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ON CARDINAL INVARIANTS OF THE CONTINUUM
Saharon Shel&alm"l

0. Introduction.
For a survey on this area, see van-Douwen [D) and Balcar and Simon [BS].
Nyikos has asked us whether there may be (in our terms)} an undominated

family ¢ “ of power ¥ while there is no spiitting family ¢ [m]w of

l‘

power R He observed that it seems necessary to prove, assuming CH, the

1
existence of a P-point without a Ramsey ultrafilter beiow it (in the
Rudin-Keisler order). We give here a positive answer, using a countablie
support iteration of length Rz of a speciai forcing notion whose definition
takes some space. This forcing notion makes the "old" [u]“ an unsplitting
family. The proof of this is quite easy, but we have more troubie proving
that the "oid" “w is not dominated, and then we have to prove that this is
preserved by the iteration. We prove a more general preservation iemma. From
the forcing notion (and, in fact, using a simpler version), we can construct a
P-point as above.

Then E. Miller told us he is more interested in bhaving in this model "no
MAD has power ¢ Rl {(MAD stands for "a maximal almost disjoint familiy of
infinite subsets of w "). A variant of our forcing can "kill" a MAD and the

forcing has the desired properties if we first adda R, Cohen reais.

1
In the first section we prove a preservation lemma for countable support

iterations whose main instance is that no new f € “o dominates all oid

l'l‘he author would like to thank the National Science Foundation and the United

States-Israel Binational Science Foundation for partially supporting this
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X
ones, and prove the consistency of ZFC + 2 - &2 +d=%>b where b 1s

the minimal power of a dominating subfamily of “ (see 1.1), B 1s the
minimal power of a splitting subtamily of [m]w (see 1.3), and b is the
minimal power of an undominated subfamily of “a.

However, a main point was left out in Section 1: the definition of the
forcing we iterate, and the proof of its reievant properties: that it adds a
subset r of w such that ({A€V: A c w, g* A} is an ultratilter in the
Boolean algebra !’(w)v; but 1n a strong sense it does not add a function

£ e dominating all old members of “@. Note that Mathias forcing adds a

subset r of ® as required above, but also adds an undesirable f.
R~ R
In those sections we also prove the consistency of ZFC + 2 0 - 2t = K2

+R,=8=a>b=K,

disjoint subsets of w}. In the third section we show that in the model we

where & = mn{lAl:A a maximal family of almost

have constructed, there is a MAD (maximal tamily of pairwise almost disjoint
infinite subsets of ) of power Nl (hence a = Rl). This answers a
question of Balcar and Simon: they defined
o, = min{lAl: A 15 a maximal family of almost disjoint subsets
of wxw, which are graphs of partial function
tfrom @ to w}.
) K0 .
They have proved % ¢ o, and a ¢ o, &€ 2 , so0 our result implies that
a < a, is consistent.
In the fourth section we present a prootl of the consistency of

R. =8 <b =K, by finite support iteration of Hechler forcing.

1 2
In the fifth section we prove the consistency (with ZFC +
R R
2%=2"1=x) ot R =B <8=b=RK, (where b is the mnimai cardinal «
X

for which P(w)/finite is a (x, 2 o)-distributj.ve Boolean algebra).

So the order relationships between the cardinals mentioned above are

lThis was proved several years ago by Balcar and Simon (this result is

mentioned in Remark 4.7 in p.18 (BPS]). However, as we have already written
up the proof and as they used a diftferent model (add Nl random reals to a
model satisfying MA), we retain this section.
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Ro
83— » — 2
K, > b > b —> a —> a,

(where arrow means "¢ 1s provable is ZFC") (see [D] for resuits not

mentioned above, and on two other cardinal invariants).

1. The Iteration.
In this section we define some properties, prove a preservation iemma and
then prove our theorem except for one crucial point -- the existence of

specific forcings which are the individual steps in our iteration.

1.1. Notation: a) “0 1s the set of functions from «w to .
b) < is the partial order defined on “w as: f < g iff for all but
finitely many n < w, f£f(n) < g{(n). In this case we say that g dominates
f. We say that g dominates a family F ¢ @ if g dominates every f € F.
c) [u]u is the family of infinite subsets of w. We say A 5* B if

A - B is finite,

1.2. Definition:

1) A family F c “e is dominating if every g € “w is dominated by
some fe€F.

2) A family F ¢ “@ is unbounded (or undominated) if no g € “w

dominates it.

1.3. Definition:

1) A family P c [©)” is a splitting family if for every A € (0] for
some X €P AnNnX and AR - X are infinite.

2) We call P MAD if it is a subfamily of (w]”, its members are
pairwise almost disjoint (= has finite intersections) and is maximal with

respect to those two properties.

1.4. Definition:
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1) A forcing notion P is ailmost u@-bom)ding it for every P-name of a
function from @w to w and p € P for some g: w -~ w (from V!} tor every

intinite A ¢ o (again A from V) there is p’', p g p’ € P such that
p’ I-P "tor infinitely many n € A, £(n) < g(n})"

2) A forcing notion P is weakly bounding (or F-weakiy bounding, where

\/

Fc (Qu)v) if (“u) (or F) is an unbounded family in VP

1.5, Claim:

1) If a forcing notion P is weakly bounding, and Q (e VP) is almost
“w-bounding then their composition P*Q is weakly bounding.

2) If Q is almost “w-bounding, F ¢ “@ an unbounded family (trom V)
then F is still an unbounded family in VQ

We shall want to prove that e.g. the limit of a countable support
iteration of almost (“w)-bounding forcing notions is weakly bounding. This
will show us 1n the proof of the main theorem that the family of "old"
functions in “w is unbounded. To this end we prove a more general

preservation theorem closely connected to [Shl, VI} and {Sh2, 1.3].

