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Abstract. We propose an extension of the Ehrenfeucht-Fräıssé game
able to deal with logics augmented with Lindström quantifiers. We
describe three different games with varying balance between simplicity
and ease of use.

1 Introduction

The Ehrenfeucht-Fräıssé game [7–10] is an important tool in contemporary model
theory, allowing to determine whether two structures are elementarily equivalent
up to some quantifier depth. It is one of the few model theoretic machineries that
survive the transition from general model theory to the finite realm.

There are quite a few known extensions of the Ehrenfeucht-Fräıssé game and
in the following we mention a few (this is far from bring a comprehensive list). In
[12] Immerman describes how to adapt the Ehrenfeucht-Fräıssé game in order to
deal with finite variable logic, first dealt with in Poizat’s article [20]. Infinitary
logic has a precise characterization by a similar game [2,11]. An extension for
fixpoint logic and stratified fixpoint logic was provided by Bosse [3].

Lindström quantifiers were first introduced and studied by Lindström in the
sixties [16–19] and may be seen as precursors to his theorem. There are several
extensions and modifications of the Ehrenfeucht-Fräıssé game for logics aug-
mented with Lindström quantifiers. We give a partial description of the his-
tory of the subject. Perhaps the first treatment of this subject was provided by
Krawczyk and Krynicki, [15], who introduced a game capturing Lωω(Q) equiva-
lence for monotone simple unary quantifier Q. A back-and-forth technique was
given by Caicedo in [5], who considered also fragments of bounded quantifier
degree. Weese, in [21], gave a sufficient condition for equivalence relative to first-
order logic with Lindström quantifiers in the form of a game. This condition is
also necessary in the case of monotone quantifiers.
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Games dealing with the special case of counting quantifiers were also inves-
tigated [4,13].

Probably the most relevant for our work is the work of Kolaitis and
Väänänen, [14]. In their paper the authors describe four similar games, all for
unary Lindström quantifiers. Of the four variants, one game is similar, but not
identical, to the first game we propose here – the definable (k,Q)-Pebble game.
This game captures Lk

∞ω(Q)-equivalence, and also Lk
ωω(Q)-equivalence for finite

models. However, as the authors mention, describing a winning strategy for this
game may be difficult in practice since this requires an analysis of definability
on the structures forming the game-board. Hence the authors go on to describe
two more games: the invariant (k,Q)-Pebble game and the monotone (k,Q)-
Pebble game. While all games are equivalent for monotone quantifiers, this is
not the case in general. This leaves the task of finding a game avoiding defin-
ability requirements but capturing extensions by general Lindström quantifiers
as an open problem.

The main aim of this paper is to present several related extensions of the
Ehrenfeucht-Fräıssé game adapted to logics augmented with Lindström quanti-
fiers. Our main contribution is a description of an Ehrenfeucht-Fräıssé like game
capturing general Lindström quantifiers without forcing the players to chose
definable structures by the game rules.

2 The Game

Notation 1. 1. Let τ denote a vocabulary. We assume τ has no function sym-
bols, but that is purely for the sake of clearer presentation. τ may have
constant symbols.

2. First order logic will be denoted by LFO. In the course of this paper we will
consider extensions of first order logic; therefore the logic under discussion
will change according to our needs. Of course, we always assume closure
under substitution. We shall denote the logic currently under discussion by
L, and we will explicitly redefine L whenever needed.

3. Given a vocabulary τ , we use L(τ) to denote the language with logic L and
vocabulary τ . We will use this notation only when clarity demands, so in fact
we may abuse notation and use L also for the unspecified language under
discussion.

4. For even further transparency, all the examples in this work (in particular, all
cases of pairs of models to be proved equivalent) will be dealing with simple1

graphs. Hence (only in examples) we further assume that τ is the vocabulary
of graphs denoted henceforth by τGra. Explicitly, τGra = {∼} where ∼ is a
binary, anti-reflexive and symmetric relation. For the Lindström quantifiers
given in examples, we may use vocabularies other than τGra.

