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1. Introduction

The main motivation for this work is a conjecture formulated by C. Ward Henson in 
the 1970s concerning geometric structure of non-separably categorical elementary classes 
of Banach spaces. Several years ago, after some partial progress had been made on Hen-
son’s question, the second author suggested a concrete formulation of the conjecture. In 
this paper, we prove a more general result. We establish a structure theorem for non-
separably categorical Banach structures, that is, any continuous structure expanding an 
underlying Banach space. In addition, our techniques suggest the beginning of geometric 
structure theory for a larger class of stable elementary classes of Banach spaces.

Essentially, a (complete) metric structure B of density character λ is called categorical
(in λ) if any (complete) structure B′ of density λ that is elementary equivalent to B
is in fact isometric to B. So categoricity means that the isomorphism type of B is 
captured in a strong way by “first order axioms that B satisfies”, or, more precisely, 
by the (continuous first order) theory of B. An alternative way of defining categoricity 
(that does not explicitly involve logic) is the following. B as above is categorical in λ
if: whenever B′ has the same density character as B, and B and B′ have isometric 
ultra-powers, then B and B′ are already isometric. In other words, in some sense, the 
isomorphism type of B is essentially determined by its local structure (and its density 
character).

One may wonder why we consider non-separable categoricity, that is, categoricity in 
an uncountable density λ. This has to do with deep model theoretic phenomena and the 
history of development of classical model theory, some of which we try to explain later 
in this section. A short answer is that separable (or countable, in the particular case of 
classical – that is, discrete – first order theories) categoricity arises for very different rea-
sons, and does not lead to a similar structure theory. This phenomenon that may seem 
peculiar at first, is a particular case of a general principle in model theory, according 
to which, even if one is only interested in “small” objects, it is instructive and helpful 
to consider larger structures first. It turns out that it is non-separable categoricity that 
captures the property of “isomorphism type of a structure is determined by the axioms 
that is satisfies” (as much as this is possible in the context of first order axioms that 
are preserved under taking ultra-products). It leads to a strong and beautiful structure 
theory, implying that the isomorphism type of our structure B is completely determined 
by a certain (abstract) dimension. In this article we show that if B is a continuous expan-
sion of a Banach space (for example, a real or a complex Banach space, a Banach lattice, 
a Banach algebra, and so on), the underlying dimension is, in fact, quite concrete: it is 
the linear dimension of a naturally occurring Hilbert space, which essentially determines 
the structure of B.

We now phrase the main problem that motivated this work in a more precise way. 
Since we study categoricity in power, and would like to consider all structures elemen-
tary equivalent to a given structure B simultaneously, it is more convenient speak in 
terms of elementary classes. Since the original (Henson’s) problem was stated specifi-
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cally for Banach spaces (and since we hope to make our presentation understandable to 
a general audience), we will for the moment restrict our attention to this more concrete 
context. However, as mentioned above, our results encompass a much wider spectrum of 
structures; see Subsection 2.4.

Let us remind the reader that a class K of Banach spaces is called elementary if it 
is closed “nicely” under the ultra-product construction. More precisely, K is elementary 
if it is closed under isometries, ultra-products and ultra-roots (the last condition means 
that the complement of K is closed under ultra-powers). It is well known that analyzing 
ultra-products and ultra-powers of a Banach space can be helpful (and often essential) for 
understanding its local structure. This suggests that it is natural to consider a Banach 
space together with all its ultra-powers – that is, even if one is only interested in the 
geometry of a particular space, it can be instructive to look at the elementary class that 
it generates. Hence elementary classes of Banach spaces are objects of interest.

Equivalently, a class of Banach spaces is elementary if it can be axiomatized in an 
appropriate logic. One can work with either Henson’s logic of positive bounded formulae 
[11] or continuous first order logic [5,4].

Many “natural” classes of Banach spaces are elementary, for example:

• Fix 1 ≤ p < ∞. Then the class of all Banach spaces isometric to LP (μ) for some 
measure μ is elementary.

• The class of all Banach spaces whose dual is isometric to L1(μ) for some measure μ
is elementary.

• The class of all Banach spaces isometric to C(K) for some compact Hausdorff space 
K is elementary. In this case the precise axiomatization is not known (but it has 
been shown that this class is closed under ultra-products and ultra-roots).

An elementary class of Banach spaces K is called categorical in a cardinal λ if there 
is a unique B ∈ K of density character λ up to isometry. A class K is called uncountably 
categorical, or non-separably categorical, if it is categorical in some uncountable λ. The 
most basic example is the class of all Banach spaces isometric to a Hilbert space. There 
are other known examples, but in all of them the behavior of the class is “controlled” in 
a very strong sense by an underlying Hilbert space.

This led C. Ward Henson to make the following conjecture.

Conjecture 1.1. (Henson) Let K be an uncountably categorical elementary class of Ba-
nach spaces. Then

• K is categorical in all uncountable cardinalities.
• Any B ∈ K of uncountable density character is “very close” to (and “determined 

by”) an underlying Hilbert space.



4 S. Shelah, A. Usvyatsov / Advances in Mathematics 355 (2019) 106738

Sh:1020
The first part of the Conjecture is simply an analogue of a well-known Łoś’s Conjecture 
(aka Morley’s Theorem) in classical logic. It was established independently by the authors 
[27], and by Itaï Ben Yaacov [2]. Both proofs resembled classical proofs of analogous 
results in the first order context. In this paper we prove a version of the more interesting 
(the second) part of Henson’s Conjecture. Our main theorem is

Theorem 1.2. Let K be an uncountably categorical elementary class of Banach spaces (or, 
more generally, Banach structures). Then there is a separable B0 ∈ K and a definable 
minimal wide type p0 over B0, such that

• Any Morley sequence in p0 is isometric to the standard basis of a Hilbert space.
• Any non-separable B ∈ K is prime over a Morley sequence in p0 (which is the 

fundamental sequence of a spreading model of B0).

We explain the terms that appear in the statement later.
There are various improvements that one can make in the statement. For example, 

B0 can be taken to be the countable saturated model of K.
We prove the theorem above for any elementary class of Banach structures, that 

is, Banach spaces expanded with continuous extra-structure (we explain the different 
contexts we work in section 2). However, we are currently unaware of any interesting 
natural examples of non-separably categorical non-trivial continuous expansions of a 
Banach space.

As a matter of fact, it is surprisingly hard to find categorical examples of Banach 
spaces, as well as to prove categoricity. Until quite recently, the only construction that 
was “known to the experts” to yield an uncountably categorical Banach space (the first 
written proof of this fact has appeared recently in Henson and Raynaud in [13]) was the 
following:

Example 1.3. Let E any finite-dimensional Banach space, and let H(E) be the class of all 
Banach spaces which are isometric to the direct Hilbert sum of an infinite dimensional 
Hilbert space with E. Then H(E) is elementary and categorical in all infinite density 
characters.

Motivated by Theorem 1.2, Henson and Raynaud [13] have embarked on a journey of 
searching for new uncountably categorical Banach spaces. They have developed new tech-
niques of proving categoricity in this context, which led them to discover many natural 
examples, more sophisticated than Example 1.3. More specifically, Henson and Raynaud 
have discovered a criterion that ensures that all models of a particular continuous theory 
of a Banach spaces are of the form E⊕mH, where E is a separable (modular) base space, 
H is a Hilbert space, and ⊕m is a modular direct sum. Under natural assumptions, this 
construction yields a non-separably categorical elementary class.
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Many of the examples that come out of the work of Henson and Raynaud have ℵ0

separable models, and exhibit a natural notion of dimension, finite or infinite; indeed, the 
existence of models of finite dimension gives rise to infinitely many separable models. It 
is natural to conjecture that the geometric analysis in this paper can be pushed further 
to cover the finite-dimensional case, hence recovering the appropriate analogue of the 
Baldwin-Lachlan Theorem. This, however, requires more work, and will be dealt with 
elsewhere.

The following corollary, of Theorem 1.4 which is more accessible to the general audi-
ence, can be stated.

Theorem 1.4. Let K be an uncountably categorical elementary class of Banach spaces. 
Then any non-separable B ∈ K is prime over a sequence isometric to the standard basis 
of a Hilbert space (which is a spreading model of a fixed separable B0 in K).