1.6. Definition:

l) We say W is absolute if it is a definition (possibly with
parameters ) of a set so that if V'l c V2 are extensions of V (but still
models of ZFC) and x € VI then V! F "x € W' iff V2 E "x € W'. Note that

a relation is a particular case of a set. It is well known that fé

relations on reals and generally «-Souslin relations are absolute.

2) We say that a player absolutely wins a game if the definition of
legal move, the outcomes and the strategy (which need not be a function with a
unigue outcome) are absolute and its being a winning strategy is preserved by
extensions of V.

3) We can relativize absoluteness to a family of extensions.
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Remark: E.g. if R is f_";. the strategy is E}' and the outcome of a piay

1.7. Notation: R will usually denote an absolute two-place relation on “w
(so when we extend the universe, we reinterpret R, but we know that the
interpretations are compatible). Sometimes R 1s an absolute three-place

relation on “@ and then we write szy instead of R(x,y,z).

Let R denote R :n <@ (each R as above) so R® = <R'::: n < w.

We identify <R: n < w> with R.
Let M <V mean n is an initial segment of v; Pl <P2 means Pl is

a submodel of P., (as partial orders) and every maximal antichain of Pl is

2

a maximal antichain of P2.

Let ‘3«(” = {BcA: IBlI <k} and if k is regular uncountable b«_(A)
is the filter on .«S(K(A) generated by the sets G{(M) = {INI: N < M, INI < «j

for M a model with universe A and < K relations.

1.8. Definition:

1) For Fc“® and R (two place), we say that F is R-bounding if

(vf € “w)(3g € F)[L R g].

2) For Fg“, R (each R two place) and S g,sml(p) the pair
(F,R) is S-nice it

«) F is R-bounding which means it is R -bounding for each n.

8) For any N € S, for some g € F, for every ny.m,
winning strategy for the following game which lasts « moves and which is

player 11 has a

absolute for extensions preserving («). On the kth move: player 1 chooses

«
fk € @, g €FnN, such that fkl‘mgd = fg,“"m.l for 0 <2<k ad
tk Rnk 9 then player II chooses LY > my and el 2 Mk In the end

player I1 wins if ll.:fktmk Rno g.
3) We say (F,R) is S/D 4 (F)-nice if the set of N for which (8)
0
holds or N ¢ S belongs to d , (F).
*

4) We omit S when this holds for some Seb« (F).
0

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



Sh:207

188 SAHARON SHELAH

5) We say "almost S-nice"” if in 2) (8) we just demand that player I has

no winning strategy in any extension of V.

Sometimes we need a more general framework (but the reader may skip it, later

replacing H_, R®

nby F, R ).

n

1.9. Notation. If H is a set of pairs, let Rang H = {y: (3x)<x,y> € H}

Dom H = {x: (3y) <x,y> € H}, Hx = fy: <x,y> € H}.

We shall treat aset F as {<x,x>: x € F}.

1.10. Definition.

1) For aset Hc “@0x*e, and R and S € 34, (F) we say that (H,K) is
1
S-nice if

o) For every z € DomH, H, is R*-bounding, i.e.

(Vn)(VE € “w)(3g € H )£ K. g] letting R* = &®’: n < w>.
8) For any N € S ftor some g € Rang H for every z, € Rang(HnN) and

for every player II absolutely modulo o) wins the following game

g™
which lasts @ moves. In the kth move: player I chooses fk € 0@,

for 0 < 2 <k and f

z
k
kRnkgk

nk+l > n and zk+l € Dom(HnN). At the

f £ 1

k "'sul = ) "'sm

then player II chooses mo >m, ,

gk € Rang(HnNN) such that f

z
. . 0
end of play, player II wins iff (l)‘:fkmkd) Rno g.

2) We write “almost S-nice" if in (8) player I has no winning

strategies and this is absolute. Let us give few examples.

1.11. Claim: Let F ¢ “@ be an unbounded set, such that

(VEg,...\f,... €F)3g € F)[ A £ <g] andERg iff g2 f.
n<w
Then (F,R) is nice.

Proof: We have to describe g and an absolute winning strategy for N.

*
Choose g€F, (VfeN) f < g. As for the strategy, n_, is irrelevant, we just

2
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choose el = min{m: there are at least k numbers i < n such that

(i) > £, (1)}

1.12. Claim: Suppose P ¢ [w]® is a P-filter (i.e. it is a filter and for

x x
any A €P (n<w) for some A*EP, (vn)[A < A ]) with no intersection
{(i.e. there is no X € [w]u, X g* A for every A € P).
x
Let R be: xRy iff xﬁ[u]w or yﬁ[u]“ or yf£ x. ({We identify x c

w with its characteristic function).

‘Then (P,R) is nice.

x
Proof: Now () is obvious. In (8) choose g= A € F such that
x *
(VR € N) A ¢ A,
Again the only non-obvious point is the winning strategy; again n, is

irrelevant and player II chooses m_= min{m: £

" nmng has power > k}.

k

1.13. Lemma:

1) Suppose <Pj ,Qi: i<6, 35> is a countable support iteration of

proper forcing.

Suppose further that S ¢ 3, (H) is stationary (i.e. # S mod ®d_, (H)),

~ * P, *)
in V, (H,R) is S/b« {(H)-nice and for every i < 6, in V H is
1
R-bounding.
Pb _
Then in V °, H is R-bounding.

2) We can replace S/d . (H)-nice by almost S/d . (H)-nice.
* *®)

Remark :

1) For the case which we really need in 1.15, you can read the proof
with nj = 0, F instead H, R instead R'z’ .

2) The proof gives somewhat more than l::e lemma, i.e. it applies to more
cases. "H is R-bounding” means that («) of 1.10 holds.

