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A Combinatorial Principle Equivalent to the 
Existence of Non-free Whitehead Groups 

PAUL C. EKLOF AND SAHARON SHELAH 

ABSTRACT. As a consequence of identifying the principle described in the 
title, we prove that for any uncountable cardinal A, if there is a A-free 
Whitehead group of cardinality A which is not free, then there are many 
"nice" Whitehead groups of cardinality A which are not free. 

1. Introduction 

Throughout, "group" will mean abelian group; in particular, "free group" will 
mean free abelian group. 

Two problems which have been shown to be undecidable in ZFC (ordinary 
set theory) for some uncountable >. are the following: 

• Is there a group of cardinality>. which is >.-free (that is, every subgroup 
of cardinality < >. is free), but is not free? 

• Is there a Whitehead group G (that is, Ext(G,Z) = 0) of cardinality>. 
which is not free? 

(See [6] for the first, [7] for the second; also [2] is a general reference for unex-
plained terminology and further information.) 

The second author has shown that the first problem is equivalent to a problem 
in pure combinatorial set theory (involving the important notion of a >.-system; 
see Theorem 3.) This not only makes it easier to prove independence results (as 
in [6]), but also allows one to prove (in ZFC!) group-theoretic results such as: 

(V') if there is a >.-free group of cardinality >. which is not free, 
then there is a strongly >.-free group of cardinality >. which is 
not free. 
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80 PAUL C. EKLOF AND SAHARON SHELAH 

(See (10] or (2, Chap. VII].) A group G is said to be strongly >.-free if every 
subset of G of cardinality < ).. is contained in a free subgroup H of cardinality 
< ).. such that G / H is >-.-free. One reason for interest in this class of groups 
is that they are precisely the groups which are equivalent to a free group with 
respect to the infinitary language Loo>. (see (1]). 

There is no known way to prove ( v) except to go through the combinatorial 
equivalent. 

As for the second problem, the second author has shown that for >-. = N1, 
there is a combinatorial characterization of the problem: 

there is a non-free Whitehead group of cardinality N1 if and only 
if there is a ladder system on a stationary subset of N1 which 
satisfies 2-uniformization. 

(See the Appendix to this paper; a knowledge of the undefined terminology in 
this characterization is not needed for the body of this paper.) Again, there are 
group-theoretic consequences which are provable in ZFC: 

(V\7) if there is a non-free Whitehead group of cardinality N1, 
then there is a strongly N1-free, non-free Whitehead group of 
cardinality N1. 

(See (2, §XII.3]. It is consistent with ZFC that there are Whitehead groups of 
cardinality N1 which are not strongly N1-free.) 

Our aim in this paper is to generalize (VV) to cardinals>-.> N1 by combining 
the two methods used to prove (V) and (VV). Since the existence of a non-free 
Whitehead group G of cardinality N1 implies that for every uncountable cardinal 
).. there exist non-free Whitehead groups of cardinality>-. (e.g. the direct sum of 
).. copies of G- which is not >-.-free), the appropriate hypothesis to consider is: 

• there is a >-.-free Whitehead group of cardinality >-.which is not free. 

By the Singular Compactness Theorem (see (8]),).. must be regular. It can be 
proved consistent that there are uncountable >-. > N1 such that the hypothesis 
holds. (See (4] or (11].) In particular, for many>-. (for example,>-.= Nn+l, nEw) 
it can be proved consistent with ZFC that >-. is the smallest cardinality of a non-
free Whitehead group; hence there is a >-.-free Whitehead group of cardinality>-. 
which is not free. (See (4].) 

Our main theorem is then: 

THEOREM 1. If there is a >.-free Whitehead group of cardinality>-. which is not 
fr·ee, then there are 2>- different strongly >.-free Whitehead groups of cardinality 
>-.. 

Our proof will proceed in three steps. First, assuming the hypothesis -call 
it (A)- of the Theorem, we will prove 

(B) there is a combinatorial object, consisting of a >-.-system 
with a type of uniformization property. 
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A COMBINATORIAL PRINCIPLE 81 

Second, we will show that the combinatorial property (B) can be improved to a 
stronger combinatorial property (B+ ), which includes the "reshuffling property". 
Finally, we prove that (B+) implies 

(A+): the existence of many strongly >.-free Whitehead groups. 

