
CODING AND RESHAPING 

WHEN THERE ARE NO SHARPS 

SAHARON SHELAH AND LEE J. STANLEY 

ABSTRACT. Assuming 0" does not exist, ~ is an uncountable cardinal and 
for all cardinals >. with ~ :$ >. < ~+w, 2.\ = >. + , we present a "mini-coding" 
between If, and ~+w. This allows us to prove that any subset of ~+w can 
be coded into a subset, W of ~+ which, further, ''reshapes'' the interval 
[~, ~+), i.e., for all ~ < 6 < ~+, ~ = (card 6)L[wn61. We sketch two appli­
cations of this result, assuming 0" does not exist. First, we point out that 
this shows that any set can be coded by a real, via a set forcing. The sec­
ond application involves a notion of abstract condensation, due to Woodin. 
Our methods can be used to show that for any cardinalI', condensation for 
I' holds in a generic extension by a set forcing. 

1. INTRODUCTION 

Theorem. Assume that V 1= Z Fe + "O~ does not exist", and, in V, K, ~ 
N2, Z ~ K,+w and for cardinals A with K, :5 A < K,+w, 2A = A+. THEN 
there is a cofinality preserving forcing S(K,) = S(K" Z) of cardinality K,+(w+l) 
such that if G is V-generic for S(K,), there is W ~ K,+ such that V[GJ = 
V[W], Z E L[W, Z n K,], for all cardinals A with K, :5 A < K,+w, and for all 
limit ordinals 8 with K, < 8 < K,+, K, = (card 8)L[wn.sl. 

Our forcing S(K,) can be thought of as a kind of Easton product between 
K, and K,+w of partial orderings which simultaneously perform the tasks 
of coding (§1.2 of [1]) and reshaping (§1.3 of [1]). Our new idea is to 
introduce an additional coding area used for "marking" certain ordinals. 
This "marking" technique is the crucial addition to the arguments of §1 
of [1]. We appeal to the Covering Lemma twice: in (3.1), and again in 
the proof of the Proposition in (3.3). The referee has informed us that the 
hypothesis that 0# does not cannot be eliminated. Jensen first used this 
hypothesis in [1] to facilitate certain arguments, and then realized that his 
uses were eliminatable. It is not the purpose of this paper to discuss the 
nature of Jensen's appeals to the Covering Lemma; the interested reader 
may consult pp. 62,96 and the Introduction to Chapter 8 of [I] for insight 
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into Jensen's uses of the Covering Lemma, and how he was able to eliminate 
them. In [2), S. Friedman presents a rather different, more streamlined 
approach to avoiding such uses of Covering. It should be clear from the 
preceding that Jensen's appeals to the Covering Lemma are of a rather 
different character than ours. 

To better understand the role of this "marking" technique, let us briefly 
recall some material from [1). Let us first consider the possibility of coding 
R S;;; K+ into a subset of K, when K is regular. In order to use almost disjoint 
set coding, we seem to need extra properties of the ground model, or of the 
set R, since, in order to carry out the decoding recursion across [K, K+) we 

need, e.g., an almost disjoint sequence b = (bet: a E [K, K+)) of cofinal 
subsets of K satisfying: 

for all 0 E [K, K+), (bet: a :5 0) E L[R nO), 
and is "canonically definable" there. 

Such a b is called decodable, and it is easy to obtain a decodable b if R 
satisfies: 

If (**) holds, we say that R promptly collapses fake cardinals. 
Of course, typically (**) fails, and the ''reshaping'' conditions of §1.3 of 

[1) are introduced to obtain (**) in a generic extension. Our K and R, from 
the previous paragraph are called 'Y and B in §1.3 of [1). Unfortunately, the 
distributivity argument for the reshaping partial ordering given there seems 
to really require not merely that H-y+ = L-y+ [B), but that H-y++ = L-y++ [B), 
where B S;;; 'Y+' This will be the case if B is the result of coding as far as 'Y+ , 
but that is another story, which leads to Jensen's original approach to the 
Coding Theorem. Our appeals to the Covering Lemma focus on this point: 
essentially; to prove a distributivity property of the reshaping conditions. 
As already indicated, in Jensen's treatment, the appeals to the Covering 
Lemma were designed to overcome different sorts of obstacles and proved 
to be eliminatable. 

