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Summary. The pcf theorem (of the possible cofinability theory) was proved for
reduced products [] Ai/I, where k < mini<,. A;. Here we prove this theorem under
i<k

weaker assumptions such as wsat(I) < min;<. A;, where wsat(I) is the minimal
0 such that k cannot be divided to 0 sets ¢ I (or even slightly weaker condition).
We also look at the existence of ezact upper bounds relative to <1 (<1 —eub) as
well as cardinalities of reduced products and the cardinals Tp(\). Finally we apply
this to the problem of the depth of ultraproducts (and reduced products) of Boolean
algebras.

0. Introduction

An aim of the pcf theory is to answer the question, what are the possible cofinalities
(pcf) of the partial orders [] Ai/I, where cf(\;) = A, for different ideals I on x. For
i<k

a quick introduction to the pcf theory see [Sh400a], and for a detailed exposition, see
[Sh-g] and more history. In §1 and §2 we generalize the basic theorem of this theory
by weakening the assumption k& < min;<.x A; to the assumption that I extends a
fixed ideal I* with wsat(I™) < min;<. As, where wsat(I™) is the minimal 6 such
that x cannot be divided to 8 sets ¢ I™ (not just that the Boolean algebra P(x)/I"
has no 6 pairwise disjoint non zero elements). So §1, §2 follow closely [Sh-g, Ch.
I1=Sh345a], [Sh-g, II 3.1], [Sh-g, VIII §1]. It is interesting to note that some of
(as presented in courses and see a forthcoming survey of Kojman) those proofs
which look to be superseded when by [Sh420, §1] we know that for regular § < A,
T < X\ = J stationary S € I[A], S C {§ < A : cf(6) = 6}, give rise to proofs here
which seem necessary. Note wsat(I*) < |Dom(I*)|* (and reg,(I*) < |Dom(I*)|*
so [Sh-g, I §1, §2, II §1, VII 2.1, 2.2, 2.6] are really a special case of the proofs here.

During the sixties the cardinalities of ultraproducts and reduced products were
much investigated (see Chang and Keisler [CK]). For this the notion “regular filter”
(and (A, p)-regular filter) were introduced, as: if A\; > Ro, D a regular ultrafilter (or
filter) on k then [] A\¢/D = (limsupp A:)*. We reconsider these problems in §3

1<K

(again continuing [Sh-g]). We also draw a conclusion on the depth of the reduced
product of Boolean algebras partially answering a problem of Monk; and make it
clear that the truth of the full expected result is translated to a problem on pcf.
On those problems on Boolean algebras see Monk [M]. In this section we include
known proofs for completeness (mainly 3.6).

Let us review the paper in more details. In 1.1, 1.2 we give basic definition
of cofinality, true cofinality, pcf(A) and J<i[A] where usually A = (A : 7 < K)
a sequence of regular cardinals, I™* a fixed ideal on x such that we consider only
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ideals extending it (and filter disjoint to it). Let wsat(*) be the first 8 such that we
cannot partition x to 8 I*-positive set (so they are pairwise disjoint, not just disjoint
modulo I*). In 1.3, 1.4 we give the basic properties. In lemma 1.5 we phrase the
basic property enabling us to do anything: (1.5(x)): liminfr«(X\) > 6 > wsat(I*),
[1A/I* is 6F-directed; we prove that [ [ A/J<a[A] is A-directed. In 1.6, 1.8 we deduce
more properties of (J<x[A] : A € pcf())) and in 1.7 deal with <,_, 5-increasing
sequence (fa : & < A) with no <;_,5j-bound in 12 In 1.9 we prove pcf(X) has a
last element and in 1.10, 1.11 deal with the connection between the true cofinality
of [] Ai/D* and [] p:/E when p; =: tcf([] Xi/D;) and D* is the E-limit of the
i<k i<o <K

Di’s. _ _ ~

In 2.1 we define normality of A for A: Jea[A] = J<a[A] + B and we define
semi-normality: J<[A] = Jea[A] + {Ba : & < A} where B /J<a[)] is increasing. We
then (in 2.2) characterize semi normality (there is a <;_, (5j-increasing f = (fa :
a < A) cofinal in [[A/D for every ultrafilter D (disjoint to I of course) such that
tcf(J[[A/D) = A) and when semi normality implies normality (if some such f has
a <;_,[a —eub).

We then deal with continuity system @ and <;_ {5)- increasing sequence obeying
@, in a way adapted to the basic assumption (x) of 1.5.

Here as elsewhere if min(A) > 6% our life is easier than when we just assume
lim supr+(A) > 0, [[A/I* is 6 -directed (where 6 > wsat(I*) of course). In 2.3 we
give the definitions, in 2.4 we quote existence theorem, show existence of obedient
sequences (in 2.5), essential uniqueness (in 2.7) and better consequence to 1.7 (in the
direction to normality). We define (2.9) generating sequence and draw a conclusion
(2.10(1)). Now we get some desirable properties: in 2.8 we prove semi normality, in
2.10(2) we compute cf([] A/I*) as max pcf(A). Next we relook at the whole thing:
define several variants of the pcf-th (Definition 2.11). Then (in 2.12) we show that
e.g. if min()) > 0%, we get the strongest version (including normality using 2.6, i.e.
obedience). Lastly we try to map the implications between the various properties
when we do not use the basic assumption 1.5 (*) (in fact there are considerable
dependence, see 2.13, 2.14).

In 3.1, 3.3 we present measures of regularity of filters, in 3.2 we present
measures of hereditary cofinality of H)\/D: allowing to decrease A and/or in-
crease the filter. In 3.4 - 3.8 we try to estimate reduced products of cardinalities
IT Xi/D and in 3.9 we give a reasonable upper bound by hereditary cofinality
i<w
(< (8%/D + hefpo( [T A1))<? when 6 > regg (D)).

1<K

In 3.10-3.11 we return to existence of eub’s and obedience and in 3.12 draw
conclusion on “downward closure”. On Tp(f), starting with Galvin and Hajnal
[GH] see [Sh-g]. ~

In 3.13 - 3.14 we estimate Tp(A) and in 3.15 try to translate it more fully to pcf
problem (countable cofinality is somewhat problematic (so we restrict ourselves to
Tp(X) > p = ui°). We also mention R;-complete filters; (3.16, 3.17) and see what
can be done without relaying on pcf (3.20)).

Now we deal with depth: define it (3.18, see 3.19), give lower bound (3.22), com-
pute it for ultraproducts of interval Boolean algebras of ordinals (3.24).
Lastly we connect the problem “does \; < Deptht(B;) for i < x implies
p < Deptht([] Bi/D)” at least when p > 2° and (Vo < p)[|a|™ < ul, to a

<K

pcf problem (in 3.26). This is continued in {Sh589].
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In the last section we phrase a reason why 1.5(x) works (see 4.1), analyze the
case we weaken 1.5(x) to liminf;~(A) > 6 > wsat(I™) proving the pseudo pcf-th
(4.3).

1. Basic pcf

Notation 1.0. I,J denote ideals on a set Dom(I), Dom(J) resp., called its domain
(possibly | , cr A C DomlI). If not said otherwise the domain is an infinite cardinal
denoted by  and also the ideal is proper i.e. Dom(I) ¢ I. Similarly D denotes a filter
on a set DomD; we do not always distinguish strictly between an ideal on « and the
dual filter on . Let A denote a sequence of the form (\;:i < n) We say M is regular
if every \; is regular, minX = min{)\;:i < k} (of course also in A we can replace x
by another set), and let [] A= 1T As; usually we are assuming ) is regular. Let I*
1<K
denote a fixed ideal on k. Let It = P(k) \ I (similarly Dt = {A C k:x\ A & D}),
let
lim irllfj\ =min{p:{i <k X <p}elt} and

limsup A = min{p: {i < k: A; > p} € I} and
1

atomrA = {p: {it A = u} eIty

For a set A of ordinals with no last element, = {B C A:sup(B) < sup(A)},
i.e. the ideal of bounded subsets. Generally, if 1nv(X ) = sup{|y|:F ¢[X,y]} then
invt (X) = sup{|y|T:F <p[X y]} and any y such that F ¢[X,y] is a w1tness for
ly| < inv(X) (and |y| < invt(X)), and it exemplifies this. Let Aj[A] = (A%:a <
0) = (A§ L[A]:a < 8) be defined by: A} = {i < k: A; > a}. Let Ord be the class of
ordinals.

Definition 1.1.

(1) For a partial order™ P:

(a) P is A-directed if: for every A C P, |A| < A there is ¢ € P such that
/\peAp < q, and we say: ¢ is an upper bound of A;

(b) P has true cofinality A if there is (pa: @ < A) cofinal in P, i.e.: /\a<ap°‘ <
pp and Vg € P[\/__, ¢ < pa] [and one writes tcf(P) = A for the minimal
such A] (note: if P is linearly ordered it always has a true cofinality but
e.g. (w, <) x (w1, <) does not).

(c) P is called endless if Vp € P3q € Plg > p] (so if P is endless, in clauses
(a), (b), (d) above we can replace < by <).

(d) AC P is acover if: Vp € PIg € Alp < ¢]; we also say “A is cofinal in P”.

(e) cf(P) = min{]A|: A C P is a cover}.

(f) We say that, in P, p is a lub (least upper bound) of A C P if:

(e) p is an upper bound of A (see (a))
(B) if p’ is an upper bound of A then p < p'.
(2) If Dis afilter on S, s (for s € S) are ordinals, f, g € [] «s, then: f/D < g/D,

sES
f<pgand f < gmodD all mean {s € S: f(s) < g(s)} € D. Also if f, g are
partial functions from S to ordinals, D a filter on S then f < g mod D means
* actually we do not require p < ¢ < p = p = ¢ so we should say quasi partial
order
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{i € Dom(D) : i ¢ Dom(f) or f(i) < g(¢) (so both are defined)} belongs to
D. We write X = A mod D if Dom(D) \ [(X \ A) U (A \ X)] belongs to D.
Similarly for <, and we do not distinguish between a. filter and the dual ideal
in such notions. So if J is an ideal on k and f, g € H X, then f < gmod J iff
{# < k:—f(i) < g(2)} € J. Similarly if we replace the a’s by partial orders.
(3) For f, g:S — Ordinals, f < g means /\ses f(s) < g(s); similarly f < g.
So (I] X, <) is a partial order, we denote it usually by Hj\; similarly [] f or
[T 7G)
i<k
(4) If I is an ideal on s, FF C "Ord, we call g € "Ord an <;-eub (exact upper
bound) of F' if:
() g is an <j-upper bound of F' (in *Ord)
(B) if h € "Ord, h <; Max{g, 1} then for some f € F', h < max{f, 1} modI.
(y) ifACk, A Dmodl and [f€ F = f[|A=;704,ie {i€ A: f(i) #0} €
I] then g [ A =7 04.
(5) (a) We say the ideal I (on ) is §-weakly saturated if x cannot be divided to
0 pairwise disjoint sets from I (which is P(x) \ I)
(b) wsat(I) = min{6: I is 0-weakly saturated}

Remark 1.1A.

(1) Concerning 1.1(4), note: ¢’ = Max{g, 1} means ¢'(:) = Max{g(¢),1} for each
i < k; if there is f € F, {i < k: f(i) = 0} € I we can replace Max{g, 1},
Max{f,1} by g, f respectively in clause (3) and omit clause (7).

(2) Considering [][ f(i), <; formally if (3)f(i) = 0 then [] f(:) = 0; but we

i<k i<k
usually ignore this, particularly when {i: f(i) = 0} € I.
Definition 1.2. Below if I' is “a filter disjoint to I”, we write I instead I.

(1) For a property I" of ultrafilters:

pcf(A) = pef(\, ) = {tcf(H A/D): D is an ultrafilter on & satisfying I'}

(so s a sequence of ordinals, usually of regular cardinals, note: as D is an
ultrafilter, [[A/D is linearly ordered hence has true coﬁnality)

(1A) More generally, for a property I” of ideals on k we let pcf-(\) = {tcf(H/\/J ) J
is an ideal on k satisfying I" such that H)\/ J has true coﬁnahty} Similarly
below.

(2) J<a[A, Il = {B C &: for no ultrafilter D on « satisfying I" to which B belongs,
is tef(J[[A/D) > A}

(3) JarA T = T+ AT

(4) pctr(A\ 1) = {tcf(H)\/D ): D a filter on k disjoint to I satisfying I"}.

(5) If B € I, pcf,(A | B) = pch+<N\B)(/\) (so if B € I'it is @), also Jcx(X |
B,I) C 'P(B) is defined similarly.

(6) If I = I* we may omit it, similarly in (2), (4).

If ' =TIt~ = {D: D a filter on « disjoint to [} we may omit it.

Remark. We mostly use pcf(X), J<a[A]-
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Claim 1.5.

(0)

(1)
(2

®3)

(4)

([T <s) and (JTA, <s) are endless (even when each A; is just a limit ordinal);

min(pef; (X)) > liminf; () for A regular; B

(i) If B1 C B> are from I" then pcf; (A | B1) C pef; (A | B2);

(ii) if I C J then pcf;(X) C pcf, Q\) and

(iii) for Bi, B2 C & we have pcf; (A | (B1UB2)) = pcf (A | B1) Upcf; (A | B2).
Also

(iv) A€ Jar[M] (31 UB2) & ANB1 € Jex[M | Bi] & AN Bz € Joa[A | By)

(v) If A1, Az € It AfnA;, = Q) A1 U A = K, and tcf H/\ [ Ae, <1) = A
for £ =1,2 then tcf(J[] A, <1) = A; and if the sequence f = (fo : @ < A)
witness both assumptions then it witness the conclusion.

(i) if By C B2 C Kk, B; finite and A regular then

pef (A | B2) \ Rang(X | B1) C pef, (A [ (B2 \ B1)) C pef; (A | Ba)

(i) if in addition 2 € B1 = A; < mln(Ranng (B2 \ B1))),
then pef, (X | B2) \ Rang(X | B1) = pcf () [ (B2 \ B1)).

Let ) be regular (i.e. each )\, is regular)

(i) If 6 = liminf; A then ] A/I is 6-directed

(i) If 6 = liminf; X is singular then [JA/I is 61-directed

(i) If 0 = liminf; X is inaccessible (i.e. a limit regular cardinal), the set {i <
K = @} is in the ideal I and for some club F of 0, {i < k:\; €
E} 6 I then [TX/T is 6*-directed. We can weaken the assumption to
“I is not weakly normal for A” (defined in the next sentence). Let “I is
not medium normal for (6,))” mean: for some h € []A, for no j < 6
is {i < kA < 6 = h(i) < j} = kmodl; and let “I is not weakly
normal for (6, \)” mean: for some h € [] A, for no ¢ < liminf;(A) = 0, is
{i<w:Xd<O=h(E)<crelt.

(iv) If {i: \; = 0} = k mod I and I is medium normal for A then ([] A, <r)
has true cofinality 6. _ ~

(v) If [T A/I is 6-directed then cf([]A/I) > 6 and minpcf ([ A) > 6.

(vi) pef L()\) is non empty set of regular cardinals. [see part (7)]

(5) Assume ) is regular and: if 8’ =: limsup,(}) is regular then I is not medium

normal for (6’,)). Then pch(/\) Z (limsup,;(\))"; in fact for some ideal J
extendlng I, H/\/J is (limsup, (X)) *-directed.

(6) f Dis a ﬁlter on a set S and for s € S, a, is a limit ordinal then:

(i) Cf(HsesaSv <D) = Cf(Hses Cf(a6)7 <D) = Cf(Hses(a-Sa <)/D)7 and

(ii) tef(J],cqs> <p) = tef(J],es(cf(@s), <p)) = tef([[,c (s, <)/ D).
In particular, if one of them is well defined, then so are the others. This is true
even if we replace as by linear orders or even partial orders with true cofinality.