P P.
Proof: 1) If cf6 > K, then any real in V ° belongs to VI for

some Jj<5 (see [Shl, III, 4.4]); hence there is nothing to prove, so we shall

assume cf6 = w, By [Shl, III, 3.3}, w.l.o.g. & = w,
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<o and k, "f € “@" ; we shall find r,
w
%y
pg&r€P and g €H such that r ¥, "£R  g". Let N be a countable
W zo P“ n0
elementary submodel of (H(A),€) (A regular large enough) to which

Suppose p € Pw‘ zZ, € Dom H, ny

<Pj ‘Q.i." icw,j¢w>, p, £, zy, S, H belong as well as the parameters involving

the definitions of the Rn ‘s. The set of such N belongs to

By (HO),

hence for some such N, NnH € S,
As in [Shl, III 3.2], w.l.o.g. £(n) is a Pn-nae; and we let
0 w0 . .
p= <P": n<w) I-Pn'pn € gn‘. let g € Hz be as in Def. 1.8 (for NnH).

0

We shall now define by induction on k<w 9 P Ber 0 Zpo My My

such that
1) 9 € Pk is (N,Pk)-—generic

2) qkln=qn for n <k

3) P € Pw
4) q > gtk
5) Ptk = ptks P,y 20,

6) qk ',Pk upk € N"

7) € Dom(HnN) 1is a P, -name

2y K

8) m < M, are Pk-nanes of natural numbers

Note that 1) implies that NnH belongs to the club of .8« (H) involving
1
"(H,R) is S/D 4 (H)-nice”.
1

For k=0, q, =9, p, = p-

For k+l, we work in V[gk], gk a generic subset of Pk, q € Gk' So
Py € N[Gk] pkl‘k € Gk' In N[Gk] we can find an increasing sequence of
conditions pk,.i. € !"",/Pn for i < w, such that pk,iEN[Gk]’ pk,i forces
values for £(j), j € i. So for some function fk € N[Gk], pk,i"P“/Pk
"Eti o= fkti". As N[gk] < (H(A)[Gk],e) (see [Shl III 2.11, p. 89]) for some

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



Sh:207

ON CARDINAL INVARIANTS OF THE CONTINUUM 191

Zx

"
X Rnk 9 -
1, for NnH) to choose z

9 € er-lz . N[Gk] F “f Now we use the absolute strategy (from Def
k

kel' "kel' Pknd (the strategy 's parameters may

not be in N, but the result is) and we want to have Py, = pk"'kd.
However all this was done in V[gk]. so we have only a suitable Pk-nale. In
the end, let r € P, be defined by rtk = qktk for each Kk; by requirement

(2) this suffices. Suppose r € Gw 3 Pw, G

N generic. Then in V[GQ] we

have made a play of the game from Def. 1.10, player II using his winning
z

strategy so (UE, k)G IR ® g holds in V[G ], but clearly

k 0
pk.nk < Pyl € r hence pk’nkEG“ hence (gktk)[Gw] = (ka)[G“], so
t'[G“] = U(fkl’k)[G“]. So f[GQ] R:g g holds in V[Go)]' So r tforces the
~ k ~
required information.

We shall prove later (in 2.13)

1.14 Maipn Lemma. There is a forcing notion Q such that
(a) Q is proper

(b) Q is almost “w-bounding

R
(c) 1g1 =29

*
(d) In VQ there is an infinite set A c w such that for every

*
infinite Bcw from V AnB or A-B is finite.
1.14A Remark. For 1.15 it is enough to prove 1.14 assuming CH.

1.15 Main Theorem. Assume V F CH.
* x
1) Then for some forcing notion P (P is proper, satisfies the
Rz-c.c. , 18 weakly bounding and)
*

(*) In VP , 2 0. X there is an unbounded family of power XK., but

2° 1

no splitting family of power Rl.
x
2) We can also demand that in VP there is no MAD of power xl (see

Def. 1.3(2)).

Proof .

1) We define a countable support iteration of length Rzz <Pa Qa:a«»z)
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4
*
with (direct) limit P =P_ . Noweach Q  is the Q from 1.14 for V%,
P R 2
so v %k "IQal =2 0". As V F CH we can prove by induction on « that

*x
I-P "CH" (see [Shl, Th. 4.1, p. 96]). We also know that P satisfies the
o
Nz—c.c. {see [Shl, Th. 4.1, p. 96]). If P is a family of subsets of w of
* P
power ¢ Kl in VP then for some o, P €V a' and forcing by Q gives a

*
set A exemplifying P is not a splitting family. So from all the

conclusions of 1.15 only the existence of an undominated family of power Kl

remains. Now we shall prove that F = (“on)v is as required. It has power
P

K, as VF CH. We prove that it is an undominated family in V & by

1
induction on « ¢ @, . For a = 0 this is trivial; a = B+1: as QB is
almost “w-bounding (see 1.14) and by Fact 1.5(1); if cf a X, by Lemma
1.13.

2) Similar. We use a countable support iteration <P:i .Qi:i <o, g w2>

such that:
Fi
(a) for every i < Wy and MAD <Aa:a<wl> €V™, for some j >i,
: . i 4 s V2,
either sz adding Rl Cohen reals, and 92j+1 {peQ pP p2j+1}
P25

i ] . : “ = :

where in V ' 92j+1 I-Q da.a«\l) is not a MAD" or sz adding
) V2541 . : ‘ .

Kl-Cohen reals, 92j+1 = Q[I2j+1] where '[2j 1S the ideal which

<Aa: «<N1> and the cofinite sets generate

1
(c) For j odd, Qj is Q or QI], or {p€Q: p)pj}.but; always

(b) For j even Qj is adding K, Cohen reals
) .
it is w-bounding.

Use 2.16, 2.17.

Remark. Really the conclusion of 1.5 is satisfied by each Qa and is

preserved by countable support iteration of proper forcing.
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2. The Forcing.

2.1 Definition. 1) Let Kn be the family of pairs (s,h), s a finite
set, h a partial function from ¥P(s) (the family of subsets of s) to
n +1 such that

(a) h(s)=n

(b) if h(t) = a# (tcs), t=tut

1Yt, then h(tl))ﬁ

or h(tz) .