Our approach to guaranteeing that the unions of certain increasing chains 
of reshaping conditions collapse the suprema of their domains is to have 
"marked" a cofinal sequence of small order type. Because of the need to 
meet certain dense sets in the course of the construction, it is too much 
to expect that the ordinals we intentionally marked are the only marked 
ordinals. However, what we will be able to guarantee is that they are the 

Sh:294



CODING AND RESHAPING WHEN THERE ARE NO SHARPS 409 

only members of a certain club subset which have been marked. The club 
will exist in a small enough inner model, thanks to the Covering Lemma. 
This argument is given in (3.3). We are grateful to the referee for suggest­
ing the use of "fast clubs" in the argument of (3.3). This allowed us to 
streamline a more complicated argument (which also suffered from some 
[probably reparable) inaccuracies) in an earlier version of this paper. We 
use "I" to mark ordinals. To guarantee that this does not collide with 
requirements imposed by the "coding" part of the conditions, we set aside 
the limit ordinals as the only potentially marked ordinals and do not use 
them for coding. 

1.1. Summary and organization 

We now give a brief overview of the contents of this paper. In §2, we 
build to the definition, in (2.5), of the S(,..), along with auxiliary forcings, 
Sk("'). In §3, we prove that the S(,..) are as required. The heart of the 
matter is (3.3), where we prove the distributivity properties of the Sk("'). 
Preliminary observations are given in (3.1) and (3.2). The former shows 
that only increasing sequences of certain lengths are problematical. The 
latter IS a rather routine observation about how the coding works. In the 
argument of (3.3), we use this in the context of forcing over N, a transitive 
set model of enough ZFC, introduced in the proof of (3.3), below. In (3.4) 
we put together the material of (3.1)-(3.3) to prove the Theorem. In (3.5) 
we make a few remarks and briefly sketch the applications mentioned in 
the abstract. 

The partial ordering SeT, A), introduced in (2.2), below, is the analogue 
of the reshaping partial ordering of §(1.3) of [1). It adds a subset of A+, 
which, together with T, promptly collapses fake cardinals in (A, A+). The 
partial ordering Pit, T, g, introduced in (2.4), is a version of the coding 
partial ordering of §(1.2) of [1), relative to g. We require that T ~ ,..+, 9 E 

B(T, ,..+). If p E Pit, T, g, then p will have the form (R(p), rep)); R(P) is the 
"function part" of p and r(p) is the "promise part" of p. We require that 
R(p) starts to code not only T, but also 9 and that R(p) E B(Tn,.., ,..). If 9 
were not merely a condition but generic for SeT, ,..+), then Pit, T, g would 
just be the usual forcing for the almost-disjoint set coding of the "join" of 
T and g, with the extra requirement above, that for conditions, p, R(p), 
together with Tn,.., collapses sup dom R(p). 

Finally, the S(,..), introduced in (2.5), is the forcing which accomplishes 
the task of coding and reshaping, between ,.. and ,..+. It is defined relative 
to the choice of a fixed Z ~ ,..+w such that HIt+n = LIt+n [Z n ,..+nJ, for all 
n :::; w. The elements of B(,..), are w-sequences, (p(n): n < w), where 
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for all n < w, p(n) = (£(p(n)), r(p(n))), £(p(n)) E S(Z n K-n, K-n) and 
p(n) E PW,n, znW,n+l, i(p(n+1»' Thus, letting G be the canonical name for the 
generic of S(K-), letting G(n) be the canonical name for {£(p(n)) : pEG}, 
and letting W(n) be the canonical name for UG(n), S(K-) is a sort of Easton 

product of the PW,n, znW,n+l, W(n+1)' 

1.2. Notation and terminology 

Our notation and terminology is intended to be standard, or have a 
clear meaning, e.g., o.t. for order type, card for cardinality. A catalogue 
of possible exceptions follows. When forcing, p :5 q means q gives more 
information. Closed unbounded sets are clubs. The set of limit points of a 
set X of ordinals is denoted by X'. A~B is the symmetric difference of A 
and B, and A \B is the relative complement of Bin A. For ordinals, a:5 {3, 
[a, {3) is the half-open interval b : a :5 'Y < {3}. The notation for the three 
other intervals are clear. It should be clear from context whether the open 
interval or the ordered pair is meant. OR is the class of all ordinals. For 
infinite cardinals, K-, Hw, is the set of all sets hereditarily of cardinality 
< ,K-, i.e. those sets x such that if t is the transitive closure of x, then 
card t < K-. For ordinals a, {3, we write a > > {3 to mean that a is MUCH 
greater than {3i the precise sense of how much greater we must take it to 
be is supposed to be clear from context. For models, M, SkM denotes the 
Skolem operation in M, where the Skolem functions are obtained in some 
reasonable- fixed fashion. In this paper, we often suppress mention of the 
membership relation as a relation of a model, but it is always intended that 
it be one. Thus, (M, A, ... ) denotes the same model as (M, E, A, ... ). 
All other notation is introduced as needed (we hope). 

