Saharon Shelah¹ and Andrés Villaveces²

¹Hebrew University of Jerusalem / Rutgers University ²Universidad Nacional de Colombia - Bogotá

November 7, 2019

Abstract

We prove here that every a.e.c. with LST number $\leq \kappa$ and vocabulary τ of cardinality $\leq \kappa$ can be defined in the logic $\mathbb{L}_{\beth_2(\kappa)^+,\kappa^+}(\tau)$. In this logic an a.e.c. is therefore an EC class unlike in the Presentation Theorem. Furthermore, we study a connection between the sentences defining an a.e.c. and the infinitary logic L^1_{κ} .

Introduction

The Presentation Theorem [5] is central to the development of stability for abstract elementary classes: notably, it enables Ehrenfeucht-Mostowski techniques for classes that have large enough models. This has as almost immediate consequence the link between categoricity and stability, and constitutes the beginning of relatively advanced classification/stability theory in that wider setting.

The Presentation Theorem provides a way to capture an a.e.c. as a PCclass: by expanding its vocabulary of the AEC with infinitely many function symbols, an a.e.c. may be axiomatized by an infinitary formula. Although for the stability-theoretical applications mentioned this expansion is harmless, the question as to whether it is possible to axiomatize an a.e.c. with a (necessarily infinitary) sentence *in the same vocabulary* of the a.e.c. has been asked in various ways in the past. Here we provide a positive solution: given an a.e.c \mathcal{K} we provide an infinitary sentence *in the same original vocabulary* $\varphi_{\lambda+2,0}$ whose models are exactly those in \mathcal{K} . Therefore, unlike the situation

2

in the Presentation Theorem, here the class turns out to be an EC Class, not a PC class.

The main idea is that a "canonical tree of models", each of size the LSTnumber of the class, the tree of height ω ends up providing enough tools; the sentence essentially describes all possible maps from elements of this tree into arbitrary potential models in the class. A combinatorial device (a partition theorem theorem on well-founded trees due to Komjath and the first author [3]) is necessary for our proof.

We prove the following two theorems:

Theorem (Theorem 2.1). Let $\lambda = \beth_2(|\tau| + \kappa)^+$, where $\kappa = \text{LST}(\mathcal{K})$. Then there is a sentence $\psi_{\mathcal{K}}$ in the logic $\mathbb{L}_{\lambda^+,\kappa^+}(\tau)$ such that $\mathcal{K} = \text{Mod}(\psi_{\mathcal{K}})$.

and

Theorem (Here, a reduced version of Theorem 3.1). *If* $M_1 \subseteq M_2$ *are* $\tau = \tau_{\mathcal{K}}$ *-structures, then TFAE:*

- $M_1 \prec_{\mathcal{K}} M_2$
- if $\bar{a} \in {}^{\kappa \geqslant}(M_1)$ then there are \bar{b} , N and f such that
 - 1. $\overline{b} \in {}^{\kappa \geqslant}(M_1)$ and $N \in \mathcal{M}_1$
 - 2. $\operatorname{Rang}(\bar{a}) \subseteq \operatorname{Rang}(b)$
 - *3.* f *is an isomorphism from* N *onto* $M_1 \upharpoonright \text{Rang}(b)$
 - 4. $M_2 \models \phi_{N,\lambda+1,1}[\langle f(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa) \rangle].$

1 Canonical trees for a.e.c.'s

Fix \mathcal{K} for the remainder of this paper an a.e.c. with vocabulary $\tau = \tau(\mathcal{K})$ and LST(\mathcal{K}) = κ . Let λ be the cardinal $\beth_2(\kappa + |\tau|)^+$.

Without loss of generality we may assume that all models in \mathcal{K} are of cardinality $\geq \kappa$. Furthermore, we will use an "empty model" called M_{empt} with the property that $M_{empt} \prec_{\mathcal{K}} M$ for all $M \in \mathcal{K}$.

