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ABSTRACT 
A strong negative answer is given to the old question of whether every dual 
group is reflexive. Using 0,~, a group A is constructed so that A, A*, A**, and 
A*** are weakly cot-separable groups of cardinality ml and A* is not isomor- 
phic to A***. 

O. Introduction 

If  G is an abelian group, let G* be the Z-dual group of  G, i.e., G* = 

Homz(G, Z). There is a canonical homomorphism a : G  ~ G**, given by 

e(g)(y) = y(g), i f g  ~ G and y E G*. We say that G is torsionless i f a  is one-one, 

and that G is reflexive i f a  is an isomorphism. An old question, which goes back 

at least as far as Reid JR], is whether or not every dual group is reflexive, i.e., 

whether or not for all abelian groups A, A* is reflexive. (It is well known that 

every A* is always torsionless, and that the answer to the question is no i f  we 

allow A of  measurable cardinality.) In this paper we shall give a strong negative 

answer to this question assuming <>~,,. 

Say that G is strongly-non-reflexive i f  G is not isomorphic to G** (by any 
isomorphism). By induction on n ~o9, define G*" : G *° = G; G *n+~ = (G'n) *. 

(So, for example, G .3 = G***.) Say that  G is weakly ogrseparable i f G  is Ogl-free 

(i.e., every countable subgroup is free), and every countable subset o f  G is 

contained in a countable subgroup H such that  G/H is og~-free. Say that G is 

og~-separable if  G is og~-free and every countable subset of  G is contained in a 
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countable subgroup H which is a direct summand of  G. Our main result is the 
following. 

THEOREM (0~o,). There are abelian groups A, (n Co)) such that for all 
n ~ o :  

(i) A, is weakly o)l-separable of  cardinality wL; 
(ii) A, is strongly-non-reflexive; in fact F(A,) # F(A**); 
(iii) A* = A, + 1. 

This theorem cannot be proved in ZFC. Indeed, it is a theorem of ZFC + 
MA + 7CH (see [M]) that every weakly o)l-separable group of cardinality 
o91 is tot-separable; however, if G is ml-separable, G* is not (because 
(Z (°~) • H)* ~ Z °~ • H*, and Z '° is not weakly col-separable). Moreover, by a 
theorem of Huber [H; 5.5], MA + "7 CH implies that every o~-separable group 
of cardinality oJt is reflexive. 

(By way of contrast, it should be noted that Mekler has shown that, assuming 
O,o,, there is a group A such that A* is o~-separable of cardinality tot and 
strongly-non-reflexive m because A*** is not even weakly ml-separable. Also, 
Mekler and Shelah have shown, in ZFC, that there is a strongly-non-reflexive 
dual group, and recently Mekler has constructed one of cardinality 2Ko.) 

The history of the main theorem is rather complex. In early 1982, G. Sageev 
and S. Shelah announced the construction, assuming <>o,,, of a group A such 
that for all n ~ oJ, A *" is strongly-non-reflexive, and a manuscript [SaS] was 
circulated. (The A *" were not weakly a~l-separable.) Later in 1982 Shelah wrote 
a very brief sketch of a construction using a related method, which aimed at 
stronger results [S]; he transmitted this sketch to Eklof and Mekler in 1985 
while Eklof was giving a course at Simon Fraser University on the structure of 
Horn. As part of that course Eklof presented, with the essential assistance of 
Mekler, a proof of the above main theorem (restricted to n E(0 ,  1, 2, 3}), 
based on the methods of [SaS] and IS], but worked out in detail, and employing 
results of Chase (as in [EH]) to simplify the combinatorics. An important  
aspect of that presentation was the identification of the inductive condition 
(8), described in Section 1, which seems to be essential for the construction to 

work, but which was not explicitly given in [S] or [SaS]. Later, Eklof and 
Mekler completed the proof of the main theorem (constructing the A, for all 
n ~ to), using the additional condition (9). 

At about the same time, in early 1985, Eda and Ohta announced the 
construction, in ZFC, of a group A of cardinality 2~o such that for all n ~ to, A*" 
is (weakly) non-reflexive. (See [EDO].) 
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We assume that the reader has some familiarity with set-theoretic methods 

in abelian group theory. See, for example, [E] for the definitions of  stationary 

sets and the invariant F(A), and for a statement of <>co,. 

We have attempted to write the proof of  the theorem so that it can be studied 

at various levels of detail. The general plan of the construction is outlined in 

Section 1. The actual construction is carried out in Section 3, with the help of 
various auxiliary results which are isolated and proved in Section 2. At a first 

reading the reader may wish to restrict himself to the construction of the A, for 

n -- 0, 1, 2, 3. This is enough to obtain a weakly o91-separable dual group (A1) 

which is not isomorphic to its weakly og~-separable double dual (A3); various 

simplifications then occur, e.g., in the proof of  Lemma 2.3. 

