcing P1. We
still have to explain how to get the Cα

η from the Dα
η in the model V Pα+1 . For this,

note that the set

{η ∈ 2<λ ∩ V ; Dα
η ⊆∗ Xα or Dα

η ∩Xα is finite or

for all θ ⊇ η, both Dα
θ ∩Xα and Dα

θ ∩ (ω \Xα) are infinite}

is dense and open in 2<λ ∩ V . Let

Cα
η =

{
Dα

η ∩Xα if η enjoys the third property,

Dα
η otherwise.

Then (2) and (3) are trivially true, and it is easy to check that (1) and (4) are
satisfied as well. Thus we are done with the construction of the required system.

Next, let fλ ∈ 2λ, λ ∈ R, be the generic Easton functions. Also let Bλ ⊆ Aλ

be a cofinal subset of order type ω1. For α < ω1, set Eα
λ,γ = C

Bλ(α)
fλ�γ where Bλ(α)

denotes the α–th element of Bλ. We claim the Eα
λ,γ satisfy (i) through (iii) above.

Now, (ii) is immediate from (3). To see (i), first note that the Eα
λ,γ for fixed α

form a decreasing chain, by (1). Next use a genericity argument to see that this
chain has no pseudointersection, as follows. Work in V P1

. By distributivity (see
above), P0 adds no new reals over V P1

. Hence it suffices to check that given any
X ⊆ ω in V P1

, the set {η ∈ 2<λ; X 6⊆∗ Cα
η } is dense in 2<λ ∩ V . But this is trivial

by (2). Finally, (iii) is taken care of by an exactly analogous density argument
involving (4). Hence we’re done.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:642
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In the remainder of this section, we discuss several improvements of, and varia-
tions on, the above result which are corollaries to the construction.

Corollary 6.1. If we care only about characters, we can relax the assumption about
R in Theorem 5 to: “R is a set of cardinals of uncountable cofinality.”

Proof. We confine ourselves to describing the changes we need to make in the proof
of Theorem 5. We additionally adjoin, for λ ∈ R singular, a matrix 〈Eα

λ,Γ; α <

ω1, Γ ∈ [λ]ω ∩ V 〉 of subsets of ω such that, in addition to (ii) and (iii) (with γ
replaced by Γ), the following conditions are met:

(ia) Γ ⊆ ∆ implies Eα
λ,∆ ⊆∗ Eα

λ,Γ;
(ib) Γ 6⊆ ∆ implies Eα

λ,∆ 6⊆∗ Eβ
λ,Γ for all α, β.

Then (ia), (ii) and (iii) imply that the matrix generates an ultrafilter U with χ(U) ≤
λ, while (ib) gives us that χ(U) ≥ λ.

With P0 we also adjoin a function fλ from λ to 2 with countable conditions for
each singular λ ∈ R. In the partition of ζ include the Aλ for singular λ. P1 is as
before except that we still have to define Qα for α ∈ Aλ where λ is singular.

For such λ and α ∈ Aλ, we add a system 〈Cα
η ; η ∈ V, η : λ → 2 is a partial

function with countable domain〉 of subsets of ω such that, in addition to (3) and
(4), we have

(1a) η ⊆ θ implies Cα
θ ⊆∗ Cα

η ;
(1b) η 6⊆ θ implies Cα

θ 6⊆∗ Cβ
η for all α, β;

(2) if η and θ are incompatible, then Cα
η ∩ Cα

θ is finite.

The corresponding Dα
η are produced as before and satisfy (1a), (1b), (2) and (3).

Note that (1b) for the Dα
η is easily preserved in Case 1 by a genericity argument.

Cα
η is defined from Dα

η as previously and satisfies (1a), (2), (3) and (4). To see that
it also satisfies (1b) suppose that Cα

θ ⊆∗ Cβ
η for some α ≥ β and η 6⊆ θ. Then θ has

an extension θ̄ such that η and θ̄ are incompatible and thus |Cβ
η ∩Cβ

θ̄
| < ω by (2).

By (1a), Cα
θ̄
⊆∗ Cα

θ which means that |Cα
θ̄
∩ Cβ

θ̄
| < ω, contradicting (3). (This is

the only place where (2) is needed.)
Finally put Eα

λ,Γ = C
Bλ(α)
fλ�Γ and use (1a), (1b), (3) and (4) to check that (ia), (ib),

(ii) and (iii) are satisfied.

Corollary 6.2. In Theorem 5, we can additionally demand that all the ultrafilters
produced are Ramsey ultrafilters.