Notation 1.1. We fix the following notation, models and elements in the rest of this paper.

- We first fix a sequence of (different) elements (a^{*}_α | α < κ × ω) in some model in *K*.
- Given a model M, we denote by α_M a sequence of ordinals (α_k[M] | k < n) for some n < ω, where for each k < n, α_k[M] < κ.

• $S_{\tilde{\alpha}[M]} := \bigcup_{k < n} [\kappa \times k, \kappa \times k + \alpha_k[M]).$

We now define the **canonical tree** of \mathcal{K} :

- $\mathcal{M}_n := \{ M \in \mathcal{K} \mid \text{ for some } \tilde{\alpha} = \tilde{\alpha}_M \text{ of length } n, M \text{ has universe } \{ a^*_{\alpha} \mid \alpha \in S_{\tilde{\alpha}[M]} \} \text{ and } m < n \Rightarrow M \upharpoonright S_{\tilde{\alpha} \upharpoonright m[M]} \prec_{\mathcal{K}} M \} \text{ (and } \mathcal{M}_0 = \{ M_{empt} \} \text{),}$
- $\mathcal{M} = \mathcal{M}_{\mathcal{K}} := \bigcup_{n} \mathcal{M}_{n}$; this is a tree with ω levels under $\prec_{\mathcal{K}}$ (equivalenty under \subseteq).

And some further notation for the rest of the proof:

Notation 1.2. *1.* $\bar{x}_n := \langle x_\alpha \mid \alpha < \kappa \times n \rangle$,

2. $\bar{\mathbf{x}}_{=\mathbf{n}} := \langle \mathbf{x}_{\alpha} \mid \alpha \in [\kappa \times \mathbf{n}, \kappa \times (\mathbf{n}+1)) \rangle.$

We now define by induction on $\gamma < \lambda^+$ formulas

$$\varphi_{\mathcal{M},\gamma,\mathfrak{n}}(\tilde{\mathbf{x}}_{\mathfrak{n}}),$$

for every n and $M \in M_n$ (when n = 0 we may omit M).

Case 1 : $\gamma = 0$

If n = 0 then the formula $\varphi_{0,0}$ is \top (the sentence denoting "truth"). Assume n > 0. Then

$$\varphi_{M,0,n} := \bigwedge \operatorname{Diag}_{\kappa}^{n}(M),$$

where $\operatorname{Diag}_{\kappa}^{n}(M)$ is the set $\{\varphi(x_{\alpha_{0}}, \ldots, x_{\alpha_{n-1}}) \mid \alpha_{0}, \ldots, \alpha_{n-1} \in S_{\tilde{\alpha}[M]}, \varphi(y_{0}, \ldots, y_{n-1})$ is an atomic or a negation of an atomic formula and $M \models \varphi(a_{\alpha_{0}}^{*}, \ldots, a_{\alpha_{n-1}}^{*})\}.$

Case 2 : γ a limit ordinal

Then

$$\varphi_{\mathcal{M},\gamma,\mathfrak{n}}(\tilde{x}_{\mathfrak{n}}) \coloneqq \bigwedge_{\beta < \gamma} \varphi_{\mathcal{M},\beta,\mathfrak{n}}(\tilde{x}_{\mathfrak{n}})$$

Case 3 : $\gamma = \beta + 1$

Let $\varphi_{M,\gamma,n}(\bar{x}_n)$ be the formula

$$\forall \bar{z}_{[\kappa]} \bigvee_{\substack{N \succ_{\mathcal{K}} M \\ N \in \mathcal{M}_{n+1}}} \exists \bar{x}_{=n} \left[\varphi_{N,\beta,n+1}(\bar{x}_{n+1}) \land \bigwedge_{\alpha < \alpha_n[N]} \bigvee_{\delta \in S[N]} z_{\alpha} = x_{\delta} \right]$$

Note: all the formulas constructed belong to $\mathbb{L}_{\lambda^+,\kappa^+}(\tau)$. When n = 0 our formulas are really *sentences* $\varphi_{\gamma,0}$, for $\gamma < \lambda^+$. These sentences may be understood as "external approximations" to the a.e.c. \mathcal{K} . Our first aim is to prove how these approximations end up characterizing the a.e.c. \mathcal{K} .