I. Outline of the construction 

We are going to define by induction on a < o) 1 a directed system of countable 

free groups 

{A~,. ] a <  o91} U (i~,. "A~,.--'Ap,. ]a<=fl <o91) 

for each n E ~o, such that A.,. +1 is a subgroup of A*.. In the end we will let 

A. = lirq{A~,. [ a < o91}. In order to prove the theorem we will need to do the 

construction so that for all n ~ 09: 

(i) A. is weakly Ogl-separable; 

(ii) for m ÷ n, F(A.,) ~ F(A.); and 

(iii) A. + 1 = A*. 
To achieve this we will impose a series of ten  conditions on the stages of the 

construction. We now list those conditions, preceding each by a brief explana- 
tion of its purpose. (The conditions are required to hold for all a < fl < ~, < oJ1 
and all n E o9.) 

First, we require directed systems of pure embeddings: 

(1) (a) i~,. : A~.. ----Ap,. is a pure embedding; 
(b) i~r,. =i~,. oi~,.; 

(c) i.~,. = the identity on A~,.. 

Second, in order to apply Chase's results on dual bases (Lemma 2.1), we 

require: 

(2) (a) A~,. is a free group of rank to; 

(b) A~,. +1 is a pure dense subgroup of  A*.. 
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I fy  ~ G*, x ~ G we denote by (y, x )  or (x, y) ,  interchangeably, the result of  

applying the function y to x. We want the maps i~,. to be compatible with the 

inclusion ofA.,. +1 in A*.: 

(3) for all x ~Ar,., Y~Ar , .+ I ,  ( y , x ) = ( i ~ , . + l ( y ) , i ~ , . ( x ) ) .  

In order to achieve (i), we want the At . ,  for a fixed n, to form an 0) I-filtratiOn 

such that all successor stages are to:pure: 

(4) (a) if ~, is a limit ordinal, then At,. = lirq {At,. I a < ? } and the i~,. are the 

associated canonical injections; moreover Ar+l,./irr,+l(Ar,.) is divi- 

sible or zero. 

(b) if a is a successor ordinal, then A#,./i~,. (A,,,.) is free. 

Fix a decomposition of  lim(ogl) as a disjoint union of  stationary sets: 

lim(o~l) = H & II H Uk 
k~aJ k>ffil 

such that Oo,,(Sk) holds for all k~og.  In order to achieve (ii), we impose a 

condition which will insure that F(A.) _ Ok only i fn  > k. 

(5) 
I f a E  Uk, then -~+l A,,+ i./ta,. (At.) is 

non-zero iff n = k + 2m for some m > 0. 

There remains the achievement of  (iii). For this we make use of  O,o,(Sk) in 

order to insure that Ak + ~ = A~'. At stage a E Sk we shall consider the homomor- 

phism ha : Aa,, --" Z given us by Oo,,(Sk) m see Remark 2.7. Ifhr does not belong 

to At,k+1, then we will desire to define A~+l,k SO as to "kill" hr, i.e., hr does not 
extend to a homomorphism: At+ l,k --" Z. At the same time, in order to be able 

to define ;r+l 'r,k +1, we must insure that each y E A~,k + ~( C_ At*k) does extend to an 

element of  A*+ I,k. In order to achieve simultaneously these two objectives, we 

will need to impose some closure conditions on the stages of  the construction. 

Consider first the canonical map at,k- 1 "A~,k- 1 ~ * Ar,k and suppose that h~ = 

er,k-,(X) for some x ~ A ~ , k - I ,  and that hr$A~,k+t. We cannot hope to kill ha, 

because we can always define its extension, h~', to At+ l,k by the rule: (h~', y)  = 
(y, .r+l _ . tr,k- I(X)) for all y EAr+ l,~( C Jr+ l,k- 1). Thus, we require: 
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(6) (a) A~,,n+2 contains the image of  A~,. under  a~,. (where a.,. is defined by: 

(~.,.(x), y )  = (y,  x} for all yEAo,,,,+~, xEA~,,,,); so we can regard a~,. 

as a map: A.,. ~A~..+2; 

(b) o'p,. oil,. = i~,.+2 oa.,. .  

For each n = > 1 , we also have a canonical map p.,. + 2 : A~.. +2 ~ A~,.* - L, which 

is a splitting of  cro,.. Each A~.. for n >= 1 must  contain the image o f  A~.. +2 under  

P.,. + 2, because we cannot kill p.,. + z(Y) while extending y ~ A~.. + 2 to an element 

ofA.+  ~,. + i. For the sake of  uniformity we also require a splitting p~,~ of  a.,o. 

(7) (a) i fn  => 1, A~.. contains the image ofA.,.+2 underp~..+z (wherep~,.+2 is 

defined by: (p,~,n+2(y),x)=(y,o~,,n_l(x)) for all y~A~,..+2, x E  
A..._ i); so we can regard p.,. + 2 as a map: A~.. +2 ~ A~,.; 

(b) there is a homomorph i sm P,.,2:A~,,2-"A,.,o such that P..2 o a~.o = the 

identity on A~,o; 

(c) Pp,.+2° i~,.+2 = i~,. °P.,.+2. 

Now, if the A. are not to be reflexive, cT~,. and p... +2 will not be isomorphisms 

(for sufficiently large a). Hence, the endomorphism a.,. op.,. +2 ofA., .  +2 is not 

the identity. This endomorphism in turn induces a non-trivial idempotent  

endomorphism 0 of  A*., +2; if y EA.,.  +3( _C A*.,. +2) we cannot  hope to kill 0(y) 

while extending y to an element of  A*+ L. +2. Thus, we must  require: 

(8) (a) i fn  >_- 3, then A.,. contains the image of  A.,. under  the endomorphism 

0~0) of  A* defined by: (O~°).,(y),x)=(y,a,.,,,_3p~,.,,_l(X)) for all )n ~ t , n  - -  | 

y~A~n_l, xEA,~._~; so we can regard a(0) , , v~,. as an endomorphism of  
A~,.; 

(b) if  n => 3, i~.. o ~¢/~°)... = 0~o) o i~... 