2) K are defined similarly, and K = UK

sn’ K<n‘ K(n.m)
We call s the domain of (s,h) and write a € (s,h) instead of

N’

a€s. Wecall (s,h) standard if s is a finite subset of the family of
hereditarily finite sets. We use the letter d to denote such pairs. We

call (s,h) simple if h(t) = [logz(t)] for t c s.

2.2 Definition.

= d
1) Suppose (sn.hn)el( for 2 = 0,1. Ve say (so.ho)< (sl.hl)

s(2)
(or (sl,hl)refines (so,ho)) if:

0 =8 andfor t ct,csy, [h(t) <h(t,) = hy(t)) < ny(t,)]

(so n(0) ¢ n(l)) and Don(hl) [ Don(ho).

2) We say (so,ho) {e (sl,hl) if for some sé € Dom hO‘
(sé,hol‘?(sé)) = (sl,hl).
3) We say (so,ho) < (sl,hl) if for some (s',h’),

e  , d
(sg:hg) & (s’,h') € (34,h;).
2.3 Fact: The relations <d. ‘e‘ § are partial orders of K.

2.4 Definition.
1) Let Ln be the family of pairs (S,H) such that:
a) S is a finite tree with a root.
b) H is a function whose domain is in{(S) = the set of non-maximal

points of S and value Hx for x € in(S).
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c) For x € in(S), (Sucs(x),ﬂx)e!( where Sucs(x) is the

SN
set of immediate successors of x in S with Hx(Sucs(x)) P
2) We say (SO,HO) < (sl,Hl) if So 3 Sl, they have the same root,
in(s) = s1n in(s®) and for every x € in(st), (Suc .(x),H°) < (Suc . (x).H}).
SO X S1 x

3) Let int(S) =S - in(S), lev(S,H) = max{n: (S,H) € Ln}. x € (S,H)
means x € S. A member of Ln is standard if int(S) € w and in(S)
consists of hereditarily finite sets not in w. Let for xe€S,

8.t = 0¥ mpst*)y wnere sI*! s stiyes: sk x € y}.
4 1f ger, = (skub).
2.5 Fact. The relation ¢ is a partial order of L = UL“.
n
¢ 'Y = hs
2.6 Fact. If (S,H) € Ln then (S’,H’) = half(S,H) belongs to L[(n*l 2]
where S’ = S, Hsf(A) = [HS(A) - lev(S ,H)/2] and Dom(Hs’) =

{A: HS(A) ¢ lev(S,H)/2}.

int(S) = AjuA then there is st .ty 3 (s.m),

or int;(Sl) 3 Alj.

2.7 Fact. If (SH)€L .,

(st ) e L and [int(s') < A,

Proof. Easy by induction on the height of the tree.

2.8 Definition. We define the forcing-notion Q:

l) peQ if p= (W,T) where W is a finite subset of w, T is a
countable (infinite) set of pairwise disjoint standard members of L and
T - I.n is finite for each »n; let cnt(T) = U 1int(S,H) = cnt(p).

{(H,S )eT

2) Given tl = (Sl,l-ll),...,t:k = (Sk’Hk) all from L such that
Sj.nS:i =9 (i#j), and given t = (S,H) trom L, t is built from tl"'
if: There are incomparable nodes ey of S such that every node of S

Sty
is comparable with some a., and such that, letting S(ai) = {b€S: b )s ai},
(S;.H;) = (S(a;),HIS(a,;)).

3) 1% ¢ oty igf: W0 oWt e WPy ent(1®), and:
letting To = [;g,gg,...}, '1“l = {gé,;i,...}, there are finite, non-empty,

pairwise disjoint subsets of w, BO 'Bl""’ and there are :s\i 3 gg for all
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i€uB., such that for each n only finitely many of the gi are inside Ln'

and such that for each j, letting Bj = {il,...,ik}, g‘} is built from

4) We call (W,T) standard if T = {gn: n<w}, max{W) < min[.i.m:(gn)],

max[int(gn)] < min[int(gn*l)] and lev(_t__:n) is strictly increasing.

2.9 Definition: For p = (W,T) we write W = Hp, T=7" we say q is a
pure extension of p (€ pure) if q 3 p, wi=wP we say p 1is pure if W

=@, and p*q if omitting finitely many members of T makes q 3 p.

2.10 Definition: For an ideal I of ®P(w) (which includes all finite sets)
let Q[I] be the set of p € Q such that for every A € I, for infinitely

many t € TP, int(g) nA = 9.

2.11 Fact: 1) If p € Q, T (n<w) are Q-names of ordinals, then there is a
pure standard extension q of p such that: letting = {gn: n < w} for
every n <, Wcmax[int(t )] +1, let g = (W,{£,:2 > n}). Then for

k € n: q?, forces a value on % iff some pure extension of q?, forces a

value on ‘rk.

2) Q is proper (in fact o-proper for every o < Q.l)‘

3) “{n: (Ip € §Q)[" € VP]} is an infinite subset of

Yo
which P(m)v does not split."

Proof: Easy (for 3) use 2.7),

2.12 Lemma: Let gq, " be as in 2.11. Then for some pure standard extension
r of gq, letting T = [_;_,;: n<w}, (lev(gl;) strictly increasing, of course)

the following holds.

* i * '

(*) For every n < w, W ¢ [max(mt(;n)) +1], and g;‘"l P tm-l (so we
ask only lev(g;‘"l) 2 0) there is W' c int(g;‘ul), s.t. (Wu VW', {;.2: 2LO>n +
1}) forces a value on 'rm (m { n) (we can allow n = - 1 letting

max int(f’;) + 1 be max{W?u {-1}}).
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This lemma follows easily from claim 2.14 (see below) (choose by it the

gr; by induction on m) and is enough for proving Lemma 1.14.