Let us point out that Theorem 1.4 is significantly easier than Theorem 1.2: an attentive 
reader should be able to deduce it directly from Dvoretzky-Milman Theorem (Fact 3.4) 
and compactness (the “spreading model” part requires a bit more, but is nevertheless 
straightforward). One of the main features of Theorem 1.2 is that it gives a definable 
geometric object (a definable wide type) that generates the basis for the Hilbert space 
that underlies any non-separable (in fact, any “large enough”) member of K. One may 
ask whether stronger definability requirements hold: for example, whether the Hilbert 
space itself may be assumed to be a type-definable set. The answer is “yes” in all the 
examples that have been constructed so far. Another interesting question is whether B0

can be chosen to be the prime model in K, in which case every member of K would 
be of the above form (a natural next step in the analysis of separable members in K). 
These seem to be natural directions for further research.

Let us explain some of the basic notions that appear in the statements above.
A model B ∈ K is called prime over a set A if whenever A embeds into B′ ∈ K via 

f : A ↪→ B′, there is an embedding of B into B′ that extends f . A model B0 ∈ K is 
called prime if it is prime over the empty set. Note that all the embedding in this case 
are isometries.

This notion may seem somewhat abstract, and it may not be clear why we believe that 
Theorem 1.2 suggests that any (non-separable) B ∈ K is determined by the underlying 
Hilbert space H, given by the spreading model. It is therefore worth saying that one can 
make the relationship between H and B more concrete, that in this context B is in fact 
“constructible” over H in a certain sense. In fact, any element in B realizes an isolated
type over H, which is a type that has to be realized in any model (element of K) that 
contains B. However, the precise meaning of these notions is somewhat technical, and 
will not be explained here.

We also remind the reader that a sequence 〈ei : i < λ〉 is called a spreading model of a 
Banach space B [7] if it is 1-subsymmetric (quantifier-free indiscernible), and there is a 
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sequence 〈bn : n < ω〉 in B which is asymptotically isometric to 〈ei : i < λ〉: there exists 
a null sequence of positive reals 〈ε� : � < ω〉 such that whenever k > �, we have

∣∣∣∣∣∣‖
k−1∑
j=0

rjbnj
‖ − ‖

k−1∑
j=0

rjej‖

∣∣∣∣∣∣ < ε�

for every � < n0 < n1 < . . . < nk−1 < ω and rj ∈ [−1, 1].
Clearly, since 〈en〉 is 1-subsymmetric, the sum 

∑k−1
j=0 rjej can be replaced with ∑k−1

j=0 rjeij for every i0 < i1 < . . . < ik−1 < λ.
Equivalently, in model theoretic terms, a sequence 〈ei : i < λ〉 is called a spreading 

model of B if it is a quantifier free “co-heir” sequence over B: that is, it is quantifier 
free indiscernible, and tp(ei/Be<i) is finitely satisfiable in B (here “tp” stand for the 
quantifier free type in the pure language of normed spaces).

So Theorem 1.2 shows that every non-separable B ∈ K is essentially prime over a 
Hilbert space, which is nicely based on a “small” separable “base” space. In Example 1.3
the base space is the direct sum of E with a separable Hilbert space.

Theorem 1.2 is proven in section 5, Theorem 5.4.
Although this was not clear to us until the proofs were basically finalized, a posteriori it 

has become apparent that this formulation of Henson’s Conjecture, and the techniques 
developed on the way to its proof, provide in a sense a true analogue of geometric 
characterizations of uncountably categorical elementary classes in classical model theory, 
continuing the work of Baldwin, Lachlan, Zilber and others (which we discuss in the 
next subsection) in the context of Banach spaces. We believe that this paper lays the 
foundations for the developing of geometric stability in this setting. Hence it is our hope 
that the results here are not of isolated interest, but rather a beginning of a new chapter 
in model theoretic study of Banach spaces.

History and background Henson’s Conjecture is strongly related to well-known results 
on classical uncountably categorical elementary classes. In 1962 Morley [22] proved the 
conjecture of Łoś which stated that a countable first order theory T which is categorical 
in some uncountable power, is categorical in any uncountable power. Basic examples of 
such theories are the theory of algebraically closed fields of a fixed characteristic, and 
the theory of vector spaces over a fixed countable field. Morley’s proof showed that an 
uncountably categorical theory T admits a notion of independence and that any model 
of T is both saturated (“rich”) and prime (“small”) over a basis with respect to this 
notion.

Less than ten years later Baldwin and Lachlan [1] gave a different, more geometric 
proof of Morley’s Theorem. They showed that every model of an uncountably categorical 
theory T is determined by a “strongly minimal” definable set, on which the independence 
notion is of a very special kind: it is determined by algebraic closure. Their proof also 
gave information about countable models of uncountably categorical theories.
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The results of Baldwin and Lachlan led to further research. Specifically, Zilber studied 
geometric structure of strongly minimal sets and showed that in many cases they are 
either “field-like” or “group-like” (and in the “field-like” case one can interpret an alge-
braically closed field in the model). One reference for Zilber’s work is [29]. A posteriori it 
turns out that Henson’s Conjecture called for a similar analysis for Banach spaces (“in-
terpreting” a Hilbert space inside the model), but no appropriate tools were available 
until very recently. For example, no analogue of a strongly minimal set was known. In this 
article, we introduce new geometric objects, which we call wide types. Our thesis is that 
minimal wide types are an appropriate analogue of strongly minimal sets in this setting.

Another important notion that we are going to make use of is stability. In his proof, 
Morley introduced the notion of ω-stability. He proved that an uncountably categorical 
theory is ω-stable, and that ω-stability implies several good properties, such as existence 
of prime models over any set (we shall explain the notion of a prime model later) and a 
“nice” notion of independence. Later the first author defined the more general notion of 
stability, and showed that any stable theory admits a similar notion of independence.

Stability was first introduced to functional analysis by Krivine and Maurey, who 
proved in [18] that any stable Banach spaces contains an almost isometric copy of �p
for some p. It was further investigated by Iovino in [15,16] and other works, and, more 
recently, by Ben Yaacov and the authors (e.g. [2,5,27]).

We have already pointed out that the first part of Henson’s Conjecture states that 
the analogue of Morley’s Theorem holds for classes of Banach spaces. This was proven 
independently by the authors [27] and Itaï Ben Yaacov [2]. The two proofs are quite 
different, but none of them gives much geometric information. In some sense, both cor-
respond to Morley’s original proof, and do not provide “Baldwin-Lachlan analysis”. We 
will use several results from [27] in this article. In particular, we will use the fact that 
uncountable categoricity implies a topological version of ω-stability, which has property 
similar to those of classical ω-stability. Consequently, uncountably categorical classes of 
Banach spaces are stable.

We would also like to mention the classical theorem of Macintyre [20]: any ω-stable 
field is algebraically closed. In a sense, this is a “dual” result to Morley Theorem: it shows 
that “algebraic” structure follows from model-theoretic properties. The second part of 
Henson’s Conjecture has a similar flavor.

Acknowledgments We thank Ward Henson for numerous conversations that motivated 
and advanced this work. We are grateful to Udi Hrushovski for many helpful comments, 
and to Angus Macintyre for several inspiring conversations. We also thank the anonymous 
referee for helpful comments, corrections, and suggestions.

2. Preliminaries

In this section we describe the framework in which we are going to work. A reader who 
is familiar with continuous logic can easily skip to the last subsection (subsection 2.4).
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We refer the reader to [10], [12] or [4] for the definition of an ultra-product of Banach 
spaces, and, more general, normed structures.

In subsection 2.1 we describe the very basic framework of quantifier free formulas in 
the pure language of Banach spaces, which is enough for proving Theorem 1.2. The pre-
sentation in subsection 2.1 should be accessible to any mathematician, and quite familiar 
to a functional analyst. For example, quantifier free types in this basic frameworks are 
precisely what Krivine and Maurey defined as “types” in [18]. Readers who desire to 
limit exposure to logic, can safely skip to section 3 directly after subsection 2.1.

In subsection 2.2 we present the more general context of continuous logic expanding 
the Banach space structure. Working in this framework, we prove more general results.

2.1. The basic case

Definition 2.1.

• A quantifier free formula in the pure language of Banach spaces over a set A is an 
expression of the form ‖x + a‖ where x is a variable and a ∈ A. We call such a 
formula a pure q.f. formula.

• A pure q.f. condition over A is an expression of the form ϕ(x) = r where ϕ(x) is a 
pure q.f. formula over A and r ∈ R.

• Let Σ be a collection of pure q.f. conditions over a set A, A ⊆ M , M a Banach space. 
We say that Σ is approximately finitely satisfiable in M if for every finite Σ0 ⊆ Σ and 
ε > 0, there is b ∈ M such that for every [ϕ(x) = r] ∈ Σ0 we have ϕ(b) ∈ [r−ε, r+ε].