A few basic graph theoretic notions will be used in the examples and are
defined here (with the standard notation): In the context of graphs we will

1 An undirected graph with no loops and no double edges is called a simple graph.
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refer to the relation ∼ as adjacency. Given a graph G = (V,E) we will denote
the neighborhood of a vertex x in G by NG(x), defined as the set NG(x) =
{y ∈ V | x ∼ y}. The degree of x will be denoted by dG(x) = |NG(x)|. We
may omit the subscript G when it is clear which is the graph under discussion.
We shall denote the graph induced on U by G[U ] = (U, {e ∈ E | e ⊂ U})
where U ⊆ V is a set of vertices. Finally, we will denote the complement
graph of G by G = (V,

(
V
2

) \ E), where
(
V
2

)
is the set of all subsets of V of

size two.
5. Let A1,A2, . . . ,An be classes of models, each closed under isomorphism.

The models in Ai are all τi-structures in some relational vocabulary τi ={
P

ai,1
i,1 , . . . , P

ai,ti
i,ti

}
, where Pi,j is the jth relation in τi and ai,j is the arity

of Pi,j . We assume A0 represents the existential quantifier and is always
defined.

6. For simplicity, we will assume that each τi has an additional relation, P 1
i,0.

This will serve for the formula defining the universe of the model. Formally,
our models may have any set as their domain (perhaps some set used as the
entire universe for the discussion), and the first relation will define a subset
serving as the domain de facto. See also Remark 6 where we mention other
flavors of Lindström quantifiers.

7. We set ai,0 = 1 for every i.
8. For each i, the class Ai corresponds to a Lindström quantifier Qi, binding

ai =
∑ti

j=0 ai,j variables.

Remark 2. The games and the claims associating them with logics remain valid
even with the absence of the existential quantifier. Still, it seems that the main
interesting case is when first order logic is properly extended, and so we focus on
this case.

Example 3. 1. A1 may be the class of commutative groups, in which case τ1
consists of a constant symbol encoding zero2 and a ternary relation encoding
the group operation.

2. Another example may be finite Hamiltonian graphs, in which case the vocab-
ulary is the vocabulary of graphs and the class A1 will be the class of all
finite Hamiltonian graphs.

Notation 4. Given a vector x̄, we denote the number of elements in the vector
by len(x̄).

Definition 5. We define the quantifier Qi corresponding to the class Ai as
follows: Let G be a τ -structure with domain V . For any sequence of formu-
lae ϕ0(x0, ȳ), ϕ1(x̄1, ȳ), . . . , ϕti(x̄ti , ȳ) such that len(x̄j) = ai,j and denoting the
elements of x̄j are by subscript l (i.e., xj,l), we determine the satisfaction
of the sentence Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) according to
the satisfaction of

2 Of course, one may encode zero using the relation.
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G |= Qi x0, x̄1, . . . , x̄ti(ϕ0(x0, b̄), ϕ1(x̄1, b̄), . . . , ϕti(x̄ti , b̄)) ⇐⇒
({x0 ∈ V | G |= ϕ0(x0, b̄)},

{x̄1 ∈ V ai,1 | ∧ai,1
l=1 G |= ϕ0(x1,l, b̄) ∧ G |= ϕ1(x̄1, b̄)}, . . . ,

{x̄ti ∈ V ai,ti | ∧ai,ti

l=1 G |= ϕ0(xti,l, b̄) ∧ G |= ϕti(x̄ti , b̄)}) ∈ Ai,

where b̄ are parameters.

Remark 6. Definition 5 requires ϕ0 to have exactly one free variable, x0 (exclud-
ing ȳ, saved for parameters). However there is no real reason to avoid sets of
vectors of any fixed length from serving as the domain of the model defined in
the quantifier. We will not discuss this here, but the generalization of the pro-
posed games to this case are straightforward. Sometime Lindström quantifiers
are defined over equivalence classes of such vectors. See, e.g., [6]. Again, we will
not discuss this generalization here.