Proof. We replace the Qα in the iteration by Qα ?C where C denotes Cohen forcing
(so Pα+1 = Pα ? Q̇α ? C). Apart from that, it suffices to change the way the Cα

η are
defined from the Dα

η . Instead of listing names for subsets of ω, we list names for
partitions of ω, as 〈Ẋα,n; n ∈ ω〉. Assume we are at step α. Look at

{η ∈ 2<λ ∩ V ; Dα
η ⊆∗ ⋃

n<N

Xα,n for some N or

Dα
θ meets infinitely many Xα,n for all θ ⊇ η}.
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This is again dense and open in 2<λ ∩ V . Now let Y be a Cohen real over V Pα?Q̇α ,
and think of Y as a subset of ω which meets each Xα,n once. Then let

Cα
η =

{
Dα

η ∩ Y if η enjoys the second property above,
Dα

η otherwise.

We now see that the Cα
η satisfy

(4’) in V Pα+1 , the set {η ∈ 2<λ ∩ V ; Cα
η ⊆∗ ⋃

n<N Xα,n for some N or |Cα
η ∩

Xα,n| ≤ 1 for all n} is dense (and open) in 2<λ ∩ V .
And thus we get by genericity
(iii’) for each partition 〈Xn; n ∈ ω〉 of ω, we find a pair 〈α, γ〉 such that either

Eα
λ,γ ⊆∗ ⋃

n<N Xn for some N or |Eα
λ,γ ∩Xn| ≤ 1 for all n,

which guarantees Ramseyness.

By Theorem 5, we can get a plethora of ultrafilter characters. This suggests it
might be interesting to know whether an arbitrary set of regular cardinals can be
realized as the set of possible ultrafilter characters in some model of ZFC. To this
end we define

• Spec(χ) = {λ; χ(U) = λ for some ultrafilter U on ω}, the character spectrum;
• Spec(πχ) = {λ; πχ(U) = λ for some ultrafilter U on ω}, the π–character

spectrum;
• Spec?(χ) = {λ; χ(U) = πχ(U) = λ for some ultrafilter U on ω}.

Unfortunately, we have no limitative results on Spec(χ) and on Spec(πχ) (see section
8 for some questions on this; in particular, question (5)), but we can prove the
following which answers the spectral question for Spec?(χ) in many cases.

Theorem 6. Let R be a non–empty set of uncountable regular cardinals in V |=
GCH. Then there is a forcing notion P such that in V P, for all regular λ which
are neither successors of singular limits of R nor inaccessible limits of R, we have

λ ∈ R ⇐⇒ λ ∈ Spec?(χ).

Proof. We use a modification of the partial order in Theorem 5, and confine our-
selves to describing the differences of the two proofs. Let ν = min(R). Put ζ = µ·ν.
P0 is defined exactly as before, and P1 is a finite support iteration of length ζ which

(a) takes care of all the p.o.’s described in the proof of Theorem 5; and
(b) forces MA for all p.o.’s of size < µ at each limit step of the form µ · β where

β < ν is a successor ordinal.
It’s clear that this can be done. By Theorem 5, we know that R ⊆ Spec?(χ). We
proceed to show the other direction.

Let λ 6∈ R be a regular cardinal which is neither a successor of a singular limit
of R nor an inaccessible limit of R. Assume there is, in V P, an ultrafilter U with
χ(U) = λ. Since c = µ, and µ doesn’t qualify as λ (because either µ is a limit
of R (and thus either inaccessible or not regular) or µ is a successor of a singular
limit of R or µ = sup(R) = max(R) ∈ R), we know λ < µ. Since the cofinality
of the iteration is ν ∈ R, we also see λ > ν. We shall show that πχ(U) < λ. Let
F ⊆ U be a base of U of size λ. Work in V P1

. The forcing P0 decomposes as a
product P<λ × P>λ because λ 6∈ R. The first part has size < λ. This follows from
the Easton support in case λ is a successor of an inaccessible, and is trivial in the
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other cases. The second part is λ+–distributive, and thus adds no new sets of size
λ. Hence F ∈ V P<λ×P1

.
For each p ∈ P<λ, let (in V P1

) Fp = {F ⊆ ω; p 
P>λ F ∈ Ḟ}. Clearly,
F ⊆

⋃
pFp. Next, for each β < ν, let (in V Pµ·β ) Fp,β = {F ⊆ ω; F ∈ V Pµ·β and


P1/Pµ·β F ∈ Ḟp}. By ccc–ness of the iteration, we have Fp =
⋃

β Fp,β. Since we
forced MA along the way, each Fp,β has a pseudointersection which we call Gp,β .
By construction, the Gp,β form a π–base of U which has size < λ, as required.