4

2 Characterizing \mathcal{K} by its canonical sentence

In this section we prove the first main theorem:

Theorem 2.1. There is a sentence $\psi_{\mathcal{K}}$ in the logic $\mathbb{L}_{\lambda^+,\kappa^+}(\tau)$ such that $\mathcal{K} = Mod(\psi_{\mathcal{K}})$.

Our first aim in this section is to prove that every model $M \in \mathcal{K}$ satisfies $\varphi_{\gamma,0}$, for all $\gamma < \lambda^+$.

In order to achieve this, we prove the following (more elaborate) statement, by induction on γ .

Claim 2.2. If $M \in \mathcal{K}$, $n < \omega$, $N \in \mathcal{M}_n$, $f : N \to M$ is $a \prec_{\mathcal{K}}$ -embedding (if n = 0, f is empty) then $M \models \varphi_{N,\gamma,n}[\langle f(\mathfrak{a}^*_{\alpha} \mid \alpha < \kappa \times n) \rangle].$

PROOF Let first $\gamma = 0$. Then we have either n = 0 in which case trivially $M \models \phi_{0,0}(= \top)$ or n > 0. In the latter case $\phi_{N,0,n} := \bigwedge \operatorname{Diag}_{\kappa}^{n}(N)$; if $f : N \to M$ is a $\prec_{\mathcal{K}}$ -embedding, M satisfies this sentence as it satisfies each of the formulas $\phi(y_0, \dots y_{n-1})$ satisfied in N by the images of the $\prec_{\mathcal{K}}$ -map f.

The case γ limit ordinal is an immediate consequence of the induction hypothesis.

Let now $\gamma = \beta + 1$ and assume that for every $M \in \mathcal{K}$, $n < \omega$, $N \in \mathcal{M}_n$, if $f : N \to M$ is a $\prec_{\mathcal{K}}$ -embedding then $M \models \varphi_{N,\beta,n}[\langle f(a^*_{\alpha} \mid \alpha < \kappa \times n) \rangle]$. Now, fix $M \in \mathcal{K}$, $n < \omega$, $N \in \mathcal{M}_n$ and $f : N \to M$ a \mathcal{K} -embedding. We want to check that $M \models \varphi_{N,\gamma,n}[\langle f(a^*_{\alpha}) \mid \alpha < \kappa \times n \rangle]$, i.e. we need to verify that

$$M \models \forall \tilde{z}_{[\kappa]} \bigvee_{\substack{N' \succ_{\mathfrak{K}} N \\ N' \in \mathfrak{M}_{n+1}}} \exists \tilde{x}_{=n} \left[\phi_{N',\beta,n+1}(\tilde{x}_n \tilde{x}_{=n}) \land \bigwedge_{\alpha < \alpha_{n+1}[N']} \bigvee_{\delta \in S[N']} z_{\alpha} = x_{\delta} \right]$$

when \bar{x}_n is replaced in M by $\langle f(a^*_{\alpha}) | \alpha < \kappa \times n \rangle$.

So let $\tilde{c}_{[\kappa]} \in M$. By the LST axiom, there is some $M' \prec_{\mathcal{K}} M$ containing both $\tilde{c}_{[\kappa]}$ and $\langle f(a^*_{\alpha}) | \alpha < \kappa \times n \rangle$, with $|M'| = \kappa$. By the isomorphism axioms there is $N' \succ_{\mathcal{K}} N$, $N' \in \mathcal{M}_{n+1}$, isomorphic to M' through an isomorphism f' extending f. We may now apply the induction hypothesis to N', f': since f' : N' $\rightarrow M$ is a $\prec_{\mathcal{K}}$ -embedding, we have that $M \models \varphi_{N',\beta,n+1}[\langle a^*_{\alpha} | \alpha < \kappa \times (n+1) \rangle]$. But this enables us to conclude: N' is a witness in the disjunction on models $\prec_{\mathcal{K}}$ -extending N, and the existential $\exists \bar{x}_{=n}$ is witnessed by $\langle a^*_{\alpha} | \alpha \in [\kappa \times n, \kappa \times (n+1)) \rangle$. As the original M'had been chosen to include the sequence $\tilde{c}_{[\kappa]}$, the last part of the formula holds. $\Box_{Claim 2.2}$

