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Since all we need of the regularity of X is just the existence of such a x-com-
plete subalgebra # of RO(X), we assume in what follows that X has the fine
topology wrt. {X,: aed}.

But then, in view of (i), Lemma 2 applies and yields us x(p, %) < x for all
peX. On the other hand since (ii) is satisfied Lemma 3’ can also be applied and
this gives us x(p, B)> x for some pe X. This contradiction then finishes the

proof. B

COROLLARY. If X is T, and X = JX,, with wL(X,) x(X,) <% for all o then
X1 <2% *

Proof. Assume, indirectly, that X = LJ {X,;: ael} and [X] =2 =(29"
Similarly as in the above proof we can see that |X,| < 2” for each o, consequently
wL(X,) 1(X,) < is also valid because X, = Xj holds for some Bel But X, is

also T, and thus by X = UT {X,: «e 1} we get a contradiction with Theorem 2.
Note that this corollary does not follow immediately from Theorem 2 because
a subspace of a T, space is not necessarily 7.
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Modules over arbitrary domains IT
by

Riidiger Gobel (Essen) and Saharon Shelah® (Jerusalem)

Abstract, Let R be a commutative ring and SSR a multiplicatively closed subset of R
Defining torsion-free modules with respect to S, we derive new results of this category extending'
from [§] = Ro. In §8 we realize any R-algebra 4 with torsion-free, reduced R-module structure
on modules G as

EndG = AQInesG

where Ines(? are all endomorphisms on G with @-complete image in G. In §9 we determine Tnes G
more explicitely and derive properties of G from the given algebra 4.

§1. Ifntrod.uction. We will discuss right R-modules G = Gy over nonzero
commutative rings R. The ring R will have.a fixed multiplicatively closed subset S
such that R as an R-module is S-reduced and S-torsion-free. These well-known

conditions on a module G are () Gs = 0 respectively (gs = 0= g = 0) for all
a8

geaq, ses. }

Many questions on the existence of R-modules with prescribed properties
can be reduced to representation theorems of R-algebras 4 as endomorphism
algebras — in many cases modulo some “small” or “inessential” endomorphisms.
Wcll—known examples for such problems are decomposition-properties related
with the Krull-Remak~Schmidt Theorem -— respectively related with Kaplansky's
test problems, other derive from questions on prescribed automorphism groups
or topologies. The investigation of classical problems in module theory in this
sense goes back 10 a number of fundamental papers by A. L. 8. Corner; sce [CG]
for further references.

In the recent years these investigations have been extended to R-modules
of arbitrary large size, however under the restriction that § is essentially countable;
see ‘[DG 1,2], [GS 1], [S 2,3] and [CG] for a uniform treatment and further ex-
tensions, including torsion, mixed and torsion-free R-modules.

o * jfhis. research was carried out when the first author was a visiting professor at the Hebrew
University in 1983/84. The authors would like to thank Minerva-foundation and the United
States Isracl Binational Science Foundation for their financial support of this research.
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In particular, we have a very satisfying picture for abelian groups. We also
want to point out that this progress in algebra is due to recent results in model
theory; see [S1], Chap. VIIL In the mentioned papers we are able to use topologicat
methods and to construct the required modules as dense submodules of some ap-
propriate “S-completion” of a free 4-module. The great advantage of such con-
structions is due to the fact that an endomorphism by continuity extends uniquely
to its completion. In fact, also Corner’s classical papers of this subject depend
heavily on this. More recently modules over arbitrary valuation domains came
into the focus of investigations; see e.g. the new textbook by [FS]. In.order
to cover these and more general. classes of modules, we are forced to omit the
countability of §. One way to do this is to replace the underlying free 4-module
(see above) by a more general object and to preserve the topological methods.
The result which is a representation theorem for a certain type of R-algebras
including R itself can be found in [GS2]. If we want to derive a more general
tepresentation theorem, we have to give up the topological methods, which is
carried out in this paper.

The rudiment of the topological arguments will be the requirement of a “count-
able support” of all elements of the constructed modules. The unique extension
of homomorphisms will be replaced by the existence of solutions of certain infinite
systems of linear equations. Again, the ideal Ines G of all inessential endomorphisms,
the classes of cotorsion (= w-cotorsion) and cotorsion-free modules will play
a crucial role. These notions will need natural extension to this larger category of
modules G. We say that G is w-complete (= w-cotorison) if any countable se-
quence of elements @,e G and divisors s,,, € Ss, give rise to an element x e G

such that x = ) g;5; modGs, for all mew. If G is any module, then the set
i<m

InesG is the collection of all inessential endomorphisms of G which are those with
w-complete image. The set InesG is a two-sided ideal of G. For % a cardinal,
Ines,G denotes the ideal of all yeInesG with |Gy| <. The module G is (w-)co-
torsion-free if G contains no w-complete submodule # 0.

We will say that a cardinal A is admissible (for 4 and ) if 4 >|4|™, and
cf 4> |S|™ in case S does not contain a divisor chain (Sneo With ﬂ Rs, = 0.
Then our main result (8.1) is as follows:

Let A be an R-algebra with S-reduced and S-torsion-free R-module structure Ap
and A any admissible cardinal. Then there exists an S-reduced and S-torsion- -free
R-module of cardinal A™ such that

*) EndzG = A@InesG = ADToes 4+ G .

The proof of this result is based on a substantial simplification of the algebraic
argument due to a more suitable “stationary Black Box” (4.3) which takes better
care of some combinatorial arguments. However, it should be said that also the
“classical” Black Box (4.2) or those used in [S2), [CG] or [DG2] are successful
in proving (x) for certain cardinals. We will show in § 9 that every complete R-sub-
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module is contained in an 4-submodule of finite rank; and every A-submodule
of finite rank is contained in a pure and finitely generated free 4-submodule of G.
This has immediate consequences on the structure of G. The module G is §;-free
if and only if 4, is &,-free, and G is cotorsion-free if and only if Ay is cotorsion-free.
If G is cotorsion-free, obviously InesG = 0 and (x) reduces to an exact realization
theorem:

If A is an R-algebra with Ag cotorsion-free and 2. is admissible, then there exists
a cotorsion-free R-module G with EndxG = 4 and |G| = A™.

In the case of proper Dedekind domains R (= neither fields nor complete
discrete valuation domains) this result was derived in [DG2] for certain admissible
cardinals A. In this earlier paper some local-global arguments appeared to be
necessary in order to deal with Dedekind domains having uncountable many primes.
Unfortunately this leads to a representation of a larger algebra A* which, in the
case of Dedekind domains turns out to be 4 using a result of E. Matlis. This kind
of difficulty has been abolished by our ad hoc assumption that S does not need
to contain a chain of cofinality w (in the lattice of principle ideals).

§ 2. Algebraic preliminaries. Let R be a nonzero commutative ring with 1
and S a multiplicatively closed subset of nonzero divisors such that (} Rs = 0.
H]

Modules will be right R-modules and a module M is S-reduced, it () Ms = 0.
s

The module M is S-torsion-free if ms = 0 (me M, s € S) implies m = 0, i.e. multi-
plication by s is injective. If multiplication by s is surjective, we say that M is §-divis-
ible. A submodule U of M is S-pure if

Msn U= Us

If M is S-torsion-free, this amounts to say that M/U is S-torsion-free as well.
Ifs,s'€S, reS with s = rs, we will also write s|s’ and (s,) will denote a divisor-
chain, i.e. so = 1, 58,4, € S for all n e w. We will reserve sy for SpSuy

The set S will be fixed throughout, and we will omit the prefixed S in the
definitions. Let 4 be a fixed R-algebra which is reduced and torsion-free as an
R-module. We also choose an admissible cardinal 1; i.e. a cardinal 1 > |4|™ with
cf > |8]™ in case that the lattice defined by S is not cofinal with w; cf. § 1.
W.L.0.G. we will require that A = 1; otherwise apply one further combinatorial
step similar to [S3]. If M is an 4-module and X a subset of M, then (X ') respectively
{X>, denote the R-submodule respectively the A-submodule generated by X.
If it is clear from the context, we will omit R respectively 4.

Recall that an R-module M is algebraically compact if any system of equations
> x;r; =myeM, iel, ryeR and ry; = 0 for almost all j (if i is fixed) which
ied

has solutions for all finite subsystems also has a global solution x; € M. There are
various ways to characterize algebraically compact modules; see R. Warfield [W]
or M. Ziegler [Z]. In particular, any module is purely contained in a “unique” algeb-
raically compact hull. We will need only a weak version of these results, which is
2‘

for all se§.
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outlined in (2.1). Our systems of equations Y x;r; = m, (iel) are very special
Jel

and all index sets are countable.