Note the similarity between this result and Dordal’s result [Do 1, Corollary 2.6]
on the spectrum of tower heights. The latter is easier to prove because a tower is
an easier combinatorial object than an ultrafilter. Of course, the restrictions on λ
in the above theorem come from the size of the set of Easton conditions, and the
present proof does not work in the other cases. In the other direction, we can show
that certain cardinals may arise as characters even if they don’t belong to R:

Proposition 6.3. In the model constructed in Theorem 6: if R contains cofinally
many ωn, then ωω+1 ∈ Spec(χ).

Proof. Let S = R ∩ ωω, let ν = min(R) as before, and put S′ = {n; ωn ∈ S}.
Assume we have, for n ∈ S′, an ultrafilter Vn on ω which is generated by a matrix
〈Eα

ωn,γ ; α < ν, γ < ωn〉 satisfying (i) through (iii) in the proof of Theorem 5. Put
U :=

∑
V Vn where V is any ultrafilter with χ(V) = ν < ωω and S′ ∈ V . We shall

show that χ(U) = ωω+1.
To see χ(U) ≥ ωω+1, it suffices to show that χ(U) ≥ ωn for all n, by Proposition

1.4. This is easy: fix n and F ⊆ U with |F| = ωn; for m > n with m ∈ S′

find Am ∈ Vm such that F ∩ ({m} × ω) 6⊆∗ {m} × Am for any F ∈ F with
F ∩ ({m} × ω) ∈ Vm, and put A =

⋃
m>n,m∈S′{m} × Am ∈ U ; then F 6⊆∗ A for

any F ∈ F , as required.
To see χ(U) ≤ ωω+1, note first that d = ν by construction. Now, let {gδ; δ < ν}

be a dominating family, and let {Vζ ; ζ < ν} be a base of V ; without loss, each
V ∈ V strictly contains at least one Vζ . Also let {fη; η < ωω+1} ⊆

∏
S := {f :

S′ → ωω; f(n) < ωn} be a dominating family; i.e. given f ∈
∏

S there is η < ωω+1

such that f(n) < fη(n) for all n ∈ S′ (such a family clearly exists in the ground
model; it also exists in the generic extension because pcf is left unchanged by the
forcing). For α, δ, ζ < ν and η < ωω+1, put Aα,δ,ζ,η =

⋃
n∈Vζ

{n}×(Eα
ωn,fη(n)\gδ(n))

and check that the Aα,δ,ζ,η form a base of U .

Note that for χ(U) ≥ ωω+1 we used no extra assumptions while the proof of
χ(U) ≤ ωω+1 involved the special shape of the ultrafilters Vn as well as d < ωω

(which is necessary by 1.6). We don’t know whether a similar result can be proved
without these assumptions (see §8 (6)). Also, contrary to the situation for πχ (see
Corollary 5.6), we don’t know whether we can have many characters below d.

We finally come to the result dual to Theorem 5.

Theorem 7. Let R be a set of regular uncountable cardinals in V |= GCH. Then
there is a forcing notion P such that

V P |= “ for all λ ∈ R there is an ultrafilter U such that p(U) = πp(U) = λ”.
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Proof. Again, let

µ =

{
sup(R) if this has uncountable cofinality,

sup(R)+ otherwise,

and adjoin, for all λ ∈ R, matrices 〈Eα
λ,γ ; α < µ, γ < λ〉 of subsets of ω such that

(i) thru (iii) in the proof of Theorem 5 are satisfied with ω1 replaced by µ. It is
immediate that the matrices will generate ultrafilters of the required sort. The rest
of the proof of Theorem 5 carries over with very minor changes which we leave to
the reader.

As in Corollary 6.2 we get

Corollary 6.4. In Theorem 7, we can additionally demand that all the ultrafilters
produced are Ramsey ultrafilters.

One can again define Spec(p), Spec(πp) and Spec?(p) in the obvious fashion, but
we do not know of any restrictive results (like, e.g., Theorem 6) concerning these
spectra. The second part of the following corollary — which is immediate from
Theorems 5 and 7, Corollaries 6.2 and 6.4, and results mentioned in §1 — answers
the other half of the question in [Br, subsection 4.1].

Corollary 6.5. (a) It is consistent with ZFC that for some Ramsey ultrafilter U ,
cov(r0

U ) = πp(U) < par.
(b) It is consistent with ZFC that for some Ramsey ultrafilter U , non(r0

U ) =
πχ(U) > hom.