(7) If D is an ultrafilter on a set S, As aregular cardinal, then 6 =: tcf(HsES/\s, <p)

is well defined and 6 € pcf({\s:s € S}).

(8) If D is a filter on a set S, for s € S, A, is a regular cardinal, $* = {\;:s € S}

and
E=:{B: BCS" and {s:A\, € B} € D}
and A\; > |S| or at least As > |{t: A\t = A;}| for any s € S then:
(i) E is a filter on S™*, and if D is an ultrafilter on S then E is an ultrafilter
on S*.
(it) S* is a set of regular cardinals and
if s € S = \; > |S] then (VA € §*)) > |5,
(iii) F={f¢€ Hses)‘s: s=t= f(s) = f(t)} is a cover of [] .ss,
(iv) cf([I,csAs/D) = cf([[S*/E) and tef([[,esAs/D) = tef(J[S*/E).
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(9) Assume I is an ideal on k, FF C "Ord and g € "Ord. If g is a <;-eub of F then
gisa <y-lub of F.

(10) suppef;(X) < |[[ /1]

(11) If I is an ideal on S and (][] as,<r) has true cofinality A as exemplified by

sES

f = {(fa : a < ) then the function (@, : s € S) is a <; —eub (hence <; —lub)
of f.

(12) The inverse of (11) holds: if I is an ideal on S and fo € SOrd for a < A = cf(\),
(fa : @ < A) is <s-increasing with <; —eub f
then tef([ | £(2), <r) = tef(J ] cf[F(3)], <1) = A

(13) If I C J are ideals on « then

(a) wsat(I) > wsat(J)

(b) liminf;(A) < liminf;(\)

(c) if A= tcf(J] Ai, <1) then A = tef(J] i, <)

i<k 1<K
(14) If f1, f2 are <; —lub of F then f1 =; fo.
Proof. They are all very easy, e.g.

(0) We shall show (]]A, <) is endless (assuming, of course, that J is a proper
ideal on k). Let f € [, then g =: f + 1 (defined (f +1)(v) = f(v) + 1) is in []X
too as each A, being an infinite cardinal is a limit ordinal and f < gmod J.

(5) Let 6’ =: limsup,;(\) and define

J=:{ACk: for some § <0 ,{i <rk:)\ >60andic A} belongs to I}.

Clearly J is an ideal on s extending I (and x ¢ J) and lim sup, () = liminf;(\) =
0.
Case 1: ¢ is singular -

By part (4) clause (ii), [JA/J is (6')*-directed and we get the desired conclu-
sion.
Case 2: 0’ is regular. _

Let h € [] A witness that “I is not medium normal for (', A)” and let

J*={ACk: for some j < 6 wehave {i € A: h(i) < j} = A mod T}.

Note that if A € J then for some 6§ < ¢', A" =: {{ € A: 0; > 0} € I hence
the choice j =: 6 witness A € J*. So J C J*. Also J* C P(k) by its definition.
J* is closed under subsets (trivial) and under union [why? assume Ao, A1 € J*,
A = Ag U Az; choose jo, j1 < 6’ such that Ay =: {i € Ag : h(i) < je} = Ae mod I,
so j =: max{jo,j1} <@ and A’ ={i € A: h(i) <j} =A mod I;s0 A€ J*]. Also
K & J* [why? as h witness that I is not medium normal for (¢’, A)]. So together J*
is an ideal on k extending I. Now J* is not weakly normal for (6, A), as witnessed
by h. Lastly [JA/J* is (¢')*-directed (by part (4) clause (iii)), and so pcf () is
disjoint to (")

(9) Let us prove g is a <; —lub of F' in (*Ord, <). As we can deal separately
with I+ A, I + (k\ A) where A =: {i: g(2) = 0}, and the later case is trivial we can
assume A = §. So assume g is not a <; —lub, so there is an upper bound g’ of F,
but not g <7 g’. Define g’ € *Ord:

von [0 if g(i) < ¢'(3)
'@ = {ga o0 <ot

Clearly g <1 g. So, as g in an <; —eub of F for I, there is f € F such that
¢" <1 max{f,1}, but B =: {i:g'(i) < g(i)} # Pmod I (asnot g <; g')so g’ | B =
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"1 B <y max{f,1} | B. But we know that f <; ¢’ (as g’ is an upper bound of F)
hence f | B <1 g’ | B, so by the previous sentence necessarily f | B =; Op hence
g’ | B =1 0p; as g’ is a <;-upper bound of F we know [f' € F = f' [ B =/ 0g],
hence by () of Definition 1.1(4) we have g | B =; Op, a contradiction to B ¢ I
(see above). | )

Remark 1.3A. In 1.3 we can also have the straight monotonicity properties of
pch(H;\,F) in I" and in 1.
CLamM 1.4:

(1) J<a[X] is an ideal (of P(k) i.e. on s, but the ideal may not be proper).

(2) if A < p, then Jea[A] C Jepu[A

(3) if A is singular, Jea[A] = Jox+ [A] = J<a[A]

(4) if A & pcf(N), then we have J<x[N] = J<,\[/\]

B) HACK, A g 7 Joa[N, and f, € [mxrt , A, (fara < A) is <,_,[x-increasing
cofinal in (J]A | A)/J<a[)] then A € JS,\[/\}. Also this holds when we replace
J<x[\] by any ideal J on &, I* C J C J<i[A].

(6) The earlier parts hold for J<a[A, I'] too.

Proof. Straight.

LEMMA 1.5: Assume
() A is regular and
(@) minA > 0 > wsat(I™") (see 1.1(5)(b)) or at least
(8) liminfr+(\) > 0 > wsat(I*), and [[ A/I* is 0F-directed**.
If X is a cardinal > 6, and « ¢ J<a[A] then (T]A, <J.x[3)) 18 A-directed (remember:
T[N = Jealh, I7]).

Proof. Note: if f € [[X then f < f+1 €[], (e ([]N, <J,[x) is endless) where
f+1is defined by (f + 1)(¢) = f(i) +1). Let F C []A, |F] < A, and we shall prove
that for some g € [[A we have (Vf € F)(f < gmod J<x[}]), this suffices. The proof
is by induction on |F'|. If | F| is finite, this is trivial. Also if |F| < 8, when (a) of (%)
holds it is easy: let g € []A be g(i) = sup{f(i): f € F} < A;; when (8) of (x) holds
use second clause of (3). So assume |[F| = pu, 8 < p < A so let I = {fa a < p}.
By the induction hypothesis we can choose by induction on a < p, f2 € H/\ such
that:

(a‘) foz < fa mOdJ<>\[)\]

(b) for B < a we have fj < fimod Jcx[N].

If p is singular, there is C C y unbounded, |C| = cf(u) < p, and by the induction
hypothesis there is g € []A such that for a € C, fi < gmod Jci[)\]. Now g is as
required: f9 < fl < Fmin(c\a) < gmod J<A[A]. So without loss of generality p is
regular. Let us define A7 =: {i < x:A; > [e|} fore < 0,s0e < (<0 = A; C A
and € < 0 = Al = kmodI*. Now we try to define by induction on € < 6, g,
ae = ale) < p and (Bga:a < p) such that:

** note if cf(8) < 0 then “6%-directed” follows from “f-directed” which follows
from “liminf;«(A) > 6, i.e. first part of clause (8) implies clause (3). Note
also that if clause (a) holds then [ A/I* is 6 -directed (even ([ A, <) is 67F-
directed), so clause («) implies clause (3).
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(1 ge € H)‘
(ii) for ¢ < ¢ we have ge [ A7 < g¢ | A?
(iti) for a < plet BE =: {i < k: fo(i) > ge(z')}
(iv) for each € < 8, for every a € [aet1, 1), BS # BET mod J<a[N].
We cannot carry this definition: as letting a(x) = sup{a.: e < 6}, then a(*) < u
since p = cf(u) > 6. We know that By, N Af; # Bl n A5+1 for a < 0 (by

a(x)
(iv) and as AZ,; = kmodI* and I* C Jci[)]) and By €  (by (iii)) and

e<¢= Ba( N AZ C Bg,l (by (ii)), together (A2, N (Bg ., \ Bi'(tl)):s < 6)
is a sequence of @ pairwise disjoint members of (I*)*, a contradiction*** to the
definition of 6 = Wsa’c(I*).

Now for e =0 let gZ be f3 and e = 0.

For ¢ limit let g. (% UC<€ gc (i) for i € A; and zero otherwise (note: g € H)\ as
e <0, \ >efori€ A and ) is a sequence of regular cardinals) and let e = 0. -
For ¢ = ¢ + 1, suppose that g; hence (BS:a < p) are defined. If BS € Jca[)]
for unboundedly many o < p (hence for every o < ) then g¢ is an upper bound
for F mod Jc<x[A] and the proof is complete. So assume this fails, then there is a
minimal a(¢) < u such that BQ(E) ¢ Joa[N). As BS o) & J<a[M], by Definition 1.2(2)
for some ultrafilter D on & disjoint to J<[A] we have Bi(s) € D and cf([[N/D) > A.

Hence {fi/D:a < pu} has an upper bound he/D where he € [[A. Let us define

ge € HS\
9e(é) = Max{g¢(é), he ()}

Now (i), (ii) hold trivially and Bg, is defined by (iii). Why does (1v) hold (for
¢) with a¢c41 = ae =: afe)? Suppose ae) < a < p. As fa(e) < flmod Joa[M
clearly Bi(s) C B§ mod J<[)]. Moreover J<x[)] is disjoint to D (by its choice) so
B, € D implies BS € D.

On the other hand BS is {i < k: fL(i) > ge(4)} which is equal to {7, € X fli) >
9¢(4), he (i)} which does not belong to D (h. was chosen such that fao < h. mod D).
We can conclude BE ¢ D, whereas BS € D; so they are distinct mod J<A[)] as
required in clause (iv).

Now we have said that we cannot carry the definition for all ¢ < 6, so we are
stuck at some €; by the above ¢ is successor, say ¢ = ¢ + 1, and g¢ is as required:
an upper bound for F modulo Jc[A]. s

*)

LEMMA 1.6: If (*) of 1.5, D is an ultrafilter on « disjoint to I* and A = tcf([]A, <p),
then for some B € D, (H)\ B, <;_,5)) has true cofinality A. (So B € Ja[A\
J<a[A] by 1.4(5).)

Proof. By the definition of J<>\[)\] clearly we have DN Jcx[A] = 0.

Let (fo/D: o < A) be increasing unbounded in H)\/D s0 fa € []A). By 1.5 without
loss of generality (V8 < a)(fs < fomod Jca[A]).

Now 1.6 follows from 1.7 below: its hypothesis clearly holds. If /\a<,\ By = 0mod D,
(see (A) of 1.7) then (see (D) of 1.7) JND = @ hence (see (D) of 1.7) g/D contradicts
the choice of (fo/D:a < A). So for some & < A, Bo € D; by (C) of 1.7 and 1.4(5)
we get the desired conclusion. bs

*** in fact note that for no B. C k (¢ < 0) do we have: B # Be41 mod I* and
€< (< 0= BN A; C B; where Ac =k mod I" (e.g. A; = A7)
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LEMMA 1.7: Suppose (*) of 1.5, cf(A) > 0, fa € [[A, fa < fomod Joa[A] for
a < B < A, and there is no g € [ such that for every o < A, fo < gmod J<a[A).
Then there are B, (for oo < A) such that:

(A) Ba C & and for some a(*) < \ia(x) < a < A= Bo & J<a[A]

(B) a < B = Bs C BgmodJcr[}] (i.e. B\ Bg E‘J<)‘[)\])

(C) for each a, (fg | Ba:B < A) is cofinal in (J]A [ Ba, <,_,[5) (better restrict
yourselves to a > a(*) (see (A)) so that necessarily Bo & J< N

(D) for some g € [[A, Aoy fo < gmodJ where! J = Jcx[A] + {Ba:a < A}
in fact

(D)* for some g € [] A for every a < X, we havel fo < gmod(Jca[A] + Ba), in
fact Bo = {t < st fa(2) > g(3)}
(E) if g < g’ € []A, then for arbitrarily large o < A:

{i < k1[g(3) = fa(i) & ¢'(3) = fa(i)]} = kmod J<a[A]

(hence for every large enough « < A this holds)
(F) if 6 is a limit ordinal < A, fs isa <;_,x) —lub of {fo: @ < 6} then Bs is a lub
of {Ba:a < 6} in P(k)/J<r[N-
Proof of 1.7. Remember that for ¢ < 8, A = {i < k: A; > ||} so A7 = kmod I”
and ¢ < ¢ = A7 C AI. We now define by induction on ¢ < 8, ge, a(e) < A,
(Bg:a < A) such that:
(i) ge € TN
(ii) for ( <e, g¢ I AZ < ge [ AC
(i) BS = {i € 5 fa(i) > g:(i)} ]
(iv) if a(e) < a < X then BE # BT mod J<a[)]
For e = 0 let gc = fo, and afe) = 0.
For ¢ limit let g-(z) = Uc<s gc(7) if i € AZ and zero otherwise; now

€ <e=gcl A <gel Al

holds trivially and g € []X as each A; is regular and [i € AZ < A; > €]), and let
a(e) = 0.

For ¢ = ¢ + 1, if {& < A\: BS € J<i[A]} is unbounded in A, then g¢ is a bound for
(fo:a < A) mod J<x[A], contradicting an assumption. Clearly

a<B<A = B C B modJca[A]

hence {a < A: B§ € J<a[A]} is an initial segment of X. So by the previous sentence
there is a(¢) < A such that for every a € [a(e), ), we have BS ¢ J<a[A] (of course,
we may increase a(e) later). If (BS:a < A) satisfies the desired conclusion, with
a(e) for a(*) in (A) and g¢ for g in (D), (D)* and (E), we are done. Now among
the conditions in the conclusion of 1.7, (A) holds by the definition of BS and of
a(e), (B) holds by B$’s definition as a < 8 = fo < fszmod J<a[A], (D) holds
with g = g¢ by the choice of BS hence also clause (D) follows. Lastly if (E) fails,
say for g’, then it can serve as g.. Now condition (F) follows immediately from (iii)
(if (F) fails for 6, then there is B C Bg such that A __, BS C Bmod J<x[}] and

T Of course, if By = xmod J<x[}\], this becomes trivial.
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B5\ B € Jca|)\]; now the function g* =: (g¢ | (,k\B))U(fs | B) contradicts “fs is a
<soapn —lubof {fa:a < 6}, because: g* [T X (obvious), =(fs < g* mod J<a[N])
[why?ang\B¢J<,\[/\] and g* (BC\ B) =g¢ [ (B§\B) < fs | (B§ \ B) by the
choice of Bg], and for a < 6 we have:

faIB<,_ 5 fs|B=g" B and

fa T(8\B) <y, 9¢ [ (k\B) =g" [ (v \ B)
(the <,_, (5 holds as (k\ B)N B € J<a[A] and the definition of BS). So only clause
(C) (of 1.7) may fail, without loss of generality for @ = a(e). Le. (fg | Bi(s): B < A)
is not cofinal in (HX I Bi(a), <u. N (x])- As this sequence of functions is increasing
w.r.t. <j_ (5], there is ha € ITO T Bi(a)) such that for no 8 < A do we have

ha < f5 | Bi(g) mod J<[A]. Let hl = he U0\ p¢ ,and ge € [T be defined by
a(e)

ge (i) = Max{g¢(7), h. (i) }. Now define B by (iii) so (i), (ii), (iii) hold trivially, and
we can check (iv)

So we can define g¢, a(e) for € < 0, satisfying (i)—(iv). As in the proof of 1.5, this
is impossible: because (remembering cf(A) = A > 0) letting a(*) =: UE<0 ale) < A
we have: (B, N Af:e < () is C-decreasing, for each {( < 0, and A = kmod I”
and BE( .y # Basy mod J<a[A] so { o) NAL\ BZ“(L*I € < 0) is a sequence of 6
pairwise disjoint members of (J<x[\])T hence of (I*)* which give the contradiction
to (*) of 1.5; so the lemma cannot fail. b

a(*

LEMMA 1.8: Suppose (x) of 1.5.
(1) For every B € J<a[A]\ J<a[A], we have:

(H M B, <J_,[n) has true cofinality A (hence A is regular).