Definition 7. Let ϕ be a formula in L. The quantifier depth of ϕ, denoted
QD(ϕ), is defined as follows:

1. If ϕ is an atomic formula, in our examples this means ϕ is of the form x = y
or x ∼ y, then we define QD(ϕ) = 0.

2. If ϕ = ¬ψ then QD(ϕ) = QD(ψ).
3. If ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2, then ϕ = max(QD(ψ1),QD(ψ2)).
4. If 3

ϕ = Qi x0, x̄1, . . . , x̄ti(ψ0(x0, b̄), ψ1(x̄1, b̄), . . . , ψti(x̄ti , b̄)),

then

ϕ = 1 + max(QD(ψ1),QD(ψ2), . . . ,QD(ψti)).

Definition 8. An important role in the following is played by the notion of
k-equivalency:

1. Let τ be a vocabulary and L = L(τ) be a language. Given two τ -structures
G1, G2 (not necessarily with distinct universe sets) and two sequences of ele-
ments x̄1 ∈ G1, x̄2 ∈ G2 of equal length a, we say that (G1, x̄1) and (G2, x̄2)
are k-equivalent with respect to L if for any formula ϕ(x̄) ∈ L of quantifier
depth at most k one has

G1 |= ϕ(x̄1) ⇐⇒ G2 |= ϕ(x̄2).

2. When considering only one model, that is, when we take G = G1 = G2, we
refer to the equivalence classes of this relation in the domain of G simply by
the (a, k,G) -equivalence classes where a is the length of tuples in the equiva-
lence class. As usual, when the parameters are clear enough from the context
we shall simple use “equivalence classes” for (a, k,G)-equivalence classes.

3 Notice that by our definition in 1. item (5) above, Q0 is always the existential
quantifier, and so our definition coincides with the standard definition when relevant.
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230 S. Haber and S. Shelah

Remark 9. Notice that unions of (a, k,G)-equivalence classes are exactly the
definable sets of a-tuples of elements in dm(G) using L-formulas of quantifier
depth at most k.

Example 10. Let L be the first order language of graphs, L = LFO(τGra), and
let G = (V,E) be a graph. If G is simple then the (1, 0, G)-equivalence classes
are V and ∅. If |V | > 1 then the (1, 1, G)-equivalence classes are4 the set of
isolated vertices in G, the set of vertices adjacent to all other vertices and the
set of vertices having at least one neighbor and one non-neighbor (some of which
may be empty of course).

Notation 11. We denote the logic obtained by augmenting the first order logic
with the quantifiers Q1, Q2, . . . , Qn by L = L[Q1, Q2, . . . , Qn].

Example 12. Consider the language L = L[QHam](τGra), where QHam stands
for the “Hamiltonicity quantifier” (corresponding to the class of graphs con-
taining a Hamiltonian cycle — a cycle visiting each vertex precisely once).
Let G be a graph. Then the set of all vertices x for which all of the graphs
G[NG(x)], G[NG(x)], G[NG(x)], G[NG(x)] are Hamiltonian is an example of a
(1, 1, G)-equivalence class with respect to L[QHam]. The set of vertices with
degree exactly two is a union of (1, 1, G)-equivalence classes, as can be seen by5

ϕ(x) = QHamx0, x1, x2(x0 ∼ x, x1 �= x2).

2.1 Description of the First Game

Before describing the game, we need the following definition:

Definition 13. Let τ be a vocabulary, L = L(τ) a language over that vocabulary
(not necessarily first order) and G a structure of vocabulary τ . Additionally, let
M = (S′, R′

1, . . . , R
′
t) be a structure of another vocabulary τ ′. A copy of M in G

is a tuple (S,R1, . . . , Rt) such that

1. S is a subset of dm(G) with the same cardinality as dm(M) = S′ (where
dm(G) is the universe or underlying set of G).

2. R1, . . . , Rt are relations over S, such that each Rj has the same arity as R′
j.

3. (S,R1, . . . , Rt) is isomorphic to (S′, R′
1, . . . , R

′
t).