• Given a Banach space M and a subset A ⊆ M , a pure q.f. partial type in M over 
A is a collection π(x) of pure q.f. conditions over A which is approximately finitely 
satisfiable in M , such that in addition [‖x‖ = r] ∈ π for some r ∈ R.

• Given a partial type π(x), we say that the value of the formula ϕ(x) is determined
by π if [ϕ(x) = r] ∈ π for some r ∈ R. Otherwise we say that the value of ϕ is 
undetermined by π.

• Given a Banach space M and a subset A ⊆ M , a complete pure q.f. type in M over 
A is a partial pure q.f. type in M over A which determines the value of any pure q.f. 
free formula over A.
In other words, a complete pure q.f. type p over A can be (and often is) viewed 
as a function τ : A → R such that for any a ∈ A we have τ(a) = r if and only if 
[‖x + a‖ = r] ∈ p.

• We denote the space of all complete pure q.f. types in M over A by Sqf (A, M), or 
just Sqf (A) when M is clear from the context.

• Given a partial type π(x) and a formula ϕ(x), we denote by ϕπ the value of ϕ
according to π. In other words, ϕπ = r iff [ϕ(x) = r] ∈ π(x). Of course, this only 
makes sense if π determines the value of ϕ.

• We say that b ∈ M realizes a partial type π(x) if ϕ(b) = ϕπ for every formula ϕ(x)
(whose value is determined by π).
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One can define complete types in a slightly different (equivalent) way, perhaps more 
familiar to a non-logician. Let M be a Banach space, and let U be an ultrafilter on M . 
Note that for any a ∈ M , the ultrafilter U “determines” a value for the (quantifier free) 
formula ‖x +a‖, which equals limU ‖x +a‖. In a sense, this is the “most likely” (according 
to U) value of ‖x + a‖ when x varies over M .

Define the (quantifier free) average of U over M to be the complete (quantifier free) 
type p over M such that for every formula ϕ(x, a), its value according to p equals 
limU ϕp(x, a). In particular, we have

‖x + a‖p = lim
U

‖x + a‖

for all a ∈ M .
It should be very easy to see that this indeed gives rise to a complete quantifier 

free type over M . We denote it by Avqf (U, M). Conversely, any complete type arises in 
this way: given a complete q.f. type over M , there is an ultrafilter U on M such that 
p = Avqf (U, M).

The latter remark allows us to characterize spreading models of M in yet another 
way. Indeed, we say that a sequence 〈ai : i < λ〉 is a sequence in a (q.f.) type p ∈ Sqf (M)
based on M if there exists an ultrafilter U on M such that p = Avqf (U, M), and ai =
Avqf (U, M ∪ Span{aj : j < i}) for all i < λ. It is quite easy to see that (fundamental 
sequences for) spreading models of M are exactly sequences of the form above, that is, 
sequences based on M (in some p ∈ Sqf (M)). Such sequences are also called quantifier 
free co-heir sequences over M . It is easy to verify that this definition is equivalent to the 
ones given in the introduction.

The following version of Compactness Theorem can be found in e.g. [12].

Fact 2.2. Let M be a Banach space, π(x) a partial type in M over A. Then there exists 
an ultra-power M̂ of M and b ∈ M̂ such that b realizes π.

Definition 2.3. We call a Banach space qf-saturated if for every A of cardinality less than 
the density character of M and every p ∈ Sqf (A, M), p is realized in M .

Given an elementary class of Banach spaces, we will assume the following:
There exists a Banach space C, which is qf-saturated, and whose cardinality is much 

bigger than all other cardinals discussed in this paper, and all M ∈ K, which are of 
interest to us, are subspaces of C.

Such C is called the monster model of K. There are slight set-theoretic assumptions 
which are involved in the existence of monster models, but we will not be concerned with 
these issues here. In fact, in the cases that we are interested in this paper (e.g. if K is 
uncountably categorical, or just stable), no such assumptions are necessary.
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2.2. The general case

In this subsection we give a very quick overview of continuous logic in the special case 
of normed structures. The reader is referred to [5] or [4] for details.

Just like in classical logic, a continuous signature consists of constant symbols, function 
symbols and predicate symbols. There is a special predicate symbol for the norm, ‖ · ‖. 
Each function symbol and predicate symbol is equipped with its arity k ∈ N and its 
modulus of uniform continuity, which is a continuous function δ from R+ to R+ with 
δ(0) = 0. We will always assume that the signature contains the signature of a vector 
space over Q; that is, it contains a constant symbol 0, a 2-ary function for vector addition, 
and for every q ∈ Q, a 1-ary function ·q(x) for multiplication by q.

A continuous pre-structure M for a given signature is a semi-normed space, in which 
all the constant symbols are interpreted as elements, function symbols – as functions on 
the structure, predicate symbols – as functions from the structure to R. More precisely, if 
P is a predicate symbol of arity k, then its interpretation PM is a function PM : Mk → R. 
Similarly, if f is a function symbol of arity k, then its interpretation fM is a function 
fM : Mk → M .

Moreover, we demand that the predicate ‖ · ‖ is interpreted as a semi-norm on M and 
all the predicates and functions are uniformly continuous with respect to ‖ · ‖, respecting 
their continuous moduli. This ensures that the predicates and functions are continuous 
uniformly over all structures. Roughly speaking, this is what is needed in order to make 
ultraproducts work.

A structure is a pre-structure in which ‖ · ‖ is a complete norm.
One notion which is important to understand in order to read the paper in full gen-

erality is that of a formula. The algebra of formulas is obtained as follows. An atomic
formula is an expression of the form P (τ1, . . . , τk) where P is a predicate symbol or arity 
k, and every τi is a term, which is a “generalized” function symbol (an expression that 
can be obtained by composing existing function symbols and applying them to variables 
and constants).

For example, quantifier free formulas discussed in subsection 2.1, which are expressions 
of the form ‖x + y‖, ‖x + a‖ (where a is a constant) or, more generally, ‖ 

∑
i<n qixi + a‖

(where qi ∈ Q, xi are variables) are atomic formulas. Note that qx means ·q(x), so we 
omit the formal function symbol and use the familiar notation.

Now the algebra of formulas is the closure of the collection of atomic formulas under 
“connectives” – bounded continuous function from Rk → R (for some k ∈ N), “quanti-
fiers” supx and infx (where x is a variable) and uniform limits. Note that due to uniform 
limits we obtain formulas of the form ‖rx‖ where r ∈ R, and due to connectives we can 
for example speak of a formula r · ‖x‖ or |‖x‖ − r|, where r ∈ R. Using quantifiers, we 
get formulas of the form

sup
x

|‖x‖ − r|
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The collection of all formulas (for a given signature) is also called a language.
A (closed) condition is an expression of the form [ϕ ∈ C], where ϕ is a formula and C

is a closed subset of R. We will only work with conditions where C is a closed interval, 
often a point (most of the time C = {0}).

A variable in a formula ϕ is called bounded if it is in a scope of a quantifier, and 
it is called free if it is not bounded. Given a formula ϕ with free variables x1, . . . , xk, 
we often write ϕ(x1, . . . , xk) in order to emphasize the free variables. It is easy to see 
that a formula ϕ(x1, . . . , xk) and a structure M , defines a function ϕM : Mk → M . In 
fact, ϕM is uniformly continuous, and, moreover, uniformly so in all structures (one 
can calculate the uniform continuity modulus of ϕ, given the moduli of all function and 
predicate symbols in the signature). So given a formula ϕ(x1, . . . , xk), a structure M , 
and a1, . . . , ak ∈ M , one can calculate ϕM (a1, . . . , ak) ∈ R. Hence given a condition 
[ϕ(x1, . . . , xk) ∈ C], a structure M , and a1, . . . , ak ∈ M , it makes to ask whether the 
condition is true in M (denoted by M |= [ϕ ∈ C]). If M |= [ϕ ∈ C], we also say that M
is a model of (for) this condition.

A theory is a collection of conditions with no free variables, which has a model. 
We normally assume that a theory T is closed under entailment, that is, if a condition 
[ϕ ∈ C] follows from T (which means that it is true in all models of T ), then [ϕ ∈ C] ∈ T . 
Compactness Theorem (see [12,4]) states that a collection of conditions has a model if 
and only if every finite subset of it does. A theory is called complete if for every condition 
[ϕ ∈ C] either it is in T or for some closed D ⊂ R disjoint to C we have [ϕ ∈ D] ∈ T . 
Equivalently, T is complete if it “forces” a value for every formula ϕ with no free variables, 
that is, [ϕ = r] ∈ T for some r ∈ R. We will denote that value by ϕT ∈ R. Note that every 
theory can be extended to a complete theory (in fact, every model M of T determines a 
complete theory).