Now we come to the main point:

Claim 2.3. *If* M *is a* τ *-model and* M $\models \varphi_{\lambda+2,0}$ *then* M $\in \mathcal{K}$ *.*

PROOF Let $\mathcal{N} := \{ N_* \subseteq M \mid N_* \text{ has cardinality } \kappa \text{ and for some } N \in \mathcal{M}_1 \text{ there is a bijective } f : \kappa \to N_* \text{ such that } M \models \varphi_{N,\lambda,1}[\langle f(\mathfrak{a}_{\alpha}^*) \mid \alpha < \kappa \rangle] \}.$ In particular, the previous f is an isomorphism from N to N*.

We prove first

$$N_1^* \subseteq N_2^* \quad (N_\ell^* \in \mathcal{N}) \quad \text{then } N_1^* \prec_{\mathcal{K}} N_2^*. \tag{1}$$

To see this, choose $(N_{\eta}^{\ell}, f_{\eta}^{\ell})$ for $\ell = 1, 2$ and $\eta \in ds(\lambda) := \{\nu \mid \nu \text{ a decreasing sequence of ordinals } < \lambda\}$ by induction on $\ell g(\eta)$ such that

- 1. $N_{\eta}^{\ell} \in \mathcal{M}_{\ell g(\eta)+1}$
- 2. f_{η}^{ℓ} embeds N_{η}^{ℓ} into M: $f_{\eta}^{\ell}(N_{\eta}^{\ell}) \subseteq M$
- 3. $M \models \varphi_{N_{\eta}^{\ell}, last(\eta), \ell g(\eta)+1}[\langle f_{\eta}^{\ell}(a_{\alpha}^* \mid \alpha < \kappa \times (\ell g(\eta) + 1)) \rangle]$ where $last(\langle \rangle) = \lambda, last(\nu \langle \alpha \rangle) = \alpha$
- 4. if $\nu \triangleleft \eta$ then $N_{\nu}^{\ell} \prec_{\mathcal{K}} N_{\eta}^{\ell}$ and $f_{\nu}^{\ell} \subseteq f_{\eta}^{\ell}$
- 5. if $\ell g(\eta) = 0$ then $f_n^{\ell}(N_n^{\ell}) = N_{\ell}^*$
- $6. \ N^1_\eta\subseteq N^2_\eta \text{ and }\nu\triangleleft\eta\Rightarrow N^2_\nu\subseteq N^1_\eta.$

Carrying the induction is standard: if $\ell g(\eta) = 0$ let f_{η}^{ℓ} be a one-to-one function from $a_{\alpha}^* \mid \alpha < \kappa$ onto N_{ℓ}^* ; as $\|N_{\ell}^*\| = \kappa$ there is a model N_{η}^{ℓ} with universe $a_{\alpha}^* \mid \alpha < \kappa$ such that f_{η}^{ℓ} is an isomorphism from N_{η}^{ℓ} onto $N^*\ell$. If $\ell g(\eta) = n = m + 1$ we first choose (f_{η}^1, N_{η}^1) . We use

for $\ell = 1$ and from the inductive definition of $\varphi_{N_{\eta \mid m, last(\eta \mid m), m}^{1}}$ with $\bar{z}_{[\kappa]} \mapsto \langle f_{\eta \mid m}^{2}(a_{\alpha}^{*}) \mid \alpha < \kappa \times m \rangle$ (using renaming), the $\bar{x}_{=n}$ gives us the map f_{η}^{1} , with domain N_{η}^{1}