The endomorphism 0~°. ) in turn induces an idempotent  endomorphism 

0.t~) o f  A*., under which A..+~ must  be closed. Like falling dominos,  one , n + l  , 

closure condit ion leads to another: 

(9) (a) if n > 4, then A~,. contains the image of  A.,. under  the endomor-  

phisms ,~t) , ~t) v~,. o f  for all t = 1, n -  3, where the v~.. are m a , ? / -  I " " " 

• 0 ~, - 1) t....~\ for all y defined by induction on n (O ct)~,,,, v.tV~ x ) =  (y,  ,,.,,-iv*l. 
A* x E A. .  _ 1; so we can regard the v... .,. _ I, , t~,) as endomorphisms ofA., . ;  

(b) if n >_- 4, i~,.o 0~'). = Ok',),,o ig,,, for all t = 1 , . . . ,  n - 3. 

We will conclude with one technical condition, but  first we need a definition. 

A model,  B, is a sequence of  groups B. (n ~ o~) together with a map P2 : B2 --" B0, 
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satisfying the conditions (2), 6(a), 7(a), (b), 8(a) and 9(a) (when we replace A~,n 

by Bn, cry,, by trn : Bn --" B*+ l, etc.). For example, for a fixed a < col, the groups 

A~,n and map p~,: that we construct will form a model, which we denote byA~. If 

B is another model, the direct sum A~ ¢ B is defined to be the model C such 

that for all n, Cn = A~,n • Bn; we regard Cn+l as a subgroup of  C* = 

(A~,n ¢ Bn)* by identifying the latter with A*~,n ¢ B* where the elements of  

A*n (resp. B*) are regarded as functions on A~,n ¢ Bn which are zero on Bn 

(resp. A,,n). 

Now we are ready to state the final condition, which describes the successor 

of  successor stages of the construction. The conditions imposed will enable us 

to carry out the construction at successor of  limit stages. (An ordinal a is called 

even (resp. odd) i f a  = 2 + 2n(a  = 2 + 2n + 1) for some 2 Glim(to0, n Gto.) 

(10) if~, = a + 1 where a is a successor ordinal, then there exists a model B~ 

such that A t, = A, (9 B~, and: 

(a) if a is even, then there is an isomorphism p,, : Ao--- Ba; 

(b) if a is odd, then for every n > 2 there exists u,,n GB~,, - {0} such 

t h a t p y n ( u o n ) = O a n d f o r a l l t = O , .  . . , n-3,'a~t)(u~n)t,y,n, , = O. 

Now suppose we have constructed directed systems satisfying the above 

conditions, where we have employed diamond as indicated. Let An = 

lirq{A~,n : a < col}, and let i~;, be the canonical injection: As,, ---'An. Then by 

(2)(b) and (3), An + l is naturally a subgroup of  A*. As we have already noted, (4) 
and (5) imply, respectively, that (i) and (ii) hold, so it remains only to show that 

A* ___ A,+l for all n G to. Suppose not, i.e., there exists k G to and h G A ~ ' -  

Ak+ ~. By O,o.(Sk) (see Remark 2.7) there exists a stationary set E c_ Sk such that 

for all a G E ,  h r A~,k is the function, ha, given us by O,o,(Sk) at stage a. Since ha 

was not killed, it must have been that ha E A~.k +~ = lirq{Ap,k + l ' f l  < a}. Thus 

there exists f l < a  such that h IA~, k belongs to  l'~,k+l(A#,k+l). By Fodor's 

Theorem [J; Thm. 22, p. 59] there exists flGtol such that for uncountably 

many a G E ,  h IA,,kGi~,k+~(Ap,k+~). Since Ap,k+~ is countable, there exists 

z GAp,k ÷ ~ such that for uncountably many a G E ,  h I Ao,k = i~,k + ~ (Z). Hence, 

clearly, h = i~,~ ÷ ~ (z),  i.e., h E Ak + ~, a contradiction. 

This completes the outline of  the construction. The construction will be 

carried out in Section 3. 

2. Auxiliary results 

The reader is advised to read as far as Lemma 2.2, and then skip to Section 3, 

returning here as needed in the course of  reading Section 3. 
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In the next lemma E and F are free groups of rank o9 such that E is a 

subgroup ofF*. We say that E is dense in F*, if  it is dense in the tr(F)-topology 

on F*, i.e., for all x~ . . . . .  x . ~ F  and all y ~ F *  there exists z E E  such that 

(z, xi) = (y, xi) for i = 1 . . . .  n. The following is due to Chase (cf. §1 and 

Theorem 3.2 of [q) .  

