### The failure of the uncountable non-commutative Specker Phenomenon

by Shelah and Struengmann. [ShSm:729]

J Group Theory, 2001

Higman proved in 1952 that every free group is
non-commutatively slender, this is to say that if G is a free
group and h is a homomorphism from the countable complete free
product bigotimes_omega Z to G, then there exists a
finite subset F subseteq omega and a homomorphism bar {h}:
*_{i in F} Z ---> G such that
h= bar {h} rho_F, where rho_F is the natural map from
bigotimes_{i in omega} Z to *_{i in F} Z .
Corresponding to the abelian case this phenomenon was called the
non-commutative Specker Phenomenon. In this paper we show that
Higman's result fails if one passes from countable to
uncountable. In particular, we show that for non-trivial groups
G_alpha (alpha in lambda) and uncountable cardinal lambda
there are 2^{2^lambda} homomorphisms from the complete free
product of the G_alpha 's to the ring of integers.

Back to the list of publications