Note that we have found, in (B) or (B+ ), a combinatorial property which is 
equivalent to the existence of a non-free >.-free Whitehead group of cardinality 
>., answering an open problem in [2, p. 453]. Certainly this combinatorial 
characterization is more complicated than the one for groups of cardinality N1 
cited above. This is not unexpected; indeed the criterion for the existence of 
>.-free groups in Theorem 3 implies that the solution to the open problem is 
inevitably going to involve the notion of a >.-system. A good reason for asserting 
the interest of the solution is that it makes possible the proof of Theorem 1. 

In an Appendix we provide a simpler proof than the previously published 
one of the fact that the existence of a non-free Whitehead group of cardinality 
N1 implies the existence of a ladder system on a stationary subset of N1 which 
satisfies 2-uniformization. 

We thank Michael O'Leary for his careful reading of and comments on this 
paper. 

2. Preliminaries 

The following notion, of a >.-set, may be regarded as a generalization of the 
notion of a stationary set. 

DEFINITION 2. {1} The set of all functions 

rJ:n={O, ... ,n-1}--t>. 

(nEw) is denoted <w>.; the domain ofTJ is denoted i(TJ) and called the length of 

TJi we identify TJ with the sequence 

(TJ(O), 17(1), ... , TJ(n- 1)). 

Define a partial ordering on <w>, by: TJ1 ::::;; T/2 if and only if T/1 is a restriction of 
T/2· This makes <w>, into a tree. For any TJ = (ao, ... , an-1) E <w>,, TJ " (/3) 
denotes the sequence (ao, ... , an-b /3). If Sis a subtree of <w>., an element TJ of 
S is called a final node of S if no TJ " (/3) belongs to S. Denote the set of final 
nodes of S by 81. 

{2) A >.-set is a subtreeS of <w>, together with a cardinal >.'1 for every 17 E S 
such that >.0 = >., and: 

(a) for all TJ E S, TJ is a final node of S if and only if >.'1 =No; 
{b) if TJ E S \ Sf, then TJ " (/3) E S implies /3 E >.'1, >.'1~ (13) < >.'1 and 

E'1 = {/3 < >.'1 : TJ " (/3) E S} is stationary in >.'1 . 
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82 PAUL C. EKLOF AND SAHARON SHELAH 

{3} A A-system is a A-set together with a set B.., for each TJ E S such that 
B0 = 0, and for all TJ E S \ Sf: 

{a} for all /3 E E11 , A 11 ~(f3) ~ IB 11 ~(f3)1 < A11 ; 

{b) {B 11 ~(f3): /3 E E 11 } is a continuous chain of sets, i.e. if (3 ~ (3' are in 
E11 , then B 11 ~(f3) s:;; B,.,~(f3')' and if a is a limit point of E 11 , then B,.,~(a) = 
U{B,.,~(f3): /3 <a, /3 E E11 }; 

(4) For any A-system A = (S, A11 , B 11 : TJ E S), and any TJ E S, let B11 = 
U{B11 rm: m ~ f(TJ)}. Say that a family~= {sc:: ( E Sf} of countable sets is 
based on A if S is indexed by Sf and for every ( E Sf, sc: s:;; Be:. 

{5} A family S = { Si : i E I} is said to be free if it has a transversal, that is, 
a one-one function T: I--+ US such that for all i E I, T(i) E Si· We sayS is 
A-free if every subset of S of cardinality < A has a transversal. 

It can be proved that a family S which is based on a A-system is not free. 
(See [2, Lemma VII.3.6].) 

The following theorem now gives combinatorial equivalents to the existence 
of a A-free group of cardinality A which is not free. (See [10] or [2, §VII.3].) 

THEOREM 3. For any uncountable cardinal A, the following are equivalent: 

(i) there is a A-free group of cardinality A which is not free; 
(ii) there is a family S of countable sets such that S has cardinality A and 

is A-free but not free; 
(iii) there is a family S of countable sets such that S has cardinality A, is 

A-free, and is based on a A-system. 