We will normally assume that we have a fixed complete theory in the background, and 
all structures are models of T ; we will therefore often simply call them “models”. Given 
a model M , and a subset A of M , we will often expand the language by adding constant 
symbols for all elements of A. Call this language L(A). Then M naturally becomes an 
L(A)-structure; we will call L(A)-formulas “formulas over A”.

The next definition is of central importance. A type π(x) in a model M over a set 
A is a collection of conditions of the form ϕ(x) ∈ [rϕ, sϕ] (where ϕ is a formula over 
A, rϕ, sϕ ∈ R), which is finitely approximately satisfiable in M . The latter means that 
for every finite subset π0(x) of π(x) and for every ε > 0 there exists a ∈ M such that 
ϕM (a) ∈ [rϕ − ε, sϕ + ε] for every condition ϕ(x) ∈ [rϕ, sϕ] in π0(x). Equivalently, by 
Compactness, a type π(x) is a collection of conditions of the form above such that there 
is an ultrapower M̂ of M and a ∈ M̂ which satisfies all the conditions in π(x). We say 
that a realizes π and write a |= π.

In general, x in the definition of the type does not need to be a singleton (so neither 
does a, that is, maybe a ∈ Mk for some k ∈ N), although in this paper it we will 
normally work with formulas and types in one variable.
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We say that a type π(x) determines a value of a formula ϕ(x) if [ϕ(x) = r] ∈ π for 
some r ∈ R. A complete type over A is a type over A which determines a value for 
every formula over A (with the right number of variables). We will denote the value of 
a formula ϕ “according to the type π” by ϕπ.

There is a correspondence between complete theories and complete types (a complete 
type can be viewed as a complete theory in an expanded language). We denote the 
space of all complete type over a set A in n variables by Sn(A). This is a compact 
Hausdorff topological space, but we will not be concerned with this fact here. Let S(A) =
∪n<ωS

n(A). Note that the space of types is defined relatively to a certain model which 
contains A; but as we’ll see in a bit, we will be working in one big model of the theory 
T (the “monster” model), and all types will be computed in that structure.

Given a model M , a set A and a tuple a ∈ Mk, we denote by tp(a/A) the collection of 
all closed conditions over A that a satisfies. It is easy to see that tp(a/A) ∈ S(A), and we 
call it the type of a over A (again, we forget to mention M). Conversely, every complete 
type over a set A is the type of some a over A (possibly a is in some ultrapower of M ; 
soon this won’t matter because in the “monster” model we will have realizations for all 
types over “small” sets).

Given a cardinal λ, a model M is called λ-saturated if every type over a subset of M of 
cardinality less than λ is realized in M . A model is called saturated if it is |M |-saturated. 
There is a mild set-theoretic assumption that goes into the existence of saturated models, 
and it can be avoided if one works with a slightly weaker notion than saturation (which 
has the same properties that we care about), but we will not go into the details here. As 
a matter of fact, in the cases that we will be interested in this paper (e.g. T uncountably 
categorical, or just stable), saturated models provably exist. Given a (complete) theory 
T , we will assume the following:

There exists a saturated model C of cardinality κ∗ for some big enough cardinal κ∗, that 
is, much bigger than all cardinals mentioned in this paper (except κ∗ itself, of course). 
We call C the “monster model” of T .

A useful consequence of saturation is the following homogeneity property of the mon-
ster model: given two tuples a, b ∈ Mk and a set A (of “small” cardinality, that is, less 
than κ∗), tp(a/A) = tp(b/B) if and only if there exists σ ∈ Aut(C/A) (the group of 
automorphisms of C fixing A pointwise) such that σ(a) = b.

Another useful notion (although we will not really need it here) is that of an elementary 
submodel: if M is a substructure of N , we say that M is elementary in N , M ≺ N , if 
for any formula ϕ over M with no free variables, we have ϕM = ϕN . For example, M
is always elementary in any of its ultrapowers (this is Łoś’s Theorem adapted to this 
context; see [5,4]).

The monster model of T embeds elementarily any M |= T of “small” cardinality. This 
is why we will be able to assume that all models of T are elementary submodels of C. 
Moreover, types over subsets of M are the same in M and any elementary extension; so 
it will be enough to talk about types in C (and we will not mention it).
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2.3. Δ-types

The following definitions and notations are somewhat less standard than what is 
mentioned in the previous subsection, and are used extensively throughout the paper.

Let Δ be a collection of formulas (with no parameters). We say that ϕ(x, a) is a 
Δ-formula if ϕ(x, y) ∈ Δ. A (partial) Δ type (over a set A) is a partial type that 
consists entirely of Δ-formulae. A complete Δ-type over A is a Δ-type that determines 
a value for every Δ-formula over A. We denote the set of all complete Δ-types over A
by SΔ(A). Similarly, we define the Δ-type of an element (tuple) a over a set A; it will 
be denoted by tpΔ(a/A). Just like with ordinary complete types, a complete Δ-type is 
a Δ-type of an element (tuple), and vice versa.

Normally Δ will be assumed to be closed under connectives and substitution of vari-
ables. We will call such subsets of formulas fragments of the language.

If the language of T expands the language of Banach spaces, then the set Δ = Δpqf

of all quantifier free formulas in the language of Banach spaces is a fragment of the 
language. In this case SΔ is essentially what we called Sqf in subsection 2.1.

2.4. Context

The general context: T is a continuous theory, whose monster model C expands a 
Banach space B. We denote the language of T by L = LC and the language of Banach 
spaces (which is a part of L) by LB.

As we have mentioned before, one can restrict oneself to the following context: K is 
an elementary class of Banach spaces, C = B is its monster model.

As usual, all sets and tuples mentioned in the paper are subsets of C (of cardinality less 
than |C|), and all models are elementary submodels of C (again, of “small” cardinality).

As we have mentioned above, all types are types in C, and we will not mention this.

3. Wide types over Banach spaces

Recall that C expands a real Banach space B.

Definition 3.1. We call a partial type in 1 variable π(x) (possibly with parameters) wide
if the set of realizations of π(x) in C contains the unit sphere of an infinite dimensional 
subspace of B.

Remark 3.2. The type x = x is wide.

The main goal of this section is showing that complete wide types exist over any set. 
We will make use of the following well-known result, which is sometimes referred to as 
Concentration of Measure Phenomenon, or the Dvoretzky-Milman-Ramsey Phenomenon. 
It is a consequence of the renown Dvoretzky’s Theorem [8], but the approach we take is 
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due to Milman, e.g. [21], Theorem 1.2. We will refer to this fact as Dvoretzky-Milman 
Theorem.

Definition 3.3.

(i) Let B be a Banach space, S(B) the unit sphere of B, f : S(B) → R. The spectrum
γ(f) is the collection of all r ∈ R such that for every ε > 0 and any integer k there 
exists a k-dimensional subspace F of B such that |f(x) − r| ≤ ε for all x in the 
unit square of F .

(ii) Let B, f be as before. We denote by γ′(f) the collection of all r ∈ R such that for 
any k and ε as above, F can be chosen to be (1 + ε)-isomorphic to a k-dimensional 
Hilbert space.

Fact 3.4. (Dvoretzky-Milman Theorem). Let f be a uniformly continuous function on the 
unit sphere of an infinite dimensional Banach space B. Then the spectrum γ(f) is not 
empty. Moreover, γ′(f) is not empty.

Proof. For the proof we refer the reader to e.g. [6], section 12 (specifically, combine The-
orem 12.10 and Proposition 12.3 there). Alternatively, see [23] for a detailed discussion 
of concentration phenomena. qed3.4

The first approximation to our goal is the following.

Proposition 3.5. Let π(x) be a wide partial type (over a set A), ϕ(x, ̄a) be a formula. 
Then there exists r ∈ R such that the partial type π(x) ∪ [ϕ(x, ̄a) = r] is wide.

Proof. Without loss of generality we may assume that ‖x‖π = 1.
Let B be an infinite dimensional subspace of B whose unit sphere S(B) is contained 

in πC. The formula ϕ(x, ̄a) induces a uniformly continuous function f from S(B) to R. 
By Dvoretzky-Milman Theorem 3.4, γ′(f) �= ∅. Let r ∈ γ′(f).