In § 4 we will consider a support function [ ] on a module M; i.e. we assign
to each me M a countable set [m] in a fixed set T (which is a tree). The support
function [ ] will have the following (obvious) properties.

(a) [0] = &, [mal=[m] for all uecd, meM,
[m+myle [m]umy]  for me M.
(b) For the sake of completeness we mention (i) and (ii)
() n e [m] implies m }ne 4 (= algebraically compact hull),

(ii) n € T\[m] implies m } = 0,

(iil) If m+geMs and [m] n [g] = O, then me Ms and g & Ms.

LeMMA 2.1. Let M be an A-module and S< R as above. Let [ ] be a support
Sfunction on M satisfying (a) and (b) (iii), a, € M (ne w) and (s,) @ divisor chain.

Then there exists an exiension M' of M such that

D) M = U MOy'A where y's} = a,_,+y""*. In particular, M is a pure

new

submodule of M'.
() x = y%sy € M’ satisfies the equations

xX= Y aw; = —~y"s, foralneow.
i<n
We denote x by the suggestive symbol x = 3 ays;, moreover
igw

S
y= Zai—

i
izn S,
(i) [m+y"al = Iml v  [a,a] extends the support function Jrom M to M'. In
izn
particular we have [y a;5,] = U [a;].
ieo i

W Iff,geM and [f1n gl = @, then -

(@) ge M and s|(f+g) imply s|f and slg,

(b) f and g are A-independent.

Proof. (i) Let E=M® @ y,4 and D = {y"s¥~y""'~q, ;! new), an
A-submodule of E. If de D M, then d = Y (g~ pn~!

new

—ly)Cp=meM
and ¢, = 0 for almost all # e w. Therefore

0 %
Yosocy+ Zy" S:xkcn'"cn—l-l).—cz Aym1Cytm) = 0,
n>1 nz1

0 . . &
which implies ¢; = 0 and inductively ¢, = 0 for all n e . Since m = — Y ayi0,
heow

a]so' m = 0 and DN M=0. If M' = E[D, the map M — M’ (m — m+D) is
an injection and we identify M and its image. Moreover, (»"A+D)/D = y"4 is

a tc'omplement of M in (M®y"A)+D/D and (i) follows with the natural identifi-
cations.
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(i) The relations in (i) are equivalent with @;_,5;—; = y's;—»'"15;_,. Sum-
mation Y. leads to Y a;s; = »"s,+)"so, hence
i<n

i<n

Wso— Y a;5; = —y"s,e M’ (new)
i<n

as required.

(i) If fe M’ then f = m+y,a for some me M, new, ae A Using () in-
ductively, we have
) f= (=, =, 11574 A=y pSps 2516 — )+ (" s 5}T+1a)-
The first bracket belongs to M the second to 4 4. Using (%), it is easy to see that
(iii) is a well-defined extension of the support function [ ].

(iv) (a) Let f= m+y,a be as in (iii) and ge M. Then (iii) implies [m] n {g]}
= [g;a] n [¢g] = @ for all i>n. Since

f+g = (m+g)+y"a = (m*+y"a%)s

we have

for some a*e A, m*e M
3 s

(m+g—m*s)+y"(a—a*s) =0
and (¥) implies T]
1+nsisk
= m*s in M with [m] n [g] = @, which leads to m, g € Ms by property (b) (iii}
of support functions. We derive fe M's and g € Ms.
(b) follows by a similar argument.

»*¥Esf(a—~a*s) = 0, hence a = a*s. Therefore m+g

§ 3. Combinatorial preliminaries. We will consider the tree T = “”1 with
a cardinal 1 from § 2. Then T consists of all finite sequences 7: #n — A (7 < @) which
we also denote by 1 = (7o) "(1)" ... “(t,—1). We call n = I(r) the length of .
If ¢,7eT we have the natural order on T given by contajnment, i.e.
st 0=1< (domo=domr and ¢ = 7} doma).

We also fix a strictly increasing continuous map ¢: ¢f(A)+1 — A+41 with ¢(0) = 0
and g(cf(i)) = A. This is used to define the morm |ln|| for n € T which is ||n]|
= min{e <cf(A): n€“”o(x)} and can be extended to subsets X of T by [|X]|}
= sup{llli: ne X}.

A maximal linearly ordered subset v < T is called a branch and we will write-
v={,=v } n: new} for some v: @ —T where [(v,)=n. If X=T, then Br(X)
denotes the set of all branches v = X. We call a subset w of T a branch
Br(w) = v with leaves {a,<Ai: neow} if w={w,: new} and w,=vlnu
U (@ pr—1)"(et,~yy such that o,_; <v(n—1); i.e. leaves grow only on one side
of the branch and if we strip them off, the naked branch Br(w) remains. We call
v a constant branch at the ordinal o < A if v(f) = « for all ie .

Finally we call a sequence {x,€T: n e w} an antibranch if ||x,|| <||X,ll for
all n € w and there is no pair {x,, x,,} which is comparable in T. If (T, <,/) and.
(I, <, 1) are two trees, a map f: T — T", is a tree embedding if f is injective and
if 6,7eT and o<t then /(o) = I(f(0)) and f(o) <f(z). We will reserve f* for
tree embeddings f*: ¥ — T'= ®” 1 (k € @) such that f*~ ! cf%.
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If X<T and v<cf(d), then we write
X o= {ae X, o] >},

§ 4. The black box. Let A be the reduced, torsion-free R-algebra from § 2 and

T = ®”) be the tree from § 3. Then we consider the cartesian product C = [] 54
neT

and let [¢] = {neT, c}n # 0} be the support of ¢ e C. The norm [[¢]| = ||[c]|| is
an ordinal <cf(l). Let B = @ nd denote the free A-submodule of C. We now
eT

define certain elements, theirﬂ support and norm, which are the candidates of
generators of our final module G. They are defined inductively and we call such
elements potential (over B):

(i) If ue B, then u is potential and [v], ||u]| are defined above.

(i) Let w, (n € ) be potential, v a branch or a branch with leaves in T" such

that ||[{u,: n e w}|| <|lv]] and (s,) a divisor-chain, then y* = ¥ u,s,/s, is defined
nzk

in (u,: new)y according to (2.1) and [y*] = U [u,]. The elements w* = y*+
nzk
+ Y, (v [ n)s,/s, (k € w) are potential and [wW¥] = [Y*] U {v,: n =k} and {|w"]] = [[o}].
nzk

(iii) Elements of an 4-module generated by potential elements are potential.
In this case we say that the module is potential.

A homomorphism is potential if its domain and image are potential. In our
constructions we only deal with potential homomorphisms, and it is essential that
their cardinality is bounded by some power of |B|. It will be convenient to say
that U is a canonical module if U is a potential module with countable [U] con-
tained in U.

DerFNiTION 4.1. A trap will be a sequence (f,P,d,d,,s,: new) with
St °“o > T a tree-embedding, P a canonical module, & e EndP, a,€P (new)
and (s,) a divisor-chain such that

(@) Tmf = [P];

(b) [P] is a subtree of T;

(c) of(IP|]) = w;

(@) l[v]] = |IP] for all v & Br(Imf).

Using modifications of [S2], [S3] or [CG] we obtain

THE BLAck Box 4.2. There exists a sequence of traps

(f% P% &% a5, 8,: nEw) (< i¥)

for some ordinal A* such that the following holds for a, f < 4*:
@ B<o = [P <IIP4l,
(ii) B-# « = Br(Imf* A Imf%) = @,
(ii) f+2% < o = Br(Imf* n [P)) = @.
(iv) If P is a canonical module, ¢ € End K potential, B< K and P = K, X< K,
1X] <8g, ¢, €P (new), (s,) a divisor-chain then
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(a) there exists x < A* such that (x) holds:
(%) PO X<SPY Pl <|IP] @t P* = ¢,
ay = d,, Sy = S, (NE®).
(b) if in addition ||B®|| <4, then there exists « < A* such that (+) holds and

{+¥) For all v e Br(Im/*) there are leaves af <A (i € @) such that (v } ))*{afy € P*
and (v} 9)@* = ((w} i—1)"{ef_;) " for all i e .
Proof. Define partial traps of length me w to be
P = (f", P", O™, dy, sy nEw)

consisting of a tree-embedding f™: "o — T, a canonical module P™, a potential
homomorphism ¢": P™ — Im(®™), elements dy € P" (neow) and a divisibility
chain (sp). )

The number of partial traps is 4™, because each coordinate in £™ takes at
most A¥°. values. Hence we may code all partial traps by {#,: ¢ <A™} where each
partial trap 2" appears A% many times in the list.