(2) If D is an ultrafilter on &, disjoint to I*, then cf(J[A\/D) is min{A: DN J<x[A] #
0} - -

(3) (i) For X limit J<A[)\]#= U< J<#[/\]_hence
(i) for every A, Jea[A] = Uu<A J<u[N]

(4) J<a[A] # J<a[A HE J<a[A\ J<a[A] # @ HE A € pef(X).

(5) J<a[A]/J<a[A] is A-directed (i.e. if By € J<a[A] for v < 4™, ¥* < A then for
some B € J<[A] we have B, C Bmod Jc[)] for every v < ~*.)

Proof. (1) Let
J={B Ck:BcJca[\ or Be€ Jcr[N]\ J<a[A] and
([I> ' B, <J_[)) has true cofinality A}.
By its deﬁnition clearly J C J<a[\]; it is quite easy to check it is an ideal (use
1.3(2)(v)). Assume J # J<i[A] and we shall get a contradiction. Choose B €
J<a[A] \ J as J is an ideal, there is an ultrafilter D on x such that: DN J = 0 and
B € D. Now if tcf( H)\/D ) > A, then B ¢ J<x[\] (by the definition of J<a[A]);
contradiction. On the other hand if F' C [TA, |F| < X then thereis g € [A such that
(Vf € F)(f < gmod Jcx[A]) (by 1.5), so (Vf € F)[f < gmod D] (as Joa[A] C J,
DnJ = 0), and this implies cf(J[A/D) > A. By the last two sentences we know
that tcf(J[A/D) is A. Now by 1.6 for some C € D, (H(;\ IC),<u_an ) has true
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cofinality A, of course CN B C C and CN B € D hence CN B ¢ Jca[)]. Clearly if
C' C C,C" & Jea[A then also (J[A I C’ » <u_x)) has true cofinality A, hence by
the last sentence without loss of generality C C B; hence by 1.4(5) we know that
C € J<i[\] hence by the definition of J we have C € J. But this contradicts the
choice of D as disjoint from J.
We have to conclude that J = J<3[A] so we have proved 1.8(1).
(2) Let A be minimal such that D N J<i[A] # @ (it exists as by 1.3(10)
<<H>‘)+[)\} = P(r)) and choose B € DN J<x[A]- So [p < A = B & J<u[N]

(by the choice of \) hence by 1.8(3)(ii) below, we have B ¢ J<[A]. It similarly
follows that DN J<x[A] = 0. Now (J[A [ B, <, ~»[x) has true cofinality A by 1.8(1).
As we know that B € DN J<i[A], and J<A[A]N D = §; clearly we have finished the
proof. B B

(3) (i) Let J =: U“</\ J<u[A]. Now J is an ideal by 1.4(1)+(2) and (][, <s) is
A-directed; i.e. if @* < A and {fa:a < @*} C []X, then there exists f € []A such
that

(Va < a™)(fa < fmod J).

[Why? if o* < 6% as (*) of 1.5 holds, this is obvious, suppose not; A is a limit
cardinal, hence there is p* such that o* < p* < A Without loss of generality
la*|T < p*. By 1.5, there is f € J]X such that (Vo < o*)(fa < fmod J<ux[A]).
Since J<,+[A] € J, it is immediate that

(Vo < &™)} (fa < fmod J).]

Clearly U J<u[ ] € J<x[A] by 1.4(2). On the other hand, let us suppose that
there is B € (J<,\ \Uu<>\ J<u[A]). Choose an ultrafilter D on  such that B € D

and DNJ = 0. Since ([], <) is A-directed and DNJ = @, one has tcf([[A/D) > A,
but B € DN Jcx[)], in contradiction to Definition 1.2(2).

(3)(ii) If A limit — by part (i) and 1.4(2); if A successor — by 1.4(2) and
Definition 1.2(3).

(4) Easy.

(5) Let (f3:a < A) be <;_, (x4 (x\B,)-increasing and cofinal in [T (for v < v*).
Let us choose by induction on a < A a function f, € H ), as a <J</\[,\]~bound to
{fs:8 < a} U{fI:v < ¥}, such fo exists by 1.5 and apply 1.7 to (fa:a < A),
getting (B.:a < A\), now By, for a large enough is as required. his

CONCLUSION 1.9: If (%) of 1.5, then pcf(A) has a last element.

Proof. This is the minimal A such that x € J<a[A]. A exists, since A* =: |[]A| €
{\:k € J<aA[A]} # @ and by 1.4(2); and A € pcf(\) by 1.8(4) and A = maxpcf(A)
by LA(T)+1.8(4). Mo

CLAIM 1.10: Suppose (*) of 1.5 holds. Assume for j < o, Dj is a filter on k extending
{k\A:A e I'}, Eafilteronoand D* = {B Ck:{j < o: B € D;} € E} (afilter on
x). Let p; =: tcf([]A, <p,) be well defined for j < ¢, and assume further y; > o+6
(where 0 is from (x) of 1. 5)

Let
A= tef([ [ A <pe)s = tef(] | ms» <z)-
i<o

Then A = p (in particular, if one is well defined, than so is the other).
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Proof. Wlog o > 6 (otherwise we can add p; =: po, Dj =: Do for j € 0\ o,
and replace o by @ and E by E' = {A C 0:ANo € E}). Let (fi:a < u;) be an
<p,-increasing cofinal sequence in ([[ A, <b,).

Now £ = 0,1, for each f € [ A, define Gz ) € ] p5 by Ge(f)(5) = min{e <

i<e
pj: if £=1then f < f2 mod D; and if £ = 0 then: not fi < f mod Dj} (it is well
defined for f € []A by the choice of (fi:a < pj)).
Note that for f, f2 ¢ HS\ and ¢ < 2 we have:
! f?mod D" & B(f', f*) =: {i <s:f'(i) < f*(i)} € D

AL ={i<a:B(f',f)eD;} € E

for some A € FE, for every ¢ € A we have f1 <p; f?

A

for some A € FE for every i € A we have
Ge(f1)(3) < Ge(£*)(3)
Ge(f') < Ge(f*) mod E.

0

So
®1 Ge is a mapping from ([ X, <p~) into ( [] p;, <g) preserving order.
i<eo
Next we prove that ~
®2 for every g € Hj<aﬂj for some f € [, we have g < Go(f) mod E.
J<

[Why? Note that mm{u] j<o}=ot>0%and J<o[)] C J<o

(ITA <s._5) is o*-directed, hence for some function f € [[A:
(x)1 for j < o we have fj( 5 < fmod J<o [N

We here assumed o < p;, hence J<U[)\] C J<u; [A] (by 1.4(2)) but J<,,, [A] is disjoint
to D; by the definition of J<,;[A] (by 1.8(2) + 1.3(13)(c)) so together with (x)1:
(x)2 for j < o, gj(J) < fmod D;.

So by the definition of Go for every j < o we have g(j) < Go(f)(j) hence clearly
g < Go(f)]

®3 for £ € [[ A we have Go(f) < G1(f) [Why? read the definitions]

Q4 if f1, fo € HX and G1(f1) <eg Go(f2) then fi <p+ f2

[Why? as G1(f1) <& Go(f2) there is B € E such that: j € B = G1(f1)(J) <

Go(f2)(j) so for each j € B we have fi1 <p, fél(f y;y (by the definition of G1(f1))

and fGl(fl)(J) <p; f2 (as G1(f1)(j) < Go(f2)(5) and the definition of Go(f2)(j)) so
together fi1 <p, fz So A(f1, f2) = {i < k: f1(2) < f2(4)} satisfies: A(f1, f2) € D;
for every j € B but B was chosen in F, hence A(f1, f2) € D* (by the definition of
D™) hence f1 <p~ f2 as required]
Now first assume A = tcf(J][ A, <p-) is well defined, so there is a sequence f=
(fa : & < A) of members of [[ A, <p--increasing and cofinal. So (Go(fa) : & < A)
is <g-increasing in [] p; (by ®1), for every g € [] p; for some f € [T A we have
j<eo i<eo

g < Go(f) (why? by ®2), but by the choice of f for some 8 < A we have f <p~ fg
hence by ®:1 we have g <g Go(f) <g Go(fs), so (Go(fa) : & < A) is cofinal in
(TT - <E). Also for every o < X, applying the previous sentence to G(fa) + 1
i<eo

(€ T wj) we can find 8 < X such that G(fa) + 1 <g G(f5), so G(fa) <& G(fa),

i<o

[X]. By 1.5 we know
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so for some club C of A, (Go(fa) : @ € C) is <g-increasing cofinal in ( [] u;, <=).
j<o

So if A is well defined then p = tcf([] pj, <e) is well defined and equal to A.
i<o
Lastly assume that u is well defined i.e. [] w;/E has true cofinality u, let

i<o
g = (g : @ < pu) exemplifies it. Choose by induction on o < p, a function f, and
ordinals B, v« such that

(i) fa€]]Xand Ba < pand va < p

(11) 9Ba <E GO(fa) SE Gl(fa) <E Gva (SO ﬂa < 'YQ)

(iii) a1 < a2 < p = Yoy < Pay (0 fa > a)

In stage a, first choose 8o = J{¥a: + 1 : a1 < a}, then choose fo € []A such

that gs, +1 <g Go(f.) (possible by ®2) then choose v, such that G1(fa) <E gva-

Now Go(fa) <& Gi(fa) by ®3. By ®4 we have a1 < az = fa, <p* fa,. Also if

f €[] then G1(f) € [] 1; hence by the choice of g, for some o < p we have
I<o

G1(f) <E ga but o < B4 so Gi(f) <& ga <E Go(fa) hence by ®4, f <p» fa.

Altogether, (fa : o < ) exemplifies that (]| A, <p-) has true cofinality g, so A is

well defined and equal to u. b

ConNcLUSION 1.11: If (%) of 1.5 holds, and o, i = (u;:7 < o), (Dj:j < o) are as
in 1.10 and o + @ < min(f), and J is an ideal on ¢ and I an ideal on « such that
I*"CIC{ACk: for some B € J for every j € 0\ A we have B ¢ D;} (e.g.
I =1TI") then pcf;({p;:5 < o}) C pef(A).

Proof. Let E be an ultrafilter on o disjoint to J then we can define an ultrafilter
D™ on k as in 1.10, so clearly D" is disjoint to I and we apply 1.10. o

2. Normality of A € pcf(A) for A

Having found those ideals J<[A], we would like to know more. As Jca[A] is in-
creasing continuous in A, the question is how J<[A], Jy+[A] are related.
The simplest relation is J.y+[A] = J<a[A]+ B for some B C k, and then we call
A normal (for A) and denote B = By[\] though it is unique only modulo Jcx[A].
We give a sufficient condition for existence of such B, using this in 2.8; giving the
necessary definition in 2.3 and needed information in 2.4, 2.5, 2.6; lastly 2.7 is the
essential uniqueness of cofinal sequences in appropriate [[A/I.
Definition 2.1.
(1) We say A € pcf(A) is normal (for A) if for some B C k, J<x[A] = J<a[A] + B.
(2) We say A € pcf(A) is semi-normal (for A) if there are B, for o < A such that:
(i) @ < 8= Ba C Bgmod Jc[)
and B B
(it) Jea[A] = Jer[A] + {Batax < A} ~
(3) We say A is normal if every A € pcf(\) is normal for A. Similarly for semi
normal. B B B _
(4) In (1), (2), (3) instead A we can say (A, I) or [[A/I or ([]A, <1) if we replace
I* by I (an ideal on Dom(}\)).
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Fact 2.2. Suppose (*) of 1.5 and ) € pcf()). Now:

(1) X is semi-normal for A iff for some F = {fa:a < A} C [[X we have: [a < 8 =
fa < famod J<x[)]] and for every ultrafilter D over k disjoint to J<x[\], F is
unbounded in ([, <p) whenever tcf([]A, <p) = A.

(2) In 2.1(2), without loss of generality, we may assume that

either: B, = Bomod J<a[A] (so A is normal)
or: B, # Bgmod J<[A] for a < @ < A so A is not normal.

(3) Assume ) is semi normal for . Then X is normal for X iff for some F as in part
( ) (of 2.2), F has a <;_, 5-exact upper bound g € T1...(A: + 1) and then

=: {i < k:g(i) = A\;} generates J<x[A] over J<a[)].

(4) If A is semi normal for A then for some f = (fo : a < A), B = (Ba:a < \) we
have: B is increasing modulo J<)\[ IR J<A[)\} = Jca[A| + {Ba : @ < A}, and the
sequences (fa : & < A) is <;_, (5)-increasing and f, B are as in 1.7.

Proof. 1) For the direction =, given (Bq : @ < A) as in Definition 2.1(2), for each
a < A, by 1.8(1) we have ([]A I Ba, <j.,[3) has true cofinality A, and let it be

exemplified by (f§ : 8 < A). By 1.5 we can choose by induction on v < A a function
fv € [] A such that: 3,7 < a = 8 <samfrand B<vy= fs <;_,15 fr-

Now F =: {fa : & < A} is as required. [Why? First, obviously a < 8 = fo <
fs mod J<,\[ ). Second, if D is an ultrafilter on x disjoint to I" and (J] A\, <p) has
true cofinality A, then by 1.6 for some B € J<x[A] \ J<a[A] we have B € D, so for
some a < A\, B C B, mod J<A[)\] hence By € D. As f§ <;_,x fa for B € [, A)
clearly F' is cofinal in ([] A, <p).]

The other direction, < follows from 1.7 applied to F = {fo : a < A}. [Why?
we get there (B, : a < )\) B € J<a[)] increasing modulo J< [ so J =: J<a[A] +
{Ba:a <A} C J<x[A.

If equality does not hold then for some ultrafilter D over x, D N'J = @ but
D N J<xa[A] # 0 so by clause (D) of 1.7, F is bounded in [[A/D whereas by
1.8(1),(2), tef(JT A, <p) = A contradicting the assumption on F.]

2) Because we can replace (Bo : & < A) by (Ba,; : i < A) whenever {(a; : 1 < A)
is non decreasmg, non eventually constant. B

3) If A is normal for X, let B C & be such that J<a[A] = J<a[A] + B. By 1.8(1)
we know that ([J(A I B), <,_,[5)) has true cofinality A, so let it be exemplified
by (f§:a < A). Let fa = f3UO(p) for @ < X and let g € “Ord be defined by
g(t) =X;ifi € Band g(i) =0 if: € K\ B. Now (fo : @ < A), g are as required by
1.3(11).

Now suppose (fa : @ < A) is as in part (1) of 2.2 and g is a <Jy.,n] —eub of F,
g€ [[(hi+1) and B = {i: g(i) = A\}. Let D be an ultrafilter on « disjoint to

1<K
J<a[A]. If B € D then for every f € [[ A, let f' = (f | B) U0\ 5), now necessarily
f'<max{g,1} (as[i€ B= f'(i) < X\ —g(')]and[iEH\B:f()_O<g<1])
hence (see Definition 1. 2(4)) for some o < A we have [’ < ma.x{fa, 1} mod Jca[A]
hence for some o < A, f' < fo mod Jci[A] hence f < f' < fo mod D; also
a< B= fo< fs mod D, hence together (fo : & < A) exemplifies tcf([[ A\, <p
):)\.IfBgéDthenn\BEDsog’:g[(@\B)UOB:g mod D and
a < A= fa <D fa+1 <D g =D ¢', s0 g’ € [[ A exemplifies F is bounded in
(TTX,<p) so as F'is as in 2.2(1), tcf(J] A, <p) = A is impossible. As D is disjoint
to J<a[A], necessarily tef([] X, <p) > A. The last two arguments together give, by
1.8(2) that J<i[A] = J<a[\] + B as required in the definition of normality.