For our first (and simplest) game we will need a more restrictive notion,
defined below:

Definition 14. In the setting of Definition 13, if in addition to requirements
(1) – (3) of Definition 13 the following holds

4. S is a union of (1, k,G)-equivalence classes, and each relation Rj of arity aj

is a union of (aj , k,G)-equivalence classes,

4 The atomic sentences appearing in ϕ(x) are x = y and x ∼ y.
5 ϕ expresses: “the complete graph Kd(x) is Hamiltonian” which is true when d(x) > 2

and false when d(x) = 2 (we may treat K0 and K1 separately, if needed).
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we say that a copy of M in G is k-induced by L. When k or L can be clearly
determined by the context, we may omit mentioning it.

We are now ready to define the first game.

Definition 15. Consider Lindström quantifiers Q1, Q2, . . . , Qn and define L =
L[Q1, Q2, . . . , Qn](τ) to be a language over some relational vocabulary τ defined
as in definition 5 above. Let G1 and G2 be two τ -structures with domains V1 and
V2 respectively. Let k ≥ 0 an integer and c̄� = (c1� , . . . , c

r
�) ∈ V r

� for � ∈ {1, 2}
two finite sequences. We define the game6 EFL1[G1, G2, c̄1, c̄2 ; k]. There are
two players, named by the (by now) traditional names Duplicator and Spoiler,
as suggested by Spencer. The game board is the models G1 and G2 plus the
sequences c̄� and there are k rounds. Each round is divided into two parts, and
each part consists of two sub-rounds. The game is defined recursively. If k = 0,
then if the mapping ci

1 → ci
2 is a partial isomorphism, then Duplicator wins,

otherwise Spoiler wins.
When k > 0 then first Spoiler plays. He picks one of the models G1

or G2 (denoted henceforth by G�) and a quantifier Qi (or the existential
quantifier7). Next Spoiler picks a model M ∈ Ai, and embeds it into G� in
a manner that preserves (k − 1, G�)-equivalence classes. That is, Spoiler picks
a tuple (S�, R�,1, . . . , R�,ti) that is a copy of M in G which is (k − 1)-induced
by L enriched with r constants having values c̄�. If Spoiler can not find such an
embedding, he loses8. Implicitly Spoiler claims that Duplicator can not find a
matching induced copy of a model from Ai.

Second, Duplicator responds by choosing a model M ′ from Ai (M ′ may not
necessarily be the same as M), and then picking an induced copy of M ′ in G3−�

which we naturally denote by (S3−�, R3−�,1, . . . , R3−�,ti). She is implicitly claim-
ing that her choices match the picks of Spoiler, that is, each R3−�,j (or S3−�,j)
is a union of (ai,j , k − 1, G3−�)-equivalence classes defined by the same formulas
as the formulas defining the (ai,j , k − 1, G�)-equivalence classes of which R�,j is
made. If Duplicator can not complete this part she loses. This ends the first part
of the round.

In the second part of the round Spoiler chooses m ∈ {1, 2} and 0 ≤ j ≤ ti.
He then picks (cr+1

m , . . . , c
r+ai,j
m ) ∈ Rm,j (implicitly challenging Duplicator to do

the same). Finally Duplicator picks (cr+1
3−m, . . . , c

r+ai,j

3−m ) ∈ R3−m,j and they move
on to play

EFL1[G1, G2, (c11, . . . , c
r
1, c

r+1
1 , . . . , c

r+ai,j ,
1 ),

(c12, . . . , c
r
2, c

r+1
2 , . . . , c

r+ai,j ,
2 ); k − 1].

This ends the second part and the round. Since k goes down every round, the
game ends when k = 0, as described above.
6 We will describe a few variants, hence the subscript.
7 In this case, A∃ = P (V ) \ {∅}, so Spoiler may choose any non-empty subset S�

of V�.
8 We will consider only logics stronger than first-order, hence the existential quantifier

is always assumed to be at Spoiler’ disposal and he will never lose in this manner.

Sh:1059



232 S. Haber and S. Shelah

Given the description above, the following should be self-evident:

Lemma 16. Let L = L[Q1, Q2, . . . ](τ) be a language over some vocabulary τ
where Q1, Q2, . . . are Lindström quantifiers, and let G1, G2 be two structures with
vocabulary τ . Then, Duplicator has a winning strategy for EFL1[G1, G2, ∅, ∅ ; k]
if and only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.