For the sake of simplicity we now assume A = ), to be regular; the case
%> ) can be treated similar using some ultra-filter argument; the changes
are relevant only for ¢fA = @ and can be found in [S3]. 'Hence we conclude

(+) {@; £<2} and for each partial trap #"
[{&: <A, Py =2} = A.

Next we choose an imjection h: wxAxcf(d) - A which is strictly increasing
in each argument. Given a partial trap 2™ = &, then we define

H(P) = fm*1: ™12 4 T such that fm+i} "2p = f™
and if €™ 1w, I(¢) = m+1, then
F™ (o) = fm(o tm) k(o (m), &, [I1P™]) -

Now we define an H-trap 2 = (f, P, @, 4a,, s, new) consisting of a se-
«quence of partial traps Py, = (f7, P™, &7, dy, s': new) for all length me
with f™ = H(Pymy), Imf™* 0 P™ U [P"]¢ S P™* (where [X]¢ denotes the
subtree generated by [X]<T), P"d™ < P+ and @™ < @™ such that

f=Usm P=UP", o=1 O a’=d,

mew mew mew

Tt is now easy to see that the conditions force & to be a genuine trap. The
required sequence of traps &* = (f* P%, &% dy,s,,: n€w) is just the set of all
H-traps with a suitable well-ordering. The conditions (i) to (iv) (a) can be derived
similar to [CG), Theorem A.7, or [S2]. Hence we will concentrate on (iv)(b), and
suppose @ € End K, ||BP|| <cfA. We must find an H-trap 2 with the required
property (%), i.e. we must find the associated sequence of partial traps. This will
be carried out by induction on me w.

Suppose the partial trap 2™ has been constructed. In particular we know
F™ ™ p o T and let {v;: ic o} be the set of all elements v e Imf™ of length 1()

a

=3, new).
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= m. Then we define J = ) {u<A: Ty <u; such that (v ()P = () o}

iew
Since {v/(uy: a <A} =T<=B and ||BP|| <cfl, also |J| <1

Let Yy = {h(c(m), &, [IPID): ce™ PN w} = {h(n, £,||Py): new} for
¢ <4 such that #; = 2" By (+) there are 1 many such & If always Y; nJ # @,
there is one ne w with h(n, &, ||P|) e J for 4 many & < A. Since % is injective in
the second co-ordinate, this implies [J] = A, which was excluded. So we find &<
with Z, = ™ and Y, nJ = (& takes care of the requirement () at stage m1;
to be definite we may choose a leaf «p, of the initial part v} m~+1 of a later branch
in Imf to be ay, = min{yei: y # vy, @Pm+1)P = (0} m)*(yy)#}. Finally
we extend P™ to P™*! to satisfy the remaining condition of an H-trap at stage
m+1, including (v} m)"epy € P for all initial parts of branches v. Observe
that these are countably many “requirements”. From this induction we derive the
required tiap & satisfying (x).

The Stationary Black Box 4.3.If ¥, ¥’ and V"' are any disjoint stationary
subsets of {x € cfA: cfa = w}, the traps in (4.2) (f% P%, 9% af, i n € 0) (< A%)
satisfy the additional properties

(5iv) (a) Condition (iv) (8) holds with ||[P%|e V'

(b) Condition (iv) (b) holds with [|P%||e V.

Remark. This follows from the Black Box (4.2) using an additional argument
coming from model theory. A model theoretic proof is given in [S3] and a direct
proof is contained in [FG]. Since {zecfy: cfu = w} is a stationary set, the
existence of ¥, ¥” and V" follows from Solovay’s Theorem; see [J], p. 58, p. 433.

§ 5. The construction of the modules. The Black Box (4.3) will now be used
to construct the required modules by a transfinite induction on & < A*. For trans-
parency we will construct only one candidate G for each A. However,' with this
method ‘we can easily build a “rigid system” of 2* modules. This natural extension
can be copied from [CG] using [G2].

With the Black Box (4.3) we have disjoint stationary sets ¥ u V' u V' <cf| (Ay
and we let A7 = {a < A*: |[P*| e V'} and 1° = {aei*: ||PYle VU V). We want
to define an increasing and continuous chain G, (u<A¥) of A-modules such that
Gy =B (sec §4) and G =#<L{* G, M p=a+1is not a limit, we also define

potential elements @ (k€ w) as follows. Suppose G, has been constructed and
P = (f* P, &, df, St new) 1§ taken from the Black Box (4.3). We want to
find a suitable branch v, e Br(Imf*) and if « € A% also leaves o] (e w) such that
day = v, } 1 respectively (xe )ty = v, } n—(v,} n—1)"{ay..1». Then we choose
a suitable d, € {0, 1} and let

= 4% 1 St
*) Gy = OO, +ay  and  df= Y a,-2,
iz Sax

Gory = {0, di: ke w),.
The letters of, a,, are Teserved for these generators, and we will use a, = 42.
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The choice of v,, §, depends on the following circumstances. We say that an
ordinal <o is strong at stage «+1 if there does not exist x € G, with
Z ;559" = xm0d G,y 5y, for all mew.
i<m

If o € A¥N\A%, we say that o is strong, if we find a branch v, € Br(Imf®) and 6, € {0,1}
such that al, = v, } 7 and («) imply that o is strong at stage «+1 and if B <o was.
strong at earlier stages (it is enough to say “at stage «”), then B remains strong
at stage o+1.

If «ely, we say that o is complete if there is a branch v, € Br(Imf*) with
leaves o} (i€ w) and J, = 1 such that

at, = v b n—(v, b n=1)"al_> and al,@* = 0
Furthermore we require that f <o remains strong at stage o1 in (*) if f was
strong at earlier stages, e.g. at a. '

If o e A* is neither complete nor strong, we say that o is weak if we find at
least a branch v, e Br(Im/f®) and §,e {0, 1} with al, = v,} n and using (¥) any
B < o remains strong at o+ 1 if it was strong. Otherwise we call & < A* to be useless.

We make our choice v,, 8, always best possible for «. Naturally, “strong or
complete” is better than “weak” and “weak” is still better than being “useless”. To
complete the induction step (and hence the construction), we may use at = O
(k € w) if o is useless. However, we will show in (5.3) that this case does not occur
because all ordinals are quite useful.

Remark. Complete ordinals will serve for completions (in the topological/
algebraical sense) of certain submodules of G. If o.e A%, we will also use o+ 1
to denote the successor ofain A%

RECOGNITION-LEMMA 5.1. Let g € G\B. Then ||glle VU V' and

(a) there is a unique a& A° such that g€ G,.,\G, and there are ordinals
o =0y> .. >« in A* and branches v,, with leaves ol Gew) if ;e ly or without
leaves if ocje/}*\lf such that ol = |log|l. If we, = vy, respectively wy, = v,
U {(v,, t DN aly: ie o}, there exists v <||v ]| such that

Jdgl=Fu U,lw]
jsr

where FE T is finite and ||v,}| <||nl| for all ne F.
®) If <A’ and Hogll = o)} there are ne A and kew such that gt o

forall new.

§,
= ¢y Sor almost all o €.
Sk
Proof. It is clear from the construction that

g=>b+x+ Y aba; where beB, ;e 4,
Jjsr

Hxll < llog |l = llvad| and o>y for all j<r.
Observe that we use k simultaneously for all summands which is no loss of gener--
ality. We will always do this, mainly to simplify notations. Since ||v,|| is a limit
ordinal and ||b|| a successor, condition (a) is immediate by (4.3).
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(b) If f = a; we claim g} o = aé%'-) a; for almost all ¢ e ;. Choose j = 1
k

and suppose o & [af,a,] for infinitely many ¢ &v,. From the Black Box (4.2) (i)
we derive o, = (0, } n—1)"5_; €Imf? for infinitely many new. Since f# is
a tree-embedding also (v, } n—1)eImf? for infinitely many new. Therefore
Vs, € Br(Imf?) and B = o, by (4.2)(ii). This contradicts § = a, > «,. Hence g Vo
has no contribution from af,a, for almost all ¢ ev,,, and the claim follows by
induction. Now (b) follows easily; observe that a = 0 if f # a; for all j<r.