4) Should be clear. | D%

We shall give some sufficient conditions for normality.

7.<n
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Remark. In the following definitions we slightly deviate from [Sh-g, Ch I =Sh345a].
The ones here are perhaps somewhat artificial but enable us to deal also with case
(8) of 1.5(*). Le. in Definition 2.3 below we concentrate on the first § elements of
an a, and for “obey” we also have A* = (A, : a < 6) and we want to cover also
the case 6 is singular.

Definition 2.3. Let there be given regular A, § < u < A, u possibly an ordinal,
S C A, sup(S) = A and for simplicity S is a set of limit ordinals or at least have no
two successive members.

(1) We call @ = {as:a < A) a continuity condition for (S, u,0) (or is an (S, u, 6)-
continuity condition) if: S is an unbounded subset of A, as C a, otp(aa) < 4,
and [8 € aa = ag = aa N P] and, for every club E of A, for somet § € S we
have 8 = otp{a € as:otp(as) < 6 and forno B € as N is (B, ) NE = @}. We
say @ is continuous in S™ if a € S* = a = sup(aa)-

(2) Assume fo € "Ord for a < A and A™ = (A,:a < 6) be a decreasing sequence
of subsets of k such that k \ A € I". We say f = (fa:a < A) obeys a =
(aa:a < A) for A* if: -
(i) for B € aq, if € =: otp(aa) < 6 then we have fs | Al < fo | Al (note: A”

determine 6). ~ B

(2A) Let k, A, I" be as usual. We say f obeys a for A* continuously on S if: a is
continuous in S* and f obeys @ for A* and in addition S* C S and for a € S*
(a limit ordinal) we have fo = fa, from (2B), i.e. for every ¢ < x we have
fa(i) = sup{fs(i): B € aa} when |aa| < A B

(2B) For given A = (A;:i < k), f = (fa:a < A) where fo € [[A and a C A, and 6
let fo € [] A be defined by: fa(2) is 0 if |a| > As and U{fa(i): @ € a} if |a] < As.

(3) Let (S,0) stands for (5,0 + 1,0); (A, p,0) stands for “(S, u,8) for some un-
bounded subset S of \” and (A, 6) stands for (A, 8+ 1,6).

If each A, is k then we omit “for A*” (but € should be fixed or said).

(4) We add to “continuity condition” (in part (1)) the adjective “weak” [“6-weak”]
if “8 € aq = ag = ax NG is replaced by “a € S&B € aa = (Y < a)laa NP C
ay & v < min(ae \ (B+ 1)) & [laa NB| < 6 = |ay| < 0]]” [but we demand that
v exists only if otp(as N B) < 0]. (Of course a continuity condition is a weak
continuity condition which is a #-weak continuity condition).

Remark 2.8A. There are some obvious monotonicity implications, we state below

only 2.4(3).

Fact 2.4.

0 cf(0) =20

(1) Let 0r = | g+ cfgeg <6
tionary S C {6 < A:cf(6) = 6.}, there is a continuity condition & for (S, 6,);
moreover, it is continuous in S and § € S = otp(as) = 6; so for every club F
of A for some § € S, Vo,Bla< B & a€as & B € as — (a,8) NE # D}].

(2) Assume A = 6+, then for some stationary S C {6 < A : cf(6) = cf(9)} there is
a continuity condition for (S,6+1,6). (In fact continuous in S and [§ € S = as
closed in 6] and [@ € as and § € S = an = asNa].)

(3) If @ is a (A, u, 61)-continuity condition and 61 > 0 then there is a (A, 0 + 1,0)-
continuity condition.

and assume A = cf(A\) > 0. Then for some sta-

! Note: if otp(as) = 8 and § = sup(as) (holds if § € S, . = 6+ 1 and @ continuous

in S (see below)) and é € acc(E) then § is as required.
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Proof. 1) By [Sh420, §1].
2) By [Sh351, 4.4(2)] and® [Sh-g, IIT 2.14(2), clause (c), p.135-7].
3) Check. Ly

Remark 2.4A. Of course also if A = 67 the conclusion of 2.4(2) may well hold. We
suspect but do not know that the negation is consistent with ZFC.

Fact 2.5. Suppose (*) of 1.5, fa € [I* for & < A, A = cf(X) > 6 (of course
x = dom())) and A* = A*[)] is as in the proof of 1.5, i.e. A% = {i < k: \; > a}).
Then

(1) Assume a is a 8-weak continuity condition for (S,8), A = sup(S), then we can

find f' = (fi:a < A) such that:

(i) fa €Il

(ii) for o < A we have fo < f,

(iii) fi)r a< B <A we have fo <;_,x f5
(iv) f' obeys a for A*

(2) If in addition min(A) > u, S§* C S are stationary subsets of A but @ is a
continuity condition for (S, 4,0) and @ is continuous on S§* then we can find
f' = (f&:a < A) such that
(i) faellr
(ii) for o« € A\ S* we have fo < fhanda=08+1€A\S* & B S" = fs < f,
(iii) for o < B < X we have fi <;_,x f5
(iv) f’ obeys a for A* continuously on S*; moreover 2.3(2)(i) can be strength-

ened to B € an = f3 < fa-

(3) Suppose (f,:a < M) obeys @ continuously on S and satisfies 2.5(2)(ii) (and
2.5(2)’s assumption holds). If go € []A and (ga:a < A) obeys @ continuously
on S* and [a € A\ S* = go < fof then A go < fa.

(4) If ¢ < 0, for £ < ¢ we have f* = (fi:a < A}, where f5 € [[ A, then in 2.5(1)
(and 2.5(2)) we can find f’ as there for all f¢ simultaneously. Only in clause (ii)
we replace fo < f4 by fa | A7 < fi | AZ (and fa < f4 by fo | A7 < f | AL,

Proof. Easy (using 1.5 of course).

CLAIM 2.5A: In 2.5 we can replace “(*) from 1.5” by “[]A/J<a[A] is A-directed

and lim inf7~(\) > 0”.

CLAIM 2.6: Assume (*) of 1.5 and let A* be as there,

(1) in 1.7, if (fa:x < X) obeys some (S, 6)-continuity condition or just a §-weak
one for A* (where S C A is unbounded) then we can deduce also:
(G) the sequence (Ba/J<a[\:a < A) is eventually constant.

(2) If 0% < X then J<x[A]/J<a[N] is AT-directed (hence if A is semi normal for A
then it is normal to \).

Proof. 1) Assume not, so for some club E of A we have

(*) @ <6 < A&b € E = Ba # Bsmod Jox[A].

As a is a -weak (S, 0)-continuity condition, there is § € S such that b =: {a €
as:otp(as Na) < 6 and for no B8 € as Na is (B,0) N E = @ and for some v < «,
aaNPB C ay and v < min(as \(B8+1)) and |ay| < 8} has order type 0. Let {ac: e < 6}
list b (increasing with €). So for every € < 0 there is v € (e, @c+1) N E, and let
Be < ae4+1 be such that as N ae C ap, and otp(ag, Nae) < 6; by shrinking b and

§ the definition of B{ in the proof of [Sh-g, ITI 2.14(2)] should be changed as in
[Sh351, 4.4(2)]
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renaming wlog 3. < 7 and a. € ag,. Let £(¢) =: otp(ag. ). Lastly let BY =: {i <
K fae (1) < f8.(2) < frye (3) < faey,(8)}, clearly it is = kmod I'* and let (remember
(x) above) Bf =: Afs)41 N (By. \ Bp.)N B2, now B,, € Bs. C B,. mod Jca[)
by clause (B) of 1.7, and B, # Bs, mod J<a[) by () above hence B,, \ B, #
@ mod J<[A]. Now B, Ag(ey+1 = kmod I" by the previous sentence and by 1.5(x)
which we are assuming respectively and I" C Jc A[A] by the later’s definition; so
we have gotten B # @mod J<x[A]. But for ¢ < ¢ < § we have B N B = ), for
suppose i € Bf N B{, 50 1 € A4, and also fy, (i) < fa.,,(3) < fp (9) (as i € B?
and as aet1 € ag, &1 € Af )4 respectively); now ¢ € B hence 7 € B, i.e. (where
g is from 1.7 clause (D)1) f,.(i) > g(i) hence (by the above) fs. (i) > g(i) hence
i € Bp, hence ¢ ¢ B, contradiction. So (B:e < 0) is a sequence of 6§ pairwise
disjoint members of (J<x[A])*, contradiction.

2) The proof is similar to the proof of 1.8(5), using 2.6(1) instead 1.7 (and @
from 2.4(1) if XA > 6} or 2.4(2) if A= 0TT). B

We note also (but shall not use):

CLAIM 2.7: Suppose (*) of 1.5 and

(8) fa €]X for @ < A, A € pcf(A) and f = (fara < A) is <J_,[x-increasing

(b) f obeys a continuously on S*, where @ is a continuity condition for (5, 8) and
A = sup(S) (hence A > 6 by the last phrase of 2.3(1)) ~

(c) J is an ideal on s extending J<a[A], and (fo/J:a < A) is cofinal in (A, <)
(e.g- J = Jea[A] + (x\ B), B € Jaa[A]\ J<a[A]).

(d) (fi:a < A) satisfies (a), (b) above.

(e) fo < fL for o € A\ S* (alternatively: (f,:a < M) satisfies (c)).

(f) if 6 € S* then J is cf(6)-indecomposable (i.e. if (Ac:e < cf(6)) is a C-increasing
sequence of members, of J then | J Ac € J).
Then:

(A) the set

e<cf(8)

{6 < X: if 6§ € S* and otp(as) = 6 then f5 = fsmod J}

contains a club of A.
(B) the set
{6 < Xif a € S and § =sup(6Nay) and otp(aNas) =0
then f:lma(; = fanas mod J}

contains a club of A.

Proof. We concentrate on proving (A). Suppose § € S*, and fs # f4 mod J. Let

Avs {i < k: fs(3) < f5(3)}
Azs = {i<k:ifs(d)> f5()},

So A5 U Azs € JT, suppose first A; s € J*. By Definition 2.3(2A), for every
i € Ay for every large enough o € as, f5(i) < fi(i), say for a € as \ B;. As
J is cf(6)-indecomposable for some B < a we have {i < k:3; < B} € J' so
fs 1 A1s < fp | A1s (and B < 6). Now by clause (c), E =: {§ < A: for every 8 < §
we have fé < fsmod J} is a club of A, and so we have proved

e FE= A5 € J
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If /\Q<,\ fa < fL (first possibility in clause (e) implies it) also Az,s € J hence
for no 6§ € S* N E do we have fs # fsmod J. If the second possibility of clause (e)
holds, we can interchange f, f’ hence [§ € E => A2 s € J] and we are done. | I

We now return to investigating the J<x[A], first without using continuity con-
ditions.

LEMMA 2.8: Suppose (x) of 1.5 and A = cf()) € pcf()). Then A is semi normal for
A

Proof. We assume A is not semi normal for A and eventually get a contradiction.
Note that by our assumption ([], <) is 7 -directed hence min pcf;(A) > 6% (by

1.3(4)(v)) hence let us define by induction on ¢ < 8, f¢ = (f$:a < A), B¢ and D¢
such that:

M (@) 5 eTIA
(i) o< B< A= f§ < fimod Jox[A]
(ili) o < A& < 0= f§ < f&mod Jca[N
(iv) for ( <€ <Oand o< X\ f§ [ Af < f5 1 Af
(IT) (i) Dg is an ultrafilter on & such that: cf(JJ\/D¢) = A
(ii) (f&/Dg¢: o < A) is not cofinal in [[A\/Ds
(iii) (fST1/De:a < M) is increasing and cofinal in [[A/De¢; moreover
(ili)* Be € D¢ and (f&t': o < \) is increasing and cofinal in [ A/(J<a[A] +
(k\ Be
(iv) f§7'/De is above {f5/De: o < A}.
For £ = 0. No problem. [Use 1.8(1)+(4)].

For & limit < 6. Let g§ € [[) be defined by g5(3) = sup{f5(i): ¢ < £} for i € Af
and f5(i) = O else, (remember that x\ A7 € I*). Then choose by induction on
a < A, f§ € [] X such that g§ < f§ and B < o = fs < fo mod J<a[A]. This is
possible by 1.5 and clearly the requirements (I)(i),(ii),(iv) are satisfied. Use 2.2(1)
to find an appropriate D¢ (i.e. satisfying II(i)+(ii)). Now (f§:a < ) and D; are
as required. (The other clauses are irrelevant.)
For € = 0. Choose fS by induction of o satisfying I(i), (ii), (iii) (possible by 1.5).
For & = ¢ + 1. Use 1.6 to choose B; € D¢ N J<x[A]\ J<a[M]. Let (g5:a < A) be
cofinalin (J[A, <p,) and even in ([T A, <,_ [X]4+(x\ B¢)) and without loss of generality
/\Q<,\ fS/De < gé/Dg and /\a<)\ 15 FA; < g5 I A;. We get (f5:a < A) increasing
and cofinal mod(J<[A] + (k\ Be)) such that g§ < f§ by 1.5 from (g5: a < A). Then
get D¢ as in the case “€ limit”.

So we have defined the f$’s and D¢’s. Now for each £ < 6 we apply (I1) (iii)™*
for (f¢T:a < A, (fg:a < A). We get a club C¢ of A such that:

a<B€Ce= fIBe < f5*' | Bemod Jea[A] ()

So C =: ﬂ§<9 Ce isaclub (if A. By 2.2(1) appli?d to (f2:a < A) (and the assumption
“X is not semi-normal for X\”) there is g € [] A such that

—g < fomod Jox[N for o < A ()1

(not used) and by 1.5 wlog
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f8§ < gmodJoy[A] for & <6 (%)2
For each £ < 0, by 11 (iii), (iii)* for some a; < A we have

g1 Be < f&}' 1 Bemod Joa[A] (%)s
Let a(x) = supg 4 a¢, s0 a(*) < A and so

g 1 Be < f505 1 Bemod Joa [N (%)a
For ( <0, let B = {i € AZ: g(4) < f5,)(§)}. By ()1, Bi11 € Dg; by (I1)(iv)+(x)2
we know B & D¢, hence B; # B, mod D¢ hence B # B{, mod Jca[M].

On the other hand by (I)(iv) for each ¢ < 8 we have (Bf N AZ: £ < () is C-increasing
and (as A7 = & mod J<i[A] for each ¢ < 6) hence by I(iv) we have (Bf/I" : £ <
6) is C-increasing, and by the previous sentence B # Bi,; mod Jcx[A] hence
(B /I":£ < 0) is strictly C-increasing. Together clearly (B; ,NA;,1\B;:£ < 0)isa
sequence of 0 pairwise disjoint members of (J<x[A])", hence of (I*)*; contradiction
to 6 > wsat([*). bs

Definition 2.9.

(1) We say (Bx: )\ € ¢) is a generating sequence for M if:
(i) Bx C & and ¢ C pcf(X)
(if) J<a[A] = J<a[A] + B for each A € ¢

(2) We call B = (By: A € ¢) smooth if:

1 € Bh&)\; € ¢ = B\, C By.
(3) We call B = (Bx: A € Rang()\)) closed if for each A
Br2D{i< kX €pcf(A] By}

Fact 2.10. Assume (x) of 1.5.