2.2 A Game Where Definability is Not Forced

While the claim of Lemma 16 may seem satisfying, in practice it may be hard to
put this lemma into use since it takes finding unions of (a, k − 1, G)-equivalence
classes for granted, being a rule of the game. This might hinder strategy devel-
opment and we would like to describe another game with looser rules, denoted
EFL2.

In this version the players are not bound to choosing unions of (a, k − 1, G)-
equivalence classes when picking a copy of the chosen model (hence we call their
action “picking a copy of M in G�”, omitting the “induced” part). That is, we
omit requirement 4 in Definition 13. It falls to the other player to challenge the
claim that indeed every relation is a union of the relevant equivalence classes.

Definition 17. Our definition of the game EFL2[G1, G2, c̄1, c̄2 ; k] is based on
the definition of EFL1[G1, G2, c̄1, c̄2 ; k]. The setting is the same, but now a round
goes as follows:

Spoiler picks a structure G� ∈ {G1, G2} and a quantifier Qi (or, as before, the
existential quantifier). Next Spoiler picks a model M ∈ Ai and picks a copy of
M in G�. His implicit claim now includes the claim that each of the relations he
chose is a union of (ai,j , k−1, G�)-equivalence classes with respect to L enriched
with r constants having values c̄�.

Duplicator can respond in two different ways — she can “accept the chal-
lenge” (as she did in EFL1), or attack the second part of the claim of Spoiler.
That is, she can do one of the following:

1. Duplicator accepts the challenge. In this case she chooses M ′ ∈ Ai and picks
a copy of M ′ in G3−�. Implicitly she is claiming that her choices match the
choices of Spoiler. That is, the set of vertices S3−� and each of the relations
defined on it are a union of the (ai,j , k − 1, G3−�)-equivalence classes cor-
responding9 to the ones that Spoiler picked. This ends the first part of the
round.

Spoiler may continue in a two different ways.

9 We say that E1, an (a, k, G1)-equivalence class of a-tuples in G1 corresponds to
E2 — a set of a-tuples in G2 if for any x̄1 ∈ E1 and x̄2 ∈ E2 one has

G1 |= ϕ(x̄1) ⇔ G2 |= ϕ(x̄2)

for any ϕ ∈ L of quantifier depth at most k.
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(a) Spoiler rejects the fact that the set S3−� or one of the relations picked by
Duplicator is a union of equivalence classes. In order to settle this, we
recursively use EFL2:

This part of the round begins with Spoiler picking j ∈ {0, . . . , t}, pre-
sumably according to the relation that is not a union of equivalence classes.
Again, we let a = ai,j be the arity of the allegedly invalid relation R3−�,j.
Next, Spoiler picks two a-tuples of elements from the same structure,

(cr+1, . . . , cr+a) ∈ R3−�,j and (c′r+1, . . . , c′r+a) ∈ V a
3−� \ R3−�,j ,

and they move on to play

EFL2[G3−�, G3−�, (c13−�, . . . , c
r
3−�, c

r+1, . . . , cr+a),
(c13−�, . . . , c

r
3−�, c

′r+1, . . . , c′r+a); k − 1].

with exchanged roles (since this time Spoiler claims the two tuples are
actually (a, k − 1, G3−�)-equivalent).

(b) Spoiler rejects the fact that Duplicator’s choice matches his choice (as
he did in EFL1). In this case Spoiler picks a relation Pj ∈ τi and an ai,j-
tuple of elements from S� (or one element if he challenges Duplicator’s
choice of S3−�). Denote the choices of Spoiler by (cr+1

� , . . . , c
r+ai,j

� ) ∈
S�. Duplicator responds by picking another a-tuple (cr+1

3−� , . . . , c
r+ai,j ,
3−� ) ∈

S3−�, and they move on to play

EFL2[G1, G2, (c11, . . . , c
r
1, c

r+1
1 , . . . , c

r+ai,j ,
1 ),

(c12, . . . , c
r
2, c

r+1
2 , . . . , c

r+ai,j ,
2 ); k − 1].