2.1. LEMMA. 

(a) E is dense in F* i f f  for every x E F such that ( x ) (the subgroup generated 
x) is pure in F, there exists y E E  such that (y, x)  = l; 

(b) E is pure in F* i f f  for every y E E such that (y) is pure in E,  there exists 

x ~ F s u c h  that ( y , x )  = 1; 

(c) E is a pure and dense subgroup ofF* i f f  there exist dual bases o r e  and F, 
i.e., bases { xi : i E o9 } and { yj : j E 09 } o fF  and E respectively such that for 

all i, j ,  (y j ,  X i ) = dij. [] 

We shall also need the following elementary facts: 

2.2. LEMMA. 

(a) Let F be a subgroup of  F'  such that F ' /F is divisible. The inclusion 

map t : F --, F' induces a map l* : (F')* ---, F* which is one-one, i.e., every 

element o fF* has at most one extension to an element o f  (F')*; 

(b) Suppose F c_ F' are subgroups o f  a torsion-free group G such that F is pure 
in G and F' /F is divisible. Then F' is pure in G. 

PROOF. 

(a) i induces an exact sequence 

0 --" Hom(F'/F,  Z) --- Hom(F',  Z) % Horn(F, Z). 

By hypothesis, Hom(F'/F,  Z) = 0. 

(b) There is a short exact sequence 0 F / F  G/F-~  G/F'--.  0 which splits 

because F' /F is divisible. Hence G/F' is isomorphic to a subgroup of 

G/F; but G/F is torsion-free by hypotheses; so F '  is pure in G. [] 

Now two result on models. Let B be a model (see before (1 0) in Section 1). 
"b Denote by a, (resp. P,+2, 0, _ the map: B, --" B,+2 (resp.: B,+2--'B,; B, --.B,) 

defined in condition 6(a) (resp. 7(a); 8(a) and 9(a)). Let 0~-i) be tr,_2 °P,. 
Let 7-" denote the set of  all formal products vnAttt)/~tt9 " v .  • • 0~ a) where each t~ is 

>_- 0 and < n - 3; we shall call these products n-terms (we include the empty 

product, 4~, which we identify with the identity function on B.). By definition 

of a model, if b E B, and z is an n-term, then r ( b ) ~  B,. The next lemma will 
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enable us to construct a model  by induction on n; it will guarantee that the 

closure of  B. under  the n-terms will not require a change in the choice of Bin for 

m < n. Let T. denote the set o f  all formal products  ~n~"')~(t~)~, • • • 0~ ~,~ where now 

t ~ ( -  1,0, 1 . . . . .  n - 3 } .  I f r ~ T ~ + l ,  where r = O~'~O~t~. • .O~t~, let r ' =  

0~',-'~ . . . O~/,-'~ ~ Tn.  

2.3 LEMMA. Let n > 2. For every r ~ T . + ~  there is a f ~ T . _ ~  such that: 

whenever Bo . . . . .  B, satisfy, as far as they are defined, the requirements for a 

model, then for all b ~ B. _ ~, p. + 1 z(a,  - ,(b)) = f(b).  

PROOF. The proof  is by induction on n. For n = 2, T.' +, = {(0~0))k: k ~ o9 }; 

clearly for z = (0~°)) k, we can let ~ = ¢. Now let n > 2. I fz  ~ T;, + 1, we can write 

= • r~[0n+,] ,  T tun + I " ~ n + l  

' o f  O n + 1 for t > 0, and the brackets where each zj E T,~ +, is a formal product  (t) 's 

indicate that the first and last 0~°~+ l'S may or may not appear. In order to avoid 

unwieldy notation, we shall do a representative computat ion,  assuming z = 

z~O~°~+~z2. For all B,_~, y ~ B . _ 2  we have the following (where the numbers  

above the equality sign indicate the condit ions used): 

(p.+~za._~(b),y) (7=) ( Z a n _ , ( b ) , a n _ 2 ( y ) )  

~9~ (O~o~+t r2a._l(b) ' z~a._2(y)) 

~82 (T2a._,(b), a ._2p.r~a._2(y)) .  

By induction the latter equals 

(z2a .  _ , (b) ,  a . _  2 f f t y ) )  (9__) (g._~(b), r~a. -2ff(y))  

~62 (b, z~a._2f;(y)) 

t8,9~ ( z '~ (b ) ,  a . _ 2 z , ( y ) )  

~6__) (z'~(b), ff(y))  

(8,9) ( f~z'~(b) ,  y )  

where if ~f=n(k,) • .O~k~2ET._2, then tl =a(k,+l) D(k~+I)~T. So let V n  - 2 " t i n  - 1 " " " U n  - 1 " ~ n  - l "  

f = ¢ l ' C ' ~ .  [ ]  
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REMARK. 

i f z  = a o )  at3) n(2) n(0) 
, J n + l V n + l t , ' n + l V n + l ,  

i f z  =a(3) jO(l) a(2) RiO) 
V n + l ~ n + l ~ n + l V n + l ,  

i f z  = 0.(2)+, 0.(3)+ 10.tl)+, 0.t°)+ i, 

For example (for n >_- 5), we can compute: 

then ~ -- ~; 

then f -- 0~, 1)_ ~; 

then f = 0(.°)_10(.1)_1; 

then ~, = Or.°)_ 10.°)_ ~ 0.~-~ ). 

(Fortunately, we do not need this remark, or the precise algorithm for 

computing ~!) 