Now to choose (f_{η}^2, N_{η}^2) we use the inductive definition of $\varphi_{N_{\eta \mid m, last(\eta \mid m), m}^2}$ with $\bar{z}_{[\kappa]} \mapsto \langle f_{\eta \mid n}^1(a_{\alpha}^*) \mid \alpha < \kappa \times n \rangle$; as before, the sequence $\bar{x}_{=n}$ gives us the map f_{η}^2 , with domain N_{η}^2 .

Let us now check why having carried the induction suffices.

We apply the partition theorem on well founded trees due to Komjath and the first author [3]. In [2], Gruenhut and the first author provide the following useful form.

Theorem 2.4 (Komjath-Shelah, [3]). Let α be an ordinal and μ a cardinal. Set $\lambda = (|\alpha|^{\mu^{\aleph_0}})^+$ and let $F(ds(\lambda^+)) \rightarrow \mu$ be a colouring of the tree of finite

descending sequences of ordinals $< \lambda$. Then there are an embedding $\varphi : ds(\alpha) \rightarrow ds(\lambda)$ and a function $c : \omega \rightarrow \mu$ such that for every $\eta \in ds(\alpha)$ of length n + 1

$$F(\varphi(\eta)) = c(n)$$

We apply it with number of colours μ equal to $\kappa^{|\tau|+\kappa} = 2^{\kappa}$; therefore $(2^{\kappa})^{\aleph_0} = 2^{\kappa}$. We thus obtain a sequence $(\eta_n)_{n < \omega}, \eta_n \in ds(\lambda)$ such that:

$$k \leqslant \mathfrak{m} \leqslant \mathfrak{n}, \ell \in \{1,2\} \Rightarrow N^\ell_{\mathfrak{\eta}_\mathfrak{m}\restriction k} = N^\ell_{\mathfrak{\eta}_\mathfrak{n}\restriction k}$$

We therefore obtain $(N_k^\ell,g_{k,n}^\ell)_{k\leqslant n}$ such that

- $N_k^1 \subseteq N_k^2 \subseteq N_{k+1}^1$
- $g_{k,n}^{\ell}$ is an isomorphism from N_k^{ℓ} onto $N_{n_n \upharpoonright k}^{\ell}$
- $g_{k,n}^1 \subseteq g_{k,n}^2 \subseteq g_{k+1,n}^1$.

Hence $N_n^{\ell} \prec_{\mathcal{K}} N_{n+1}^{\ell}$ and so $\langle N_n^{\ell} \mid n < \omega \rangle$ is $\prec_{\mathcal{K}}$ -increasing. Let $N_{\ell} \coloneqq \bigcup_n N_n^{\ell}$. Then clearly $N_1 = N_2$; call this model N. Since we then have $N_n^1 \prec_{\mathcal{K}} N$, $N_n^2 \prec_{\mathcal{K}} N$ and $N_n^1 \subseteq N_n^2$ by the coherence axiom for A.E.C.s we have that $N_n^1 \prec_{\mathcal{K}} N_n^2$. In particular, when n = 0 we get that $N_1^* \prec_{\mathcal{K}} N_2^*$.

Finally, we also have that

$$\mathcal{N}$$
 is cofinal in $[\mathcal{M}]^{\leqslant \kappa}$. (2)

This is true, since $M \models \varphi_{\lambda+2,0}$

Finally, putting together (1) and (2), we conclude that every τ -model M such that $M \models \varphi_{\lambda+2,0}$ must be in the class (use the union axiom for a.e.c.'s). $\Box_{\text{Lemma } 2.3}$

Lastly, we complete the proof of Theorem 2.1: Claims 2.2 and 2.3 provide the definability in the class, as clearly $\varphi_{\gamma,0} \in \mathbb{L}_{\lambda^+,\kappa^+}(\tau_{\mathcal{K}})$.