Let H = �2. For every v ∈ H, introduce a free variable xv. Let x = 〈xv : v ∈ H〉
Denote by Λ(x) the linear quantifier free diagram of H with variables xv. That is,

Λ(x) = {xv =
∑
i<k

λixvi : v, vi ∈ H,λi ∈ R, v =
∑
i<k

λivi}

Consider the following collection of formulas. This is the (approximate) quantifier 
free diagram of H with the additional requirement that the unit sphere S(x) satisfies 
π(x)&[ϕ(x, ̄a) = r].

Γ(x) = Λ(x) ∪ {π(xv)&|ϕ(xv, ā) − r| ≤ ε : ‖v‖H = 1, ε > 0}∪

{(1 − ε)‖v‖H ≤ ‖xv‖ ≤ (1 + ε)‖v‖H : v ∈ H, ε > 0}
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We claim that Γ(x) is finitely satisfiable in C. Indeed, in order to make sure this is 
true, one has to argue that for any k and any ε > 0 there is a k-dimensional subspace 
F of B which is (1 + ε)-isomorphic to the k-dimensional Hilbert space �k2 such that 
ϕ(x, ̄a) ∼ε r on S(F ), and this follows immediately from the fact that r ∈ γ′(f).

This shows that π(x) ∪ {ϕ(x, ̄a) = r} is a wide type (in fact, it contains the unit ball 
of an infinite dimensional subspace isometric to �2). qed3.5

Modifying the proof of the Proposition above, we also obtain the following.

Lemma 3.6. Let 〈πi : i < λ〉 be an increasing chain of wide partial types. Then π =⋃
i<λ πi is wide.

Proof. We use compactness as in the proof of Proposition 3.5. That is, let Λ(x) be as 
there, and let

Γ(x) = Λ(x) ∪ {πi(xv) : ‖v‖H = 1, i < λ}∪
{(1 − ε)‖v‖H ≤ ‖xv‖ ≤ (1 + ε)‖v‖H : v ∈ H, ε > 0}

Clearly Γ is finitely satisfiable, hence consistent, so the union π is wide. qed3.6

Theorem 3.7. (Existence of Wide Types). Let π(x) be a wide partial type over a set A, 
Δ a collection of formulae closed under connectives. Then there exists a complete wide 
Δ-type p over A extending π.

Remark 3.8.

(i) Recall the notion of a Δ-type from Subsection 2.3.
(ii) We will normally use Δ = L or LB or Δ = quantifier free formulae in L or LB.
(iii) In case Δ = Δpqf (quantifier free formulae in LB), as noted in Subsection 2.3, we 

are in the “basic context” described in Subsection 2.1. Hence whenever a subset 
Δ of the language is mentioned, the reader can safely assume Δ = Δpqf , and we 
are working in the basic context. In particular, Δ-types (partial and complete) are 
simply quantifier free types described in Subsection 2.1, and SΔ(A) = Sqf (A).

(iv) Note that since x = x is wide, the theorem implies in particular that there exists a 
complete wide type over any set.

Proof. Without loss of generality we may assume that ‖x‖π = 1.
Enumerate all Δ-formulae over A 〈ϕα(x, ̄aα) : α < λ = |A| + |T |〉 such that

(*) If δ is a limit ordinal and α1 < α2 < . . . αk < δ, then for any k-ary connective F , for 
some α < δ we have

F (ϕα1(x, āα1), . . . , ϕαk
(x, āαk

)) = ϕα(x, āα)
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Now construct an increasing continuous sequence of wide types πα by induction on α
such that:

• π0(x) = π(x)
• πα(x) determines the value of ϕβ(x, ̄aβ) for all β < α

For successor stages, use Proposition 3.5, and for limit stages apply compactness as 
in the proof of Lemma 3.6. This is possible by (*) above.

Obviously p = πλ is as required. qed3.8

Analyzing the proof, we see that we have actually shown

Corollary 3.9. Let π(x) be a wide partial type, A a set containing the domain of π, Δ
a collection of formulae closed under connectives. Then there exists a complete Δ-type 
p over A containing π such that πC contains the unit sphere of an infinite dimensional 
subspace isometric to a Hilbert space.

4. Wide stable types

Let Δ be a fragment of the language (see Subsection 2.3).
In this section we will use the notion of the algebraic closure of a set A, acl(A), which is 

the collection of all b whose orbit under the action of the automorphism group Aut(C/A)
is compact. Recall that any model is algebraically closed, that is, acl(M) = M .

Recall that a complete Δ-type p is called definable if for every Δ-formula ϕ(x, y), the 
function θ(y) = dpxϕ(x, y) defined as dpxϕ(x, a) = ϕp(x, a) is a definable predicate (that 
is, can be uniformly approximated by formulae). We say that π is Δ-definable if for every 
Δ-formula ϕ, the function dpxϕ(x, y) can be uniformly approximated by Δ-formulae.

As an example, let Δ be the collection of all quantifier free formulae in the language 
LB, and let p be a complete quantifier free 1-type over a closed subspace A. So p is 
determined by conditions of the form ‖x + a‖ = ra for all a ∈ A. In other words, p is 
determined by the function τp : A → R defined by τ(a) = ‖x + a‖p. We call p definable 
if this function is a definable predicate (that is, can be uniformly approximated by 
formulae), and we call it quantifier-free definable, if it can be uniformly approximated 
by quantifier-free formulae.

Definability is quite a strong assumption; we elaborate on its meaning a little bit in 
Remark 5.8.

We will not use the notion of a stable formula (as defined in [5]) in this article. Let 
us just remark that a formula ϕ(x, y) is stable if and only if every ϕ-type is Δ-definable, 
where Δ is a the closure of ϕ under connectives and permutations of variables. For 
example, the norm ‖x +y‖ is stable in C (in the sense of Krivine and Maurey [18]) if and 
only if every quantifier-free type is quantifier-free definable. See [5] (or [15] for a slightly 
less general formulation).
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The following definition is a straightforward generalization of the classical concept 
due to Lascar and Poizat:

Definition 4.1. Let Δ be a collection of formulae closed under connectives and permuta-
tions of variables. A partial Δ-type π (possibly with parameters) is called Δ-stable (or 
simply stable when Δ is clear from the context) if every extension of it to a Δ-type over 
C is Δ-definable.

Remark 4.2. In [17] José Iovino studies quantifier free types over Banach spaces that 
he calls “stable”. We would like to alert the reader to the fact that Iovino’s concept is 
significantly weaker than the classical notion defined above. In a dependent theory [25,
26] (if one considers all formulae, and not just q.f. ones), Iovino’s definition is equivalent 
to a (much more general than stability) notion of generic stability [26,28,14]. In an 
arbitrary theory Iovino’s definition is even weaker than generic stability: e.g., a c0-type 
is Iovino-stable, but not generically stable (for the discussion of generic stability in the 
general context see e.g. [24,9]).

We would like now to define forking. The following definition is equivalent to the 
classical one when one restricts attention to stable types.

Definition 4.3. Let p ∈ SΔ(A) be a complete stable Δ-type over A, and let ρ be a partial 
Δ-type extending p (so ρ is stable as well). We say that ρ does not fork over A or is a 
non-forking extension of p if ρ is definable over acl(A).

If ρ is not definable over acl(A), we say that it forks over A (or is a forking extension 
of p).

The following is a classical fact about stable types (a straightforward generalization 
of [19] to the continuous context).

Fact 4.4. A complete stable type over an algebraically closed set is stationary, which 
means that it has a unique non-forking extension to a complete type over C.

Fact 4.5. Let p = p0 be a Δ-stable type. Then there does not exist an increasing sequence 
of Δ-types 〈pi : i < |Δ|+〉 such that pi+1 is a forking extension of pi.

Proof. Denote λ = |Δ|. Let q = ∪i<λ+pi. Since q extends p = p0 and p is stable, 
q is Δ-definable (hence definable over a subset B of dom(p) of cardinality λ). Clearly 
B ⊆ dom(pi) for some i; but since pi+1 = q� dom(pi+1), this implies that pi+1 is definable 
over B, hence is a nonforking extension of pi, a contradiction. qed4.5

Definition 4.6. We call a wide partial Δ-type π(x) over a set B wide Δ-minimal if π has 
a unique extension to a global wide Δ-type (a complete wide Δ-type over C).
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Remark 4.7.