(1) Suppose ¢ C pcf(X), B = (Bx: A € ¢) is a generating sequence for X, and B C ,
pcf(A | B) C ¢ then for some finite 9 C ¢, B C Uuea B, mod I*.

(2) cf(JTA/I*) = maxpcf(X)

Remark 2.10A. For another proof of 2.10(2) see 2.12(2)+ 2.12(4) and for another
use of the proof of 2.10(2) see 2.14(1).

Proof. (1) If not, then I = I* +{BmUuea B.:0 C ¢, 0 finite} is a family of subsets
of k, closed under union, B € I, hence there is an ultrafilter D on k disjoint from
I to which B belongs. Let u =: cf([],_, Ai/D); necessarily u € pcf(X | B), hence
by the last assumption of 2.10(1) we have px € ¢. By 1.8(2) we know B, € D hence
BN B, € D, contradicting the choice of D.

(2) The case 8 = No is trivial (as wsat(I*) < Ro implies P(x)/I* is a Boolean
algebra satisfying the No-c.c. (as here we can subtract) hence this Boolean algebra
is finite hence also pcf(A) is finite) so we assume 8 > No. For B € (I*)* let
A(B) = max pcfr., g(A [ B).

We prove by induction on X that for every B € (I*)", cf([] A, <r++(=\B)) =
A(B) when A(B) < X; this will suffice (use B = s and A = | [ Ai|t). Given

i<r
B let A = A(B), by notational change wlog B = . By 1.9, pcf([[ A) has a last
element, necessarily it is A =: A(B). Let (fa:ar < A) be <;_, [5) increasing cofinal in
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[TA/J<x[A), it clearly exemplifies max pcf(A) < cf(J[]A/I*). Let us prove the other
inequality. For A € J<x[A\]\ I* choose Fa C [] A which is cofinal in [JA/(I* + (x\
A)), |Fal = A(A) < X (exists by the induction hypothesis). Let x be a large enough

regular, and we now choose by induction on £ < 8, N, g. such that:
(A) (i) Ne < (H (X), €,<%)
H) | Nell =
11 ) (Ns €§5>€Ns+l
iv) (Ne:e < 0) is increasing continuous
v) {e:e < A+ 1} C No, {)\,I*} € No, (fatax < A) € No and the function

A — Fa belongs to No.
(B) (i) ge € [T A and ge € Net1

(ii) for no f € N.N]] A does ge <z« f

(iii) ¢ < e&A; > |e| = gc(2) < ge(3).

There is no problem to define N, and if we cannot choose ge this means that
Ne N J] A exemplifies cf(JTA, <) < A as required. So assume (N.,gc:e < 6) is
defined. For each ¢ < 0 for some a(e) < A, ge < fa(ey mod J<x[A] hence a(e) <
a < A= ge <;_,in far As A = cf(A) > 0, we can choose o < A such that
a>J._,ale). Let Be = {i < k:ge(i) > fali)}; so for each £ < 6 we have (Be N
Ai:e <€) is increasing with ¢, (by clause (B)(iii)), hence as usual as 6 > wsat(I™)
(and 6 > Ro) we can find e(*) < 0 such that A Be(ytn = BexymodI* [why do
we not demand ¢ € (e(x),0) = Be = Be(x) mod I*7 as § may be singular]. Now
as ge(x) € Nexy+1 and fo € No < Ne(xy41 clearly, by its definition, Be(xy € Ne(xy+1
hence Fg € Ne¢(vy+1- Now:

(
(i
(i
(

e(*)
gee)+1 | (8 \ Begx)) =1* gewy+1 [ (8\ Bewy+1) < fa [ (5 \ Beay1)
=1 fa [ (k\ Be))

[why first equality and last equality? as Be(s)+1 = Be(»y) mod I, why the < in the

middle? by the definition of Be(xy41]-

But gesy+1 | Be) € H Aiy and By € J<>\[/_\] as ge < fae) <
i€B(.,

fo mod Jox[}\] so for some f € Fs,., C [TX we have geqayt1 | Besy < f I
B.(xymod I". By the last two sentences

ge(w)+1 < max{f, fo} mod I" (%)

Now fa € Na(*)+1 and f € Ne(*)-{-l (as f € FBE(*)v |FBE(*)| g /\7 A +1 g Ns(*)-}-l
the function B — Fg belongs to No < N¢(xy+1 and Bey € Ney+1 88 {ge(x), fa} €

Nc(xy+1) so together
max{f, fa} € Ne(x)+1; (%)
But (*), (**) together contradict the choice of ge(,)+1 (i-e. clause (B)(ii)). k.10

Definition 2.11.

(1) We say that I” satisfies the pcf-th for (the regular) (N O0) I [T A/I"is O-directed
and ([T, <,_,(x)) is A-directed for each A and we can find (Bx: A € pcfy. (X)),
such that:

Bx C Ky JA[MIY] = I" + {Bu:p € AN pef(N)}, Br € Jaa[A
H()\ ! BA)/J<,\[)\ I"] has true cofinality A (so Bx € J<a[A] \ J<
J<,\[/\] J<A[)\] + By).

(1A) We say that I* satisfies the weak pcf-th for (},9) if

I]and
AA] a
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(ITA, <i+) is O-directed
each ([T, <;_,(x) is M-directed and
there are B),o C & for a < A € pefy. (A) such that

a<B<p€pcf(N) = Bua C Bug mod Jeu[h, I7]
JaoN =" +{Buaa < p< Ay € pef. (A}
and ~
(JTX 1 Bua)s<sy 1)) has true cofinality A

(1B) We say that I* satisfies the weaker pcf-th for (X, 0) if (J] A, <;+) is -directed
and each ([ A, < Joa[n) is A-directed and for any ultrafilter D on & disjoint to
J<o[M letting A = tcf([] A, <p) we have: A > 6 and for some B € DN J<x[A]\
J<[A], the partial order (JJ(A | B), <J_,(5]) has true cofinality A.

(1C) We say that I* satisfies the weakest pcf-th for (X, 0) if (][] A, <7+) is 6-directed
and ([] A, <J_,[x)) is A-directed for any A > 6

(1D) Above we write X instead (),8) when we mean
6 = sup{0 : (H X, <1+) is 6% -directed}.

(2) We say that I* satisfies the pcf-th for @ if for any regular A such that
liminf;«(A) > 6, we have: I" satisfies the pcf-th for A. We say that I”
satisfies the pcf-th above p (above p™) if it satisfies the pcf-th for A with
liminfr« () > w (with {i: A\; > 4} = k mod I*). Similarly (in both cases) for
the weak pcf-th and the weaker pcf-th.

(3) Given I*, 0 let JP" = {ACk:A€I* or A¢ I* and I" + (k \ A) satisfies the
pcf-theorem for 6}.

Jyt = {AC k:iwsat(I* | A)<Bor Ac "}
similarly J;’pd; we may write J§[I7].

(4) We say that I* satisfies the pseudo pcf-th for X if for every ideal I on &k
extending I*, for some A € I" we have ([](A | 4),<r) has a true cofinality.

CLAIM 2.12:

(1) If () of 1.5 then I* satisfies the weak pcf-th for (X, 07). B

(2) If (x) of 1.5 holds, and [ A/I* is 61 *-directed (i.e. 7 < min ) or just there
is a continuity condition for (%1,0)) then I* satisfies the pcf-th for (X, 87).

(3) If I satisfy the pcf-th for (A, 6) then I satisfy the weak pcf-th for (X, 0) which
implies that I satisfies the weaker pcf-th for (A, @), which implies that I*
satisfies the weakest pcf-th for (A, 8).

Proof. (1) Let appropriate A be given. By 1.5, 1.8 most demands holds, but we are
left with seminormality. By 2.8, if A € pcf()), then A is semi normal for A. This
finishing the proof of (1). o

(2) Let XA € pcf(X) and let f, B be as in 2.2(4). By 2.4(1)+(2) there is @, a
(A, @)-continuity condition; by 2.5(1) wlog f obeys a, by 2.6(1) the relevant Ba/I*
are eventually constant which suffices by 2.2(2).

(3) Should be clear. K12

CLAIM 2.13: Assume ([] A, <;+) is given (but possibly (x) of 1.5 fails).

(1) If I*, X satisfies (the conclusion of) 1.6, then I*, X satisfy (the conclusions of)
1.8(1), 1.8(2), 1.8(3), 1.8(4), 1.9.
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(1A) If I* satisfies the weaker pcf-th for A then they satisfy the conclusions of 1.6
and 1.5.

(2) If I*, X satisfies (the conclusion of) 1.5 then I'*, X satisfies (the conclusion of)
1.10.

(2A) If I* satisfies the weakest pcf-th for A then I*, X satisfy the conclusion of 1.5.

(3) If I, X satisfies 1.5, 1.6 then I, X satisfies 2.2(1) (for 2.2(2) - no assumptions).

(4) If I, X\ satisfies 1.8(1), 1.8(2) then I*, X satisfies 2.2(3) when we interpret
“seminormal” by the second phrase of 2.2(1)

(5) If I, X satisfies 1.8(2) then I™, X satisfies 2.10(1).

(6) If I* X satisfy 1.8(1) + 1.8(3)(i) then I, X satisfies 1.8(2)

(7) If I*, X satisfies 1.8(1) + 1.8(2) and is semi normal then 2.10(2) holds i.e.

cf(H A, <r+) < sup pef - (A).

(8) If I*, ) satisfies 1.541.6 then they satisfy 2.10(2).
Proof. (1) We prove by parts.

Proof of 1.8(2). Let A = tef([] A/D); by the definition of J<a[A], clearly DN
J<x[A] = 0. Also by 1.6 for some B € D we have A = tcf([[(A [ B), <;_,5)), so by

the previous sentence B ¢ J<i[)\], and by 1.4(5) we have B € J<,[}\], together we
finish.

Proof of 1.8(1). Repeat the proof of 1.8(1) replacing the use of 1.5 by 1.8(2).
Proof of 1.8(3)(i). Let J =: |J J<u[N,50J C Jcx[A is an ideal because (J<,[A] :

n<A
< A) is C-increasing (by 1.4(2)), if equality fail choose B € J<x[A]\ J and choose
D an ultrafilter on & disjoint to J to which B belongs. Now if p = cf(p) < A
then p+ < X (as A is a limit cardinal) and g = cf(p) & pt < A= DN J<u[N] =
DN J_,+[A] = 0 hence by 1.8(2) we have u # cf(J[[A/D). Also if p = cf(u) > A
then DNJ<u[A] € DNJ<A[A] # @ hence by 1.8(2) we have p # cf(][ A/ D). Together
contradiction by 1.3(7).

Proof of 1.8(3)(it). Follows.
Proof of 1.8(4). Follows.

Proof of 1.9. Asin 1.9.

(1A) Check.

(2) Read the proof of 1.10.

(2A) Check.

(3) The direction = is proved directly as in the proof of 2.2(1) (where the use of
1.8(1) is justified by 2.13(1)). )

So let us deal with the direction <=. So assume f = (fo : @ < \) is a sequence
of members of [ X which is < Jo[5-increasing such that for every ultrafilter D on
x disjoint to J<a[A] we have: A = tcf([] A, <p) iff f is unbounded (equivalently
cofinal) in ([T A, <p). By (the conclusion of) 1.5 wlog f is <J_,[n-increasing.

By 1.5 there is g € [] A such that fo < g mod J<i[A] for each a < A, and let
Bo =: {i < k:9(3) < fa(i)}. Hence By € J<x[A] (by the previous sentence) and
(Ba/J<a[A] : @ < A) is C-increasing (as (fa : @@ < A) is <,_, (x)-increasing). Lastly
if B € J<a[A], but B\ By € J<a[)] for each o < A, let D be an ultrafilter on k
disjoint to J<x[A] + {By : a < A} but to which B belongs, so tcf([] X, <p) = A
(by 1.8(2) which holds by 2.13(1)) but {fo/D : & < A} is bounded by g/D (as
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fo/D < g/D by the definition of B,), contradiction. So the sequence (Bq : o < A)
is as required.

4) — 6) Left to the reader.

7) Let for A € pcf(X), (B} : i < \) be such that J<a[A] = Jax[N + {B} : i < A}
(exists by seminormality; we use only this equality). Let (f2* : @ < A) be cofinal
in (TA I B?), <y ,(x))s it exists by 1.8(1). Let F be the closure of {f3:a<
A,i < A\, A € pcf(A)}, under the operation max{g,h}. Clearly |F| < sup pcf(}), so
it suffice to prove that F is a cover of (J[[ A, <z+). Let g € [[ A, if (3f € F)(g < f)
we are done, if not

I={AU{i<k:f@)>g@)}: feF, AcI"}

is Ro-directed, x ¢ I, so there is an ultrafilter D on « disjoint to I, (so f € F =
f <p g) and let A = tcf(J[A/D), so by 1.8(2) we have D N J<a[A] \ Jea[A] # 0,
hence for some i < A, B} € D, and we get contradiction to the choice of the
{far® ra <A} (S F). -

8) Repeat the proof of 2.10(2) (only using J = {4 C «: if A ¢ J<a[A] then
cf([TA/I*) < A} if & € J let D be an ultrafilter on « disjoint to J, and use
1.6). B 13

CLAIM 2.14: If I* satisfies pseudo pcf-th then

(1) Wecan find {(J¢,0¢) : ¢ < ¢™), ¢* asuccessor ordinal such that Jo = I*, Je41 =
{AC k: if A¢ J; then tef(J](A I 4),<u.) = 0¢} and for no A € (J¢)* does
(TT(A 1 A), <ys,) has true cofinality which is < 6.

(2) If I satisfies the weaker pcf-th for A then I satisfies the pseudo pcf-th for A.

Proof. 1) Check (we can also present those ideals in other ways).
2) Check. LR

3. Reduced products of cardinals

We characterize here the cardinalities [] Ai/D and Tp({A::¢ < &)) using pcf’s and
1<K

the amount of regularity of D (in 3.1-3.4). Later we give sufficient conditions for
the existence of <p-lub or <p-eub. Remember the old result of Kanamori [Kn]
and Ketonen [Kt]: for D an ultrafilter the sequence (a/D: & < k) (i.e. the constant
functions) has a <p-lub if reg(D) < k; and see [Sh-g, III 3.3] (for filters). Then we
turn to depth of ultraproducts of Boolean algebras.

The questions we would like to answer are (restricting ourselves to “A\; > 27

or “A; > 22"” and D an ultrafilter on x will be good enough).

QUESTION A: What can be Carp =: { ][] A:s/D: A; a cardinal for i < s} i.e. charac-
1<K

terize it by properties of D; (or at least Cardp \ 2%) (for D a filter also T (] Ai)

is natural).

QUESTION B: What can be DEPTH}, = {Depth™( I1 As/D): Ai a regular cardinal}
1<K
(at least DEPTH}, \ 27, see Definition 3.18).
If D is an Ni-complete ultrafilter, the answer is clear. For D a regular ultrafilter
on K, A; > No the answer to question A is known ([CK]) in fact it was the reason for
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defining “regularity of filters” (for A; < Ro see [Sh7], [Sh-a, VI §3 Th 3.12 and pp
357-370] better [Sh-c VI§3] and Koppleberg [Ko|.) For D a regular ultrafilter on x,
the answer to the question is essentially completed in 3.22(1), the remaining problem
can be answered by pp (see [Sh-g]) except the restriction (Vo < A)(|a|¥ < A),
which can be removed if the cov = pp problem is completed (see [Sh-g, AG]). So
the problem is for the other ultrafilters D, on which we give a reasonable amount on
information translating to a pcf problem, sometimes depending on the pcf theorem.

Definition 3.1.

(1) For a filter D let reg(D) = min{6: D is not é-regular} (see below).

(2) A filter D is f-regular if there are A. € D for € < 6 such that the intersection
of any infinitely many A.-s’ is empty.