7. Connection with reaping and splitting

As we remarked in §1, for any ultrafilter U on ω we have πp(U) ≤ s and πχ(U) ≥
r. Furthermore, it follows from the results in §§5 and 6 that it is consistent to have
an ultrafilter U with πp(U) < s, as well as to have one with πχ(U) > r. Still there is
a close connection between the πχ(U) and r, as shown by the following well–known
result whose proof we repeat for completeness sake’.

Proposition 7.1. (Balcar–Simon, [BS, Theorem 1.7]). r = minU πχ(U).

Proof. Let A be a reaping family of size r. Without loss, A is downward closed,
that is, whenever A ∈ A, then {B ∈ A; B ⊆ A} is a reaping family inside A. This
entails that it can be shown by induction that given pairwise disjoint Xi, i ∈ n,
with

⋃
i∈n Xi = ω, there are i ∈ n and A ∈ A with A ⊆ Xi (?). Let I be the ideal

generated by sets X ⊆ ω with A 6⊆∗ X for all A ∈ A. By (?), I is a proper ideal.
Hence it can be extended to a maximal ideal whose dual ultrafilter U has A as a
π–base, and thus witnesses πχ(U) = r.

Let us note that Balcar and Simon proved a much more general result: the
analogue of 7.1 holds in fact for a large class of Boolean algebras.

We shall now see that there is no dual form of this proposition.

Theorem 8. It is consistent with ZFC that πp(U) = ω1 for all ultrafilters U on
ω, yet s = c = ω2.

For the proof of this theorem we need to introduce several notions and prove
a few preliminary lemmata. Given a limit ordinal δ < ω2, let 〈δζ ; ζ ∈ cf(δ)〉
be a fixed continuously increasing sequence with δ =

⋃
ζ δζ . We define sequences

Āα = 〈Aα
β ⊆ α; β < ω1〉 for α < ω2 recursively as follows.
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• A0
β = ∅,

• Aα+1
β = Aα

β ∪ {α},
• Aδ

β = {γ < δ; γ ∈ A
δζ

β for all ζ with δζ > γ} in case cf(δ) = ω,

• Aδ
β = {γ < δ; γ < δζ for some ζ < β, and γ ∈ A

δζ

β for all ζ < β with δζ > γ}
in case cf(δ) = ω1.

We leave it to the reader to verify that all Aα
β are at most countable and that for

all γ < α, the set {β < ω1; γ ∈ Aα
β} contains a club.

Now, suppose F = {Fγ = {F γ
β ; β < ω1}; γ < α} is a family of filter bases on

ω. We call F α–nice (or simply nice if the α in question is clear from the context)
iff, given X ∈ [ω]ω and a set {fj; j ∈ ω} of one–to–one functions in ωω, there is a
club C = C(X, 〈fj〉j) ⊆ ω1 such that |X \

⋃
j<k

⋃
γ∈Γ f−1

j (F γ
β )| = ω for all β ∈ C,

all k ∈ ω and all finite Γ ⊆ Aα
β . Furthermore, if U is a Ramsey ultrafilter, then F

is called U −α–nice (or simply U–nice) iff given f ∈ ωω one–to–one, there is a club
D = D(f) ⊆ ω1 such that for all β ∈ D there exists U ∈ U with f [U ] ∩ F γ

β being
finite for all γ ∈ Aα

β . There is a two–way interplay between niceness and U–niceness
(see 7.3 and 7.4): given F nice, we can, in certain circumstances, construct U such
that F is U–nice; on the other hand, after forcing with MU where F is U–nice, F is
still nice in the generic extension. This is the core of our arguments, and guarantees
the preservation of niceness in finite support iterations with forcings of the form
MU as a factor.

Lemma 7.2. (CH) If F = {Fγ = {F γ
β ; β < ω1}; γ < α} is α–nice and U is an

ultrafilter, then there is Fα = {Fα
β ; β < ω1} ⊆ U such that F∪{Fα} is (α+1)–nice.

Lemma 7.3. (CH) If F is nice, then there is a Ramsey ultrafilter U such that F
is U–nice.

Lemma 7.4. Assume U is a Ramsey ultrafilter, and F is U–nice. Then 
MU “F is
nice”.

Lemma 7.5. Let 〈Pα, Q̇α; α < δ〉, δ a limit ordinal, be a finite support iteration
of ccc p.o.’s, and let Ḟα = {Ḟα

β ; β < ω1} be Pα–names for filter bases on ω

such that 
Pα “Ḟα+1 := {Ḟγ ; γ < α + 1} is (α + 1)–nice” for α < δ. Then

Pδ

“Ḟδ =
⋃

α<δ Ḟα+1 is δ–nice”.