2. THE FORCINGS 

2.1 Definition. If 9 is a function, 9 = {x E dom g: g(x) = I}. 

2.2 Definition. If,X is a infinite cardinal, T ~ ,x, then 9 E S(T, ,x) iff 
there's 6 = 6(g) E (,x, ,X+) such that 9 : (,x, 6) -+ {D, I} and for all 
a E (,x, 6] : 

(*)a,9 (card a)L[T, 91a) =,X (we say: 9 promptly collapses a). 

S(T, ,x) = (S(T, ,x), ~). 
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2.3 Definition. Let K be an infinite cardinal, T ~ K+, 9 E SeT, K+). 

bg = (b~ : a E (K+, 6(g)]) is a sequence of almost disjoint cofinal subsets 
of successor ordinals f3 E (K, K+) which are multiples of 3, such that for all 
a E (K, 6(g)], (~: e E (K+, aJ) is canonically defined in L[T, gla]. 

2.4 Definition. With K, T, 9 as in (1.5), p = (£(P), reP»~ E PI<, T, 9 iff 

(1) £(P) E S+(T n K, K), 
(2) if a E (K, 6(£(P») , a = 3a' + 1, then £(p)(a) = 1 iff af E T. (we 

say: £(P) codes T), 
(3) reP) : dom reP) -t K+, dom reP) E [dom g]<I<+, and whenever 

a E dom reP), r(p)(a) ~ e E b~ n 6(£(P» , £(p)(e) = g(a), 
(4) ifa!. a2 E dom reP) andg(al) #g(a2), then ~1 \r(p)(al)nb~2 \ 

r(p)(a2) = 0. 
For p, q E PI<, T, g, P ~ q iff £(P) ~ £(q), reP) ~ r(q)j PI<, T, 9 = (PI<, T, g, ~ 
). 

2.5 Definition. Let K be an infinite cardinal. For n ~ w, let Kn be K+n. 
Let Z,~ Kw be such that for all n ~ w, Hl<n = LI<,,[ZnKn]. p E S(K, Z) = 
S(K) iff dom p = w, for all n < w, pen) = (.e(p(n» , r(p(n») , .e(p(n» E 

S(Z n Kn, Kn) and pen) E Pl<n, Znl<n+l, i(p(n+1». For p, q E S(K), P ~ q 
iff for all n < w, .e(p(n» ~ .e(q(n», r(p(n» ~ r(q(n». S(K) = S(K, Z) = 
(S(K), ~). 

If k < w, Sk(K) = Sk(K, Z) = {pl[k, w) : p E S(K)}j ~k is the obvious 
projection of ~ onto Sk(K). Sk(K) = Sk(K, Z) = (Sk(K), ~k)' 

3. THE RESULTS 

Our ultimate goal in this section will be to prove that for cardinals K 

with K ~ N2, for all k < w, Sk(K) is (Kk' 00)- distributive. As will be clear 
from what follows, by this we mean that the intersection Kk open dense sets 
is dense, and not the weaker notion involving fewer than Kk open dense sets. 
We denote the latter notion by « Kk, oo-distributive. A useful first step 
will be to establish something stronger than this latter notion. 

3.1 Proposition. For all k < w, Sk(K) is < Kk- complete. 

Proof. Let (J < Kk, (Pi: i < (J) be a ~k-increasing sequence from Sk(K). For 
i < (J, k ~ n < w, let 6i (n) = 6(£(pi(n»), so, for such n, (bi(n): i < (J) is 
non-decreasing. Let b(n) = sup {bien) : i < (J}. Let .e(p(n» = U{.e(pi(n» : 
i < (J}, r(p(n» = U{r(pi(n» : i < (J}, and let pen) = (.e(p(n», r(p(n))), for 
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k :$ n < w. We shall prove that P E Sk(K.). The only difficulty is to prove 
that for k :$ n < w, (card 6(n))L[Znn .. , l(p(n»] = K.n. IT () is a successor 
ordinal or 6(n) = 6i (n) for some i < (), this is clear. Otherwise, 6(n) is a 
limit ordinal of cofinality:$ cf () < K.n , so, by the Covering Lemma, already 
(cf 6(n))L < K.n. But then, since (Va < 6(n))(card a)L[Znn .. , l(p(n»] :$ K.n, 
the conclusion is clear. 0 