(i) We omit Δ when it is clear from the context.
(ii) Note that by Theorem 3.7 any wide partial type has at least one global wide 

extension.

From now on, let us fix Δ containing the quantifier free formulae of LB, closed under 
connectives and permutations of variables. When we say “type”, “formula”, etc, we mean 
Δ-type, Δ-formula.

Corollary 4.8. (Density of minimal types) Let π(x) be a partial wide type over a set A. 
Then there exists B ⊇ A with |B � A| ≤ |Δ| and p ∈ SΔ(B) which extends π and is 
wide minimal. Moreover, the unique wide extension to p to a global Δ-type is the unique 
non-forking extension of p. In other words, no forking extension of p to a (Δ-type over 
a) superset of B is wide.

Proof. Construct by induction an increasing continuous sequence of sets Ai and an 
increasing sequence of types p ∈ SΔ(Ai) such that

• A0 = A

• |Ai+1 �Ai| is finite
• p0 extends π
• pi is wide for all i
• pi+1 forks over Ai

Successor stages of the construction are clear. For limit stages, use Lemma 3.6. Since the 
construction has to get stuck at some i < |Δ|+, clearly (by stationarity) B = acl(Ai)
and any extension of pi to B are as required. qed4.8

We will now study the structure of minimal wide (stable) types.
Let O be a linearly ordered set. Recall that a sequence I = 〈ai : i ∈ O〉 is called 

Δ-indiscernible over a set A if the Δ-type of any finite sequence ai1 . . . aik over A depends 
only on the order between the indices i1, . . . , ik ∈ O. So if Δ is the collection of all the 
quantifier free formulae in the language LB and A = ∅, then I is Δ-indiscernible if and 
only I is 1-subsymmetric. As mentioned before, we will omit Δ.

A sequence I as above is called an indiscernible set over A if the type of any finite 
sequence ai1 . . . aik over A depends only on the number k. As an example, one may think 
of the standard basis of �p.

The following is another classical fact about stable types:

Fact 4.9.

(i) Let p be a stable type, I an indiscernible sequence of realizations of p. Then I is an 
indiscernible set.
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(ii) Let p be a stable type, A a set, I a sequence of realizations of p of length at least 
(|A| + |T |)+. Then there exists an infinite subsequence I ′ ⊆ I, which is indiscernible 
over A.

We now need to introduce the notion of a Morley sequence. In general, a Morley 
sequence in a type p ∈ S(A) is an indiscernible sequence I = 〈ai : i < O〉 of realizations 
of p such that tp(ai/Aa<i) does not fork over A. Note that from stationarity of stable 
types, Fact 4.4, it follows that the only way to obtain a Morley sequence in a stable type 
p over an algebraically closed set A is as follows: let q be the unique global nonforking 
extension of p. Define 〈ai : i < ω〉 such that ai |= q�Aa<i. One still needs to make sure 
that I is indiscernible over A, but this comes for free:

Fact 4.10. Let q be a global type definable over a set A = acl(A). Define a sequence I as 
described above. Then I is indiscernible over A.

Proof. This is in fact true whenever q is invariant under the action of Aut(C/A), see 
[25]. qed4.10

Definition 4.11. Let λ be a cardinal. A block of λ is a finite subset of λ. For two blocks 
u1, u2 of λ we say that u1 < u2 if max u1 < min u2.

Proposition 4.12. (Strong Uniqueness) Let p ∈ SΔ(A) be a minimal wide stable type, and 
let I = 〈aα : α < λ〉 be a Morley sequence in p. Then

(i) I is an indiscernible set over A.
(ii) Let ui be mutually disjoint blocks of λ for i < ω and bi ∈

∑
α∈ui

Raα with ‖bi‖ = 1. 
Then J = 〈bi : i < ω〉 is an indiscernible set over A and a Morley sequence in p.

In particular, tp(J/A) = tp(I/A).

Proof.

(i) By stability (combine Fact 4.10 with Fact 4.9).
(ii) Let pα = tp(aα/Aa<α). Fix α < λ. Note that pα+1 is a wide type extending pα. 

Let B be a subspace of infinite dimension, isometric to �2, whose unit sphere is 
contained in pCα. We may assume that aα ∈ S(H). Clearly for all a′ ∈ S(H) we 
have

Raα + Ra′ ⊆ B

Moreover, if r, r′ ∈ R are such that ‖r+ r′‖2 = 1, then for all a′ ∈ S(H) we have

raα + r′a′ ∈ S(H)
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Hence the following partial type over Aa≤α is wide:

π(x) =
{
p(raα + r′x) : r, r′ ∈ R, r2 + (r′)2 = 1

}
By Theorem 3.7, there exists a wide complete type p′(x) over Aa≤α extending 

π(x). Since p′ clearly extends pα, by minimality we get p′ = pα+1, so aβ |= p for 
all β > α. It follows by indiscernibility that for any β > γ ≥ α and r, r′ with 
‖r + r′‖2 = 1, we have raγ + r′aβ |= pα.

Moreover, by clause (i), that is, since I is an indiscernible set, it is easy to see 
that for any β > γ ≥ α and r, r′ with ‖r + r′‖2 = 1, we have raγ + r′aβ |=
tp(aα/Aa<αa>β) = tp(aγ/Aa<αa>β) = tp(aβ/Aa<αa>β). So denoting a′ = raγ +
r′aβ , we have that I ′ = a<α

�a′�a>β is a Morley sequence in p.
The case when a′ is a general block element is proven by induction. That is, 

suppose that

a′ =
∑
i<n

riaαi
+ rnaαn

such that 
∑

i≤n r2
i = 1. By the induction hypothesis, denoting

r′′ =

∥∥∥∥∥
∑
i<n

riaαi

∥∥∥∥∥ =
√∑

i<n

r2
i

and

a′′ = 1
r′′

∑
i<n

riaαi

we have that the following sequence

I ′′ = a<α0
�a′′�aαn

�a>αn

is a Morley sequence in p. Note that

(r′′)2 + r2
n =

∑
i≤n

ri = 1

so by the case n = 2 (which was our base case), the sequence

I ′ = a<α0
�(r′′a′′ + rnaαn

)�a>αn

is a Morley sequence in p, as required.
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Now it is easy to deduce the general statement of Strong Uniqueness by induction 
on the number of blocks. qed4.12

Proposition 4.13. Let p ∈ SΔ(A) be a minimal wide stable type, and let I = 〈aα : α < λ〉
be a Morley sequence in p. Then I is isometric to the standard basis of �2. In other 
words, for every k < ω and λ0, . . . , λk−1 ∈ R, we have

∥∥∥∥∥
∑
i<k

λiai

∥∥∥∥∥
2

=
∑
i<k

|λi|2

Proof. Let I ′ be (isometric to) the standard basis of an infinite dimensional �2 space, I ′ ⊆
pC. Since I ′ can be chosen as large as we want, by stability there is I ⊆ I ′ indiscernible 
over A. Clearly I is isometric to the standard basis of �2. We need to show that I is a 
Morley sequence over A. Let H be the Hilbert space generated by I.

Without loss of generality A = acl(A), so p is stationary. Let p∗ be the global non-
forking extension of p. Denote I = 〈ai : i < ω〉.

Let H0 be the subspace of H generated by Aa0. Note that all elements of the unit 
sphere of (H0)⊥ (the orthogonal complement in H), which is an infinite-dimensional 
Hilbert space, satisfy the partial type

π(x) = p(x)
⋃{

‖λ0a0 + λx‖2 = λ2
0 + λ2 : λ0, λ ∈ R

}
hence π(x) is wide. By Theorem 3.7, there exists q ∈ S(Aa0) extending π(x), which 
is wide. Since q extends p and is wide, by minimality of p we have q = p∗�Aa0. Let 
b0 = a0, b1 |= q. Then b0, b1 start a Morley sequence in p, and as q extends π(x), we see 
that 〈b0, b1〉 is isometric to the standard basis of a two-dimensional Hilbert space.

Now let 〈bi : i < ω〉 be a Morley sequence in p continuing 〈bi : i < 2〉, and we show 
by induction on n that the sequence 〈bi : i < n〉 is isometric to the standard basis of an 
n-dimensional Hilbert space. Assuming that this holds for 〈bi : i < n〉, let us take care 
of 〈bi : i < n + 1〉.