DEFINITION 4. A subtree S of <wA is said to have height n if all the final 
nodes of S have length n. A A-set or A-system is said to have height n if its 
associated subtreeS has height n. 

A A-set of height 1 is essentially just a stationary subset of A. Not every 
A-set has a height, but the following lemma implies that every A-set contains one 
which has a height. It is a generalization, and a consequence, of the fact that if 
a stationary set E is the union of subsets En (n E w), then for some n, En is 
stationary (cf. [2, Exer. 2, p. 238]). 

LEMMA 5. If (S, A,., : TJ E S) is a A-set, and sf = UnEw sy, let sn = {TJ E 

S: TJ ~ T for some T E sy}. Then for some n, (sn,A,., : TJ E sn) contains a 
A-set. 

If A= (S,A11 ,B11 : TJ E S) is a A-system of height n, and S = {sc:: ( E Sf} is 
a family of countable sets based on A, let sz = sc: n Bc:tk for 1 ~ k ~ n. 

The following is useful in carrying out an induction on A-systems. 
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DEFINITION 6. Given a >..-system A= (8, >...,,B.,: TJ E S) and a node TJ of S, 
let 8"' = { 11 E S : TJ s; 11}. We will denote by A"' the >...,-system which is natumlly 
isomorphic to (8"', >..,.,, B~: 11 E 8"') where B~ = 0 and B~ = B,., if 11 =1- TJ. 

(That is, we replace the initial node, TJ, of 8"' by 0, and translate the other 
nodes accordingly.) 

If S = { s, : ( E Sf} is a family of countable sets based on A and ( E Sj, let 
s¢ = U{s~: k > i(TJ)}. LetS"'= {s¢: ( E Sj}; it is a family of countable sets 
based on A"~. 

In order to construct a (strongly) >..-free group from a family of countable sets 
based on a >..-system, we need that the family have an additional property: 

DEFINITION 7. A family S of countable sets based on a >..-system A is said 
to have the reshuffling property if for every o: < >.. and every subset I of S 1 
such that III < >.., there is a well-ordering <I of I such that for every r, (E I, 
s, \ U,.,< 1 ' s,., is infinite, and r(O) s; o: < ((0) implies that r <I (. 

It can be shown (in fact it is part of the proof of the theorem) that the three 
equivalent conditions in Theorem 3 are equivalent to: 

(iv) there is a family S of countable sets such that S has cardinal-
ity>.., is >..-free, is based on a >..-system, and has the reshuffling 
property. 

Finally, for future reference, we observe the following simple fact: 

LEMMA 8. Suppose that for some integers r ~ 0, and d~, and some primes 
qm {l < r, mEw), His the abelian group on the genemtors {zi: jEw} modulo 
the relations 

qmZm+r+l = Zm+r + L d~Zl 
l<r 

for all m E w. Then H is not free. 
Conversely, if C is a torsion-free abelian group of mnk r + 1 which is not free 

but is such that every subgroup of mnk s; r is free, then C contains a subgroup 
H which is given by genemtors and relations as above. 

PROOF. Let H be as described in the first part. If H is free, then H is 
finitely generated, since it clearly has rank s; r + 1. Let L be the subgroup of 
H generated by (the images of) z0 , ... , Zr-l· By comparing coefficients of linear 
combinations in the free group on {zj: jEw}, one can easily verify that Lis a 
pure subgroup of H, and that HI Lis a rank one group which is not free (because 
Zr + L is non-zero and divisible by q0 q1 • • • • • qm for all m E w) and hence not 
finitely-generated. But this is impossible if H is free. 