2.13 Proof of Lemma 1.14: By 2.11, (a) and (d) (of 1.14) holds, and (c) is

trivial. For proving (b) (i.e., Q 1is almost “@»bounding) let £ € ww, peEQ
be given. Let Ty = t(n) and apply 2.11(1), 2.12 getting r 3 p. We now

have to define g € “e (as required in Def 1.1}). g(n) = max{k: for some W ¢
[(max(gr;d») + 1], (w,(gé: Q>n + L) "S(n) = k"}. Let A c w bpe infinite,

and we define p' = (\vlp, {g); :n € Al}, so p' 3 r g2 p. Now check.

+1

2.14 Claim: Let (¢,T) be a pure condition, and let W be a tamily ot
finite subsets of ont(T) so that

(*) for every (9,T') 3 (9,T), there is a w <€ cnt(T'), w € W.

Let k < w. Then there is ¢t € Lk appearing in some (§,T') 2 (¢,T)

such that: t'p t = (3w € W)[w ¢ int(t"')].

Proof: Let T = {gnz n < w}. For notational simplicity, w.l.0.g. let W be
closed upward.
Stage A: There is n such that tor every gé 2 ha.lf(gg) (<nj,

U int(t') € W. This is because the family of <L ': Q<nd>, n < w, t' 3 half(t )
a<n =2 =2 =n =92
form an w-tree with finite branching and for every infinite branch

<§é: 2 < w>, by (*) there is a member <t ‘9,: e<n> with U int(!_;g") € W.
[ 2¢)]
sﬁ

: . ¢
S and H (A) = H
x x

2(A) when

[why? Define (s%,#%) € L such that g*

2

x € in(s%), A c suc,.2.(x), so <«(s¥HY):e <w>€Q, (9,7 )<

(s%)
(9, 1(s%,1%):2 < w}). Now apply (*).] By Konig's lemma we Einish.

Stage B: There are n{(0) < n{(l) < n{2) < *++ such that for every m and
g’i ? balf(gg) for n(m) € 2 < n(m+l), the set U[int(gé): nim) ¢ £ < n{m+l )}
€ W. The proof is by repeating stage A.

Stage C: There are m(0) < m(l) < *-+ such that: if i < w, for a
function with domain [m(i),m{(i+l)), h(3) € [n(3),n(3+1)), §£ ? half(__ta) for
all relevant 2 then Uts'l;(j): j € [(m(i),m(i+l))} belongs to W.

The proot is parallel to that of A.
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Stage D: We define a partial function H from finite subsets of w to

w: H(u) 2 0 if for every ;é b half(gg) (Q€u), (U int(gé)) € V.
Q€u
H(u) pm +1 if [u= Y uu2<H(ul))mvH(u2))m].

Now we have shown that H([n{i),n(i+l))) 3 0, and
H([n(m(i)),n(m(i+l}))) 3 1.

It clearly suffices to find u, H(u) » k. [We then define t = (S,H} as
t £
2 u {u}, u is the root and the order restricted to S 2
123 123
is as in t,.; for x €S ", H =H
=9 x x

follows: S = nléus
and Hu(A) = H(AR).] We prove the
existence of such u by induction on k, (e.g., simultaneously for all T',

(9,T') 3 (9,T).
The rest of this section deals with Q[I].

2.15 Notation: Let (;}‘J be the forcing of adding R, Cohen reals <y

1
i< h\l), £ € “u. Let I € V be an ideal of ¥P(w), including all finite
subsets of w but w € I and generated by a MAD <Ai: i< “,> {the w0, is

not necessary - just what we use).

0
2.16 Claim: In W : 1) If peQ[I] and T (n<w) are Q[I]-names of

ordinals then there is a pure standard extension q of p such that: q €
Q[I], and letting = (t_;n: n <w}, for every n < o and ¥ ¢ [max int(_;_n) +
1] let q: = (V.lt2= n < 2 < w}), then (q:;eQ[I], of course, and) for every
k¢€n q'; forces a value on % iff some pure extension of q: in Q[I}
forces a value on T

2) Q[I] is proper, moreover a-proper for every « < . .

3 Forr)
almost disjoint from every A € I."“

“{n: (Jp € GQ[I]) n € w"} is an infinite subset of w which is
© 0
4) QfI) is almost w-bounding or in VQ for some p € Q[I],

" .« 1 1 "
pF o\i. i<w> is not a MAD.

Proof: 1) Let X be reqular large enough, N a countable elementary
submodel of (H()\), €, VAH(A)) to which I, <ri: i< (»1>, QfI], p, and <1'n:

n < w) belong. Let 6 = Nnw

1 (so 6 € N).
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We define by induction on n < w, qn € Q(I] n N, s'n and kn < w such
that:

a) each qn is a pure extension of p.

b) qn>q9' for 2 < n and if wgkn,m<n+.l and some pure
extension of (w,an) forces a value on T(m), then (w,an) does it.

c) kn>kga"dkn>ma"i"t§g for 2 < n.

d) every Q € cnt(qn) is )kn.

n
g . Lo . )
e) gn €T and lev(gn) >n and min n)t(t::n) is > xn.

There is no problem in doing this: we first choose kn‘ then qn and at
last £ We want in the end to let T9 = [En: n < w}. One point is missing.
Why does g = (wp,'l‘q) belong to Q[I] (not just to Q)? But we can use some

function in V[<r : i < 6>] to choose k , q", and then let t, be the
n
ra(n)-th member of 9 which satisfies the requirement (in some fixed well

w

ordering from V of the hereditarily finite sets). As 1 € V and I, € o

is Cohen generic over V[ <r;: i < 6>}, this should be clear.
2), 3) easy.

0

4) Assume that in V2 | b, "<Aji i <> is a MAD". Like in 2.13 it

suffices to prove the parallel of 2.12, 2.14.