No-UseLESs-ORDINALS-LEMMA 5.2, Let oo <A* and suppose we have naked
branches w or branches with leaves for each Br(w)e Br(Imf®) and clements oy
(new), di¥ (kew) as in the consiruction (¥) (replacing v, by Br(w)). Then there
exist 2% such w with the following property:

If GYyy = {G,,ds": ke ©) 4 then any B < o which was strong at stage o remaing
Strong at stage o+1.

Proof. We will find one such w; then it is easy to find 2 many. Suppose w
with (5.2) does mot exist. Then for each w from the Lemma there is an ordinal
B = B(w) <o« which is strong at stage « but not a stage o+ 1. There exists x € Gry
such that

{a)

KZ 355D = xmodGYy 8, for all mew.
m

Since x e Gyyq we find g,eG,, keo and re d with x = ga+akr. Supposc that
we can find some tew with rs,e ) Asg,. If g, = 3 @585 9", then ay e Pf
and PPoP < P# imply mee t<m
® gme P,
and (a) becomes
Im = go+ad¥r modGY, 18 m

Since af*r = b’ +a%s,r for some b eB, gew, we also have

Im = gu+b’+agwsatr = ga+b,m0dG¥+ls/?m
by assumption on r. Hence we can find g” e Gy, ry€ A and k(m)e w such that

I = ga + b’ +£775'pm + al;(m)w’,m S/Im

If m is fixed, ch09se o € Br(w) large enough and restrict this equation to ¢. From (b)
and the Recognition Lemma 5.1 (which we use silently in the future) we have
Sal(a)

S )rms,,m = 0 for /() > k(m) and in particular r,, = 0. The last cquation turns
ax(m
into g, = g,+b' +gyss, or equivalently

i;m a5 dF = (g,+b") modG,sy,, for all mew.

Since f was strong at stage «, this is a contradiction. We conclude

(©) If teow, there exists mew such that Sy & ASpy.
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Using the notation above, we have g, = g,+ds"r modGYy sy, and there
exists y,, € Giyq With g, = g¢+af,§“’r+ymsp,n‘ Choose o e v = Br(w) large enough

Sal(o)

and suppose g, ¢ = 0 for all me w. Then *r € Asg, for all mew which

Sak
contradicts (c). Therefore g,,} ¢ # 0 for some m. From (b) we conclude ¢ & [P?].
Since [P?] is a subtree, also v & Br([P’]). On the other hand, v e Br(Imf®) by
hypothesis. The Black Box (4.2) (iii) implies f <a < f+2%. We can summarize:
For each w as in the lemma with Br(w)eBr(Jmf® there are B(w)<A¥,
gy e Gy, a2 and r, such that

Bwy<a<Pp)+2% and for all meo

(@

_ K
hX a/:‘(w)iSﬂ(w)i(pﬂ(W) = gz +a,"ry mod Gyt 1 Sp0uym -
i<

Let B, be the minimal (w) < A* in (d). Then f, < f(W) < Bo+2". Since |Br(Imf®)]
= 2% there are two distinct branches Br(w) # B(w') in Imf® such that S(w)
= B(w) = B. Subtracting the corresponding equations in (d) leads to

pmpn w’ kw kw’ ww’
= o=y tdy =0y T'w mOde—bvlS/jr

where G¥¥y = (G,, d™, df*": ke wy,.

If g = g¥"—g¥ e G,, we find some g™ e G4y such that

(e) g = azwrw—asw,"w"{'gmsﬂm .
. 5,
Choose ¢ e Br(w) large enough, such that c¢w', g bo =0 and a';w fo= Tl(ﬂ
ak

.S Sal -
From (¢) we derive 22 r +(g™ | 0)55, = 0 and 1, 2@ e Asy, which con-
Sk Sax meo

tradicts (c). Hence the Lemma is shown.

‘We have two immediate consequences

COROLLARY 5.3. There are no useless ordinals.

COROLLARY 5.4. Let @ € EndG, ||B®|| <cfl, a,€ G (new) and (s,) a divisor-
chain, Then we can find a complete ordinal o< A* such that

P = (f* P, @} P%a,s,: neEW®).
Proof of 5.4. By the Black Box (4.3) we find we A0 such that
P = (f% P b PP a,, S, REW)

and (4.2) (b) (+#) hold. By (5.2) we can find a branch in Tmf* with leaves such
that any ordinal <o« which was strong at o remains strong at the next step «+ 1.
Therefore o is complete.
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§ 6. Basic properties of the ideal InesG and the module G. The followingis a natural
extension of a definition from [DG 1]; it also extends well-known ideals in the
case of abelian p-groups respectively of mixed abelian groups; see [CG].

DerNITION 6.1. If G is an R-module, then we say that R-submodule U of
G is w-complete, if for all 4, € U and divisor-chains s, (n € ) there exists xe U

such that x = Y, a;5; modUs, for all me w. Then InesG = InesyG is the set
i<m

of all endomorphisms ¢ of G with w-complete Tm &, If % is a cardinal, then Ines,G
= {® e InesG, [ImP| < %}.

This set Ines,G is always a two-sided ideal of EndG and Tnes,G = Ines,G
for %> |G|. In addition we have the

THEOREM 6.2. Let G be the R-module constructed in § 5.

(2) Ines,G is a pure submodule of EndG, i.e. sEndG n Ines,G = sInes,G

for all sesS.

(b) 4 nInes,G = 0.
) Rel'.l'lal'k. G is an A-module. Therefore 4 acts by scalar multiplication on G,
Since this action is faithful we can identify 4 < EndG in a natural way.

Proof. (a) Let $eEndG and s® eInesG. Therefore Imsd is w-complete.
If a,5¢ € Gs® and (5,) is any divisor-chain, there is xs & Gs# such that

Y ai5y5% = xs mod Gbss,, (m e w)
i<m

by (6.1). We find g™ e G& such that
(:Z a;5,;D)s = X5+ g™s,,s.
<m

Since G is torsion-free, we cancel s and derive
Y a:5,0 = xmod Gds,, (me w),

i<m

ie. @ elnesG.

If [Ims®| < %, also |Im®| < and (a) follows immediately.
(b) Suppose 0 5 aelnesG. Since () As = 0, we find se.S such that
s

() a¢ As

Let v be a constant branch in T, ¢, &€ v of length 1 and u
? h n and s, = 5" (n&w), By (6.
we find x € G such that ¢ n (new). By (6.1)

(%) ig;” o5 a+g's,, = X (me w)

for some g™ e G&. Since x & G, we may write
T
= k :
X = 121 doty+b  withay> ... >a,r64 and beB.
Therefore (#%) becomes

(e d Kk
) i;m oisia+g"s, = J;“wrj”l'b .
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Suppose |[v,,]| > [[v]]. Choose ¢ € Br(y,,) large enough such that ¢ ¢v and G:JG

S, . .S
=" p)o=0. Restrict (#+x) to o and derive — r; = (g" fo)s™ If we
Sask a2tk

S, .

vary m, then ==, e () 4s™ Since aﬁlri = b'+a,,8,,,r; for some b’ e B, we can
atk med

“absorb aj,s,.,r; into gs" for all me”, ie.

t
S 651+ (g™ =y Spur1 ST = Y a';jrj+(b+b') .
=2

i<m

The first bracket is in G because S,,,r1s ™€ 4. Choose # minimal and conclude
l15,]] <|[v]l.- The elements with finite support are treated similarly:
d

Let b = Y g;u; with g;eT, and u;& 4. Equation (+xx) becomes
Jj=1

t a
k
Y, o8;a+g"sw = (X, agyry+ 3, 00)+ 0114y -
j<m =1 i=2
If g, e v, say g, = 0, we may “absorb guy into > 0;5;d”; i.e, consider only m>n
i<m

and replace the first sum by Y osato s,a—u). In general comsider any
n¥i<m
a :
m> maxI(g)+1 with ,,—; ¢ U v,,and restrict the last equation to ¢,,-4. Therefore
i=1 j=1
" la+(g" } Opoq)s" =0 and a = —(g" }o,-1)-s € As contradicts (*). Hence

a =0 and (b) holds. @@

Remark. In the last proof we “absorbed certain elements into certain elements”.
This concept is stated explicitely above and it will be used again in later proofs
without going into detail.