Proof of Lemma 7.2. Let {Xβ; β < ω1} enumerate [ω]ω so that each X ∈ [ω]ω

occurs uncountably often. Also let {fβ; β < ω1} enumerate the one–to–one func-
tions of ωω. For Xη and 〈fζ〉ζ<η, let Cη = C(Xη, 〈fζ〉ζ<η) witness the niceness
of F. Without loss min(Cη) > η. It suffices to construct sets Fα

β ∈ U such that
for all η < β with β ∈ Cη and all finite Γ ⊆ Aα

β ∪ {α} and finite Z ⊆ η, we have
|Xη \

⋃
ζ∈Z

⋃
γ∈Γ f−1

ζ (F γ
β )| = ω. Fα

0 is any member of U .
Assume the Fα

β′ have been constructed for β′ < β. Let {ηk; k ∈ ω} enumerate
the η < β with β ∈ Cη. Also, let {ζi; i ∈ ω} enumerate β. By the properties of
the Cη with β ∈ Cη and standard thinning arguments, we can find sets X ′

k ⊆ Xηk

such that
(i) for all ζ ∈ ηk and γ ∈ Aα

β we have that X ′
k ∩ f−1

ζ (F γ
β ) is finite;

(ii) the X ′
k are pairwise disjoint;

(iii) given k and i, either fζi is almost equal to some fζj with j < i on the set X ′
k

or fζi [X
′
k] is almost disjoint from fζj [

⋃
` X ′

`] for all j < i.
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Now choose infinite sets X0
k and X1

k such that X0
k∪X1

k = X ′
k and X0

k∩X1
k = ∅. Put

X0 =
⋃

k X0
k and X1 =

⋃
k X1

k . Build disjoint sets Y 0 =
⋃

k Y 0
k and Y 1 =

⋃
k Y 1

k

as follows. Y 0
0 = fζ0 [X

0], Y 1
0 = fζ0 [X

1], ..., Y 0
k = fζk

[X0] \
⋃

j<k Y 1
j , Y 1

k = fζk
[X1] \⋃

j<k Y 0
j , ... We have either Y 0 6∈ U or Y 1 6∈ U ; without loss the former holds, and

we let F = Fα
β = ω \ Y 0 ∈ U . F is as required because we can now show by

induction on j that f−1
ζj

(F ) ∩X0
k is finite for all j and k. This completes the proof

of 7.2.

Proof of Lemma 7.3. Let {fβ; β < ω1} enumerate the one–to–one functions in ωω,
and build a tower {Uβ; β < ω1} which generates a Ramsey ultrafilter U . Guarantee
that U will be Ramsey in the successor steps of the construction. If β is a limit
such that β ∈

⋂
θ<β C(Uθ, 〈fζ〉ζ<θ), we can choose Uβ such that Uβ ⊆∗ Uθ for all

θ < β and such that Uβ ∩ f−1
θ (F γ

β ) is finite for all θ < β and γ ∈ Aα
β ; otherwise

let Uβ be any set almost included in all Uθ’s where θ < β. Thus, if f = fη,
D(f) = {β > η; β ∈

⋂
θ<β C(Uθ, 〈fζ〉ζ<θ)} is a diagonal intersection of clubs, and

thus a club, and witnesses U–niceness.

Proof of Lemma 7.4. Let Ẋ and ḟ j , j ∈ ω, be MU–names for objects in [ω]ω and
for one–to–one functions in ωω, respectively. Let ẋ be the name for the increasing
enumeration of Ẋ . Replacing Ẋ by a name for a subset of Ẋ, if necessary, we may
assume that


MU “ ḟ j(ẋ(n)) ≥ ṁ(n)” for all j and all n ≥ j,(?)

where ṁ denotes the canonical name for the Mathias–generic. Since MU and LU
are forcing equivalent (see §3), we can think of MU as forcing with Laver trees T
such that the set of successors lies in U for every node above the stem. Fix n ∈ ω
and j ≤ n. Set

A(n, j) = {σ ∈ ω<ω; some T j
σ,n = T ∈ LU with stem(T ) = σ

decides the value ḟ j(ẋ(n))}.
Furthermore put

B(n, j) = {σ ∈ ω<ω; σ 6∈ A(n, j) and U j
σ,n := {k ∈ ω; σ 〈̂k〉 ∈ A(n, j)} ∈ U}.

Call a triple (σ, n, j) relevant iff σ ∈ B(n, j). For relevant triples (σ, n, j) define
f = f j

σ,n : U j
σ,n → ω by

f(k) = the value forced to ḟ j(ẋ(n)) by T j
σ 〈̂k〉,n.