(3.2) Before proving the main lemma of the section, in (3.3), it will be 
helpful to simply remark (the proofs are easy, and the reader may consult 
[2] for an outline) that letting G be the canonical name for the generic, 
letting G(n) be the canonical name for {.e(p(n)) : pEG}, and letting W(n) 
be the canonical name for U G( n), then for all k < w, 

II-Sk(n) "(Vk:$ n < w)W(n), Z n K.n E L[Z n K.k, W(k)] ". 

We shall use a variant of this fact with no further comment below, in the 
proof of the main lemma. We note only that by an easy density argument, it. 
can be shown that for k :$ n < w and a E [K.n+1' K.n+2), there is 'fl < K.n+1 
such that whenever e E b~(n+1)lo: \ 'fl, W(n)(e) = 0 => W(n)(e + 1) = 

W'(n + l)(a), and that {e E b~(n+1)lo: : W(n)(e) = O} is cofinal in K.n+1' 
Thus, W(n + l)(a) is read by: W(n + l)(a) = i iff there is a final segment 
x ~ b~(n+1)lo: such that for all e E x, W(n)(e) = i. 

(3.3) We are now ready for the main Lemma. 

Lemma. For all k < w, Sk(K.) is (K.k' oo)-distributive. 

Proof. We first note that it suffices to prove that for all k < w 

(*k Let Po E Sk(K.), let X be regular X» 22""'; let < (*) be a well­
ordering of Hx in type X; let M = (Hx' < (*), {Sk(K.)}, {Z}, {Po}); 
let N -< M, K.k + 1 ~ INI, card INI = K.k. Then there is Po :$k p* 
which is (N, Sk(K.) n INI)-generic. 

The argument that (*)k suffices is well-known, so fix the above data. With­
out loss of generality, we may assume that [lNI]<nk ~ INI. It will often 
be convenient to work with the transitive collapse of N, so let 71' : N - N 
be the .inverse of the transitive collapse map; thus, [lNIl<nk ~ INI. Let 
a = 71'-1 = the transitive collapse map. IT X ~ INI and (N, X) is 
amenable, then we let 71'(X) = U{7I'(anX) : a E INI}, and similarly for a(Y) 
if (N, Y) is amenable. We let Kn = a(K.n). We also let (}n = sup (INI nK.n ). 

For k < n < w, note that Kn = (K.n)N, and that Kk+1 = (}k+1' Note 
that by applying Proposition 3.1 to forcing over N with a(Sk+1(K.)), we 
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easily construct p E a(Sk+l(K)) which is (N, a(SkH(K)))-generic, such 
that a(po)l[k + 1, w) is extended by p, in a(:::;kH), such that for k + 1 :::; 
n < w, pen) ~ INI and all proper initial segments of pen) lie in INI. In 
view of the discussion in (2.2), for forcing over N, 

N[P] F "(Vn)(k + 1 :::; n < w =?- pen) E L[u(Z n KkH), p(k + 1)]". 

Thus, N[P] F "a(Z n Kw) E L[a(Z n KkH), p(k + 1)]". 
A crucial observation is: 

Proposition. ORn INI < ((kk+l)+)L. 

Proof. Let {) = OR n INI, () = sup (OR n IND. Note that 
7r1L-N : Le ~El L(J, with critical point kk+l. If {) ~ ((kkH)+)L, then OU 
exists, which proves the Proposition. 0 

Thus, (ej kn)L :::; (ej kkH)L, for all k + 1 :::; n < w. Typically, of course, 
kkH is a (regular cardinal)L. Let XkH = Z n kk+l, hkH = .e(p(k + 1)). 

We shall construct in V, p(k) which is IN I-generic for Pl<k, Xk+l, hk+ll as 
defined in N. Among other properties, letting hk = .e(p(k)), hk will code 
hkH. This will be clear from the construction; we shall use this fact before 
showing that (ej kkH)L[Znl<k, hkJ = Kk. This is exactly what is required to 
show that if we define p by letting pen) = (7r(.e(p(n))) , 7r(r(p(n)))) (recall 
our convention about 7r(X) for (N, X) amenable), then p E Sk(K) (and p 
is INI-generic for Sk(K) n INI). 