The next result will become trivial from the view of our main result (8.1).
However, it is based on a few algebraic arguments only and it also holds for more
general modules. It might be a starting point for different proofs of the main
theorem. Therefore, we include the

TueoreM 6.3. A ®Ines,G is a pure submodule of EndG.

Proof. Let @ e EndG such that s& = a+y € A@®Ines,G. We want to show
) . ae As
Then « =a's (¢'ed) implies Y = sP—a = 5(P—a')elnes,G N sEndG. By
(6.2) (2) we have ¢—a’ €Ines,G, hence @ e ®Ines,G and (6.3) follows from
(6.2) (b).

Suppose () does not hold, i.e.

(a) a ¢ As, = sP—delnes,G.

Define inductively a sequence o, € T' such that

() I(a}) = 7.
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(c) distinct pairs o, 0, are not comparable in T.
@ max llos ]l < lloy+ 4l
s=n
for all ne w. Apply (6.1) to (c,,s") and find x e Gy such that
S oY = x mod Gis™
i<m
for all me w. Therefore we find g"** e Gy with
€) Y 0,8 +g" s = x for all me w.
i<

m

From (d) we have

0 i#m,
(o) o, "—-.:.{ . mod As.
-a i=m,

Restricting (¢) to o, we derive —as™ = (x } 6,) mod As™*L. If x o,
= Omod 4s™*?, then —as™ = a's™*! and a = —da'se As because A4 is torsion-
free. Since the last equation contradicts (a), we have

() limljoy]l = y <],

kew

t
Let x = Y a’,;jrj+b with be B, ay >... >0, and suppose ||, |[>7y. We can
j=1
. 5 .
pick o e v,,\{o;: i€ w} such that ||o]] >y and af, } o = 2, Restrict (¢) to o and
387

LS ’ .
derive —Zry = (¢"*! }o)s™*?. The element dfs,,ry can be absorbed into
Su;h

gmtisgmtl, Hence x = p+b and [|y]| >7. The element b can be treated similarly;
see proof of (6.2). We derive ||x|| <y, and together with (f) we have ||x]] = y. This
is impossible by (¢), because {c}: k € w} is an antibranch. &

In order to determine the inessential endomorphisms, i.e. the elements of
InesG, we have to derive further properties of G. It is easy to see that G is torsion-
free and reduced; cf. (6.5) (a). However, we will derive stronger results towards
cotorsion-free. Hence a definition from [CG] seems to be useful.

DEFINITION 6.4. Let g € G, then

o] = {{GET: ”‘7” = ”g”; ge [g]}(]lg[l not a llmit)

a<A*: |lo,l] = llgll, o e [g] for almost all aev, (||g|| a limit)
is called the top of g. If USG, let [UT* = U [g]*.
geG

LemmA 6.5, (a) G is S-torsion-free and S-reduced.
() If Us G is w-complete, then [UT* is finite.

Proof. (2) Since G is visibly S-torsion-free, we want to show that () Gs = 0.
sa§

t
Let 0 # x e Gs; then x = ys and either ye B or y = Y df,r+b with t>1. In
=

the first case choose any oe[y] and remember ) As = 0. Therefore (x | o)
s
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= (b }o)seds for all seS is a contradiction. In the second case choose any

Sl £
o v, large enough such that (x }o) = (¥ po)s= p %s. Therefore (x } 0) € ) As
sk ses

= 0 contradicts (x po) £ 0. W
Proof by contradiction. (b) Suppose [U]* is infinite. Then we find a se-
quence x, € U (ne w) such that

(8.) ‘Yu = [xn]*\ky [xk]* # Q .

Observe that | [x,]* is finite by the Recognition Lemma 5.1. Next we choose
k<n

a subsequence of x, (n € ®) and change the enumeration such that we get a normal-
ization

(b) lIx4] (n € w) is not decreasing

and there are two cases
@@ all ||x,|| are non-limits or
(ii) all ||x,|| are limit ordinals.
In the first case choose ¢, € X, = X, n T such 'that

suplio,|| = sup|x,|| = oa*.
© X PO, # 0,
X bo,=0 forall k<n

In the second case choose o, € X, = X, 0 A*. Then all o, are different and we carw
pick o, €v,, such that (c) holds as well.

Passing to a subsequence of the o, we may introduce two further very con--
venient normalizations.

(] If infinitely many o, lie on a single branch, then all of them do so.

O] I(6,)<I(0,+,) Torallrew.

First we want to show

6 There is a branch v, with ||p,]| = «* and o, €v, for all new.

Choose §,4; €S such that spls,.,; and

()] (%, } 6,)8, % 0 modAs,q.

This follows immediately from (c) and ‘QSAS = 0. Since U is w-complete, we find

x € U such that

3 x5 = xmodUs, forall meo.
i<m
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‘Therefore x = .\‘-S«+.’Cm+1,5', .1 for some ,\‘"H ! e U, From <) and 5) we have
i w1
i

sm

x I\ Oy = (xm F J,,,)S,,,+(.’C'”+1 ram)snwl = (’Y:rn F O’,”)S", =0 mod"""nrl'l .

Therefore x| g, 7 0 for all mew and o, e [x]. We derive a* < [lx[| from (c).
Using the concept of absorbing elements, it is casy to sce that also {|x|| e,
We conclude |lx|] = *. From the Recognition Lemma 5.1 we have & branch o,
with ¢, e v, for infinitely many ne . The normalization (d) implics o, v, lor
all new, and (f) follows.
From (f) and (e) we also derive

() I(o,) = n* < (n+1)*

Now we choose new and better clements s, & § such that

for all new.

(k) Sau*"s‘lwll'yn and (an\ 0',,).7,, i 0 mod AS:M 1
This is possible by (c). We also consider a fresh x e U such that

> x5 = ¥ mod Us,,
ism

for all me w

using completeness of U. Therefore x == 3 x,5;-+x"*1s,,,., for some x™*'eU.
Condition (k) implies i=m
xr 0',” = (xmr a’m)'ym -+' (xm+1 r\ alll) ls'IN 41 .E (xm F olll) Si‘ll i O mﬂd/f&’m +i ;
(1) xf Oy = (xmr O-rn)ﬂm i 0 lTl(.)dAS,,,+1 .
Therefore o, € [x] and ||x]| = a* as above.

From (f) we see that v, “contributes” to the representation of x; we have from
(5.) x = df a+y with

(m)

. s,
There exist a € 4, k € o such that x} o, = ~ g for all m> k%’ and some

Sek
K=k

a
3 .
If ™ En QD As,, we can absorb af a into Us, for all me w. Hence
o

a
® —# () As,.
Sak nso
Condition (k) implies s,, € Asyyes,—1, and with (1) we get x } o, = (b o), EO
. 5,
mOQd ASypu Sy 1, 160 X} 0y & ASnSy—q. From (in) we conclude -2 g € ASyh Spy=1+
St

. N . .4

Since 4 is torsion-free, we derive e ASy—y for all me w, which contradicts (n).
k

Therefore (6.5) holds. ™ ’

From (6.5) we have the immediate
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COROLLARY 6.6. If @ € InesG, then |Im®| < |A4|.

Proof. The module U = Im® is w-complete and [U]* is finite by (6.5). If
U] > |4], then [UT* must be infinite by definition (6.4). ®

From (6.6) we already see InesG = Ines[ 41+G. In order to derive a stronger
result, we will need further algebraic properties of G which are of independent
interest. Recall the following well-known definition. An R-module U has finite
(R-)rank, if there exist x;e U (i<m) such that Usx;S™'R+...+x,S™'R. This
is equivalent to say that (xy, ..., X4 = U where x denotes the purification in U.
The notion of countable rank is similar.

LEMMA 6.7. Every A-submodule of finite A-rank in G is contained in a pure
A-submodule of G, which is freely generated as A-submodule by finitely many
elements from T L {df: we ¥, kew).

Remark. (6.7) can be applied to R-submodules: Every finite rank R-sub-
module of G is contained in a free finite rank 4-submodule of G.

