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Abstract. Let α ∈ (0, 1)R be irrational and Gn = Gn,1/nα be the ran-
dom graph with edge probability 1/nα; we know that it satisfies the 0-1
law for first order logic. We deal with the failure of the 0-1 law for stronger
logics: L∞,k,k a large enough natural number and the inductive logic.
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Let Gn,p be the random graph with set of nodes [n] = {1, . . . , n}, each edge
of probability p ∈ [0, 1]R, the edges being drawn independently, (see �1 below).
On 0-1 laws (and random graphs) see the book of Spencer [6] or Alon-Spencer
[1], in particular on the behaviour of the random graph Gn,1/nα for α ∈ (0, 1)R
irrational. On finite model theory see Flum-Ebbinghaus [2], e.g. on the logic
L∞,k and on inductive logic, also called LFP logic (i.e. least fix point logic). A
characteristic example of what can be expressed in this logic is “in the graph G
there is a path from the node x to the node y”, this is closed to what we shall
use. We know that Gn,p (i.e. the case the probability p is constant), satisfies the
0-1 law for first order logic (proved independently by Fagin [3] and Glebskii-et-al
[4]). This holds also for many stronger logics like L∞,k and the inductive logic.
If α ∈ (0, 1)R is irrational, the 0-1 law holds for Gn,(1/nα) and first order logic.

The question we address is whether this holds also for stronger logics as
above. Though our real aim is to address the problem for the case of graphs, the
proof seems more transparent when we have two random graph relations (with
appropriate probabilities; we make them directed graphs just for simplicity). So
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we shall deal with two cases A and B. In Case A, the usual graph, we have to
show that there are (just first order) formulas ϕ�(x, y) for � = 1, 2 with some
special properties, (actually we have also ϕ0(x, y)). For Case B, those formulas
are R�(x, y), � = 1, 2, the two directed graph relations. Note that (for Case B),
the satisfaction of the cases of the R� are decided directly by the drawing and so
are independent, whereas for Case A there are (small) dependencies for different
pairs, so the probability estimates are more complicated.

Recall

�1 a 0-1 context consists of:

(a) a vocabulary τ , here just the one of graphs or double directed graphs,
(b) for each n,Kn is a set of τ -models with set of elements = nods [n],

in our case graphs or double directed graphs,
(c) a distribution μn on Kn, i.e. μn : K → [0, 1]R satisfying Σ{μn(G) : G ∈

Kn} = 1
(d) the random structure is called Gn = Gμn

and we tend to speak on Gμn
or

Gn rather than on the context.

Note that in this work “for every random enough Gn . . . ” is a central notion,
where:

�2 for a given 0-1 context, let “for every random enough Gn we have Gn |= ψ,
i.e. G satisfies ψ” means that the sequence 〈Prob(Gn |= ψ) : n ∈ N〉 converge
to 1; of course, Prob(Gn |= ψ) = Σ{μn(G) : G ∈ Kn and G |= ψ}.

But

�3 Gn,p is the case Kn = graph on [n] and we draw the edges independently,

(a) with probability p when p is constant, e.g. 1
2 , and

(b) with probability p(n) or probability pn when p is a function from N to
[0, 1]R.

In the constant p case, the 0-1 law is strong: it is done by proving elimination of
quantifiers and it works also for stronger logics: L∞,k and so also for inductive
logic Lind. Another worthwhile case is:

�4 Gn,1/nα where α ∈ (0, 1)R; so pn = 1/nα.

Again the edges are drawn independently but the probability depends on n.
The 0-1 law holds if α is irrational, but we have elimination of quantifiers

only up to (Boolean combination of) existential formulas. Do we have 0-1 law
also for those stronger logics? We shall show that not by proving that for some
so called scheme ϕ̄ of interpretation, for any random enough Gn, ϕ̄ interpret
an initial segment of number theory, say up to m(Gn) where m(Gn) is not too
small; e.g. at least log2(log2(n)).
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For the probabilistic argument we use estimates; they are as in the first order
case (see [1], so we do not repeat them).