[□]Theorem 2.1

3 Strong embeddings and definability

We now focus on the relation $\prec_{\mathcal{K}}$ of our a.e.c. \mathcal{K} : we characterize it in $\mathbb{L}_{\lambda^+,\kappa^+}$. We prove an analog of a "Tarski-Vaught" criterion for a.e.c.'s.

Theorem 3.1. Let \mathcal{K} be an a.e.c., $\tau = \tau(\mathcal{K})$, $\kappa = \text{LST}(\mathcal{K})$, $\lambda = \beth_2(\kappa + |\tau|)$. Then, given τ -models $M_1 \subseteq M_2$, the following are equivalent:

7

- (A) M₁ ≺_K M₂
 (B) if ā_ℓ ∈ ^{κ≥}(M_ℓ) for ℓ = 1, 2 and γ < λ then there are b_ℓ, N_ℓ and f_ℓ for ℓ = 1, 2 such that: for ℓ = 1, 2,
 (a) b_ℓ ∈ ^{κ≥}(M_ℓ) and N_ℓ ∈ M_ℓ
 (b) Rang(ā_ℓ) ⊆ Rang(b_ℓ)
 (c) f_ℓ is an isomorphism from N_ℓ onto M ↾ Rang(b_ℓ)
 (d) Rang(b₁) ⊆ Rang(b₂)
 (e) N₁ ⊆ N₂
 (f) M_ℓ ⊨ φ_{Nℓ,γ,ℓ}[⟨f_ℓ(a^{*}_α) ↾ α < κℓ⟩].
 (C) if ā ∈ ^{κ≥}(M₁) then there are b̄, N and f such that
 (a) b̄ ∈ ^{κ≥}(M₁) and N ∈ M₁
 (b) Rang(ā) ⊆ Rang(b̄)
 (c) f is an isomorphism from N onto M₁ ↾ Rang(b̄)
 - (d) $M_2 \models \varphi_{N,\lambda+1,1}[\langle f(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa) \rangle].$

PROOF $(A) \Rightarrow (B)$: Let $\bar{a}_{\ell} \in {}^{\kappa \geq}(M_{\ell})$ for $\ell = 1, 2$ and let $\gamma < \lambda$. Choose first $N_1^* \prec_{\mathcal{K}} M_1$ of cardinality $\leqslant \kappa$ including $\operatorname{Rang}(\bar{a}_1)$ and next, choose $N_2^* \prec_{\mathcal{K}} M_2$ including $N_1 \cup \bar{a}_2$. Let \bar{b}_{ℓ} enumerate N_{ℓ}^* and let (N_1, f_1, N_2, f_2) be such that

- 1. $N_1 \in \mathcal{M}_1, N_2 \in \mathcal{M}_2, N_1 \subseteq N_2$ and
- 2. f_{ℓ} is an isomorphism from N_{ℓ} onto N_{ℓ}^* for $\ell = 1, 2$.

This is possible: since $M_1 \prec_{\mathcal{K}} M_2$ and $N_{\ell}^* \prec_{\mathcal{K}} M_{\ell}$ for $\ell = 1, 2$, we also have that $N_1^* \prec_{\mathcal{K}} N_2^*$. Therefore there are corresponding models $N_1 \subseteq N_2$ in the canonical tree, at levels 1 and 2 (as these must satisfy $N_1 \prec_{\mathcal{K}} N_2$).

We then have that $f_{\ell} : N_{\ell} \to M_{\ell}$ is a \mathcal{K} -embedding from elements N_1 and N_2 in the canonical tree \mathcal{M} . By Claim 2.2, we may conclude that

$$\mathsf{M}_1 \models \varphi_{\mathsf{N}_1, \gamma, 1}[\langle \mathsf{f}(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa \rangle]$$

and

$$M_2 \models \varphi_{N_2,\gamma,2}[\langle f(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa \times 2 \rangle],$$

for each $\gamma < \kappa$.