Proof. Let U be an A-submodule in G of finite A-rank. We find x; € U (i< m)

LI%) N
such that U < {x; 4: i < m),.. From (5.1) we have representations x; = ), a4 b;
=1

with a;;e 4 and b€ B. Let a e A* be minimal with x; &G, for j<m. Therefore
a =0 or « is a successor ordinal. Since G, is a pure 4-submodule of G, also
UE(x,A: JE<my,€G,. If a =0, then Gy = B = @ cd is free; see § 5. There-
fore we may assume o> 0 and consider C = {u;;: i<n(),j<m}. Then aeC by
the minimality of «. Tt is easy to find a natural number k with )

@) k= max{k(ij): a;€C}.

() 1] =@ for all fe C\{a}.

(i) W nl=@ forallj<m

(iv) If |vgll # lloll, B € C, then {lgll < lv.(R)I-

Now we enlarge the module U using our notation from § 5 (#). If B e l*, then

Spiei ) 1
dieG (kew) and therefore aj— AL Y = gy, € G. Since gy = af 3;+aj; and
Spi

ﬂ -
a5 e B G, also a3, € G. Therefore the enlarged module U’ (below) will be a sub-
module of G. In order to define U’ consider all “finite parts” of U and all “segments
of branches (with leave) below &7, i.e. let

m *
F=UIblu U@ u U {opt m By n<k}.
J=3 pec pecniy
Then F is a finite subset of T, the A-module

U' ={od,dsA,alé,4: ceF, B&C, i<k

has finite A-rank and U’<G. The choice of the generators is made, to ensure
x;e U' (j<m). Since U’ is a pure A-submodule, also U=(x;4, j<mds U
and visibly U’ < G,. Next we want to split off a free summand from U’ and de-
3 — Fundamenta Mathematicae CXXVI. 3
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termine its complement U’ in terms of generators:

U" = (od,a5d,d5,d:0€F, |lo]| <|lo,]l, B C\{a}, ye C, i<k),.

I E={o E.U1 [B;1: lloll > [l I}, then U’ = U"@d A® @ oA. Since « is a suc-
j= gek
cessor ordinal >0, we conclude U"' < G, Ordinals are well-founded hence (6.7)

follows by finite induction.

We add an extension of (6.7) which is not needed to derive the main result.

LemmA 6.8. Every A-submodule of countable A-rank in G is contained in a Sreely
generated A-submodule of G with generators from T {dk: ael¥, kew} In
particular, G is a 8, -free A-module.

Proof (similar).

§ 7. Endomorphisms of G are B-bounded. If X, Y are subsets of the module G
from (§ 5), then X—Y denotes the complex {x—y: xeX, ye ¥ } and X4

= {xa: xe X, ae A). Since T< G, also T—T has algebraic meaning (distinguish
from X\X = @I). Let

G*={n,a: neT, kew, f<i* and Ml <o, Jlogl] < ey .
= {xeG: |lx]|<a} for a<cf(d).

Recall from the Black Box (4.3), that we defined disjoint and unbounded subsets
v, If", V" of cf(l). The following Definition 7.1 (b) serves internally for this
section only,

DeriNrrioN 7.1. If @ € EndG, say that

(a) @ ?s B-'boundea', if there are ae 4 and « < cf(4) such that [|1B(®—a)]| <o

(b) @ is too large, if for all « €cfA there are sequences e, € TA—T4, (s,) and
u<d,<t4; € V" such that a, < [le,|l, |le, P|| < &, +; and there does not existnr eA

with s_o!utions X, € G*™ of the equations ¢,sf @ —e,r = X, mod Gs,, for all ne w.
First we want to show the

Lemma 7.2. If @ € EndG is too large, we can find sequences e,e G and (5a)

(new) such that the module G* = (G,y™: mew), with y" = Z eifi does not

. J=m
have a solution x € G* of the equations "’

Z €59 = xmodG*s,, foralmew.
i<m

Proof. Let ®eBndG be a fixed tg 1 ‘ i . i
chain (5.) we define o large endomorphism. For any divisor

Col(s,) = {B e cfA: There are sequences of ordinals o, with supe, = g, elements

€x€ G and a divisor chain (s]) contained in (s,) such that (,,'e,, ;) satisfy (7.1) (b)

for (o, e,,5,) and some ).

This set Co(s,) is obviously w-closed, i imi i
ot e » > 1.e. countable limits of elements in Cy(s,)

; observe that & and.(s,) are ﬁxed and a diagonal argument will help.
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Let a(s,) = sup Cyls,) for all sequences (s,). We want to show that

(b") there exists a divisor sequence (s,) such that Cy(s,) is unbounded in cf 4.
(Condition (b") strengthens (7.1) (b)).

If S has a divisor sequence (s,) with () Rs, = 0, we fix this sequence and

new
replace S by (s,). Then (b') follows immediately. In the opposite case cfA> R
because A is admissible. If (b’) does not hold, then a(s,) <cfA for all (s,), and also

« = supa(s,) <A by |S¥| <cfi. Since & is too large, we find some (s,), ¢,€ G,
(sn)
a, >0 (1 €w) which satisfy (7.1) (b). Therefore o* = supu(s,) & Cols,) and a*>a

new
= sup Co(sy) = sup Cols,) Za* is a contradiction and (b') holds.
s .

Fix Cy(s,) with (b") and let C be its closure in the interval topology on cf 4.
The set C is unbounded by (b') and hence a cub. Therefore Cn V" # @ as V"'
is a stationary set. : -

We find 0* & C n V"' with cfa* = o by definition V" ={xecfi: cfa = w}.
Therefore supf, = «* for some strictly increasing sequence f,. We want to show
that o* € Cy(s,), and hence we will construct an increasing sequence o, € Co(s,)
with o* = sup ,. Then a* e Cyls,) such that max {By> o1} <o, < a*. Obviously,

new
sup o, = sup f, = o*. This implies
new new

(b")  Condition (7.1) (b) holds with the further requirements sup o, € V.

new
Now we use elements e,, 5,, «, from (b'") and suppose that they do not satisfy (7.2).
Then we can find x& G* such that x = 3. ¢;5,9 mod G¥s, for all mew. Since
i<m
t
x e G¥, we may write x = yr+ Y, apri+b withr,r;e 4, beB. If i’fﬂ'rl € () As,
i=1 ' \ Spik mea
for some n >k, then by the now standard argument we can absorb Lz’glr1 into G¥*s,,
for all m. Hence there is no loss of generality to assume

a5 )
() If n>k there exists me w with -2 r, ¢ 4s,,.
Spik

If o* = supo, and u, = —y*r+ 3 e, ®, then |u,|| <a* follows by hypothesis
new i<m

(7.1) (b). The above equalities lead to
1 .
i_EJLa',;‘r,—Fbwu,,, € G*s,, .

If |jvg,ll > «* we conclude from the last observation and (2.1) (iv) that dj, 7y € G"*s,,,

which contradicts (i). Therefore ||vs, || < «* and also livg, || <o* ‘ from (b”) vx_/hlch

is a*e V" and |log,ll ¢ V. We can find no e such that |[vg ]l < 00 2nd if We
t

write w = ¥ akry, then ||| <a,, and x = y*r+w+b.
i=1

3k
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t
Now we treat b in a similar way; let b = Z ot (0;€T). If oyry € () Gs,,
i=1 hew
then o, '7, can be absorbed into G*s,, for all m € w. Hence we choose m € w such that

(i) 017y ¢ G,e

If ||oy]] > ¥, the same argument as above contradicts (if). Therefore |[o]] < o*
and |[o,|| < o* since cf(e*) = w and ||o,|| is a successor ordinal. We can find
ny >ny such that |loy[| <a,, and by induction we can show that x = y*r+u for
some new and weG*™ The above equalities become

(iii) <Z e;5@ = yr+umodG*s,, ., {Jul]l <oy (me w).

i<m

If m>max(n, k) we can decompose

s, S \Smat
Yty = e,,,s—'"r+zz’+ ( Y oe ~——i—) 2y,
14

i>m Smyt/ Sk

S; . §;
wherew’ = u+ Y e;—r.Since ¥ ¢;—- = y"*! e G*, (iii) can be changed into
k<i<m Sk ism Smtt

5 s
Y e ® = emfr+u’ mod G* lsﬂ , where [|v|| <a,.

ism k k

By hypothesis also || 3, e;5;®|| <a,, and we can find »' € 4, w"’ € G*" with e,,s, $—
i<m

’ r §, . 0 .

—e,r'=u modG*—";—+1 . Multiply the last equation with s,, and change names,
k

then

2 .
S ®—e,,r' = u"" modG*s,., with r' e 4, u" e G*.

