### Non-existence of Universal Orders in Many Cardinals

by Kojman and Shelah. [KjSh:409]

J Symbolic Logic, 1992

We give an example of a first order theory T with
countable D(T) which cannot have a universal model at
aleph_1 without CH; we prove in ZFC a covering theorem from
the hypothesis of the existence of a universal model for some
theory; and we prove -- again in ZFC -- that for a large class
of cardinals there is no universal linear order (e.g. in every
aleph_1< lambda < 2^{aleph_0}). In fact, what we show is that
if there is a universal linear order at a regular lambda and
its existence is not a result of a trivial cardinal arithmetical
reason, then lambda ``resembles'' aleph_1 -- a cardinal
for which the consistency of having a universal order is known.
As for singular cardinals, we show that for many singular
cardinals, if they are not strong limits then they have no
universal linear order. As a result of the non existence of a
universal linear order, we show the non-existence of universal
models for all theories possessing the strict order property
(for example, ordered fields and groups, Boolean algebras, p-adic
rings and fields, partial orders, models of PA and so on).

Back to the list of publications