(*B*)⇒ (*C*): let $\bar{a} \in {}^{\kappa \ge}(M_1)$. We need \bar{b} , N ∈ M_1 and f : N → $M_1 \upharpoonright \text{Rang}(\bar{b})$ such that

$$M_{2} \models \varphi_{\mathsf{N},\lambda+1,1}[\langle \mathsf{f}(\mathfrak{a}_{\alpha}^{*} \mid \alpha < \kappa) \rangle]. \tag{3}$$

(B) provides a model $N = N_1 \in \mathcal{M}_1$ and elements $\overline{b} = \overline{b}_1$, as well as an isomorphism $f : N \to \text{Rang}(\overline{b})$. We now check that (B) also implies 3.

Recall the definition of $\varphi_{N,\lambda+1,1}$ (as applied to $[\langle f(a_{\alpha}^* \mid \alpha < \kappa) \rangle]$). This formula holds in M_2 if for every $\bar{c}_{[\kappa]}$ (of size κ) in M_2 , for some $\prec_{\mathcal{K}}$ -extension N' of N in \mathcal{M}_2 we have that

$$\mathsf{M}_{2} \models \exists \bar{x}_{=2} \varphi_{\mathsf{N}',\lambda,2}[\langle \mathsf{f}(\mathfrak{a}_{\alpha}^{*} \mid \alpha < \kappa) \rangle \tilde{x}_{=2}] \tag{4}$$

and the elements $\bar{c}_{[\kappa]}$ are "covered" by the list of elements (of length $\kappa \times 2$) $\langle f(a_{\alpha}^* \mid \alpha < \kappa) \rangle \frown \bar{x}_{=2}$. But the remaining part of clause (B) provides just this: there is *some* N' = N₂ $\in \mathcal{M}_2$, extending N = N₁ such that for each $\gamma < \lambda$, and an isomorphism f' from N' into some $\prec_{\mathcal{K}}$ -submodel N* of M_2 containing Rang $(\bar{c}_{[\kappa]})$ such that $M_2 \models \phi_{N',\gamma,2}[\langle f'(a_{\alpha}^* \mid \alpha < \kappa \times 2) \rangle]$. The submodel N' witnesses the disjunction on models and $\langle f'(a_{\alpha}^*) \mid \alpha \in [\kappa, \kappa \times 2) \rangle$ witnesses the existential $\bar{x}_{=2}$.

<u>(C)</u>⇒ (A): assuming (C) means that for every κ -tuple \bar{a} from M_1 there are a model $N \in \mathcal{M}_1$, a κ -tuple \bar{b} from M_1 containing \bar{a} and an isomorphism from N onto $M_1 \upharpoonright \operatorname{Rang}(\bar{b})$ such that

$$M_2 \models \varphi_{N,\lambda+1,1}[\langle f(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa \rangle].$$

This means that for each \bar{c} included in M_2 (of length κ) there are some extension N' of N with N' $\in M_2$ and some \bar{d} included in M_2 , of length κ , such that

$$M_2 \models \varphi_{\mathsf{N}',\lambda,2}[\langle \mathsf{f}(\mathfrak{a}^*_{\alpha}) \mid \alpha < \kappa \rangle \widehat{} d]$$

and such that $\operatorname{Rang}(\overline{c}) \subseteq \operatorname{Rang}([\langle f(\mathfrak{a}_{\alpha}^*) \rangle] \cap \overline{d}]).$

So let, for each $\tilde{a} \in {}^{\kappa \geqslant}(M_1)$,

- $N^*_{\tilde{a}} \prec_{\mathcal{K}} M_1$ be such that $|N_{\tilde{a}}| = \kappa$,
- Rang $(\bar{a}) \subseteq N^*_{\bar{a}}$.