- 2 7

Therefore €,85,®—e,r'—u" = g4 1Spr1+1 ™a,s,4; for some g,.,€G, a,e 4,
t(m) € . If ||g,ueq]] > o* we restrict the last equation to large enough o€ [g,,.,]

2
such. that o ¢ [e,, s, B —e,r'~u"'—y™a,s, . ,]. The “standard argument of ab-
sorbing elements” leads to a contradiction. Therefore gm+1ll < a* and also ||g,,4.]
<a*. We find #" € w such that ||g,,. ]| < «,. Hence we can choose o & [}*™\[g"*+!]
(lloll > &), and the last equation leads to ( V™) 6)ays,5, = 0 and Sy = 0.
Therefore
ensab—e,r' = u" modGs,,, (me w)
*from the last equation. This contradicts our hypothesis (7.1) (b). B

i Next we will show that our module G does not allow too large endomorphisms
in fact we prove the M

Lemma 7.3. If ® € EndG, we cannot find sequences G (s,
hat (o i quences ¢, G (s,) (new) such

() The extended module G* = {G,y": m e Wy with yr =% eii does not have
izm. Sy

s * el
a solution x € G* of the equations Z ¢;8; = x modG*s,, for all me o.

i<m

icm
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Proof. Suppose @ € End G satisfies (#) for certain e, € G, (s,). From the Black .
Box 4.2 we can choose oeA*\iF such that e, e P%=tle,]| <llv.ll, e, @l <llwall,
@ } P* = ¢* and s, = s, for all ne w. If « turns out to be strong, let x = a,P"
=a,deP*NG. Since Y, a,5,; = a,—dyS,, and d; € G, we have

i<m

Y 5@ = Y 0,5, P = Xx—d; s, = Xm0d Gs,,, for all meo.

i<m i<m
By the “standard method of absorbing elements”, conclude x € G, from x e G.
This is a contradiction since « is supposed to be strong. Therefore it is enough to
show that o is strong, and again, we assume that this is not the case. From the
“No-useless-ordinals”-Lemma (5.2) we obtain a branch (in fact 2% branches)
v e Br(Imf®) with v # v, and the additional property that any ordinal f <« which

5
was strong at earlier stages remains strong if we add z¥ = ) (v )= (kew) to
izk Sk

the module G,; see (5.2) (and use s,, = s,). Since « is not strong, the construction
“will go wrong” at stage «. There must be x'€ G’ = {G, z*: k e w), such that

6} Y (v} s, ® =x' modG's, forall mew.
i<m
5.
By the same argument we can choose w*= Y (e;+v}i)— and x"eG”
izk Sk

= {G, w*: ke w), such that
(ii) Y (e;+vb i)s;® = x' modG''s,

i<m

for all mew.

The modules G and G’ are contained in
G = (G, 2 wh kewy, ={G, 25" kew),,

and since |[e,]| < |[v|], the elements z* and y* are independent; see (2.1). Subtracting
(i) from (i), we obtain x = x'—x" € G** such that x = Z e,5; ® mod G**s,, for

i<m
all me . Since x € G**¥, we may write x = c+yr 42, (kew, ried, ceG)
and the last equations turn into

(iii) Y eisi @y, —iry = c+g,s, for some g, G**.
i<m
Now we repeat the standard argument; see (6.2) or (7.2).
t
If ||| > |lvl], we may write ¢ = Z al,r;+b with b e B and either |[of| < Hogll
i=1
or ||v]l <[|b]l. In the first case choose o €v,,, |lo]]| > |v|l and restrict (iii) to o.
Therefore af,r, can be absorbed into G**s,, and together with a similar argument
for b we derive ||¢|| < [|v|]. Since v # v,, we can choose aev, a¢[c]uU U [ed-
tew

s .
Restrict (iii) to ¢ and derive —r, = (g, } 0)s, for all mew and some fixed n.
Sk


GUEST


Sh:224

238 R. Gobel and S. Shelah

Therefore z°r, can also be absorbed into G**s,, and we use the structure of G** to
change (iii) into

(iv) Y e, 8 —y¥r, =2 Mg, s, ~ 3 gl s — 0 = gl
i<m

for certain elements a,,, a), € 4, /\(m)e o, ¢ € G. Absorbing further elements we

obtain |[|g,|| <|lv|| and g;, = Za ry+b with ||o, || <lvf]. Since vy, # v, the

8,
equation (iv) restricted to large enough cev forces —"s,a, = 0. Therefore

k(m)
=0 and (iv) reduces to Y. e, @~y —y*"al s, ~c = gl5,.. Since y*e G*,
i<m
we derive ), ¢;5,® = y*r; +¢ modG¥s, for all me o, This contradicts our hypo-

i<m

thesis (x). B
We have an immediate consequence from (7.2) and (7.3).
COROLLARY 7.4. The endomorphisms of G are not too large.
This will be used to show a
THEOREM 7.5. The endomorphisms of G are B-bounded.

Proof. Let ¢ € End G and assume that @ is not B-bounded. We want to show
that & is too large, which is impossible by (7.4).

Suppose for contradiction that ¢ is not too large, say that the construction
of sequences in (7.1) (b) breaks down at some a, € ¥". If o = o, we may assume

() Forall naeTd u(T-T)A4 with ||5]|>«, se8 (S,~1]8) there are
r=ru€d, x = x, &G such that nas?_,—nar = x modGs.

‘We want to show that r in (i) is independent of s, @, # and let s2_ 1= q. For the
moment we also fix aeA and let 5 eT lInll > o. Then nad = Z aa,ri+b with
t;€ 4 and b e B. We derive from (i)

(i) Z airg+b’ = x modGs for some b' e B .

If {lv,Jl >, we can choose e, large enough such that o ¢ [x] w [b’]. Since
ﬂ As = 0and (v,,} o)r; # 0 we find se.S with (05, } &)rig ¢ As. On the other
hand (11) implies (%l‘ a)rlqus and therefore |[,,|| < a. Since xe V”, ||v,,]| ¢ V"
al’so {lv ,11] <o: and 2 aﬂriq € G°. Equations (i)} and (i) reduce to

. n(rlg—=ar)+ Z o' = xmodGy, xe G*  and
. L w2
{Gii)

1 : .
b= Zl‘@i"’: 0T, 0y =17 and o'l > o

icm
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We have from (2.1) that (rlq—ar) eAs fori=1and rfeds _for i>1. Therefore
rlg = ar and r* = rj depends only on # and a by definition. Equations (iii) become

(iv) Forany a € A4 there is r; € 4 such that ya®g—nryq = x,,, mod Gs and x,,, € G*
for all seS.

Ifn #n' €T, lIll, lIn'll > o, we consider (—#')a and a similar argument will show

that there exists r,., € A which does not depend on s such that (5—7")adg—

—(=n)ry-pq = X' modGs for some x; e G% Since (1—4")ad = nad®—n'ad, we

can subtract the last equation from (iv) and derive

nryq+n'ryg—m—n)ry_yq = ymodGs and yeGh

This equation restricted to u respectively %" forces ry = ry_,. and rp = ry_,, and
therefore ry = ry, = r* which is now independent of # as well. The claim (iv) reduces
to (v), i.e.

) For any ae A there is r* such that
nadq—nrq = X, modGs, X,,, € G*

Using this notation, we suppose that there exists a € 4 such that ar! # /* We find
te S with

(vi) (art—r)q ¢ At

It is easy to choose #; # v, €T, a;<oyiy € V' (i>n) such that oy <[lnll, lIvill,
a<o; and

max {[lnl, [l 1 @I, [lnia®ll} < o4q

Setting s, = " and e, = n,—v,a we will show that («) in (7.3) is fulfilled. Therefore
& ¢ End G by (7.3), which implies ar' = r® for all ae 4. . -
Suppose there exists a solution x € G* = (G, y™: m € wy with " = 12: et

1 zm
which satisfies the equations
X et” =x mod G*™*

i<m

for all mew.