2.4 LEMMA. T h e r e i s a m o d e l B s u c h t h a t f o r n  >=2thereex i s t su .EB.such  

that p.(u.)  = 0 and for all t = 0 . . . . .  n - 3, O~,~)(u.) = O. 

PROOF. We shall define the B. by induct ion on n so that in addition, for all 

n > 2 : B. = C. • D. where C, is dense in B*_~; a.-2(B._2) c_ C.; D. has rank 

to; p,(D,,) = 0; and for all n > 3 and t = 0 , . . . ,  n - 3, O~t)(B,,) C_ C,, and 

O~°(D,) = 0. Let B0, B~ C_ B~' be free groups of  rank co such that B~ is pure and 

dense in B*. Let %" B0--" B* be the canonical map and let C2 = cro(Bo). Let 

S = {yj" i E I }  be an uncountable pure-independent subset of  B*; we claim 

that  there exists y~ E S  such that C2 + Zy~ = C2 ¢ Zy~ and is pure in B*. 

Indeed, otherwise, by a counting argument there exist m,  d ~ Z, i 4= j ~ I and 

b E C2 such that m and d are relatively prime, and m divides both dyj + b and 

dyj + b in B*. But then m divides d ( y ~ -  yj), which contradicts the pure- 

independence of  S. By repeating the argument we can find a subgroup D2 of  B* 

of  rank 09 such that C 2 7!- D2 = C2 ~) D2 and is pure in B*. Let B2 = C2 • D2, and 

define & to be zero on D2. 

Now suppose B~ has been defined for all i =< n (for some n > 2) such that the 

inductive conditions are satisfied and B0 . . . . .  B, satisfy the conditions for a 

model as far as they are defined. Let 

tr._l'B._l~B*, pn_l'Bn*---*On*_2 and 0 (t).+* "B*---.B* ( f o r t < n - 3 ) =  

be the maps defined in (6), (7), (8) and (9). Let C.'+1 be the closure in 

B* = C* 6) D* o f  a,,_j(B,,_O under the t,) 04 + ~, and let C. + ~ be the pure closure 

o f  C~+~ in B*. Note that Lemma 2.3 implies that  p.+t(C.+l)_C B._~. Mor- 

eover, by Lemma 2.1, a.  _ ~(B. _ 1), and hence C. + 1, is dense in B* because B. is 

pure in B*_ 1. As in the case n = 1, we can, by a counting argument,  find 

D. + i C D* of  rank co such that C. + 1 + D. + ~ = C. + ~ @ D, + 1 and it is pure in 

B*. Let B. + 1 = C. + ~ ~9 D. + 1. Then p. + I(D. + 1) = 0 since D. + ~ __ D* and 
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a._2(B._2)C_C.. Also, for all t = l  . . . . .  n - 2 ,  and all yED.+~,  x E B . ,  
~T1(Y) ,x)  = (Y, O~t-l)(x)) 0 because O~t-I)(x)EC.; thus O(t)+l(Dn+l)  O. 

Hence ~') it)  0 n + l ( C + l )  ~___ = O.+I(B.+O= C.+1. Finally, notice that pn+l(Bn+l)  

p.+I(C.+O C_ B.- I .  [] 

2.5 LEMMA. Let G be a countable free group such that G = U.~,o G. where 
for aft n Eto G. c_ G.+~, and G.+I/G. is free; say G.+I = G. • C.. For each 
n Eto let r. E Z be such that (n + 1)r. divides r.+ 1. Also for each n E to let 
{ a.,i: i E I } be a countable set such that for all i ~ I, a.,i E C. - { 0 }. Then there 
is a countable free group G' containing G such that 

(i) for all n Eto, G'/G. is free; 
(ii) G'/G is divisible and non-zero; 
(iii) there exist elements z.,i of  G ' ( n ~ to, i ~ I) which generate G ' over G and 

satisfy: 

(A) rn + lZn + l, i = rn(Zn, i - -  an, i) .  

(We denote z.,i, suggestively by Z[_. (rflr.)a~,i.) 

PROOF. Notice that G = Go • ~je,o Cj. Let P = 1-lje,o Cj. Let z.,i be the 
element of P given by: 

{ i  i f j  < n '  
z.,i(j) = rj aj,i i f j  > n. 

Let G' be the subgroup of Go • P generated by G U {z.,i : n Eto,  i ~ I} .  Then 
clearly (iii) holds and consequently G'/G is divisible. Since the a.,i are 
non-zero, G'/G is non-zero. Moreover G' is free because it is a countable 
subgroup of an to~-free group; and G'/G. is free because it is isomorphic to a 
countable subgroup of l"Ij >,, Cj. [] 

2.6. COROLLARY. Let G, G', a,,i be as in 2.5. Suppose f ~  G* such that for 
all i, f(a, .~)--0 for almost all n Eto. Then f has a unique extension to a 
homomorphism f '  : G' --* Z. 