(3) For a filter D let

reg, (D) = min{#: there are no A. € DY for € < 9 such that
no i < « belongs to infinitely many A.’s}
and
regg (D) =: {0 : there are no A. € D* for € < 0 such that :
e<(=>A;CA: mod Dandnoi<k
belongs to infinitely many A.’s}.
(4) reg?(D) = min{@ : D is not (6, c)-regular} where “D is (0, 0)-regular” means
that there are A. € D for @ < 6 such that the intersection of any ¢ of them

is empty. Lastly reg? (D), regg (D) are defined similarly using A. € D*. Of
course reg(/) etc. means reg(D) where D is the dual filter.

Definition 3.2.
(1) Let
htef b, ([ [7s) = sup{tcf([ [, A¢/D):pp < Xy = cf A; < for i < k and
tef([[Ai/D) is well defined} and

hefpu ([ %) =sup{ef([] _ M/D)u< i =cfri <mbs
if 4 = No we may omit it.
(2) For E a family of filters on & let htcfg,u(] ], c:) be
sup{tcf(HKN)\i/D):D €Fand pu <\, =cf); < q; for i < k and
tef(J ], A:/D) is well defined}.
Similarly for hefg,,, (using cf instead tcf).
(3) hefp ([ T,< ) is hef,u(] ], x) for E = {D': D' a filter on x extending D}.

Similarly for htefp, ,.
(4) When we write I e.g. in hcfr,, we mean hefp ,, where D is the dual filter.

CLAIM 3.3:

(1) reg(D) is always regular
(2) If 6 < reg, (D) then some filter extending D is 6-regular.
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(3) wsat(D) < reg,(D)
(4) reg(D) < regg (D) < reg,(D)
(5) reg,(D) = min{0 : no ultrafilter Dy on k extending D is 6-regular}
(6) If D C E are filters on « then:

(a) reg(D) < reg(E)

(b) reg,(D) > reg,(E)
Proof. Should be clear. E.g (2) let (uc.:e < 6) list the finite subsets of 8, and
let {Ac::e < 6} C DT exemplify “0 < reg,(D)”. Now let D* =: {A C k«: for
some finite u C 0, for every € < 0 we have: v C u. = A C Amod D}, and let
A7 = U{A¢:e € uc}. Now D™ is a filter on k extending D and for € < 6 we have
AZ € D. Finally the intersection of Az, N AZ, N ... for distinct e, < 6 is empty,
because for any member j of it we can find {, < @ such that j € A¢, and e, € ug,,.
Now if {¢n:n < w} is infinite then there is no such j by the choice of (A.:e < 6),
and if {¢n:n < w} is finite then wlog A (» = (o contradicting “u¢, is finite” as

n,w

€n € ug,, . Lastly @ ¢ D* because A} # @ mod D. [ B3
Cn

n<w

Observation 3.4. |[],. . A:/I] > [NG/I| holds when A,__X; > Ro.

Observation 3.5.

(1) ITic A/ = htef 7 ([, Ae)- )

(2) If I satisfies the pcf-th for A or even the weaker pcf-th for A (see Definition
2.11) then: cf(J] A/I*) = max pcf . (A).

(3) If I* satisfies the pcf-th for p for and min()) > u then

hefp ([ A) = hefp u ([ 3 = htefth o ([ 2

whenever D is disjoint to I™.
(4) hefe ([T M) =hefg (T ).

1<K 1<K

(5) H /\I/I > thIyM( H /\1) = th;,M(H /\1) > htcf;yu( H )\z) and th[)“(H )\z) >
1<K 1<K 1<K 1<K 1<K
hthI,“(H Ai).

i<k

Remark 3.5A. In 3.5(3) concerning htcfp,,, see 3.10.

Proof. 1) By the definition of htcf} it suffices to show |[],_ Ai/I| > tef([[A:/ 1),
when I’ is an ideal on x extending I, A} = cf A} < \; for ¢ < & and tef([],_ A;/I")
is well defined. Now |[],_ A/I| > I[I,_ /11 > [, /T = cE(TIX/T), so we
have finished. ~

2) By 2.13(1A)clearly I*, X satisfies 1.5, 1.6 hence by 2.13(1), (2) also 1.8(1),
(2), (3), (4) and 1.9 and 1.10. Now by 2.13(8) also (the conclusion of) 2.10(2) holds
which is what we need.

3) Left to the reader (see Definition 2.11(2) and part (2)).

4), 5) Check. B

CraimM 3.6: If A = |[[.__A:i/I| (and A\; > R and, of course, I an ideal on x) and
1<K

0 < reg(I) then X = A°.
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Proof. For each i < &, let (n4:a < ;) list the finite sequences from ;. Let
M; = (A, Fy, Gi) where Fi(a) = £9(ng,), Gi(a, 8) is 1o () if 8 < £g9(na) (= Fi(a)),
and F(a,B) = 0 otherwise; let M =[], _ M;/I so |M| = [[TA:/1] and let M =
(ITX/I,F,G). Let (A;:4 < 6) exemplifies I is 6-regular. Now

(¥)1 We can find f € "w and f. € [, f(4) for ¢ <0 such that: e < ( < 0 =
fe <1 f¢ljust fori < klet w; = {e < 0:1 € Ac},itisfinite and let f(¢) = |ws|+1
and f.(2) = [e Nw;| < f(3), and note € < (&7 € A. N A¢ = f-(3) < fe(3)].

(*)2 For every sequence g = (ge:€ < 0) of membersof []. _ s, thereish € [],_ X
such that ¢ < 0 = M E F(h/I, fe/I) = ge/I [why? let, in the notation of (x)1,
k(i) be such that 7,y = (ge(i): € € w;) (in the natural order)].

So in M, every f-sequence of members is coded using f/I, f./I (for € < ) by at
least one member so || M||® = || M]||, but ||[M|| = |[].__X:/I| hence we have proved
3.6. |

1<K

Fact 8.7.

(1) For D a filter on k, (A1, A2) a partition of k and (non zero) cardinals \; for
i < k we have

|Hi<n/\i/Dl - |1—‘[i<n/\i/(D+ Aq)| % |Hi<NAi/(D+A2)|

(note: |[],. Xi/P(w)] = 1).
(2) DM =: {A C &: I[L< A:/(D + (x\ A))| < p} is a filter on & (u an infinite
cardinal of course) and if Rg < p < Hi<n)\i/D then DM is a proper filter.
(3) If A < | IT As/Il, (X; infinite, of course, I an ideal on x) and A € It =
1<K
| TT Aé/Il = X and o < reg,(I) then |[[ A:/I| > A°
i€A

Proof. Check (part (3): by the proof of 3.3(2) we can find A € I'* for € < o such
that for finite v C o, NecuwAe € I and continue as in the proof of 3.6).

Craimm 3.8: If D C F are filters on  then
Xi/D] < N:/E|+ sup X/ (D+(k\ A)| + (2/D) + Ro.
IL_ 2o <ITL M/BI+ sup AT A/(D+ (s \ DI+ (27/D) + o

We can replace 2% /D by |P| if P is a maximal subset of F such that A # B € P =
(A\ B)U(B\ A) # @mod D.

Proof. Think.

LemMa 3.9: |[T,_ . A:/D| < (6%/D + hefpo([],_ M))<° (see Definition 3.2(1))
provided that:
0 > regg (D) (%)

Remark 3.9A. 1) If § = 67, we can replace /D by 05/D. In general we can
replace 6° /D by sup{[] f(i)/D : f € 6*}.

i<k
2) If D satisfies the pcf-th above 8 (see 2.11(1A), 2.12(2)) then by 3.5(3) we can
use htcf* (sometime even htcf, see 3.10). But by 3.7(1) we can ignore the A\; < 6,
and when ¢ < k = \; > 0 we know that 1.5(*)(«) holds by 3.3(3).
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Proof. Let A = 60~/D +hcfpo([] ). Let for ¢ < 8, ue =: N ie. pe =: (6°/D +
<K

hefpe [ Ai)l¢l) clearly e = ulfl. Let x = Js(sup;.,. A:)" and N¢ < (H(x), €, <%)

1<K

be such that || N¢|| = pe, NSIUC Ney A+ 1 C Ne and {D, (A\i:i < k)} € N; and

[e < (= Ne < N¢]. Let N = U{N;:¢ < 6} Let g* € [],_ A\ and we shall find

f € N such that g* = fmod D, this will suffice. We shall choose by induction on

¢ <0, f¢(e < 3) and A® such that:

(@) f¢ € [Lou(hi + 1)

(b) f} € N; and fZ € Ne.

(c) A= (AS:i< k)€ Ng.

(d) X € AS C X+ 1, |AS] < [¢] + 1, and (AS:¢ < 6) is increasing continuous (in
)

(e) f3) = min(A$ \ 9*(4)); note: it is well defined as g* (i) < A; € AS
(f) f! = f¢modD
(8) 9* < fé < f¢ mod(D + {i < k:g*(2) # f())})-
(h) f2(5) € A;T

So assume everything is defined for every ¢ < (. If { = 0, let Af = {\}, if ¢
limit Af = Us<< A, for( =e+1, Af will be defined in stage . So arriving to ¢,
AS is well defined and it belongs to N¢: for ¢ = 0 check, for ¢ = €+ 1, done in stage
e, for ¢ limit it belongs to N¢ as we have NCSK' C N¢ and: £ < (= N¢ < N¢ and
Af € N¢. Now use clause (e) to define f0/D. As (AS:5 < k) € N, |A| < [¢]+1 <0
and 6°/D < A < A+ 1C N, clearly | [] |A$|/D| < Ahence {f/D: f € ] A%} C

i< i<

N¢ hence f¢/D € N hence there is fcl € N¢ such that f! € fg/D i.e. clause
(f) holds. As g* < fQ clearly g* < fcl mod D, let ¥§ =: {i < k:g*(i) > L@},
y§ =: {i < ki & y§ and cf(f1(3)) < 6} and y5 =: x\ ¥§ \2¢. So (yé:e < 3) is a
partition of k and g* < fcl mod(D + y8) for e =1,2.

Let y§ = {i < r: cf(f(i)) > 0} so f € N¢, and @ € N¢ hence y§ € N¢, so

(IT £20), <pyyg) € Ne- Clearly y§ C i C g Uys. Now
i<k

cf(HKNf(l(i), <payt) < hch+y§Y9(Hi<~)\i) <hefpo(J[ M) CA<r+1C N

1<K

hence there is F € N, |F| < A, F C [] f2(i) such that:

iEyg

vVo)lg € [ £2G) = 3f € F)(g < f mod (D + ¢))))-

iEyg

As A+ 1 C N necessarily F' C N¢. Apply the property of F to (g* | yg) U O(N\yg)
2

and get f4< € F C N¢ such that g* < f‘f mod (D + yg) Now use similarly
[T cf(F2GE) /(D + (5 \ y5)) < |0%/D| < A; by the proof of 3.7(1) there is a func-
1<K

tion f? € N¢ N HKKfCl(z) such that ¢g* | (¥ +95) < fg mod D. Let Af+1 be:
AL U{f2(3)}.
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It is easy to check clauses (g), (h). So we have carried the definition. Let
X =:{i < w: fe41(3) < f2(9)}.
Note that by the choice of fcl, fcl+1 we know X, = ylC U yg mod D, if this last set
is not D-positive then g* > fé mod D, hence ¢*/D = fcl/D € N¢, contradiction,
so y$ Uys # @mod D hence X € DV, Also ((y$ U5)/D : ¢ < 6) is C-decreasing
hence (X¢/D : ¢ < 6) is C-decreasing.

Also if i € X¢; N X¢, and (1 < (2 then f,(3) < f2,41(3) < f& (3) (first inequal-
ity: as A§1+1 - Afz and clause (e) above, second inequality by the definition of
X¢,), hence for each ordinal ¢ the set {¢ < 6:4 € X} is finite. So § < regg(D),
contradiction to the assumption (). Lo

Note we can conclude

CrLaM 3.9B:
[T Ai/D =sup{([] f(5))<r8@PV) 4 hefp, (][] Xi)< 8@ (P1): Dy is a filter on &
i<k 1<K 1<K

extending D such that

<K 1<K
and [ € 0%, 1(5) < As}
Proof. The inequality > should be clear by 3.7(3). For the other direction let
i be the right side cardinality and let Do = {k \ A: A C k and if A € D" then
[T A/ (D+A) < u}, so we know by 3.7(2) that Do is a filter on « extending D. If @ €
1<K
Do we are done so assume not. Now u > 2%/D (by the term (][] f(z)/Do)<"ga(P1))

so by 3.8 we have [ Ai/Do > p (use 3.8 with D, Do here ccﬁrresponding to D, FE
there). Now the Sa;;g holds for Do + A for every A € Dg'. Also A C B C k and
Ae D = [] Xi/(Do+ A) < [ Ai/(D1+ B) so for some B € Df, D1 =: Do+ B
satisfies thefgquirement insideKt';le definition of g, so > hefp, ([ A1) <rege Py,
By 3.9 (see 3.9A(1)) we get a contradiction. L EN -

Next we deal with existence of <p —eub.

CramM 3.10: 1) Assume D a filter on &, g5 € "Ord for @ < 6, §* = (ga:a < &) is
<p-increasing, and
cf(6) > 6 > reg, (D). (*)
Then at least one of the following holds:

(A) (ga:a < 6) has a <p-eub g € "Ord; moreover 8 < liminfp(cf[g(¢)]: 7 < &)

(B) cf(6) =reg, (D)

(C) for some club C of § and some §; < @ and ; < 0?’ and w; C Ord of order type +y;
for i < s, there are fo € [],_, w: (for a € C) such that f, (i) = min(w; \ g5(2))
anda € C&BeC&a<f= fo<p fa& ~fo=bD f3& ~fa <D g5 & g5 <
fa.

2) In (C) above if for simplicity D is an ultrafilter we can find w; C Ord,
otp(w:) = Vi, (ag:& < cf(6)) increasing continuous with limit 8, and he € [] ws
<K

such that fo, <D he <D fa.,,, moreover, A v < w.

i<k
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Proof. 1) Let o = reg, (D). We try to choose by induction on ¢ < o, g¢, fa,c (for

a < §), AS, a¢ such that

(a) AS = (AS:i< k).

(b) Af = {far,e(1),9:(): € < (} U {[suPoes 92 ()] + 1}

() fac(i) = min(AS \ g4(3)) (and fa,c € "Ord, of course).

(d) ac is the first a, |J__, o < o < 6 such that [8 € [, 6) = fa,c = fa,c mod D)
if there is one.

(€) g¢ £ fac,c moreover g¢ < max{fac¢, 1<} but for no @ < § do we have g¢ <
max{gs,1} mod D.

Let ¢* be the first for which they are not defined (so ¢* < o). Note
e<E <& Ca<b6= face =D fo,c&fag < fac&fag #D fae ()

e<(¢

[Why last phrase? applying clause (e) above, second phrase with «, € here standing
for @, ¢ there we get Ao =: {i < x : max{gk(i),1} < g:(i)} € D" and applying
clause (e) above first phrase with ¢ here standing for ¢ there we get A, = {i < x :
Ge(2) < fa,e(3) or ge(i) = 0= fo,c(i)} € D, hence AgN A; € DT, and ge(i) > 0 for
it € Ao N A; (even for i € Ap). Also by clause (c) above g5 (i) < ge(i) = fa,e(i) <
ge(7). Now by the last two sentences i € Ag N A1 = g5(¢) < g:(2) < fa,(3) =
fa,e(?) < ge(?) < fa,e(2), together fo¢ #p fa,e as required]

Case A. (" = o and J,_, ¢ < & Let a(x) = U, ac, for ¢ < o let yo =
{i < K: fa),c (1) # faeo,c+1(8)} # @mod D. Now for i < K, (fa),c(1):¢ < o) is
non increasing so ¢ belongs to finitely many y¢’s only, so (y¢:¢{ < o) contradict
o >reg, (D).