Using the standard argument (see e.g. proof of (7 2); (111)) we can wnte( ’:c+ 1»)«2 J_szr+u
such that ||u}| <a, for some »'>n. Since yzr = 2,1 "¥r mod G¥t v,/e
derive ¢, "® = e, 1™ Fr4u’ modG¥t ™ ¥ for mzn’ and ' e G* with ||}
< a,,. Therefore

(™ P =11y " "FF) 4 (v, ™' D —vat™Fry =y
and by (v) this becomes

'1 (t"‘zrlq 2‘ _klr)+vm(tm2raq_artmi!-kz) =u

2 232 (m+1)%—K2
for some u’' € G* with ||| <o,,. We conclude (™ r'q—1™ "¥r)e 4™ and
g —1""ar) e Ar™H*TE see (21).
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Combining the two statements, we derive (arl—r®g e A£2™*1¥ which contra-

dicts (vi) if we choose m> k?. Therefore ar' = r* and (v) turns into
(vii)
Since nagq(@—r) € G* modGs for all s € S, we have nag(®—r) € G* by our standard
argument. Hence B(¢—r) S G* or equivalently ||B(®—r)|| <a and & is B-bounded.
Hence (7.5) follows from this contradiction. M

There is » = r*e A such that nadg—narq = Xays modGs and X ays € G*.

§ 8. The realization-theorem. If G is the R-module from §35, then we have
a first

THEOREM 8.1. EndG = A@®InesG.
Proof. We will show that ¢ € EndG\A@®InesG leads to a contradiction,
Since @ € End G, we apply (7.5) to ensure that & is B-bounded. By Definition 7.1 (a)
we find ae 4 and « < cf(4) such that ||B(®—a)l| <. If = &—a, then W ¢ InesG
by hypothesis. From Definition 6.1 there are a, € G and (s,) such there is no solution
x € Gy of the equations
) Y 450 = x mod Gy,

i<m

foral mew.

Since ¥ is B-bounded, we also have [By| < 1 (W.L.0.G. we restrict to regular 1).
The Black Box 4.3 provides aed; which satisfies (4.2) (b) and o is complete
by (5.4). Hence s, =, a;=a,eP% }P*=&* and there is a branch
veBr(Im/®) with leaves oy eP* such that al, = (v} n)—(v} n—1)"a,_, and

an
agy =0 for all new. By construction of G we have

a7 = ¥ (atal)teG

izm m
and therefore 5,47y € Gifs,,. On the other hand
x=ay = Z @+ay)siy = Y @+al)sph+atps, = 2 asS+ a5 ¥,
iew i<m i<m

= Y a5 mod Gys,,

i<m

forall meow.
This contradicts (i) and (8.1) follows. M

§ 9. Characterization of Ines G and consequences for the realization theorem.
From (6.6) we know already InesG = Ines) 4|+ G, ie. Im®P| < |4 for all & € InesG.
This will be improved in (9.2) using (6.7). Instead of |Ix]| as in earlier sections, we
will use the precise definition of [x]; see (2.1) and § 5 (x). Moreover, it will be
convement to define the history H(x) of xe G. Any xe G has a representation

X =Y diri+bwithr, £ 0, be B, [b] A [v,] = @ by the Recognition Lemma 5.1.
We require ;e H(x), [}]< H(x) and [b] < H. (). If

i=1

¥ Sai o Sai
a, = Agi— + v, M i) — € H(x
e i;)‘ s {;k(,r )su €9)]
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from §5 (%), then a, € H(x), [vi]€ H(x) (i=k). Next we unravel a,; (i>k) in
the same way as x and add the components to H(x). This process is completed
after finitely many steps. Obviously [x] € H(x); and this can be used to determine
[x] as well. A finite set of A-free generators from T'u {af: a € A*, ke 0} will be
called basically and an 4 -module generated by a basically set will be called basically
as well. Hence every A4-submodule of finite rank in G is contained in 2 basically
submodule by (6.7).
We have a lemma which follows by induction from (2.1).

Lemma 9.1. Let i ¢ H(x) and x€ G, acd, seS such that dig ¢ Gs, then
dig+x ¢ Gs.
The main result of this section is a

THEOREM 9.2. Every w-complete R-submodule of G is contained in a pure A-free
Sfinitely generated A-submodule of G.

Proof. Let U be an w-complete R-submodule. In view of Lemma 6.7 it is
enough to show that U is contained in an A-submodule of finite rank. Suppose,
this is not the case. Using (6.7) we can define inductively a quadruple (V,, x,, 6,, 8,)
such that

M (@) V,-, =V, is a finite basically set.

G XV =V Hy={H(x): xe V"}and {hi: icw} = H,u {o1,...,0,}
an enumeration with 4% = o; (i<k), then hie V¥, for all i,k <n.
(©) Xy—y€V™

(2) There exists x, & UNV™.

(3) Choose ve V" such that x,s,—v = x, € G, with o minimal. Hence ¢—1
exists.

Case 1. x; = y+b with ||| = |lv,l and ||o]l > ||v,/l for o e [b]. Then we
require |[b]| to be minimal and choose o, & [b]*, 5,41 € 5,5 such that b | o, ¢ 5,4,4.

Case 2. If x\, = y, ||3l] = |lvl, let y = ¥’ +ak a with a # 0, )’ € G,—,. Choose
o,€v, large enough such that ¢,¢ V", o,¢ {04, ..., 0,1} and y {o, = dato,

SR)I
=—"g
Sak )

The choice of g, in case 2 is possible because ¥* is finitely generated. Since
Oy ey Gpmy € V™ we have also in case 1 that o, ¢ {0y, ..., 6,4}, Furthermore let
Vo= UV, and ¥V ={(¥V,),. Then V" *s V", H,.,<H, and H,=V by (1).

new
Hence ¥ is “historically closed” in an obvious sense. In particular
(6] celv], veV=0eV.
(i) X, 8 F 0 mod V"4 G5,y

Since x, € U and (s,) is a divisor-chain, we find x e U such that

# 0. C‘hooée Sys1 €5,8 with dfa } o, ¢ As,q-

forallneow.

x= Y x;5,mod Usysq
i<m
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by w-completeness of U. In particular, x = Z X8 mod Gs,pq. Then (1) (©) is

i<m
x;€ V" (i<n) which implies x = x,s, mod V"+ Gs‘,, +1- Let X" = x+v (ve V) such
that x’ € G, with o minimal. Furthermore, if x" = 45, || 3]} < ||v,l| and ||af| > ||z,]|
for oe[b], then require |[b]] to be minimal. Smu, ve V* for almost all ne o,

we have
(iii) x' = x,5, mod V"+Gs,y for almost all new.

k .
L Ifagay € () Gs,, we can absorb afi into V",

nE@

Letx' = Xk: af,ia,--l—b and suppose k >
Therefor:vt/e may assume

@iv) af,ﬁla1 ¢ Gs, for almost all new, aﬁl ¢év.
Suppose af, € H(v,) with v, from

*) x'+uv, = x,5, modGs,., and v,e V" for almost all new;

see (iii). Then aot1 e ¥ by (1) and an,1 e V" for almost all n e w. We can absorb a

into ¥"; hence am ¢ H(»,). From (9.1), the last remark and (iv) we derive a%,a; -I—v ’

¢ Gs,. A fortiori & a,+v,¢ Gs,y, and trivially aalal—-—x,,s,,+u,,eGs,,+1 as well
as x'—x,5,+0v, € Gs,4q, which contradicts (x). Therefore 2’ = b = Z 0,14 let

1y =T, g, =0 If re (| 4s,, we can absorb or into Gs,; and (x) stxll holds. If

new
g€V we can replace x' by x'—or, Wthh contradicts the minimality of [[b]].
Therefore

™) ¢V and ré¢ds, for almost all new.

From (x) we have x'+v,~x,5,+¢,8,+1 = 0 for some g, € G. Restricting to ¢ gives
ar~(x, } )8+ (g t @)Sps1 = 0 which contradicts (v). Therefore x* = 0 and hence
0 = x,5, # 0 mod V"+Gs, .., for almost all n € e by (ii) and (iii) is a contradiction.
Theorem 9.2 follows. H

DErINITION. 9.3 (cf. [DG 1,2]). An R-module is (w-)cotorsion-free if 0 is the
only w-complete submodule.

COROLLARY 9.4. If A is cotorsion-free, then G is cotorsion-free.

"
Proof. If U= G is w-complete, then Us @ a4 = F by (9.2). Since 4 is
=1
cotorsion-free U must be 0., '

COROLLARY 9.5. If Ay is cotorsion-free, then EndzG = A.

Proof. If ¢ elnesG, then U =Imd is complets. Since G is cotorsion-free
by (9.4), we have U =0 by definition. Therefore InesG = 0 and (9.5) follows
from (8.1). &

COROLLARY 9.6. If Ag is 8;-free, then G is 8y ~free.

Proof. This follows from (6.8).
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