Conversely, let C be as stated, and let L be a pure subgroup of rank r. Then 
Lis free (say with basis zo, ... , Zr-d and C I Lis a non-free torsion-free group of 
rank 1. Thus C I L contains a subgroup with a non-zero element Zr + L such that 
either: Zr + L is divisible by all powers of p for some prime p (in which case we 
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84 PAUL C. EKLOF AND SAHARON SHELAH 

let qm = p for all m); or Zr + L is divisible by infinitely many primes (in which 
case we let { qm : m E w} be an infinite set of primes dividing Zr). It is then easy 
to see that H exists as desired. 0 

3. {A) implies {B) 

THEOREM 9. For any regular uncountable cardinal>., if 
(A) there is a Whitehead group of cardinality>. which is >.-free but not free, 

then 

(B) there exist integers n > 0 and r ~ 0, and: 

(i) a >.-system A= (S, >.TJ, BTJ : 'TJ E S) of height n; 

(ii) one-one functions rp~ (( E Sf, 1 :::; k:::; n) with dom(rp~) = w; 
(iii) primes qc;;,m (( E Sf, mEw}; and 

(iv) integers dtm (( E Sf, mEw, f < r) 

such that 

and 

(a) if we define sc;; = U~=l rge(rp~), then S = {sc;; : ( E Sf} 
is a >.-free family of countable sets based on A; in particular, 

rge(rp~) ~ Bc;;tki 

{b) for any functions cc;;: w ~ Z {( E Sf}, there is a function 

f : US ~ Z such that for all ( E Sf there are integers ac;;,i 
(jEw) such that for all mEw, 

n 

c<;(m) = qc;;,mac;;,m+r+l- ac;;,m+r- L dtma(,l- L f(rp~(m)). 
l<r k=l 

PROOF. We shall refer to the data in (B), which satisfies (a) and (b), as 
a >.-system with data for the Whitehead problem or more briefly a Whitehead 
>.-system. Given a Whitehead group G of cardinality >. which is >.-free but not 
free, we begin by defining a >.-system and a family of countable sets based on the 
>.-system following the procedure given in [2, VII.3.4]; we review that procedure 
here. 

Choose a >.-filtration of G, that is, write Gas the union of a continuous chain 

of pure subgroups of cardinality < >. such that if G I Ba is not >.-free, then 
Ba+l I Ba is not free. Since G is not free, 

E0 = {a < >.: Ba is not >.-pure in G} 

is stationary in>.. For each a E E0, let >.a ( < >.) be minimal such that Ba+d Ba 
has a subgroup of cardinality >.a which is not free; >.a is regular by the Singular 
Compactness Theorem (see [8] or [2, IV.3.5]). If >.a is countable, then let (a) 
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be a final node of the tree; otherwise choose Ga ~ Ba+l of cardinality Aa such 
that 

is not free. Then Ha is Aa-free, and we can choose a ..\a-filtration of Ga, 

such that for all (3, (Ba,/3 + Ba)/ Ba is pure in Ha and if (Ba,/3 + Ba)/ Ba is not 
Aa-pure in Ha, then 

is not free. Since Ha is not free, 

Ea = {(3 < Aa: Ba,/3 + Ba/ Ba is not Aa-pure in Ha} 

is stationary in Aa· For each (3 E Ea, choose Aa,/3 { < ..Xa) minimal such that 
there is a subgroup Ga,/3 of Ba,/3+1 of cardinality Aa,/3 so that 

is not free. If Aa,/3 is countable, let (a, (3) be a final node; otherwise choose a 
Aa,/3-filtration of Ga,/3· Continue in this way along each branch until a final node 
is reached. 

As we have just done, we will use, when convenient, the notation Ga,/3 instead 
of G(a,/3), etc.; thus for example we will write G.,1,6 instead of G7J~(ti)· 

In this way we obtain a ..\-system A = (S, ..\7J, B7J : TJ E S) where for each 
(E Sf, there is a countable subgroup Gt; of G such that 

is not free. We can assume that for each TJ E S \Sf and each 8 E E7J, 

B7J,Hl + (B7)) = G1],ti + B7J,ti + (B7J). 