Let 〈λi : i < n + 1〉 be scalars in R. By the induction hypothesis we have
∥∥∥∥∥
∑
i<n

λibi

∥∥∥∥∥
2

=
∑
i<n

λ2
i (�)

Denote

λ′ =
√∑

i<n

λ2
i and b′ = 1

λ′

∑
i<n

λibi

So ‖b′‖ = 1. By Strong Uniqueness (Proposition 4.12(ii)), the sequence 〈b′, bn〉 is a 
(2-element) Morley sequence in p. By the induction hypothesis again (or by the case 
n = 2, which was our base case), we have
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∥∥∥∥∥
∑

i<n+1
λibi

∥∥∥∥∥
2

= ‖λ′b′ + λnbn‖2 = (λ′)2 + λ2
n =

∑
i<n

λ2
i + λ2

n =
∑

i<n+1
λ2
i

which completes the induction step. qed4.13

5. On Henson’s conjecture

We recall that throughout this paper we are assuming that K is an elementary class 
of Banach spaces with extra-structure, C its monster model. In this section we will also 
assume that the language of K (which we denote by L) is countable.

Let M ∈ K, A ⊆ M . We say that M is prime over A if whenever A ⊆ N ∈ K, there 
is an elementary embedding f : M ↪→ N which is the identity on A.

We now state some standard facts about non-separably categorical continuous theories 
[27], [2].

Fact 5.1. Assume that K is uncountably categorical. Let A ⊆ C. Then there exists a model 
M ∈ K which is prime over A.

Proof. This is true in a more general context of ℵ0-stable K. See section 4 of [27] or [2]. 
qed5.1

Fact 5.2. Assume that K be uncountably categorical. Then K is ℵ0-stable, in particular 
stable.

Recall that K is stable if and only if every type in C in the language L is stable.

Fact 5.3. (Morley’s Theorem for continuous logic, [27,2]). Assume that K is uncount-
ably categorical. Then K is categorical in every uncountable density. Moreover, every 
non-separable model in K is saturated.

We are now ready to prove the main result of the paper.

Theorem 5.4. Let K be an elementary class of Banach space with extra-structure, as 
defined in section 2, and assume that the language of K is countable. Equivalently, as-
sume that T is a countable continuous theory whose monster model C expands a Banach 
space B.

Assume that K (equivalently, T ) is categorical in some uncountable density character. 
Then: There is a separable model M0 of T and a wide type p over M0 such that

• Any Morley sequence in p is isometric to the standard orthonormal basis of a Hilbert 
space;

• Any non-separable model of T is prime over a Morley sequence in p.
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Specifically, if M is a model of T of uncountable density character λ, then M is prime 
over a Morley sequence in p of length λ.

In particular, we have the following: Let B0 be the Banach space that underlies M0. 
Let M |= T be of uncountable density character λ. Then there exists a spreading model 
H of M0 isometric to �2(λ), and M is prime over H.

Proof. By Fact 5.1, let M̂0 be the prime model in K (prime over ∅). By Theorem 3.7, 
there exists a wide type p̂0 over M̂0. By Fact 5.2, K is stable, in particular the type p̂0
is stable. By Corollary 4.8 (and e.g. Fact 5.1, although it is not needed for this), there 
is a separable model M0 ∈ K, M̂0 ≺ M0, and a minimal wide type extending p̂0.

Now let M ∈ K be of uncountable density λ. By Fact 5.3, M is λ-saturated, so we may 
assume that M0 ⊆ M . By saturation again, there is a Morley sequence I = 〈ai : i < λ〉
in p0, I ⊆ M . Let M ′ be a prime model over I (Fact 5.1). Then M ′ has density λ; since 
K is categorical in λ by Fact 5.3, M ′ is isometric to M .

So M is prime over a sequence isometric to a Morley sequence in p0. The desired 
conclusion follows now from Proposition 4.13. qed5.4

We conclude with a few remarks and some possible directions for future research.

Remark 5.5. In Theorem 5.4, one may assume that M0 is the saturated separable model 
of T ; however, not necessarily the prime model. It would be interesting to find out 
whether an �2 type exists over the prime model as well (we believe that the answer 
ought to be positive).

Remark 5.6. One could ask: in which sense have we shown that any B ∈ K is determined 
by a Hilbert space? It may seem from the way our main results are stated that in the 
more general case that B is a Banach structure, that is, a continuous structure properly 
expanding a Banach space, what we have really proved is that its isometry type is 
controlled by an underlying Hilbert structure; that is, a Hilbert space expanded with the 
additional structure on B. However, a close examination of Proposition 4.12 indicates 
that the “induced structure” on H is much simpler. In particular, the complete type 
(in the full language of B) of a singleton in H is completely determined by its norm. 
It is of, course, problematic to talk about the induced structure on a non-definable set. 
Nevertheless, this suggests that the Hilbert space H that “controls” B is in a certain 
weak sense “stably embedded”.

Remark 5.7. For a non-logician reader, interested in connections between stability (for 
example, as defined by Krivine-Maurey) and definability of types (which is the notion 
that we have used here), we recommend an excellent short article by Itaï Ben Yaacov 
[3], where it is observed that definability of types in a stable theory (and moreover over 
a stable structure) can be derived from “Grothndick’s Criterion”, characterizing sets of 
“commuting” functions (very much in the spirit of the Krivine-Maurey definition).
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Since we work in a more general context of stable types, it does not exactly fall under 
Ben-Yaacov’s treatment; nevertheless, [3] can provide a good insight into how definability 
to the order property, especially for a functional analyst (alternative to the more classical 
model theoretic treatment in [5]).

Remark 5.8. The “Hlibert” type p that we have found in Theorem 5.4 has several inter-
esting properties, including a certain version of definability. Specifically, there exists an 
M0-definable predicate θ(y) (which is this case simply means a uniform limit of functions 
of the form y �−→ ‖b +y‖ with b ∈ M0) such that for any ultrafilter U on M0, any M ∈ K

containing M0 and p′ = Avqf (U, M), we have that for any a ∈ M , ‖x + a‖p′ = θ(a).
In other words, there exists a unique extension of p to any elementary extension of M0

which is given by an ultrafilter on M0 (equivalently, finitely satisfiable in M0). This is also 
the unique wide extension of p. This unique extension is definable by an M0-predicate.

Note the strength of the latter definability assumption. From the general theory of 
spreading models, we know that for any ultrafilter U on M0, for any separable extension 
M of M0, denoting p′ = Avqf (U, M), there is a sequence 〈bn : n < ω〉 in M0 such that 
for all a ∈ M ,

‖x + a‖p′
= lim

n
‖bn + a‖

However:

• Even though ‖bn + y‖ are M0-formulas, they do not necessarily converge uniformly;
• The choice of the sequence 〈bn : n < ω〉 depends on the extension M ;
• A “good” sequence as above is constructed by diagonalization, therefore generally 

exists only if M is separable.

By contrast, the definition θ(y) is a uniform limit of M0-formulas, and it works uni-
formly for any extension of M0, separable or otherwise.

One can see the above uniformity in several more explicit ways. First, by an easy 
application of Mazur’s Lemma (see [3], Corollary 7) one can assume that θ(y) is given 
by a uniform limit of averages of formulas of the form ‖bn + y‖, where bn is a certain 
approximating sequence for p.

In addition, if one is willing to give up the fact that it is defined over M0, one can 
obtain a very explicit formula for it. Specifically, let 〈bn : n < ω〉 be any Morley sequence 
in p. Then for any ultrafilter U on M0, for any elementary extension M of M0, denoting 
p′ = Avqf (U, M), for all a ∈ M , we have ‖x + a‖p′ = lim ‖bn + a‖. Moreover, the 
uniformity can be expressed in the following way: for any ε > 0 there exists N < ω such 
that

‖x + a‖p′ ∼ε max min ‖bn + a‖

W⊂2N,|W |=N+1 n∈W
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All this follows from the continuous analogue of classical stability theory; see [5].
It would still be interesting to know whether yet stronger versions of definability are 

true. In particular, we ask: is the Hilbert space H, given as the spreading model of p, a 
type-definable set? Even more, is H a zero set of a definable predicate?

In an earlier version of this article we asked whether H can be assumed to be definable; 
recently C. Ward Henson has described to us a large class of examples (constructed by 
Raynaud and himself) that show that in general this is too much to hope for.