2. Duplicator rejects Spoiler’s claim. In this case Duplicator wants to prove
that S� or one of the relations picked by Spoiler is not a union of equivalence
classes. We continue similarly to case 1.(b):

As before, we begin this move with Duplicator picking j ∈ {0, . . . , t}, pre-
sumably according to the relation that is not a union of equivalence classes.
Again, we let a = ai,j be the arity of the allegedly invalid relation R�,j splitting
an equivalence class. Next, Duplicator picks two a-tuples of elements from the
same structure,

(cr+1, . . . , cr+a) ∈ R�,j and (c′r+1, . . . , c′r+a) ∈ V a
� \ R3−�,j ,

and they move to play

EFL2[G�, G�, (c1� , . . . , c
r
� , c

r+1, . . . , cr+a),
(c1� , . . . , c

r
� , c

′r+1, . . . , c′r+a); k − 1].

this time keeping their original roles.

For any two models G1 and G2, constants c̄1, c̄2 of elements from the domains
of G1 and G2 respectively, and k ∈ N, whoever has a winning strategy for
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EFL1[G1, G2, c̄1, c̄2; k] has a winning strategy for EFL2[G1, G2, c̄1, c̄2; k]. Hence
the parallel of Lemma 16 is true for EFL2 as well.

While we got the benefit of in-game validation of the equivalence classes
integrity claims, EFL2 is not easy to analyze in applications because the game-
board and players’ role change over time. We amend this in the last suggested
version of the game.

2.3 A Game with Fixed Game-Board and Fixed Roles

The last version, denoted EFL3, forks from EFL2 in two places.

Definition 18. We define EFL3 like EFL2 except that:

1. First, assume the game reaches step 2., where Duplicator wants to prove that
Spoiler has chose a relation R�,j splitting an equivalence class. In this case the
first part of the round ends immediately and the second part goes as follows:

Duplicator picks j ∈ {0, . . . , t}, as before. Next, Duplicator chooses two
ai,j-tuples, c̄�,1 from R�,j and c̄�,2 from the complement of R�,j. She then picks
another ai,j-tuple from the universe set of G3−�, denoted c̄3−�. Spoiler than
picks one of c̄�,1 or c̄�,2 and they move on to play EFL3 with c̄3−� concatenated
to the constants of G3−� and Spoiler’s choice concatenated to the constants
of G�, and k − 1 moves. They keep their roles and the game-board remains
G1 and G2.

If Duplicator cannot find a matching tuple in G3−�, she cannot disprove
the integrity claim of Spoiler, but it does not matter as G1 and G2 are not
k-equivalent and she is bound to lose anyway.

Notice that in this case the first part of the round had only Spoiler playing,
and in the second part Duplicator played first.

2. The second (and last) change from EFL2 happens when the game is in step 1a.
In this case Spoiler wants to prove that Duplicator’s choice of at least one
relation R3−�,j is splitting an equivalence relation. As always, here also the
move begins with Spoiler choosing j. Then Spoiler picks a tuple c̄3−� (from
the suspicious equivalence class) in G3−� that is not in R3−�,j and challenges
Duplicator to find a matching tuple c̄� in G3−� that is not in R�,j. They move
on to play EFL3 with these choices and k − 1 moves. Again both roles and
game-board remain as they were. Notice that the game flow in this case is
actually the same as the game flow in 1b.

As before, it is easy to convince oneself that the claim of Lemma 16 is still
valid. We repeat it here:

Lemma 19. Duplicator has a winning strategy for EFL3[G1, G2, ∅, ∅ ; k] if and
only if for any sentence ϕ ∈ L of quantifier depth at most k

G1 |= ϕ ⇐⇒ G2 |= ϕ.
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An Extension of the Ehrenfeucht-Fräıssé Game for First Order Logics 235

3 Summary

We have presented three equivalent variants of the celebrated Ehrenfeucht-
Fräıssé game adapted to deal with logics extended by Lindström quantifiers.
We believe EFL3 may be easier to analyse than direct quantifier elimination and
it is our hope that it will find applications.

Acknowledgements. We would like to thanks the anonymous referees whose com-
ments helped significantly in improving the presentation of this paper and in putting
it in the right frame.
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