We can also assume that for all ( E Sf, Gt; has been chosen so that Gt; + 
(B<}/(Bt;) has finite rank rt; + 1 for some rt; such that every subgroup of rank 
$ rt; is free. By restricting to a sub-..\-set, we can assume that there is an r 
such that r < + 1 = r + 1 for all ( E Sf and that there is an n such that A has 
height n (cf. Lemma 5). Moreover, we can assume (easing the purity condition, 
if necessary) that Gt; + (Bt;)/(Bt;) is as described in Lemma 8, that is, it is 
generated modulo (B<) by the cosets of elements Zt;,j which satisfy precisely the 
relations which are consequences of relations 

Q(,mZ(,m+r+l = Z(,m+r + L dtmZ(,l 

l<r 
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(modulo (.B,)) for some primes q(,m and integers dtm· Fix 9(,m E (.B,) such 
that in G 

q(,mZ(,m+r+l = Z(,m+r + L dtmz(,i + 9(,m· 
i<r 

There is a countable subset t, of .B, such that c, n (.B,) is contained in the 
subgroup generated by t,. Let S( = t, x w. Then it is proved in [2, VII.3.7) 
that {s,: ( E Sf} is A-free and based on the A-system (S, Arp B~ : 17 E S) where 
B~ =B., X w. 

Let sz = s, n B(rk and let v~ : w-+ sz enumerate sz without repetition. We 
can write each 9(,m as a sum E~= 1 gz,m where gz,m E B(tk· Now define 

~PZ(m) = (v~(m),gZ,m) E B(tk x Bt:tk· 

Then s( = U~= 1 rge(cpZ) is based on the A-system (S, A..,, B~ : 17 E S) where 
B~ = B~ x B..,. Moreover {s( : ( E Sf} is a A-free family because of the choice 
of the first coordinate of cpZ ( m). Thus we have defined the data in (B) such that 
(a) holds. It remains to verify (b). So let c,: w-+ Z (( E Sf) be given. We are 
going to define a short exact sequence 

o-z-M~c-o 

and then use a splitting of 1r to define the function f : US - Z. 
We will use the lexicographical ordering, <t, on S defined as follows: 'f/1 <t 'f/2 

if and only if either 171 is a restriction of 172 or 171 ( i) < 'f/2 ( i) for the least i such that 
'f/1(i) i= 'f/2(i). Note that if 'f/1 <t 'f/2, then (B..,1 ) ~ (B..,2 ). The lexicographical 
ordering is a well-ordering of S, so there is an order-preserving bijection(): r-
(S, <t) for some ordinal r. If for each a < r we let A,. = (Bo(a)), then G = 
Ua<rAa represents Gas the union of a chain of subgroups. However, we must 
exercise caution since, as we will see, this chain is not necessarily continuous. 

The kernel of 1r will be generated by an element e E M. We will define 1r to 
be the union of a chain of homomorphisms 7r17 : M,. -A,. - 0 with kernel Ze. 
The 1r,. will be defined by induction on a. At the same time, we will also define, 
as we go along, a chain of set functions 1/J,. : A,. - M,. such that 1r,. o 1/J,. = idAu. 
Let 1r0 be the zero homomorphism : Ze - Ao = {0}. 

Suppose that 1rp and 1/Jp have been defined for all p < a for some a < r; 
say O(a) = 17 where 'f/=(v, 6) for some v E S, 6 E E,. Suppose first that a is 
a limit ordinal. Let 1r~ : M~ - Up<aAp be the direct limit of the 1rp (p < a) 
and let 1/J~ be the direct limit of the 1/Jp· In particular, M~ = ~{Mp: p <a}. 
If Up<aAp = A,., then we can let 1r,. = 1r~ and 1/J,. = 1/J~; this will happen, for 
example, if 6 is a limit point of E,_,. 

But it may be that 6 has an immediate predecessor 61 E E,. (Since a is a 
limit ordinal, it follows that 17 is not a final node of S.) Then 

Up<aAp = U7 <.x.,,61 Bv,61 ,, + Bv,61 + (B,_,) = Bv,61 +1 + (Bv) · 
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Notice that Up<uAp will be a proper subgroup of Au if 61 + 1 < 6 (i.e. if 
61 + 1 ¢ Ev). We can extend 71"~ to 7r u : Mu -+ Au because the inclusion 
of Up<uAp into Au induces a surjection of Ext( Au, Z) onto Ext(Up<uAp, Z). 
Finally, extend t/J~ to t/Ju in any way such that 7r u o t/Ju is the identity on Au. 