As for the proof of 2.14 for Q[{I] for stage A note that if gr; 3
ha.lf(gn) for n < w, then (ﬂ,{(SQ,H‘Q): 2 < w}) € Q[I] (check Definition
2.10). Stage B is similar. For stage C we have to use the specific character
of I - generated by a MAD. By 2.16A without loss of generality there are
distinct in < wl such that Bn = {Q<w: int(gn) [ Ai } is infinite for each
n, and without loss of generality [m(2),m{(Q+1)) n Bkni 0 for k < 2. Now we
restrict ourselves to functions h such that h(j) € Bj-[ﬁ]'

As for the proof of 2.12 from 2.14 (for Q[I]) we again have to choose

the sequence <§,;: n < @w> using some Cohen generic Cg-

2.16A Fact: Suppose (in Vl) <Ai: i« m1> € V:l is a MAD, I-Q

is a MAD". Let I be the ideal generated by {Ai: i < w} and the finite

L . 3
‘<Ai. i <01>
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subsets of w. Then (V,{gn: n < w}) is a standard condition in Q1] iff

it is a standard condition in Q and there are finite pairwise disjoint u, €
01(9.«») such that for each 2, for infinitely many n < w0, int(gn) c U Ai
i€u

2

iff there are singletons u, as above.

Proof. The third condition implies trivially the second. We shall prove

{second => first] and then [first => third]. Suppose there are (2 Cw) as

Yo
above. Then every B € I is included in U Ai u {0,°++,n} for some finite
i€u

ucw and n < w But for some 9, u, is disjoint from u, hence

1 2
Bn(U Ai) is finite. We know for infinitely many n < w, int(!,n) € U A,

i€ i€u
1€y 73

and the int(tz'.n) (n < w) are pairwise disjoint, hence for infinitely many
n <o, int(gn) n B = §, as required.
For the other direction suppose p = (V.{gn:n < w}) € Q[I]. We define by

induction on m a finite u_ c o , disjoint from U u
m o< [ ]
{n<w: im:(;n) c u Ai} are infinite. For m = 0, we know p € Q,

i€u
m

, such that Im =

<Ai:i <wd is a MAD even after forcing by Q, so by 2.11(3) there are p' =
(W,{g in<w})€eQ, pSp'and iy < @, such that
p'F " (n: (3q6G,) [n € Wi} n A, is infinite".

By 2.7, w.l.o.g. U cnt(gt;) s_}\i . Let u, = {io}. For m > 0 start with

n<w 0
(W, {g : ent(g ) n (ngm v A) = 9h.
[}

A trivial remark is

2.17 Fact: Cohen forcing and even the forcing for adding A Cohen reals (by

finite information) is almost (“o)—bound.ing.
3. On 2 >b = a.

3.1 Theorem: Assume V F CH. Then for some forcing notion P* (P is

proper, satisfies the K., -c.c., is weakly bounding and):

2
* ko
(*) 1In Vo2 = K,, there is an unbounded family of power Rl and

also a MAD of power Xl. but there is no splitting family of power Rl.
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Proof: The forcing <Pa'9.a: a< 02>, P’t are as in the proof of 1.15(1).
So the only new point is the construction of a MAD of power* Kl. This will be
done in V; unfortunately the proof of its being MAD in VP does not seem to
follow from 1.13 (though the proof is similar).

Let {Gi: n<wd: i« Rl} enumerate (in V) all seguences <Bn: n < w
of finite pairwise disjoint nonempty subsets of « (remember CH holds in V).
Next choose a MAD Ay @< Kl> such that

(*) if 6 is a limit ordinal, 1 < 6, and for every k < o, Xttt <6
for infinitely many n < ®, BL n (A  u--+uA_ ) = § then for infinitely many

‘ ! %
n<w, B; < Ag-

Let X\ be regular large enough. For a generic Ga [3 Pa (x § 02), N <
(H(A)[Ga],e) is called good if it is countable, G @j.gi: i<a jga,
(Ai: i< u\l). <<B‘:‘:n <wd: i< «»l> € N and for every sequence <Bn: n <w €
N of finite non-empty pairwise disjoint subsets of w, letting &6 =Nn @
if (Vk<¢.\)(\'rxl~n¢:(k < 6)(3°n<u)[Bn n(Aalu---uAal) = @] then (3‘”11)[8n [ Ao].

We shall prove by induction on « ¢ w_,

(st)a for every B8 < «, N < (H()\),€) to which <Pj.gi: i<a,jgo>, and
«,8 belongs and generic Gs < Pﬂ if N(GB] nw = Nn @y N[GB] is good, and
p € N[GB] n Po/Ga then there is g € Pa{Ga, g2 p, g (N[GB]' PO/GB)—generic
and whenever Ga £ P, is generic, GB < Ga, q € er' N[Ga] is good.

This is proved by induction. The case « = @) 8 = 0 gives the desired
conclusion (as we find a good N < (H(A),€) to which a Puz-nane of an
infinite subset of ® disjoint to every Ai belongs). The case ¢ = 0 is
trivial (saying nothing) and the case « limit is similar to the proof of
1.13 (and, say, 1.11). In the case « successor, by using the induction
hypothesis we can assume o = 8 + 1.

By renaming V[Ga]. N[GB] as V, N, we see that it is enough to prove
for any good N and p € 0 n N (remember Qa=QVIGB]) there is g 3 p

which is (N,Q)-generic and g I-Q“N[G]] is good".
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Let 6=Nn w5, and let & = {v(Q): 2<w}. Let {1’2: 2<w} be a list of
all Q-names of ordinals which belong to N, and {<§ﬁ: n<w): g<w} be a list of
all Q-names of w-sequences of pairwise disjoint non-empty finite subsets of
w which belong to N. For notational simplicity only, assume p is pure.

We shall define by induction on 2 < w pure Py * (G,{g:: n<w}) and
kn < @ such that:

a) p2 € N, Py standard (so max int gﬁ < min int gﬁu)
D) By T P By, 2Py Ky, 2Ky

1
c) gﬁ:;ﬁ* for ng 2

d) l-Q "'rsz € C" for some countable set of ordinals which belongs to

Ponl
. [ ] 241 .
e) for every w (max[ int 1;2] +1), m< g, andf 3 gml there is
. 2+l . . m
w, € int(f) such that (w, uw, g, 2+ 1 <i<w)) ky “(iw)B] ¢

m . .. m .
[kg'kgq)' Ej is disjoint from A and B. ¢ Ao'.

v(0) Y WRy(g) j

Let g = (9, (g2 ncw}).