PROOF. Sayf(a,,i) = 0 for n > mi. For a fixed i E I ,  let m = mi and define 
f'(Zk,i) = 0 for k > m. Let 

rm 
f'(z,.,i) =f(a,. , i),  f '(z,.-l,i) = - - f ' ( z , . , i )  + f(am-t,i), etc. 

rrn-1 
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(using (A) in 2.5). [] 

2.7 REMARK. Finally, in this section, we discuss the use of diamond. We 

can assume without loss of generality that the Aa,, are constructed so that the 
underlying set of  Aa,, is coa. Now <>,,,,(Sk) gives us a set {Xa : aESk} such that 

each Xa is a subset of  c o a × Z ,  and for every Y_Ccol×Z,  

{aESk: Y ~ ( c o a × Z ) = X , , }  is stationary in co~. (See [E, p. 21].) In our 

construction, if we have defined the groups Aa,, (n ~co) for some aESk, let 

ha : Aa,k --" Z be Xa if X. is a homomorphism; otherwise let ha = 0. 

3. The constrnction 

To begin the construction, let Ao,. (n ~ co) be free groups of rank co satisfying 

(2) such that the maps tr0,. :A0,.--"A0,.+2 are isomorphisms; let P0,.+2 be the 
inverse of tro,.; and let O~t,). = the identity on Aa,. for n > 3 + t, t >_- 0. 

Now suppose that for some 7 > 0  we have constructed Aa,., i~., etc., 

satisfying (1)-(10) for all a < fl < 7, n ~ co. Our construction of the At.., i~,., 
etc. will divide into four cases. 

Case I. ~, is a limit ordinal 

In this case, let At,0 = [.-JB<yAp,0. Let i~,0 be inclusion of Ap,0 into A~,0. Now 

suppose that Ay,,., i~,., (.8 < 7) have been defined for all m _-< n for some n >_- 0, 
such that 

A~,. = lirq{A~,. : fl < 7}. 

(Cf. 4(a).) For every/~ < 7 and y CAp,. + ~ define i~,. + ~(y) EA~. as follows: if 
x eAa,. for some a < y, 

(iL.+,ty), (x)) = [ 
i#~,. (x ) ) i f a  =<p, 

[(i~,.+l(y),x) iffl < a .  

This is well-defined by (3). Let 

A .+I = {iL.+,(y): P < yeAp,.+,} CA*. 
, - -  i %  • 

One can easily check, using Lemma 2.1, that all of  the conditions (1)-(10) are 

satisfied for all a _-< p _-< 7, n ~ co. 

Case II. 7 = a + 1, where a is a successor ordinal 

In this case, we must satisfy condition (10). If  a is even, let Ba be an 
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isomorphic copy of  the model A~ (see before (10) in Section 1). Let ~v. :A. ~ B. 

be an isomorphism. Define Ay to be A~ @ B.. For every n E to, let i~,~ be the 

canonical injection of  A~,n into (A~ @ B~)n =A~,n • B~,.. 

If  a is odd, we use Lemma 2.4: let B~ be the model constructed in that 

lemma; let A r = A. @ B~; let u~,n be any element o f D .  - {0}. 

For future reference, observe that in both cases, by construction, if  y 

A.,n + ~, then (y, b) = 0 for all b E B.. This will enable us to apply Corollary 2.6 

in Cases III and IV. 

Case III. 7 = a + 1, where a ~ Uk for some k > 1 

In this case we must satisfy condition (5). Let Ar,= = A~,m for m < k. Choose 

a ladder,  rl, on a, i.e., a strictly increasing function r / : t o ~ a  such that 

a = sup{ ~/(n) : n E to }. Moreover choose r/such that, for all n, r/(n) is odd. Let 

un = U~tn),k~A~tn)+,,k (cf. condition (10)(b)). In an abuse of notation, let us 

identify A#,k (for fl < a) with i~,k(A#,~) C_ A~,k; with this identification A~,k = 

I.Jne~,A,tn~,k (cf. (4)(a)). Then by Lemma 2.5 - -  with I I I - - 1 ,  G = A . , k ,  

Gn = A,t.),k, r. = n!, an = u~ m we can construct At,k( = G' )  such that there 

exists {zn: n ~to} _c At, k which generate At, k over A~,k such that (n + 1)zn+~ = 

z .  - Un for all n E to; moreover Ay,k/A~tnj,k is free for all n ~ to. We shall denote 

zn by XT_ . (]!In !)uj. 
, ( - A . , k -  ~) contain- We must realize Ay.k as a pure, dense subgroup o f  A ' k -  ~ - -  * 

ing A~.~. For any y EA#,k+~, (y, u.)  = 0 if r/(n) > f l ;  hence by Corollary 2.6, 

every y ~A~,k + ~ has a unique extension, y', to an element ofA*k.  Now ifz EAr,k 

and x E A~,k _ l define ( z ,  x ) = (a.,k_ i(X)', Z ). Clearly this mapping of  Ar,k + l 

into A ' k _  ~ is a homomorphism which is the identity on A.,k. We must check 

that it is one-one: suppose that z ~ 0; then there exists n E w  such that n does 

not divide z; but there exists a EA~,k such that n divides z - a; so n does not 

divide a, and hence there exists x EA~,k-~ such that n does not divide (a, x) ;  

since n divides (z - a ,  x )  we must have that (z, x )  ¢: 0. Notice also that, 

under this identification, Ay.k is a pure subgroup o f  A ' k _  ~, by Lemma 2.2(b); 

and of  course Ay,k is dense in A ' k - ~  since it includes A~,k. Notice also that 

p~,k(Z.) = 0 and O~t~(z.) = 0 for all n ~ to  and all t < n - 3 by choice of  the u~. 