Using that U is Ramsey and that f cannot be constant on a set from U by the
definition of B(n, j), we may assume that f is one–to–one on U j

σ,n, by pruning that
set if necessary. By U–niceness find a club D(f) such that for all β ∈ D there is
U ∈ U with f [U ] ∩ F γ

β being finite for all γ ∈ Aα
β . Let C be the intersection of all

D(f j
σ,n) where (σ, n, j) is relevant. We claim that


LU “|ḟ j [Ẋ] ∩ F γ
β | < ω” for all j ∈ ω, β ∈ C and γ ∈ Aα

β .(??)

Clearly this suffices to complete the proof of the lemma.
To see (??), fix j ∈ ω, β ∈ C, γ ∈ Aα

β and T ∈ LU . Put ` := max{j, |stem(T )|}.
We shall recursively construct T ′ ≤ T such that

T ′ 
LU “ḟ j(ẋ(n)) /∈ F γ
β ” for all n ≥ `.(? ? ?)
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Along the construction we shall guarantee that if σ ∈ T ′ ∩ A(n, j) for some n ≥ `,
then T ′

σ := {τ ∈ T ′; τ ⊆ σ or σ ⊆ τ} ≤ T j
σ,n and that the value forced to ḟ j(ẋ(n))

by T j
σ,n does not belong to F γ

β . By (?) we see that stem(T ) /∈ A(n, j) for all
n ≥ `. Hence we can put stem(T ) into T ′. To do the recursion step, assume we
put σ ⊇ stem(T ) into T ′. Again by (?), the set N of all n such that σ ∈ A(n, j) is
finite. The same holds for the set M of all n such that σ ∈ B(n, j). By definition of
C, we can find U ∈ U such that U ⊆ U j

σ,n and f j
σ,n[U ]∩F γ

β = ∅ for all n ∈ M . Now
put σ 〈̂k〉 into T ′ iff k ∈ U and σ 〈̂k〉 ∈ T j

σ,n for all n ∈ N and σ 〈̂k〉 /∈ A(n, j) for
all n ∈ ω \ (N ∪M). Using again (?), it is easily seen that the set of all k satisfying
these three clauses belongs to U . This completes the recursive construction of T ′.
It is now easy to see that T ′ indeed satisfies (? ? ?).

Proof of Lemma 7.5. Let Ẋ and ḟ j , j ∈ ω, be Pδ–names for objects in [ω]ω and
one–to–one functions in ωω, respectively. First assume that cf(δ) = ω, and that
δ =

⋃
n δn (where the δn form the sequence fixed before the definition of the Āα).

Now construct Pδn–names Ẋn and ḟ j
n which can be thought of as approximations

to our objects as follows. Step into Vδn . Find a decreasing sequence of conditions
〈pn,m; m ∈ ω〉 ∈ P[δn,δ) such that pn,m decides the m–th element of Ẋ as well as
ḟ j(k) for j, k ≤ m. Let Xn be the set of elements forced into Ẋ by this sequence,
and let f j

n be the function whose values are forced to ḟ j by this sequence. The
niceness of the Fδn+1 in the models Vδn provides us with clubs Cn = C(Xn, 〈f j

n〉j)
as witnesses.

Back in V , we have names Ċn for these witnesses. By ccc–ness find a club C in
the ground model which is forced to be contained in all Ċn by the trivial condition
of Pδ. We claim that C witnesses the niceness of Fδ in Vδ. To see this, take
β ∈ C, k ∈ ω and Γ ⊆ Aδ

β finite. Also fix ` ∈ ω and p ∈ Pδ. Find n such that
p ∈ Pδn and Γ ⊆ δn. Step into Vδn = V [Gδn ] where p ∈ Gδn . Since Γ ⊆ Aδn

β by
construction of the Aδ

β , we know that |Xn \
⋃

j<k

⋃
γ∈Γ(f j

n)−1(F γ
β )| = ω. Hence we

can find i > ` in this set and m large enough so that

pn,m 
P[δn,δ) “i ∈ Ẋ \
⋃
j<k

⋃
γ∈Γ

(ḟ j)−1(F γ
β )”.