Case B. (* = o and U<<o a¢ = 8. So possibility (B) of Claim 3.10 holds.

Case C. ¢* < 0.
Still AS™ (i < K), fa,cx(a < &) are well defined.

Subcase C1. a¢+ cannot be defined.
Then possibility C of 3.10 holds (use w; =: Af*, I8 = facetsc*)-

Subcase C2. ¢+ can be defined.
Then fo . ¢+ is a <p-eub of (g5:a < 8) as otherwise there is g¢+ as required in
clause (e). Now fazyg* is almost as required in possibility (A) of Claim 3.10 only

the second phrase is missing. If for no 61 < 6, {i < k:cf[fa,. ¢ ()] < 01} € D™,
then possibility (A) holds.
So assume 61 < 6 and B =: {i < & : Ro < cf[fac. ¢+ ()] < 61} belongs to D7,
we shall try to prove that possibility (C) holds, thus finishing. Now we choose w;
for i < x: for i € k we let w) =: {face ¢ (4), [sup g5 (3)] + 1}, for i € B let w; be
a<é

an unbounded subset of fa . cx (i) of order type cf|fa . ¢* (i)] and for i € x\ B let
w} = 0, lastly let w; = w? Uw}, so |w;] < ) as required in possibility (C). Define
fo € "Ord by fo(3) = min(w; \ g%(i)) (by the choice of w? it is well defined). So
(fa : @ < 8) is <p-increasing; if for some o* < §, for every a € [a*,6) we have
fo/D = fax/D, we could define g¢~ € “Ord by:

g¢r | B = fa» (which is < fo .. c*),

9¢+ 1 (k\ B) = 0,\5.
Now g¢= is as required in clause (e) so we get contradiction to the choice of (*. So
there is no o™ < § as above so for some club C of § we have o < 8 € C = fo #p f3,
so we have actually proved possibility (C).
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2) Easy (for A,y < w, wlogf = reg,(D) but reg,(D) = reg(D) so 61 <
reg(D)). B3.10

CrLamM 3.11:
(1) In 3.10(1), if A = 6 = cf(A), g* obeys a (a as in 2.1), @ a f-weak (S, 8)-continuity
condition, S C A unbounded, then clause (C) of 3.10 implies:
(C)’ there are 61 < reg,(D) and A. € Dt for ¢ < 6 such that the intersection of
any 07 of the sets A. is empty (equivalently i < x = (35%¢)[i € A.] (reminds
(0, 07" )-regularity of ultrafilters).
(2) We can in 3.10(1) weaken the assumption (*) to (*)’ below if in the conclusion
we weaken clause (A) to (A)" where
(%)" cf(8) > 0 > reg(D)
(A)" there is a <p-upper bound f of {g}:a < §} such that
no f' <p f (of course f' € "Ord) is a <p-upper bound of {g}:a < 6}
and 8 < liminfp (cf[f(i)]:1 < K)
(3) If g% € "Ord, (gi:a < &) is <p-increasing and f € "Ord satisfies (A)’ above
and
(x)" cf(6) > wsat(D) and for some A € D for every i < &, cf(f(i)) > wsat(D)

then for some B € Dt we have [] cf[f(¢)]/(D + B) has true cofinality cf(§).
i<k

Remark. Compare with 2.6.
Proof. 1) By the choice of @ = (aq : @ < A) as C (in clause (c¢) of 3.11(1)) is a club
of A, we can find 8 < X such that letting (. : € < 0) list {a@ € ag : otp(aNag) < 0}
(or just a subset of it) we have (e, aet+1) NC # 0.

Let ve € (qe,ae41) N C, and & € (qe,aet+1) be such that {a¢ : ¢ < e} C ae,,
and as we can use (. : € < 0), wlog & < ve. For ( <0 let Be = {i < £: fa (i) <

fo (1) < fre (1) < fagy, (9) and sup{fa, () +1:§ < ¢} < sup{fa () +1:£ < (+1}
2) In the proof of 3.10 we replace clause (e) by

(¢') 9¢ < fac,c and for a < & we have fo < g¢ mod D
3) By 1.8(1) L CRE

CrLamM 3.12:

(1) Assume A = tcf([]A/D) and p = cf(u) < A then there is XN <p M MNa
sequence of regular cardinals and p = tcf([[ A'/D) provided that

u > reg, (D), min{}) > regf+(D) whenever o < reg, (D) (%)

(2) Let I be the ideal dual to D, and assume (k) above. If (*)(a) of 1.5 holds and
@ is semi-normal (for (A, I™)) then it is normal.

Proof. Part (2) follows from part (1) by 2.2(3). Let us prove (1).

Case 1. p < liminfp(N)
We let
AN = {/1, if <X
Tl >N
and we are done.
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Case 2. liminfp(X\) > 0 > reg, (D), u > 0, and (Vo < reg, (D))[reg? (D) < 9).
Let 6 =: reg, (D). There is an unbounded S C yand an (S, 0)- contmulty system
@ (see 2.4). As ] )\/D has true cofinality A\, A > u clearly there are g5 € H A for
a < p such that §* = (g5 : & < u) obeys @ for A*[\] (exists as 6 < liminfp(X)).
Now if in claim 3.10(1) for g* possibility (A) holds, we are done. By 3.11(1) we
get that for some o < reg, (D) we have reg? (I) > p, contradiction.

Case 8. liminfp () > 0 > reg, (D), u > 0, and (Vo < reg, (D))[reg? (D) < 9].
Like the proof of [Sh-g, Ch II 1.5B] using the silly square. | RD)

We turn to other measures of [[A/D.
Definition 3.13.
(a) T3(N) =sup{|F|: F C[[Xand f1 # f2 € F = f1 #p f2}.
(b) Tp(A) = min{|F|: (i) F € []A
(i) f1 # f2 € F'= f1 #p f2

iii) F maximal under (i)+(ii)}

(¢) TA(A) = min{|F|: F C []X and for every f1 € []), for some f2 € F we have
~fi #p fa}. B )

(d) IETSN) = TH(N) = T3(N) then let To(X) = Th(}) for I < 3.

(e) for f € "Ord and £ < 3 let Th(f) means Th({f(a): a < &)).

A

THEOREM 3.14:

(0) If Do C D; are filters on s then Tf,o (A) < TH,(X) for £ = 0,2. Also if k =
AgUA1, Ao € DT, and A; € DT then TH()) = min{Té+AO()\) T +A1()\)} for
£=0,2. ) ) )

(1) htefp(JTAN) < TH(A) < TH(A) < Tp(N)

(2) If TD()\) > |P( )L | o r _]ust T3(A) > p, and P(x)/D satisfies the u*-c.c.
then T3 (X) = TH(A) = T3(A) so the supremum in 3.13(a) is obtained (so e.g.
TI(N) > 27 sufﬁce)_

(3) TY(\)<resl = TD()\) (each \; infinite of course).

(4) tefp[[, . f()] < T3(f) < [htefp[], . F()]<° + reg(D)*/D where 6 =
reg*(D) in fact @ = reg(D) + Wsat(D) suffice

(5) ¥ Dis an ultraﬁlter I[TIA/D| =Ts(A) for e < 2.

(6) In (4), if A, . f(3) > 2% (or just (reg(D) + 2)*/D < 132111{1 f(@)), then

[htefp [T £()]<78 P < TH()
1<K
(7) If the sup in the definition of T3()) is not obtained then it has cofinality
> reg(D) and even is regular.

Proof. (0) Check.

(1) First assume p =: T3(A\) < htefp([]A); then we can find u* = cf(u*) €
(u,htefp ([T A)] and @@ = {(ui: 4 < x), a sequence of regular cardinals, Nic s < N
such that u* = tcf(] [ 2/ D) and let (fo:a < p*) exemplify this. Now let F' exemplify
pu=TE(N), for each g € F let

e [T be sy = {40 it90) <
g I;[M e: g (@) otherwise.
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So there is a(g) < p* such that ¢’ <p fa(g). Let a* = sup{a(g):g € F}, now
ot <pr(asp” =cfp” > p=|F|). Sog € F = g#p fax, contradiction. So really
T2(M) < htefp(JTA) as required.

If F exemplifies the value of TH()), it also exemplifies T3(X) < |F| hence
TEH(A) < Tp(N).

Lastly if F' exemplifies the value of Th(f) it also exemplifies T3(X) > |F|, so
TH(N) < TSN

(2) Let p be |P(x)/D| or at least p is such that the Boolean algebra ’P(/i)/D
satisfies the u'-c.c. Assume that the desired conclusion fails so T2(A) < T3(N), so
there is Fo C [] A, such that [f1 # f2 € Fo = f1 #p fa], and |Fo| > TA(A) + p (by
the definition of T3 (\)). Also there is F2 C [] A exemplifying the value of T3 ().
For every f € Fp there is g € F, such that -f #p g5 (by the choice of F3).
As {Fol > TA(A) + p for some g € Fy, F* =: {f € Fy:g95 = g} has cardinality
> T2 (f) + pu. Now for each f € F* let Ay = {z < k: f(i) = g(i)}, clearly Ay € DY.
Now f +— Ay/D is a function from F* into P(k)/D, hence, if p = |P(x)/D]|, it is
not one to one (by cardinality consideration) so for some f’ # f from F™ (hence
form Fo) we have Ay /D = Az /D; but so

{i < i f/()) = F()} 2 {i < ki £/(0) = 9(D)} N {6 < w: £7(3) = g(5)} = Ay /D

hence is # @ mod D, so —~f’ #p f", contradiction the choice of Fo. If u # |P(x)/D]|
(as F* C Fy by the choice of Fp) we have:

fi# fa€ F* = Ap NAp, =0 mod D

so {A; : f € F*} contradicts “the Boolean algebra P(x)/D satisfies the u*-c.c.”.
(3) Assume that 0 < reg(D) and¥ p <t TH(N). As p <T T3 (M) we can find
fo € [T for a < p such that [@ < 8 = fa #D fs]. Also (as 6 < reg(D)) we can
find {Ac:e < 6} C D such that for every ¢ < k the set w; =: {e < 0:1 € A} is
finite. Now for every function h: 6 — u we define g5, a function with domain «:

gn(i) = {(€, fr(e)(9)): € € wi}

So |{gn(i): h € %u}| < (M)l = A;, and if k1 # hy are from % then for some € < 6,
hi(e) # ha(€) so Bry,hy = {i:fhl(z)(i) #* fhz(a)(i)} € D that is Bp,,n, NAc € D so

®1 if ¢ € Bhy,hy N Ac then € € wi, S0 gh, () # g, (2).

®2 Bhyhy, NAc € D B B
So (gn:h € %u) exemplifies TS (A\) > p. If the supremum in the definition of T3 ()
is obtained we are done. If not then T3 () is a limit cardinal, and by the proof
above:

< TSN & O<reg(D) = p <THN).
So if TR (A) has cofinality > reg(D) we are done; otherwise let it be > pe with pe <
e<f

T2 () and @ < regD. Note that by the previous sentence TS(X)? = T2 (A)<rs(D) =

1] e, and let {f5:a < pe} C [] A be such that [o < 8 = fS #p f5] and repeat
e<@
the previous proof with f,f(a) replacing fr(c)-

¥ <* means here that the right side is a supremum, right bigger than the left or
equal but the supremum is obtained
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(4) For the first inequality. assume it fails so p =: TA(f) < htefp(]] f(3))
i<k
hence for some g € [] (f(2) + 1), tef(]] 9(3), <p) is A with A = cf(X) > p. Let
i< f(3) i<n
(fa : @ < A) exemplifies this. Let F' be as in the definition of T3(f), now for each
h € F, there is a(h) < A such that

{i < k1 if h(i) < g(i) then h(3) < fag)(4)} € D.

Let a* = sup{a(h) +1: h € F}, now for € [[ f&) and h € F = h #p far
i<K
contradicting the choice of F'.
For the second inequality. Repeat the proof of 3.9 except that here we prove
F =: |J (N¢n [ £(3)) exemplifies T3(f) < A. So let g* € [] Ai, and we should
¢<o <K <K
find f € N such that (g* #p f); we replace clause (g) in the proof by
(g) g < f4+1 < f( mod D
the construction is for ¢ < reg(D) and if we are stuck in ¢ then ﬁfé #p g* and so
we are done.
(5) Straightforward.
(6) Note that all those cardinals are > 2" and 2* > reg(D)"/D. Now write
successively inequalities from (2), (4), (1) and (3):

TH(f) = T3(f) < [htefp [ [ FOIP < [TR(H)]<5P = TH(S).

i<k

(7) See proof of part (3). Moreover, let p = > pe, 7 < TR(N), pe < TH(A) as
exemplified by {f. : e < 7}, {fe 1o < pe} respezzi:/ely. Let go be: if > pe < a <
3" e then ga (i) = (fe(3), £5(3)). So {ga : & < p} show: if TH(A) is ;i<n<gular then
ilslé supremum is obtained. B4

CLAIM 3.15: Assume D is a filter on &, f € "Ord, p™° = u and 2* < u, To(f),
(see Definition 3.13(d) and Theorem 3. 14(2) and reg*QD) =reg(D). If u < Tp(f)
then for some sequence X < f of regulars, = tcf(J[] A/ D), or at least
(%) there are ((Ain:n < ng)it < K), Ai;n = cf(Xi;n) < f(3) and a filter D* on
U,<..{i} x ns such that: p* = tcf((H)/\i,n/D*) and D = {A C &: UieA{i} X
n; € D*}. ’
Also the inverse is true.

Remark 8.15A. (1) It is not clear whether the first possibility may fail. We have
explained earlier the doubtful role of p° =

(2) We can replace ut by any regular p such that A
use 3.14(4) to get u < Tp(f).

(3) The assumption 2" < p can be omitted.

oM < u and then we
a<p 'U'
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Proof. The inverse should be clear (as in the proof of 3.6, by 3.14(3)).
Wlog f(i) > 2" for 7 < &, and trivially (reg(D))*/D < 2", so by 3.14(4)

Tp(f) < tefp (] | £GP
i<k
If 4 < htefp([] f(7)) we are done (by 3.12(1)), so assume htefp([] f(4)) < p, but
1<K i<k
we have assumed p < Tp(f) so by 3.14(4) as reg, (D) = reg(D) we have u<r°8(P) >
p©*. Let ¥ < ¢ be minimal such that \/0<reg(D) x> i, and let 6 =: cf(x) so, as
u > 2% we know chx — X<reg(D) — ”<reg(D) > H+, x> 2%, /\a<x |a|<reg(D) < x.
By the assumption u = uX° we know 8 > No (of course @ is regular). By [Sh-g, VIII
1.6(2), IX 3.5] and [Sh513, 6.12] there is a strictly increasing sequence (u.:e < 6)
of regular cardinals with limit x such that p* = tcf([] w@e/Jg9).
e<f
As clearly x < htefp([] f(¢)), by 2.12(1) there is for for each each ¢ < 6, a
<K
sequence A\° = (A\5:4 < k) such that A{ = cf(A§) < f(3), and tcf([] A;/D) = pie,
i<k

also wlog A; > 2". Let (A.: e < 0) exemplify 0 < reg(D) and n; = |{e < 6:7 € A}
and {\; »:n < w} enumerate {A7: € satisfies 7 € A.}, so we have gotten (x). b5

Conclusion 8.16. Suppose D is an Ni-complete filter on k and reg, (D) = reg(D).
If A; > 2% for i < k and sup gep+ Tp+a(X) > p™° then for some Aj = cf(A]) < \;
we have
sup htch+A(H L) > p.
AeD+ <K
Conclusion 3.17. Let D be an Ri-complete filter on « and reg, (D) = reg(D). If
for i < &, B; is a Boolean algebra and \; < Depth™(B;) (see below) and

25 < ;LNO < sup Tp+a(N)
AeDt

then ut < Deptht([] B:/D).