Now we must define the At, m for m > k .  Let 

At,k+ l = (Y '  : Y EA~,k+ l} C A 'k ,  

and let i~,k+~ be the canonical isomorphism: y---*y'. Notice that for x E  

Av.k-I = Aa,k-l, O'y.k- I(X) = (aa,k-I(X))/; hence av:,_ i(av,k-I) ~ Ay.k + 1, SO (by 

Sh:169



Voi. 59, 1987 ON STRONGLY-NON-REFLEXIVE GROUPS 295 

2.1 ) Ar,k + ~ is dense in Ar*k because Ar,~ is pure in A'k-  ~. Moreover, it's easy to 

check, using 2.1 (b), that At, k + l is pure in A*k. 

We can regard the elements o f  A.,k ÷ 2 as members o f  A*k + ~. Le t  At, k + 2 be the 
closure under the 0~j[+2 of 

A~k + 2 U aj(u;): 
' t j = n n !  

(where 17j(Uj)=i~aq)+l,k+2(tT~q)+l,k(Uj))). Notice that by Lemma 2.3, 

Pr,k+2(Ar,k+2) = Ar,k. Again, we can apply Lemma 2.5to see that (4) holds. Now 
by Corollary 2.6 each y EAr,k+3 extends uniquely to an element ofA*k +2; so, as 

before, we can identify At,k÷ 2 with a pure, dense subgroup of A~,k+~. we 

continue in this manner to define the At,., for m > k + 3. In particular we have 
for all m > k: 

j0  i f m  ~ k  + 1 (mod 2), 
Ar,m/i~,m (Ay,~) | divisible and non-zero if m ~ k (mod 2). 

This completes the construction in case III. 

Before undertaking the last case,we need to introduce a more general notion 

of  a term. We shall use general symbols a,, p, ,  O~ t) for the functions in a model 

B. For a fixed k, and for any m such that m ----- k (mod 2) we define Tk,m to be the 
set of  all formal products of the functions a~, pj, 0~[ I which define a function 

from Bk to Bm ; the elements of Tk,m are called (k ,  m) - terms .  (We include $ in 
Tk,k.) For example, the following is a (3,7)-term 

30 : =  0~4~50t'0~2)~30t °). 

If a E/lp, k and z ~ Tk,m then there is an obvious definition of the element 
z(a)EAm,k; for example, if a ~A#, 3 

zo( a ) = [ O~4,t crp,50~',~ O~2tcr~,30~°~ l( a ). 

Notice that by 6(b), 7(c), 8(b), and 9(b), i f / / <  5 then %(i~.k(a)) = i~.m (z0(a)). 

Case IV. 7 = a + 1, where a E Sk for some k ~ co 

In this case, Oo,,(Sk) gives us an element h.~A~*k (see Remark 2.7). If 

h~EA.,k  ÷ ~, let At, m = A~,,. for all m E co. Otherwise, choose a ladder r/: co - - a  
such that for all n Eco, ~/(n) is an even successor ordinal. 

Let {x, : i E co } be a basis of  A~,k dual to a basis {Yi: J E co } of  A~,~ ÷ ~ (cf. 

Sh:169



296 P.C.  EKLOF, A. H. MEKLER AND S. SHELAH Isr. J. Math. 

Lemma 2. l(c)). Then (ha, xi} ~ 0 for infinitely many i because otherwise 

h~ = Z~ {h. ,  x~)y~ ~A~,k+ ~. So there is a strictly increasing function f :  to ~ co 

such that for all n, {h~, x~.)) ~ 0; let x.  = x~.). Without  loss of  generality, 

X. ~A~(m,k. 
We now choose integers r. and elements a.  EA,,,k by induction on n ~ co. Let 

: to ~ Z be a bijection. Let ro = 1. Suppose that r0 . . . .  , r . ,  a0 . . . . .  a ._  ~ have 

been chosen. I fn  = 0, let q0 = ~(0). I f n  _->_ 1 consider the following system o f n  

equations in n - 1 unknowns,/1~ . . . . .  /1.: 

ri+llli+l=ri(fli-{h~,ai) ) f o r / =  1 , . . . , n  - 1, 

rllLl = ro(~(n)  -- (ha, ao)). 

This system has at most one solution in Z. I f  it has none, let r. +~ = (n + 1)r., 

and let a.  = .¢. - v., where 

v. = qi,(.)(X.) ~ B,(.~,k. 

(See 10(a) for ~u,~.).) 

If  the system has a solution, let q. be the value of/1. in this solution. Then 

either 

(i) q . - ( h ~ , . ~ . - v . )  ~ O  

or  

(ii) q. - (h., 2:¢. - v. ) # 0 

since (ha, ~. ) 4: 0. I f  case (i) holds, let a .  = 2.  - v.; otherwise let a.  = 2x. - 

v.; then choose r.+~ so that (n + 1)r. divides r .+, ,  and r.+~ does not divide 

r . (q .  - (ha, a . } ) .  