Suppose Py is defined. By 2.12 there is a pure pg s Py in N swuch

that gf'o = ;12 for i ¢ 2, pg ¥ "'rg € C" for some countable set of ordinals
from N.
Next by 2.12 we can find a pure p; 2 pg, _f’l = 519' tor i €2 and

kg,i("«") such that:

(1) kg o= Koo Ko inn > X5
(ii) for every m < i and W c (max{int t2**je1) ana t 3 20 for
0 - =0+l =7 Z04iel
2,1, . "o m
some wl < ent(g), (wouwl,{gn 241+l < n < w}) I-Q (33(0)[§j <
m Co "
[kn,i,kﬁ,iu.)‘ Ej is disjoint from A'r(O) u UAT(2+i)] .
Now apply the goodness of N to the sequence
<[k2,i’k9.,i+l) - A«.—(o)""'“ﬂr(g)z i<w)>, so for some 1i,
2l _ 2 2¢1 _ 2,1
[kn.i'kﬁ,id) - AT(O)“ UAT(Q) s Ad' Let 1".n En for n <2, h T §n+i
for n > Q.

So we have defined Po satisfying (a) - (e). So we can define Py

for 2 <w and now q = (0,{;2: n < w}) is as required.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



Sh:207

202 SAHARON SHELAH

4. Splitting number smaller than unbounding number is consistent.

4.1 Definition: Qd will be the following {well known as Hechler 's forcing)

forcing notion: the conditions are the pairs p = (f,g), £ a finite function
from some n to w, g € “‘m, and (to,go) < (fl,gl) iff fo < f'l and

(m € Dom £' - pom £2 = £(m) < ¢”(m)] and (vm)(g®(m) < g (m)).

Let £ = P, g = ¢P.

Let r be the function r(n) = m iff (3p € Gj) £P(n) = m.

4.2 lLemma: Let Q = d’i,gi: i < 6> be a finite support iteration, each Qi
P

being 0% in Vv, and P = limQ, ct£o > K, and

(*) there are, in V, no projective sets Dm < [w]“, each is a filter
and (VA ¢ @) (3n) [AEDn v m—AeD"].

Then

Ko P

(1) P satisfies the countable chain condition, (2 ) is the minimal
cardinal in V 3 2‘(O + 161) and of cofinality > Nq.
(2) l-p"l! = » = cfo", in fact the generic r; € “ of Qi dominates
(uu)vpi.
H

0
(3) b, "=(20)
PG

Vo in fact P(w)’ is a splitting family in V.

Proof: We leave (1), (2) to the reader, and concentrate on (3). Suppose
p€P, A aP-name, and p rp".g is an infinite subset of ® not split by
po)V .

We can define by induction on n < @ a countable family Rn of
conditions from P s.t.

(1) peRry

(2) For each m < w, for some maximal antichain Im of P,

" " J ”

(quIm) (g l~p m € A" or gq I-P'mﬁé ) and Im < Ro.

(3) For each n(a,qERn,m<w and « € Dom q, for some maximal

, for some £ € V and k,

antichain I <R of Pa, for every r € Iq,a

q,& — n+l

r by % 2 ang ¥ m) =
o
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We call R c P closed if for every g € R, m < @ and « € Dom g there
is I €R as in (3). So clearly UR_ is closed.

9 n<o

The countability of the I's follows from the c.c.c. and we can carry
this proof as each q € P has a finite domain ¢ 6, g(«) aP_- name of a

member of Qd.

Now let W U{Donq:qERn,n<0},andlet P* = <r € P: r belongs to

some closed R_cP s.t. U DomgcW}. By [Sh3, 6.5], P <P; hence V
qeR
r

_ VP* P/P* . . . .
= ( ) , 80 let G ¢ P be generic, p € G; then G n P* is a generic
® x
subset of P* and A[G] € VP . By a trivial absoluteness argument in vp s
A[G] is not split by P((o)v. Observe also that P* is isomorphic to P,
where o is the order type of W. As W is countable, & is countable. So
we can find directed subsets rn of P* such that Ul‘.I is a dense subset of
P* [ UT  is the set of q¢ P* such that each £3%*) is an actual function
and put q,, q, in the same I' iff Dom g, = Domq, and £ =f
) n 1 2
for every o in their domain].
. - . "

Define Dn {B € P(w): for some g€ rn’ q2p, g l-p‘ A c* B'}. Bs rn
is directed, Dn is a filter, and by the choice of p and A each member of
Dn is infinite. Also for every infinite B c w (B € V), p "px "Ac*B or
A nB is finite"; hence there is q 3 p s.t. g '.P*“ A - B is finite" or
q I-P*"é n B is finite" without loss of generality, for some n, q € l"n.
Hence B € Dn or wB € Dn' As easily each Dn is projective we get a

contradiction to (*).

4.3 Claim: If <ri: i< o1> is a sequence of Rl Cohen reals (i.e., this
is a generic set for the appropriate forcing Po) then V[ri: i< 01]

satisfies (*).

Proof: Let Dn form a counterexample, G in V[G], G ¢ Po generic.
Clearly for some i, the parameters appearing in the definition of the Dn
belong to V[rj: j <i). So w.l.o.g. i =0, and we can consider r; as a

function from @ to {0,1}. So for some 2 € {0,1} and n < w,
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fm: ro(m) = Q} € Dn (in V[ri: i<« ul]), hence this is forced by some p €

Po. Choose n(*) large enough so that p gives no information on ro(n)

for m 2 n(*). Define ri': ri'(n) = ri(n) except when i = 0 A n 3 n(*) in
which case ri‘(n) =1 - ri(n). It is easy to check that also <rl': ix w >
comes from some generic G' ¢ PO, and p € G'. Clearly V[G] = V[G'] = V[ri: i

< (o]]. As p F 0" fm: r.(m) = 2} € D" also (looking at V[G']), {m: r'(m) =
. P i n i

2} € Dn' But {m: ri(m)=2} n f{m: ri‘(m)=2} € {0,°°+,n{*)-1}, hence is finite,

contradicting "Dn < [“]w is a filter".