Thus we see that


Pδ
“|Ẋ \

⋃
j<k

⋃
γ∈Γ

(ḟ j)−1(Ḟ γ
β )| = ω”,

as required.
Next assume that cf(δ) = ω1, and that δ =

⋃
ζ δζ . Find α < δ such that Ẋ and

ḟ j are Pα–names, step into Vα, and let X = Ẋ [Gα], f j = ḟ j [Gα]. By niceness of
the Fδζ+1 for δζ > α, we get Pδζ

–names for clubs, Ċζ = Ċ(X, 〈f j〉j). Without loss,
we can assume that Cζ = Ċζ [Gδζ

] ∈ Vα (by ccc–ness). Then C = {β < ω1; β ∈⋂
ζ<β Cζ} is a diagonal intersection of clubs, and thus club, and is easily seen to

witness the niceness of Ḟκ[Gκ] (use again the definition of Āδ). This completes the
proof of the lemma.

Proof of Theorem 8. Let E = {α < ω2; cf(α) = ω1}. We shall start with a model
V which satisfies GCH and additionally ♦ω2(E). The latter is used as a guessing
principle to ensure that we took care of every ultrafilter along the iteration. For
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example we could take V = L (see [De, chapter IV, Theorem 2.2]). Then we
perform a finite support iteration 〈Pα, Q̇α; α < ω2〉 of ccc p.o.’s over V . We think
of the diamond sequence as acting on the product ω2 × Pω2 ; more explicitly, we
use a sequence 〈Sα ⊆ α × Pα; α ∈ E〉 such that for all T ⊆ ω2 × Pω2 , the set
{α ∈ E; T ∩ (α×Pα) = Sα} is stationary. This we can do since the initial segments
Pα of the iteration will have size ω1. Furthermore we shall have a Pω2–name ḟ for
a bijection between ω2 and [ω]ω such that for all α ∈ E, we have


Pα “ḟ�α is a bijection between α and [ω]ω ∩ V [Ġα]”.

The existence of such a name is, again, straightforward.
The details of the construction are as follows. In Vα, we shall have

(a) a Ramsey ultrafilter Uα such that Q̇α[Gα] = MUα ;
(b) a filter base Fα = {Fα

β ; β < ω1} such that Fα+1 := {Fγ ; γ ≤ α} is both nice
and Uα–nice.

Let α be arbitrary. By either Lemma 7.4 or 7.5 and induction, Fα = {Fγ ; γ < α}
is nice in Vα. In case Sα is a Pα–name for a subset of α and


Pα “ḟ [Sα] is an ultrafilter”,

we let V = ḟ [Sα][Gα] ∈ Vα; otherwise V is an arbitrary ultrafilter of Vα. By Lemma
7.2 find Fα ⊆ V such that Fα+1 is nice. Then apply Lemma 7.3 to get Uα such
that Fα+1 is Uα–nice. This completes the construction.

It remains to see that Vω2 is as required. c = s = ω2 is immediate because all
the factors of the iteration are of the form MU for some Ramsey ultrafilter. To
see πp(V) = ω1 for every ultrafilter V , take a Pω2–name T ⊆ ω2 × Pω2 such that
ḟ [T ][Gω2 ] = V ; without loss 
Pω2

“ḟ [T ] is an ultrafilter”. We easily get a club
C ⊆ ω2 such that for all α ∈ C ∩ E, we have that T ∩ (α× Pα) is a name and


Pα “ḟ [T ∩ (α× Pα)] is an ultrafilter in V [Ġα]”.

Hence we find α ∈ C ∩ E with T ∩ (α × Pα) = Sα. This means that in Vα,
we chose Fα ⊆ ḟ [Sα][Gα] such that Fα had no pseudointersection in Vω2 . Since
Fα ⊆ ḟ [T ][Gω2 ] = V has size ω1, πp(V) = ω1 follows.

Remark 7.6. If one cares only about P–points U , then the conclusion of Theorem 8
is much easier to prove because niceness can be replaced by a simpler notion. Also,
A. Dow has remarked that s = ω2 and πp(U) = ω1 for all P–points U is true in
Dordal’s factored Mathias real model [Do], and the referee has pointed out that one
of the models of [BlS 1] even satisfies s = ω2 and χ(U) = ω1 for all P–points U . The
latter is so because the forcing construction increases s and is P–point–preserving
[BlS 1, Theorems 3.3 and 5.2]. The former holds because in Dordal’s model all ω1–
towers are preserved along the iteration (for the successor step, one uses a result of
Baumgartner [Do, Theorem 2.2], saying that Mathias forcing does not destroy any
towers; the limit step is taken care of by the type of iteration used [Do, Lemma
4.2]). An easy reflection argument shows each P–point U contains such an ω1–tower,
and πp(U) = ω1 follows. We do not know whether Dordal’s model even satisfies
πp(U) = ω1 for all ultrafilters U . For this, one would have to extend Baumgartner’s
result quoted above to filter bases. However, our construction is more general, for
slight modifications in the proof show the consistency of the statement in Theorem
8 with large continuum; more explicitly:

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:642
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Remark 7.7. Let κ ≥ c be a regular cardinal in V |= ♦κ+(E). Then there is a generic
extension of V which satisfies πp(U) = κ for all ultrafilters U and s = c = κ+. To
see this, simply replace ω, ω1 and ω2 by < κ, κ and κ+ (respectively) in the above
proof, and change the definitions of Āα and niceness accordingly. Then Lemmata
7.4 and 7.5 still hold (with a modified proof, of course) and Lemmata 7.2 and 7.3
are true if the assumption is changed to MA + c = κ. This means that along the
iteration we also have to force MA cofinally often with ccc p.o.’s of size < κ. This is
no problem since it can be shown (with an argument similar to the modified proof
of Lemma 7.5) that such p.o.’s preserve (the modified) niceness. We leave details
to the reader.

8. Questions with comments

There are numerous interesting questions connected with the cardinals we have
studied which are still open.

(1) Does χσ(U) = χ(U) for all ultrafilters U?

We note that χ(U) = χσ(U) as long as χ(U) < ωω; furthermore, χ(U) = χσ(U) in
the absence of 0] (these remarks are due to W. Just).

(2) (Vojtáš, cf. [Va, Problem 1.4]) Does r = rσ?

This problem is connected with Miller’s question whether cf(r) = ω is consistent
(see [Mi, p. 502] and [Mi 1, Problem 3.4]).

(3) Does rσ = minU πχσ(U)?

A negative answer would provide us with a dual form of Theorem 8, and rescue
some of the symmetry lost in §7.

(4) Can πp(U) be consistently singular?

Let us recall (§1) that p(U) is regular and notice that πχ(U) and χ(U) are consis-
tently singular — simply add ωω1 Cohen reals or see §§5 and 6! So πp(U) is the only
cardinal for which this question is of interest. Furthermore, we may ask whether
cf(πp(U)) ≥ p(U). (Note that this is true for πχ(U) and χ(U), see §1.) The only
information we have about cf(πp(U)) is given in 1.7 and 1.8. The problem seems
connected with Vaughan’s problem concerning the possible singularity of s (cf. [Va,
Problem 1.2]).

(5) (Spectral problem at regulars) Assume c = ω3 and there is an ultrafilter U
with χ(U) = ω1. Does this imply there is an ultrafilter V with χ(V) = ω2?
With πχ(V) = ω2?

(Of course, this is just the smallest interesting case of a much more general problem.)
Note that the assumptions imply that there are ultrafilters U and V with πχ(U) =
χ(U) = ω1 and πχ(V) = χ(V) = ω3 (Bell–Kunen [BK], see also [vM, Theorem
4.4.3]). By Theorem 6, we know there is not necessarily an ultrafilter W with
πχ(W) = χ(W) = ω2. Of course, there is a corresponding problem on p and πp.
Finally, similar questions can be asked about special classes of ultrafilters. For
example, it would be interesting to know what can be said about the spectrum of
possible characters of P–points.

(6) (Spectral problem at singulars) Let λ be singular (of uncountable cofinality).
Assume that Spec(χ) is cofinal in λ. Does λ ∈ Spec(χ)? A similar question
can be asked for Spec(πχ). What about λ+?
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The only (partial) results we have in this direction are Proposition 5.1 (a), Theorem
4 (c) and Proposition 6.3.

(7) Let R be a set of cardinals of uncountable cofinality in V |= GCH. Show there
is a generic extension of V which has ultrafilters U with χ(U) = πχ(U) = λ
for each λ ∈ R.

For regulars, this was done in Theorem 5. For singulars it was done separately for
πχ and χ in Corollaries 5.5 and 6.1. We don’t know how to do it simultaneously.
Note, however, that given a single singular cardinal λ of uncountable cofinality in
V |= CH , we can always force an ultrafilter with χ(U) = πχ(U) = λ: simply add λ
Cohen reals; then, in fact, all ultrafilters U satisfy χ(U) = πχ(U) = λ.

(8) Is there, in ZFC, an ultrafilter U with πχ(U) = χ(U)?
By the result of Bell and Kunen ([BK], [vM, Theorem 4.4.3]), this is true if c is
regular. The Bell–Kunen model [BK] which has no ultrafilter U with πχ(U) = c
has one with πχ(U) = χ(U) = ω1 instead. The dual question, whether there is an
ultrafilter U with p(U) = πp(U), is independent, by the second author’s P–point
independence Theorem [Sh]. However, we may still ask whether one always has an
ultrafilter U with p′(U) = πp(U).
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