We shall have hk = .e(ql<k)' r(p(k» = r(ql<k)' where qi = (.e(qi) , r(qi)) 
and (qi : i :::; Kk) is defined recursively in V, with qo = a(po(k)). For 
this, in V, we Jet (Di : i < Kk) enumerate the dense subsets, in INI, of 
P I<k, Xk+l, hk+l' as defined in N. For all () < Kk, (Di : i < 8) E INI, in 
virtue of the closure property we have assumed for INI. For all i < 8, we'll 
have qi E INI, so, by the same observation, for () < Kk, (qi : i < 8) E INI. 

Also, for j <: kk+l, letting D(j) be the subset of P I<k, Xk+l, hk+l consist­
ing of those r with o(.e(r)) ~ j, as defined in N, clearly D(j) is dense and so 
is among the Di. This will guarantee that sup {O(.e(qi)) : i < Kk} = kk+l, 
provided that we know that qi+l E Di. This will be part ofthe construction 
and will also guarantee the genericity of p. 

For i < Kk, we'll set C¥i = O(.e(qi)). For limit () :::; Kk, we let .e(@) = 
U{.e(qi) : i < ()}, r(q(J) = U{r(qi) : i < ()}. If () < Kk, by the covering 
argument of the proposition of (2.1), these are always conditions, and, if 
() < Kk, as noted above, (qi : i < ()) E INI, so also q(J E INI. SO, we must 
define qi+ 1, where our crucial work is done. 
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For each ai ::; a < "I < kk+1, a a limit ordinal, we define p"!' <>, 1 ~ qi as 
follows: r(p"!' <>,1) = r(qi); if ai::; (3 < "I and (3 == 1 (mod 3) then 
R(p"!' a, 1)((3) = 0 if (3' (j. Z & = 1, if (3' E Z, where (3' is such that (3 = 
3(3' +1. If"( ~ ai+"'k, we fix a subset b E INlnL, b ~ "'k which codes a well­
ordering of "'k in type "I, and for (3 < "'k, we set R(p"!' a, 1 )(ai + 3(3 + 2) = 0 
if (3 (j. b & = 1 if (3 E b. If ai + "'k ::; (3 < "I and (3 == 2 (mod 3), we set 
R(p"!, a, 1)((3) = O. Similarly, if "I < ai + "'k, we set R(p"!' <>, 1 )((3) = 0 for all 
ai ::; (3 < "I such that f3 == 2 (mod 3). 

If ai ::; f3 < "I and for some T E dom r(qi), f3 E b~k+1 \ r(qi)(T), then 
R(p"!' a, 1)((3) = hk+1(T). Note that in virtue of (4) of (1.4), this is well­
defined. For all other successor ordinals, ai ::; f3"1 which are multiples of 3, 
we set R(p"!, a, 1 )(f3) = O. 

Now, suppose (3 is a limit ordinal, ai ::; (3 < "I. We set 
R(p"!, "', 1 )((3) = 0, unless (3 = a & = 1), if (3 = a (in this case, we mark 
a). 

Then, let p"!' "', 2 ~ p"!' "', 1 be chosen canonically in Di. Now C'Y, a) 1--7 

p"!' a, 2 is definable in N, and so, for each "I, in N, we can compute a 
bound, 'TJC'Y) < kk+1, for sup {dom R(p"!' "', 2) : ai ::; a < "I, a a limit 
ordinal }, as a function of "I. Iterating 'TJ in N gives us a club, E i , of 

kk~1' Ei E INI. Now, (HKk+2)N = LKk+2[a(Z)nkk+2], so all clubs of kk+1 
which lie in INI, and, in particular, E i , lie in L[a(Z) n kk+2J. Already in 
L, card kk+2 = card kk+1. So, in L[a(Z) n kk+2J there is () < (kk+1)+ 
such that all clubs of kk+1 which lie in INI, in fact, lie in Le[a(Z) n kk+2J. 
This, however, readily gives us that unless (card kk+1)L[u(Z) nKk+2] = "'k 
(and in this case, there is no problem in proving that q"'k is a condition), 
there is a club C of kk+l, C E L[a(Z) n kk+2], such that C grows faster 
than any c~ub of kk+1 which lies in INI. In particular, C grows faster than 
Ei , so that for sufficiently large "I < kk+l, all Ei-intervals above "I miss C. 
In V, fix C* ~ C, o.t. C* = "'k, C* a club of Kk+1' 