R R
4.4 Conclusion: It is consistent with ZFC that 2 0. 2 1. Rz +b=»d>3%

if ZFC is consistent.

Remarks: 1) We can get other values for B > %.
2) I think we can prove the case of (*) we need without having to

force it.

Proof: Start with V = L, add X, Cohen reals [so by 4.3, (*) of 4.2 holds})

1

and then force by P from 4.2 for o = w,. By 4.2 we get a model as

required.
5. On Hh<%=0.

5.1 Definition: Let B be the minimal cardinal X such that there is a
tree T with X levels and A_€ [@]° for teT, [t <s = A c* A} and
(vBe[w]”)(3teT)(A c*B).

See [BPS] on it (and why it exists).

5.2 Theorem: Assume V F CH.

For some proper forcing P of power 82 satisfying the Rz-c.c., in Vl>
R R
- A - 0 _ ,1_
b-Kl.b-z-&z (and 2 ~ = 2 82).

Proof: We shall use the direct limit P of the iteration d’i '91: i< to2>

where :
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. . . Lo 2 . 2 ., . .
1) letting i = (w )" + 3, j<{(w ), if j#0,0 0 +1then Q |is
1 1 1'1 P <1

Cohen forcing; if 3j = w, then Qi is Q from Det. 2.8 (in V 1), and if j

= wl + 1 then 91 is Qd (see Def. 4.1). For j = 0 see the end of the
proof .

2) We use the variant of countable support iteration defined in |Shi,
IIT p. 96,7], i.e., using only hereditarily countable names {we could ‘have

used Mathias forcing instead of the Q from 2.8). Cleariy IPI =R_, P

2‘
satisfies the R,-c.c. and is proper (see [Shl, III p. 96,7]), hence forcing
by P preserves cardinals. Clearly in VP 2,063 “2‘ and 2 0. 82; hence in

V.8 =0 =R, and always b » K. So the only point left is Ve oy R

We define by induction on i < ,a P naine -‘:'i' ﬁi' vi such that

“2 afi)”
(a) (i) = () (is1)

(b) n. € U B(4»2) and for every successor 8 < 9.(3‘_)1) [:ril‘ﬂ € {Dj:
j<i}) (i.e., thg::lthil)gs are forced).

(c) n.<n, = A. c*A. (j<i) and A. is an infinite subset of .
~3 ~1 ~1 = ~3 51

(d) if A cow is infinite and A € V J then for some i <3+ @,
AcCA,.
=T P
(e) Ai includes no infinite set from V «(3) when j < i, and is a
subset of the generic real of Q 3

wli+3

There is no problem to do this if you know the well known way to build trees

exemplifying the definition of h (see Balcar et al. [BPS]), provided that no
.

wl—branch has an intersection. I.e., for no n € 1(«!2) and B € [0]“ (in

v u2) B c* Ai where nf(a+l) = n. for o < w, . Let i(*)= U a(iT). in
o “'a W

Fien Piny,
v there is no intersection by (e) (though maybe n ¢ V ). So it is

enough to prove this for a fixed i(*).

We can look at the iteration <Pg,Q : i(*) < ¥ <@, i(*) B>, Py=
PB/Pi(*)' Let G1 < Pi(*) be generic, Vl = V[G]. Note that every element of
P, can be represented by a countable function from ordinails (< 02) to

2

hereditarily countable sets. The set of elements of P“" as well as its
2
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partial order are detinable from ordinal parameters only (all this in V[G]).

Suppose p € P' forces B (a P' -name of & subset of w) and i_ (v < w, )
w, ~ w, ~y 1
to be as above. So for some 3Jj(*) < i(*) p € V[GnPj(,,)].

There is P» P 4 21 € P‘; v Py "‘_1_1_ = i" for some v,i,
2

J*) < mfi <i(*) so p k"B¢ ri“ where r. is the generic real the set

[¢]; S gives. Now using automorphisms of the forcing P,  _./P.
Wi+l i(*)y" s

that there is Py, P 4 p, € P““ such that P, ¥ "B is almost disjoint from
5 =~

we see

(*)

ri". From this we can conclude that p ¥ " U n; ¢ V[G]" (otherwise some
W,
1

By s p forces a particular value and repeat the argument above for po).

1

be generic and we shall work in

Looking at Q. (see below) we see that it does not add any . -branch
i(*) o

to T = {n;: (i) <i(*)}. Let G, € P, ),

V2 = V[GZ], and assume p € szlpx(*)d (i.e., P“zle) force E' ir (v < al)
NO V2
to be as above. Let N be a countable elementary submodel of H(({2 )*)

B, and <iT:'r <¢ol) beiong. Now each Qi is

(see [Shl]). It is enough to find
def

i(*)+L°

strongly proper and so 1is Pw /P
2

to which p, P_ /P

w

2
i(*)+l
gz p (in P(»Z/Pi(*)d) which forces that for every n € T, g(n) = o6
Nnal.

gk “for some T < O, 0 ol

By the definition of strongly proper and of Qi (%) this is possible.

How is Qi defined? Let it be (((Igzsz(n),w):n < w, Ig a tinite

(*)

antichain in “)w, w a finite subset ot “«»}. The order is (<Ig:2<no),w0) 4
(I;:Sl(nl).wl)) iff no < nl. Ig [ Ii for & < no, wo [ wl and for every

n € wl - wo. no g 2 < nl, no member of Ii is an initial segment of n.
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