Now let 

z. - - a  jo 
j - n r n  

We claim that if  {z. : n U to } ___ At,k, then ha does not extend to At, k. (In a 

harmless abuse of  notation, we are pretending that the i~,,. are inclusion maps) 

Indeed, for the possible value, ((n) ,  of  {ha, z0) we have chosen a.  and r.+~ so 

that {ha, z .+ , )  is not defined. 

Fix m such that  m ~ k (mod 2), and for each z E Tk,m, let a.,, = z ( a . ) .  Apply 

Lemma 2.5 with G = A,,,,,,, G .  = A~(.),,,,, and { a.,i : i ~ l } = { a..~ : r ~ Tk,,. }. 

The lemma is applicable because, for a fixed n, all the a.., lie in the same 

complementary summand  of  G. in G. + ~; namely, in case (i) (respectively case 

(ii)) the a..~ lie in the summand  generated by (w - ~u~(.)(w): w E G. } (respecti- 
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vely, by {2w - ~(.)(w): w ~ G. }) plus a complementary  summand  ofA,(n)+ l,m 

in A,¢.+I),,.. So we obtain a group Ay,,. generated over A.,m by the elements 

{r(z.): n E w ,  z~Tk .m}  where 

r(z .)  = Z T(aj). 
j=n r n 

Then A r , m / A . ,  m is divisible and for all fl < a,  A y , m / A # ,  m is free. Not ice  that, by 

construction, the Ay.,.'s are closed under  the ~y.m t/(t) '~, ar.,.'s, Py.m'S. 

Next, we must  show that every y ~A.., .  + ~ extends (uniquely) to a homomor-  

phism y '  on Ay.m. It suffices to show that for all terms r E Tk.m, (Y, z(aj)) = 0 
for almost all j ,  because then we can define 

<y, z(z.)) = Z <y, T(aj)) 
j = n r n  

(cf. Corollary 2.6). Now aj is either xj - vj or 2.~j - vj, and by the construction 

in case II, (y,  z (b) )  = 0 for almost all j ,  so the problem is to show that 

( ,)  (y,  z(2j)) = 0 for almost al l j .  

The p roof  o f ( , )  is by induction on the length of  T, simultaneously for all m = k 

(mod 2). If  the length o f t  is 0, then z = ¢ and z(£j) = .¢j; then ( ,)  follows from 

the choice of  the ~¢j as members  of  a dual basis. I f  the length of  r is greater than 

0, the p roof  divides into 3 cases; it is here that we use - -  as we must  - -  our 

closure condit ions (6)-(9). 

Case A. r = a~,,,_2r', for some T'E  r k , m _  2 

Then (y, z(Xj)) = (Pa,m+l(Y),  Tt(P~j)) = 0 ,  for almost  all j by induction 

because p,,~ + l(y) E A ~ ,  m _ i. (Here we use condit ion (7).) 

Case B. r =p~,,,+2r', for some z'~Tk,m+2 
Then 

(y ,  T(Xj)) ----- (O',~,m + l(y), ¢7~,mP~,m+2Z'(X)) ) = (0) ( 0 L ,  +3(a . , .  + 10')), T'(Xj)) = 0 

for almost all j ,  by induction because co) O~,~+3(a~,~+I(Y))EA.,m+3. (Here we use 
condit ions (6) and (8).) 

= a t ' ) . ,  for some t > 0, z '~Tk.m Case C. z v~,m- , = 

= O~,m+l(Y),z '(Xj))=0 for almost all j ,  by induct ion Then (y ,z (Xj) )  ( (t+l} 

because OCt+~,m+~,, ~) t,,~EA,,ra + i. (Here we use condit ion (9).) 
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This completes the proof of  (.). Hence, as in Case III, we can define A~, m + I 
for every m --:k (mod 2) so that i~.m +1 is in isomorphism: y ~ y ' .  Also, as in 
Case II, we can realize each Ar.m as a pure, dense subgroup ofA~m-1.  

This completes the construction, and therefore completes the proof of  the 
theorem. [] 

REFERENCES 

[C] S. U. Chase, Function topologies on Abelian groups, Ill. J. Math. 7 (1963), 593-608. 
[Ed0] K. Eda and H. Ohta, On Abelian groups of integer-valued continuous functions, their Z- 

dual and Z-reflectivity, in Abelian Group Theory, Proceedings Oberwolfach 1985, Gordon and 
Breach, 1986, pp. 237-253. 

[E] P. C. Eldof, Set Theoretic Methods in Homological Algebra and Abelian Groups, Les 
Presses de l'Universit~ de Montreal, 1980. 

[EH] P. C. Eklof and M. Huber, On the p-ranks ofExt(A, G), assuming CH, in Abelian Group 
Theory, Lecture Notes in Math. No. 874, Springer-Verlag, 1981, pp. 93-108. 

[H] M. Huber, On reflexive modules and abelian groups, J. Algebra 82 (1983), 469-487. 
[J] T. Jech, Set Theory, Academic Press, 1978. 
[M] A. Mekler, How to construct almost free groups, Can. J. Math. 32 (1980), 1206-1228. 
JR] G. A. Reid, Almost Free Abelian Groups, Lecture Notes, Tulane University, 1966-67. 
[SaS] G. Sagcev and S. Shelah, Reflexivity in Abelian groups, prcprint. 
IS] S. Shelah, On non-reflexivity in Abelian groups, preprint. 

Sh:169