For the full version see the author website or the mathematical arXive. The
statements for which we need more estimates will probably be further delayed;
those are the ones proving that:

�5 • using nε instead of log2(log2(n)) in the proof for Case 1 so the value of
“Prob(Gn,1/nα) = ψ” may change more quickly,

• we can define “n even” (i.e. Lim(Prob(Gn,1/nα |= ψ iff n is even) exists
and is one; this is done by defining a linear order on Gn,ᾱ.

• we may formalize the quantification on paths, so getting a weak logic
failing the 0-1 law, but its naturality is not so clear.

A somewhat related problem asks whether for some logic the 0-1 law holds for
Gn,p (for constant p ∈ (0, 1)R, e.g. p = 1

2 ) but does not have the elimination of
quantifier, see [5].

We now try to informally describe the proof, naturally concentrating on
case B.

Fix reals α1 < α2 from (0, 1
4 )R, so ᾱ = (α1, α2) letting α(�) = α�;

�6 let the random digraph Gn,ᾱ = ([n], R1, R2) = ([n], RGn,ᾱ

1 , R
Gn,ᾱ

2 ) with
R1, R2 irreflexive relations drawn as follows:

(a) for each a �= b, we draw a truth value for R2(a, b) with probability 1
n1−α2

for yes
(b) for each a �= b, we draw a truth value for R1(a, b) with probability 1

n1+α1

for yes
(c) those drawings are independent.

Now for random enough digraph G = Gn = Gn,ᾱ = ([n], R1, R2) and node
a ∈ G we try to define the set Sk = SG,a,k of nodes of G not from ∪{Sm : m < k}
by induction on k as follows:

For k = 0 let Sk = {a}. Assume S0, . . . , Sk has been chosen, and we shall
choose Sk+1.

�7 For ι = 1, 2 we ask: is there an Rι-edge (a, b) with a ∈ Sk and b not from
∪{Sm : m ≤ k}?

If the answer is no for both ι = 1, 2 we stop and let height(a,G) = k. If the
answer is yes for ι = 1, we let Sk+1 be the set of b such that for some a the pair
(a, b) is as above for ι = 1., If the answer is no for ι = 1 but yes for ι = 2 we
define Sk+1 similarly using ι = 2.

Let the height of G be max{height(a,G) : a ∈ G}. Now we can prove that
for every random enough Gn, for a ∈ Gn or easier- for most a ∈ Gn, for not too
large k we have:
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�8 SGn,a,k is on the one hand not empty and on the other hand with ≤ n2α2

members.
This is proved by drawing the edges not all at once but in k stages. In stage

m ≤ k we already can compute SGn,a,0, . . . SGn,a,m and we have already drawn all
the R1-edges and R2-edges having at least one node in SGn,a,0 ∪· · ·∪SGn,a,m−1;
that is for every such pair (a, b) we draw the truth values of R1(a, b), R2(a, b).
So arriving to m we can draw the edges having a nod in Sm and not dealt with
earlier, and hence can compute Sm+1.

The point is that in the question �7 above, if the answer is yes for ι = 1
then the number of nodes in Sm+1 will be small, essentially smaller than in Sm.
Further, if the answer for ι = 1 the answer is no but for ι = 2 the answer is
yes then necessarily Sm is smaller than say n(α1+α2)/2 but it is known that the
R2-valency of any nod of Gn is near nα2 . So the desired inequality holds.

By a similar argument, if we stop at k then in S0 ∪ · · · ∪ Sk there are many
nodes- e.g. at least near nα2 by a crud argument. As each Sm is not too large
necessarily the height of Gn is large.

The next step is to express in our logic the relation {(a1, b1, a2, b2) : for some
k1, k2 we have b1 ∈ SGn,a1,k1 , b2 ∈ SGn,a2,k2 , k1 ≤ k2}.

By this we can interpret a linear order with height(Gn) members. Again
using the relevant logic this suffice to interpret number theory up to this height.
Working more we can define a linear order with n elements, so can essentially
find a formula “saying” n is even (or odd).

For random graphs we have to work harder: instead of having two relations
we have two formulas; one of the complications is that their satisfaction for the
relevant pairs are not fully independent.
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