Furthermore let for each such \bar{a} ,

$$\mathcal{N}_{\bar{a}} := \{ \mathsf{N}^* \subseteq \mathsf{M}_2 \mid \mathsf{N}_{\bar{a}} \prec_{\mathcal{K}} \mathsf{N}^* \text{ and } \|\mathsf{N}^*\| = \kappa \}.$$

Then for each \bar{a} , $\mathcal{N}_{\bar{a}}$ is cofinal among subsets of M_2 of cardinality κ . By the union axiom, $N_{\bar{a}} \prec_{\mathcal{K}} \bigcup \mathcal{N}_a = M_2$.

On the other hand, allowing \bar{a} to range over $[M_1]^{\leq \kappa}$, we have a system \mathcal{N}^0 of \subseteq -submodels of M_1 whose union is M_1 (again by (C)). Using a well-founded tree argument as in the proof of 1, this is really a cofinal $\prec_{\mathcal{K}}$ system, and therefore for each \bar{a} , $N_{\bar{a}} \prec_{\mathcal{K}} \bigcup \mathcal{N}^0 = M_1$ and we may conclude that $M_1 \prec_{\mathcal{K}} M_2$.

Theorem 3.1

9

4 Around the logic of an a.e.c.

The logic L_{κ}^{1} from Shelah's paper [6] satisfies Interpolation and a weak form of compactness: strong undefinability of well-order. Furthermore, it satisfies a Lindström-like maximality theorem for these properties (as well as union of ω -chains of models). The logic L_{κ}^{1} , however, lacks a well-defined syntax. Väänänen and Villaveces [7] have produced a logic with a clearly defined (and relatively symple) syntax, whose Δ -closure (a notion appearing first in [4]) is L_{κ}^{1} , and which satisfies several of the good properties of that logic (of course, strong undefinability of well-order but also closure under unions of chains). Also, Dzamonja and Väänänen have linked chain logic [1] to L_{κ}^{1} .

All of these logics are close to our constructions in this paper: the sentence $\varphi_{\lambda+2,0}$ belongs to $\mathbb{L}_{\lambda^+,\kappa^+}$ and L^1_{μ} lies in between two logics of the form L_{μ,κ_0} and $L_{\mu,\mu}$. Our sentence $\varphi_{\lambda+2,0}$ belongs to L^1_{μ} . However, it is not clear if this is the minimal logic for which this is the case.

The question of which is the internal logic of an a.e.c. remains still partially open.

References

- [1] Dzamonja, Mirna and Väänänen, Jouko, Chain Logic and Shelah's Infinitary Logic. In preparation. Also, arxiv:1908.01177
- [2] Gruenhut, Esther and Shelah, Saharon, Uniforming n-place functions on well founded trees, in Set Theory and Its Applications, Amer. Math. Soc., Contemporary Mathematics, 533, 2011, pp. 267–280. [GhSh:909] in Shelah's Archive. Arxiv:0906.3055.
- [3] Komjath, Peter and Shelah, Saharon. A partition theorem for scattered order types, Combinatorics, Probability and Computing 12 (2003, no. 5-6), 621-626, Special issue on Ramsey theory. [KoSh:796] in Shelah's Archive. Also, arxiv:math.LO/0212022
- [4] Makowsky, Johann A.; Shelah, Saharon and Stavi, Jonathan. Δ-logics and generalized quantifiers. Annals of Mathematical Logic, vol. 10 (1976), 155–192. [MShS:47] in Shelah's Archive.
- [5] Shelah, Saharon. Classification of nonelementary classes. II. Abstract elementary classes. In Classification theory (Chicago, IL, 1985). Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T. Lecture Notes in Mathematics, 1292. Springer, Berlin. Pp. 419–497, 1987. [Sh:88] in Shelah's Archive.

- [6] Shelah, Saharon. *Nice infinitary logics* J American Math Soc vol. 25 (2012) 395-427. [Sh:797] in Shelah's archive.
- [7] Väänänen, Jouko and Villaveces, Andrés. A syntactic approach to Shelah's logic L^1_{κ} . In preparation.