The idea of the above is that in constructing p"!' a, 1, we have "marked" 
a and OUL hope is that in passing from p"!' <>, 1 to P"~ cr, 2, we have not 
inadvertently "marked" anything else. While this is too much to hope for, 
in general, we shall be able to get that we have not marked anything else 
in C, provided we choose "I sufficiently large so that every interval of E i , 

above "I, misses C. So, GOOD's winning strategy, finally, to go from qi to 
qi+b is to take "I to be the least ordinal> ai, "I E C which, as above, is 
sufficiently large that the interval [,,(, 'TJC'Y))nC = 0, and such that there 
is a* E raj, "I) n C* and then to take qi+1 = P"~ a*, 2. Thus, GOOD has 
"marked" a member of C* and nothing else in C, while obtaining qi+1 E D i . 

Now, since, as remarked above, we know from the construction that hk 
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codes h kH , in L[Z n I\:k, hk], we can recover u(Z) n K:k+2, and therefore C. 
But then, by the construction, we have that {a E C : (hk (a), hk (a + 1)) = 
(1, I)} is a cofinal subset of C*. Thus, as required, (cf K:k+l)L[ZnKk, hkl = 
I\:k. This completes the proof. 0 

(3.4) Taken together, (3.1)-(3.3) give us the following Lemma, which, in 
turn, gives us the Theorem of the Introduction: 

Lemma. Forcing with 8(1\:) preserves cofinalities, GCH, and if G is 
V-generic for 8(1\:), then, in V[G] there is W ~ 1\:+ such that V[G] = V[W], 
Z E L[W, Z n 1\:] and for all n ::; w, HKn = LKJW] and for I\: < a < Ii+, 
(card a)L[wna1 = 1\:. 

Proof. Of course W = U{£(p(O)) : pEG}. It is a routine generalization 
of arguments from Chapter 1 of [1] to see that for all k, there is Qk E 

VSk(K) such that 8(1i) ~ 8k (l\:) * Qk, and [f-Sk(K) "Qk is I\:kH- c.c. and 
card Qk = I\:kH". Further, for k = 0, (2.3) gives us that 8(1\:) is (I\:, 00)­
distributive and clearly card S(Ii) = Ii;!;. Thus, preservation of GCH 
is clear, as is the preservation of all cardinals except possibly I\:;!;. The 
argum~nt here is routine: if this failed, then letting ,= (cf 1i;!;)VS(K), for 
some 0 < k < w, I = I\:k. But then, since (cf 1\:;!;)VSk(K) > I\:k, forcing 
with Qk over VSk(K) would have to collapse a cardinal 2: likH which is 
impossible. 0 

3.5 Remarks and applications 

(1) If we s~art from an arbitrary Z' ~ liw , we can, of course, code Z' 
by first coding Z' into a Z, as above (e.g., by coding Z' into Z on 
odd ordinals), and then proceeding as above. 

(2) In work in progress, we are attempting to develop a combinatorial 
approach to coding the universe by a real (when 0# does not exist). 
Part of our approach is to use the Easton product of the 8(1\:), for 
I\: = N2, or I\: a limit cardinal, as a preliminary forcing, to simplify 
the universe before doing the main coding. 

(3) Several people have observed that the 8(1\:) afford a method of cod­
ing any set of ordinals using a set forcing over models of GC H 
where 0# does not exist. This can be done as follows. Let X ~ A, 
and assume, without loss of generality, that A 2: N2 • Code X into a 
Z ~ A +w, where Z has the properties assumed above. Then, force 
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with S(A) to get W, as above. Finally, since W reshapes the inter­
val (A, A +), we can continue to code W down to a real, using one 
of th~ usual methods of coding by a real. 

(4) Woodin has introduced the following abstract notion of condensa­
tion. A ~ 6 has condensation iff there's an algebra, A E V with 
underlying set 6, such that for any generic extension V' of V: 

(*) if X ~ 6 and X is the underlying set of a subalgebra of A, 
and 7r: (A*, A*) -+ (AIX, A n X), where 7r is the inverse of 
the transitive collapse map, then A* E V. 

6 has condensation iff for all A ~ 6, A has condensation. This 
notion has been investigated by Woodin's student, D. Law, in his 
dissertation [3], and by Woodin himself. 

S. Friedman has observed that using (3), above, it can be shown 
that for any cardinal jJ., we can force condensation for jJ. via a set 
forcing. We omit the proof, except to say that according to Fried­
man, this is not a routine consequence of the usual sort of con­
densation for L[r], but rather involves a closer look at the coding 
apparatus. 
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