Appendix A. More on existence of minimal types

In this appendix, we give an alternative proof of the fact that if C is q.f. stable, then 
any wide type π over a model M can be extended to a minimal wide type π′ over M ∪A

where A is countable. This proof gives less information that the one in Section 4 (for 
example, it does not immediately imply that a sequence in the global wide extension of 
π′ gives rise to a spreading model of Span(M ∪ A)), this is why we decided to leave it 
for the appendix. However, it also has an important advantage: it does not invoke model 
theoretic “black boxes” such as definability of stable types (equivalently, “Grothendick’s 
criterion”), thereby making it more illuminating and transparent for a non-expert. We 
believe that it has practical relevance even for a model theorist; for example, it may 
help addressing the question of definability, stated at the end of the previous section. 
This approach was inspired by a talk given by Angus Macintyre in the Logic Seminar at 
Centro de Matemática e Aplicações Fundamentais in Lisbon.

Throughout this section, we work in the simple context outlined in section 2.1. That 
is, we assume that K is an elementary class of Banach spaces (with no extra-structure). 
In addition, we assume that its monster model C is quantifier free stable (equivalently, 
every M in K is Krivine-Maurey stable – this property is called “super-stability” by Ba-
nach space theories). The context can be significantly generalized (and the assumptions 
weakened), but since the appendix is mostly written for non-logicians (and provides an 
alternative proof of a result that appears in full generality in the main body of the arti-
cle), we do not see much point in doing so. Hence the term “types” will refer exclusively 
to quantifier free types, and “stability” will mean Krivine-Maurey stability. However, 
the reader could easily generalize the proofs to the more general context of the article, 
should they be interested in doing so.

The proof relies on the following important characterization of stability. The proof is 
not hard, and can be found in various sources mentioned in the article; we do not include 
it here. In fact, this is the characterization of stability that follows most directly from 
non-separable categoricity, and is proven in [2] and [27].

First, a definition: given A ⊆ C and two (partial) types p, q over M , we define d(p, q), 
the distance between p and q, to be the infimum of ‖a − b‖ where a, b range over real-
izations (in C) of p and q, respectively).
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Fact A.1. C is stable if and only if given any separable subspace M , there is a separable 
N ∈ K containing M such that all types over M are realized in N .

In other words, the space of types over a separable (equivalently, countable) subset of 
C is separable (with respect to the metric d defined above).

Note that if 〈pi : i < λ〉 is a sequence of types over M such that for some ε > 0 for 
any i < j there is a ∈ M such that

|‖x + a‖pi − ‖x + a‖pj | ≥ ε

then the density character of Sqf (M) with respect to d is at least λ. This is because if 
bi is a realization of pi, then

‖bi − bj‖ ≥ |‖bi + a‖ − ‖bj + a‖| ≥ ε

In particular,

Fact A.2. Let M be separable. Assume that there are ε > 0 and uncountably many types 
pi over M so that or any i < j there is a ∈ M such that

|‖x + a‖pi − ‖x + a‖pj | ≥ ε

Then C is unstable.

In order to simplify the proof of the main theorem of this section, we will make the 
following definition:

Definition A.3. Let π(x) be a wide type, and ε > 0. We say that π is ε-explicitly 
non-minimal if there exists a ∈ C and r < s ∈ R with |s − r| ≥ ε such that both 
π〈0〉 = π(x) ∪ {‖x − a‖ ≤ r} and π〈1〉 = π(x) ∪ {‖x − a‖ ≥ s} are wide types.

We call the negation of the above notion simply ε-minimal.

Observation A.4. Clearly, if π(x) is a wide type which is not wide minimal, it is 
ε-explicitly non-minimal for some ε > 0.

In other words, if π is ε-minimal for all ε > 0, then it is wide minimal.

We also introduce the following notation: let π0, π1 be types such that for some a ∈ C

and r < s ∈ R with |s − r| ≥ ε we have {‖x − a‖ ≤ r} ⊆ π0 and {‖x − a‖ ≥ s} ⊆ π1. 
Then we say that the π0 and π1 are explicitly of distance at least ε from each other, and 
write D(π0, π1) ≥ ε.

Using this notation, we can restate Fact A.2 in the following convenient form:

Observation A.5. Let M be separable. Assume that there are ε > 0 and uncountably 
many types pi over M so that or any i < j we have D(pi, pj) ≥ ε. Then C is unstable.
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Remark A.6. One can state a “local” version of the above Observation; that is, if a type 
p has uncountably many such extensions, then p is unstable. This provides an alternative 
root towards the proof of Corollary 4.8.

Lemma A.7. Assume that C is stable, π(x) a wide type (or just that π is a stable wide 
type), and let ε > 0. Then there exists a finite set B and an extension πε(x) of π to a 
wide type over B such that πε is ε-minimal.

Proof. If π is ε-minimal, we are done. Otherwise, for some a ∈ M and r < s ∈ R, where 
|s − r| ≥ ε, both π〈0〉 = π(x) ∪ {‖x − a‖ ≤ r} and π〈1〉 = π(x) ∪ {‖x − a‖ ≥ s} are wide 
types. Clearly D(π〈0〉, π〈1〉) ≥ ε. If π〈0〉 is ε-explicitly non-minimal, we can construct 
extensions π〈00〉 and π〈01〉 of π〈0〉 with D(π〈00〉, π〈01〉) ≥ ε. Similarly, if π〈1〉 is ε-explicitly 
non-minimal, we can construct extensions π〈10〉 and π〈11〉 of π〈1〉 with D(π〈10〉, π〈11〉) ≥ ε.

This is where stability comes in. If this construction could continue, we would get types 
πη for η ∈ ω>2 (where ω>2 denotes the binary tree) such that if η � ν =⇒ πη ⊆ πν , 
and if η, ν are incomparable, then D(πη, πν) ≥ ε. Taking unions of the types along the 
branches, we obtain continuum many types over a countable set of parameters (since the 
binary tree has countably many nodes, and at each split we only added one new element), 
which are pairwise explicitly of distance ≥ ε. This contradicts Observation A.5.

Since the construction fails, there is η ∈ ω>2 which is ε-minimal. Letting B be the 
collection of elements that were added as parameters along this (finite) branch, we are 
done. qedA.7

As mentioned above, in the following theorem we assume for simplicity of exposition 
that C is stable; however, a suitable local analogue is easy to state (and prove).

Theorem A.8. (C stable) Let M ∈ K, and let π(x) be a partial wide type over M . Then 
there exists a countable set A such that there exists a minimal wide type π′(x) over M∪A
extending π.

Proof. Assume π(x) is not minimal. By Observation A.4, it ε-explicitly non-minimal for 
some ε > 0.

Denote δn = ε
2n . Construct by induction on n a type πn(x) such that:

• n < m =⇒ π ⊆ πn ⊆ πm

• n < m =⇒ dom(πm) � dom(πn) is finite.
• πn is wide and δn-minimal

This can be easily accomplished by repeatedly applying Lemma A.7.
Now the union π′(x) =

⋃
n<ω πn(x) is clearly as required. qedA.8

For the sake of completeness of presentation we now outline a path to the proof of the 
main theorem of this paper that does not go through the “black box” of definable types.
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Let K be a non-separably categorical class of Banach spaces. Let M̂0 be the prime 
model of K, and let π be a wide type over M̂0. K is stable, hence by the above Theorem, 
there is countable extension of M̂1 of M̂0 over which π has a wide minimal extension. 
In fact, by Proposition 3.5 we may assume that this extension is a complete type over 
M̂1; call it p̂. Take a countable Morley sequence I = 〈an : n < ω〉 in p̂; we have seen in 
Proposition 4.13 that it is isometric to the standard basis of �2. Take a separable model 
M0 ∈ K containing M̂1 and the sequence I (one could take the prime model over M̂1∪I; 
alternatively, the separable saturated model of K would work). Let p be the unique 
wide extension of p̂ to a complete type over M0. It is now not too hard to see that p
satisfies all the requirements of the type whose existence is postulated in Theorem 1.2. In 
particular, its unique wide extension to any super-structure of M0 is finitely satisfiable 
in M0 (and indeed in the sequence I), and in fact the sequence I approximates any 
spreading model generated by p. Moreover, the approximation is uniform in the sense 
explained in Remark 5.8, which leads to definability of the type p over M0 in the way 
hinted at there (some more local stability theory, as developed in [5] is required in order 
to understand why this is the case).

The proof outlined here still gives less information than the approach in the main 
body of this article. In particular, the proof of Theorem 5.4 yields definability over 
a smaller structure (which may play a role in the attempt to obtain a minimal type 
over the prime model), and suggests various other generalizations that will be explored 
elsewhere. However, we believe that the proof of Theorem A.8 as presented here (more 
precisely, the proof of Lemma A.7) gives a certain insight into the importance and the 
meaning of stability in this context, and therefore was worth including.
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