1<K
Proof. Use 3.25 below and 3.16 above.

Definition 3.18. For a partial order P (e.g. a Boolean algebra) let Deptht(P) =
min{\ : we cannot find a, € P for a < A such that a < 8 = a« <p ag}.

Discussion 3.19.

(1) We conjecture that in 3.16 (and 3.17) the assumption “D is R;-complete” can
be omitted. See [Sh589].

(2) Note that our results are for u = u™° only; to remove this we need first to
improve the theorem on pp = cov (i.e. to prove cf(A) = R < A = pp(A) =
cov(A, A\, R1,2) (or sup{pp(p):cfp = Ro < p < A} = cf(S<no(A), C) (see [Sh-
g], [Sh430, §1]), which seems to me a very serious open problem (see [Sh-g,
Analitic guide, 14]).

(3) In 3.17, if we can find fo € [[ M for a < Aifa < B < A = fo < fpmodD]

i<K
and —fs =p fos+1 then A < Depth+(H B;/D). But this does not help for A
i<k
regular > 2.
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(4) We can approach 3.15 differently, by 3.20-3.23 below.

CLAIM 3.20: If 22" <y < Tp(N), (or at least 2!P1¥% < 1 < Tp(N)) and <% = 4,
then for some @-complete filter E C D we have Te(\) > u.

Proof. Wlog 0 is regular (as <% = p &, cf(0) < 6 = p,<9+ = p). Let {fara <
pt} C JI A, be such that [@ < 8 = fa #b fs]. We choose by induction on ¢,
ac < pt as follows: a¢ is the minimal ordinal o < u* such that E; ., € D where
E¢ o = the #-complete filter generated by

{{i < K: fac (D) # fa(d)}re < ¢}

(note: each generator of E¢ o is in D but not necessarily E¢ o C D!).

Let a¢ be well defined if {( < ¢*, clearly € < ( = a. < a¢. Now if {* < ut, then
clearly o* = UC<<* a¢ < pt and for every « € (a*,ut), E¢x,o € D, so for every
such a there are A, € Dt and aa € [¢*]<% such that A, = UEE% {t < K: fa. (i) =
fo(i)}. But for every A € DV, a € [¢*]<% we have

{ara € (o, u*), Aa =Aaa =a} C{a: fa | A€ H,< {fac(i):€ € aa}},

hence has cardinality < 6% < 2% < u. Also |[¢*]<9] < u<® < uF, IDT| < 2% < pu~
so we get easy contradiction.

So ¢* = ut, but the number of possible E’s is < 22K', hence for some E we
have [{e < u¥: Ee,a. = E}| = p*. Necessarily E C D and E is f-complete, and
{fac:e < u¥, and E,, = E} exemplifies Tr()\) > p, so E is as required. .20

Fact 8.21. 1. In 3.20 we can replace ut by p* if 22" < cf(u*) < p* < T3(N) and
/\0‘<#* |C¥|<9 < ,LL*.
Proof. The same proof as 3.20.

CrLAIM 3.22:
(1) 1f 2* < |T] A/D|, D an ultrafilter on , u = cf(u) < |[[A/DI, A, ... li]% < p,
and D is regular then p < Deptht (][] A:/D)
i<n

(2) Similarly for D just a filter but A € Dt = [[M\/(D + A) = [[A/D.

Proof. 1) Wlog A =: limp A = sup()), so |[[A/D] = A" (see 3.6, by [CK]). If
u < X we are done; otherwise let x = min{x: x® = A\*}, so xf® = \*  cf(x) <
Kk but A < p < A" hence AN° < pu hence cf(x) > No, also by x’s minimality
/\i<x [7]°fX < Ji]* < x, and remember x < p = cfpu < x°IX so by [Sh-g. VIII
1.6(2)] there is {u.: e < cf()) strictly increasing sequence of regular cardinals with
limit %, ] [.LE/J:de has true cofinality u. Let xe = sup{uc:¢{ < €} + 27, let

e<cf(x)
itk — cf(x) be i(i) = sup{e + 1: As > xc}. If there is a function A € [] i(i) such
1<K
that /\j<Cf(X) {i < k:h(i) < j} = O0mod D then [] pn@)/D has true cofinality p

1<K
as required; if not (D,i) is weakly normal (i.e. there is no such h - see [Sh420]).
But for D regular, D is cf(x)-regular, some (A.:e < cf(k)) exemplifies it and
h(i) = max{e:e < i(¢) and ¢ € A.} (maximum over a finite set) is as required.
2) Similarly using A =: lim infp (). [ P
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Discussion 3.28.

1. In 3.20 (or 3.21) we can apply [Sh 410, §6] so u = tef(J]JUJ
D={ACx: UieA a; € D*} and each a; is finite.
See also in 3.15.

a;/D™), where

i<p

CraiM 3.24: If D is a filter on s, B; is the interval Boolean algebra on the ordinal
a;, and | [] ei/D| > 2" then for regular p we have: p < Depth*([] Bi/D) iff for
<K <K
some p; < o (for i < k) and A € D™, the true cofinality of [] ui/(D + A) is well
i<k
defined and equal to u.
Proof. The < (i.e. if direction) is clear. For the = direction assume g is regular
< Deptht (] B:/D) so there are fo € || B; such that [[ B;/D ¥ fo/D < fs/D
<K 1<K 1<K
for a < 8.
Wlog p > 2%. Let fo(i) = U  [Ja,i26s Janizer1) where fase < Jayier1 < o
L<n(a,i)
for £ < 2n(a,i). As p = cf(p) > 2" wlog na,; = n;. By [Sh430, 6.6D] (see more
[Sh513, 6.1]) we can find A C A" =: {(i,£) 11 < K, £ <2na} and (7], : 1 < K, £ <
2n;) such that (i,£) € A = v, is a limit ordinal and
() forevery f € [] ~7i¢and a < p there is 8 € (a, ) such that
(i,£)EA

(i,6) € A"\ A= jaie = Vi

(sz) €A== f(Z,Z) < jﬂ,i,l < '7:,2

(1,0) € A= cf(v],) > 2"

Let £(i) = max{f < 2n(:i) : (i,£) € A} and let B = {¢ : £() well defined}.
Clearly B € DT (otherwise we can find a < 8 < u such that f,/D = fs/D,
contradiction). For (3,£) € A define 3], by 8;, = sup{y; ., +1: (j,m) € A" and
Yim < Vie} Now B, <7, as cf(v],) > 27. Let

Y={a<p:if (i) € A"\ Athen jaie= Vi,
and if (¢,£) € A then 8], < Ja,e: < V2:}
Let By = {i € B : £(i) is odd}. Clearly B; € B and B\ B; =@ mod D (otherwise

as in (*)1, ()2 below get contradiction) hence B; € DT. Now
(*)1 for « < B from Y we have

(ja,i,e(i) 11 € B1> < (jﬂ,i,e(i) 11 E Bl> mod (D [Bl)
[Why? as fo/D was non decreasing in [] B;/D]

1<K
(%)2 for every a € Y for some 8, a < 8 € Y we have
(Jaieay 1% € B1) < {Jg,i,00) 2% € B1) mod (D [ By)
[Why? by (%) above]
Together for some unbounded Z C Y, <(ja,g,g(i) 1€ B1)/(D] Bi):ac€ Z> is
<piB,-increasing, so it has a <(p;p,) —eub (as p > 2", see 3.10, and more in [Sh-g,

II §1]), say (j; : ¢ € B1) hence [] j7/(D ! Bi) has true cofinality p by 1.3(12)
i€B,
and clearly j; < '7;,2(1‘) < a4, so we have finished. .24

CraiM 3.25: If D is a filter on «, B; a Boolean algebra, A; < Depth*(B;) then
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(a) Depth([] Bi/D) > sup ¢ p+ tef([], .. Xi/(D+ A)) (i.e. on the cases tcf is well
i<K
defined).
(b) Deptht([] Bi/D) is > Depth* (P(x)/D) and is at least
1<K
sup{[tef(] [ Ai/(D + A))]*: i < Depth*(B:), A € D*}.
i<k

Proof. Check.

CLAIM 3.26: Let D be a filter on k, (A; : ¢ < &) a sequence of cardinals and
2% < u = cf(p). Then (@) & (8) = (v) = (8), and if (Vo < p)(e™° < p) and
reg, (D) = reg(D) we also have (v) < (§) where
() if B; is a Boolean algebra, A; < Depth*(B;) then p < Depth™ ([] Bi/D)

1<K

(B) there are p; = cf(ps) < A; for ¢ < k and A € D such that p = tef([] pi/(D +
A

(v) there are {{(A;n:m < ni):id < K), Aijn = cf(Ain) < \i, A* € DV and a filter D*
on ;.. {2} x n; such that:

= tef( H Xin/D") and D+A" = {A C k: the set U{z}xnl belongs to D*}.
(4,m) icA
(6) for some A € DV, pu < Tpia((X;:i < k)
Remark. So the question whether (a) < () assuming (Vo < p)(o™° < p) is
equivalent to () < () which is a “pure” pcf problem.

Proof. Note (v) = () is easy (as in 3.15, i.e. as in the proof of 3.6, only easier).
Now (8) = (v) is trivial and (8) = («) by 3.25. Next () = (8) holds as we can
use (a) for B; =: the interval Boolean algebra of the order \; and use 3.24. Lastly

assume (Vo < p)(c™° < ) and reg, (D) = reg(D), now () < () by 3.15. 26

Discussion. We would like to have (letting B; denote Boolean algebra)

Depth™ ([ [ B:/D) > [ [ Depth ™ (B:)/D
i<K <K
if D is just filter we should use Tp and so by the problem of attainment (serious
by Magidor Shelah [MgSh433]), we ask
® for D an ultrafilter on x, does A; < Deptht(B;) for i < x implies

[]2/D < Depth*(J | B:/D)
<K <K
at least when \; > 2%;
®' for D a filter on k, does A\; < Depth™(B;) for i < s implies, assuming A; > 2~
for simplicity,
To((\i 13 < k) < Depth™ ([ | B:/D)
<K
As explained in 3.26 this is a pcf problem.
In [Sh589] we deal with this under reasonable assumption (e.g. 4 = x* and
x = x™°). We also deal with a variant, changing the invariant (closing under ho-
momorphisms, see [M]).
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4. Remarks on the conditions for the pcf analysis

We consider a generalization whose interest is not so clear.

CLAIM 4.1: Suppose A = (\;:4 < K) is a sequence of regular cardinals, and 6 is a
cardinal and I'* is an ideal on k; and H is a function with domain . We consider
the following statements:

(#*¥)g liminfr« () > 6 > wsat(I*) and H is a function from x to P(#) such that:

(a) forevery e <8 wehave {i<rkie€ H(i)}=rmodI"
(b) for i < k we have otp(H(i)) < A; or at least {i < x:|H(Z)| > \;} € I"

**)* similarly but

(%) y
(b)* for i < k we have otp(H () < A

(1) In 1.5 we can replace the assumption (*) by (*x)g above.

(2) Alsoin 1.6, 1.7, 1.8, 1.9, 1.10, 1.11 we can replace 1.5(x) by (**)m. _

(3) Suppose in Definition 2.3(2) we say f obeys a for H (instead of for A*) if
(i) for 8 € an such that e =: otp(as) < 6 we have

otp(ag),otp(aa) € H(i) = fp(i) < fa(i)

and in 2.3(2A), fo(?) = sup{fs(i): 8 € ao and otp(ag),otp(aa) € H(3)}.

Then we can replace 1.5(%) by (xx)g in 2.5, 2.5A, 2,6; and replace 1.5(x) by
(#x)}; in 2.7 (with the natural changes).

Proof. (1) Like the proof of 1.5, but defining the g¢’s by induction on € we change
requirement (ii) to
(i1)" if ¢ < &, and {¢,e} C H(3) then g¢(3) < ge(3).

We can not succeed as

((Bao \ BZZ})) N{i<kig,e+1€H(i)}:e<B)

is a sequence of § pairwise disjoint member of (I*)*.

In the induction, for e limit let g.(¢) < U{g¢(¢):¢ € H(:) and € € H(¢)} (so this
is a union at most otp(H (i)Ne) but only when € € H (i) hence is < otp(H (z)) < As).

(2) The proof of 1.6 is the same, in the proof of 1.7 we again replace (ii) by (ii)’.
Also the proof of the rest is the same.

(3) Left to the reader. 7Y

We want to see how much weakening (*) of 1.5 to “liminf+ () > 0 > wsat(I™)
suffices. If 6 singular or liminf7=(X) > 6 or just (][] A, <r») is 6-directed then case
(B) of 1.5 applies. This explains (x) of 4.2 below.

CLAIM 4.2: Suppose A = (\;:i < k), A; = cf(X\;), I* an ideal on &, and
liminf;(A\) = 6 > wsat(I*), @ regular (%)
Then we can define a sequence J = (J¢:¢ < ¢(x)) and an ordinal ¢() < %
such that

(a) J is an increasing continuous sequence of ideals on k.

(b) Jo=1I", Jeq1 = {A:A C &, and: A € J; or we can find h: A — 8 such that
Xi > h(i)and e < 8 = {i:h(i) < e} € J¢}. B

(c) for ¢ < ((*) and A € Jey1 \ J¢, the pair (J[A, J¢ + (5 \ A)) (equivalently
(TTA T A, J¢ T A)) satisfies condition 1.5(x) (case (3)) hence its consequences,
(in particular it satisfies the weak pcf-th for 0).

(d) if & € UccgnyJe then (JT A, Uc<cxyJe) has true cofinality 6.
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Proof. Straight. (We define J; for ¢ < 6% by clause (b) for ¢ = 0, ¢ successor and
as |J Je for ¢ limit. Clause (¢) holds by claim 4.4 below. It should be clear that

e<(
Jot+ 41 = Jo+, and let {(¥) = min{¢:Jey1 = |J Je} so we are left with checking
e<(
clause (d). If A € JZE*), h € J] M, choose by induction on ¢{ < 6, &(¢) < 6

i€EA
increasing with ¢ such that {i < x:h(2) € (¢(¢),e(¢ + 1)) € J<+(*). If we succeed we
contradict 8 > wsat([*) as 0 is regular. So for some { < 8, €(¢) is well defined but
not (¢ + 1). As Jewy = Jew+1, clearly {i < k:h(3d) < e(¢)} = & mod Je(xy. So

9e(i) = {8 iz ; i’ exemplifies tcf([T A/ J¢ey) = 6. L

Now:

CoNCLUSION 4.3: Under the assumptions of 4.2, I* satisfies the pseudo pcf-th (see
Definition 2.11(4)).

CLAIM 4.4: Under the assumption of 4.2, if J is an ideal on k extending I* the
following conditions are equivalent
(a) for some h € [] A, for every € < § we have {i € A: h(i) <e} € J
(b) (H 5\, <J4(x\A)) 18 6*-directed.
Proof. (a) = (b)
Let fc € [] A for ¢ < 0, we define f* € H/_\ by

f7(@) = sup{fc(i) + 1: ¢ <h(i)}-

Now f*(l) < A; as h(Z) < A= Cf(/\;) and fg fA <yJ f* fA as {Z € A: h(’L) < C} S
J.
(b) = (a)

Let f¢ be the following function with domain «:

fe(@) = {5 gg;ﬁ:

As liminf;« > 6, clearly ¢ < ¢ = fe <1+ fc and of course f¢ € Hj\. By our
assumption (b) thereis h € [[Asuchthat { <0 = fc | A< h| A mod J. Clearly
h is as required. | P
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