Now let us consider the case when u = p + 1 is a successor ordinal. Recall 
that O(u) = (v, 6}. There are two subcases. In the first, 6 is the least element of 
Ev, so O(p) = v and Ap = (Bv}, Au = Bv,6 + (Bv}· In this subcase, we extend 
11"p to 11"u using the surjectivity of Ext(Ap, Z)-+ Ext( Au, Z). 

In the second and last subcase, 6 has an immediate predecessor 61 in Ev; then 
O(p) =(v, 61}, a final node of S. Let ( denote (v, 61}; then Bv,61 +1 + (Bt;} / (Bt;} 
is as described in Lemma 8, that is, it is generated modulo (Bt;} by the cosets of 
elements zt; ,i which satisfy the relations 

(1) 
n 

Qt;,mZ(,m+r+l = Z(,m+r + L dtmz(,t + L YZ,m 
t<r k=1 

in G for some primes q(,m, integers dtm and elements 9Z,m E Bt;tk· It is at 
this point that we use the function c,. Define M~ to be generated over Mp by 
elements z(,j modulo the relations 

n 

(2) Qt;,mzC,m+r+1 = z(,m+r + L~.mz(,t + L t/Jp(YZ,m) + ct;(m)e 
t<r k=1 

and define 
rr~ : M~-+ Bv,th+l + (Bt;} 

to be the homomorphism extending 11"p which takes z(,i to zu. One can verify 
that 71"~ is well-defined and has kernel Ze. Extend t/Jp to t/J~ in any way such that 
71"~ o t/J~ is the identity. We extend 71"~ to 11"u : Mu -+Au = (B(v,6}} by using the 
surjectivity ofExt(Au,Z)-+ Ext(Bv,61 +1 + (fJ,},Z); finally we extend t/J~. 

This completes the definition of 1r : M -+ G and of the set map t/J : G -+ 
M ( = the direct limit of the t/Ju ). Since G is a Whitehead group, there is a 
homomorphism p: G -+ M such that 1r o p is the identity on G. In order to define 
f, consider an element x of US; x is an ordered pair equal to <p~(m) (possibly 
for many different ((, k, m)). If g is the second coordinate of x, let f(x) be the 
unique integer such that 

t/J(g)- p(g) = f(x)e. 

Also for any ( E Sf and j E w define a, ,j such that 

z(,3 - p(zt;,j) = at;,ie. 

Then applying p to the equation (1) and subtracting the result from equation 
(2), we obtain 

Qt;,m(z(,m+r+1- p(zt;,m+r+1)) = (z(,m+r- p(zt;,m+r))+ 
:Et<r dtm(z(,t- p(zt;,t)) + :E~=1 (t/J(9Z,m)- P(YZ,m)) + ct;(m)e 
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88 PAUL C. EKLOF AND SAHARON SHELAH 

from which, comparing coefficients in Ze, we get 
n 

q.;;,ma(,m+r+l =a.;;,m+r+ Ldtma.;;,e+ Lf(~~(m))+c.;;(m). 
f<r k=l 

0 

4. (B) implies (B+) 

Now we are going to move from one combinatorial property, (B), to a stronger 
one, (B+ ), which will allow us to construct Whitehead groups that are strongly 
A-free. Recall that in section 2 we defined the reshuffling property (Definition 
7). 

THEOREM 10. Suppose that for some regular uncountable cardinal A, there is 
a Whitehead A-system. Then the following also holds: 

(B+) there exist integers n > 0 and r ~ 0, and: 

(i) a A-system A= (S, Arp B 17 : TJ E S) of height n ; 
(ii) one-one functions~~ (( E Sf, 1 ~ k ~ n) with dam(~~)= w; 

(iii) primes q.;;,m {( E Sf, m E w }; 
(iv) integers dtm (( E Sf, mEw,£< r) 

satisfying {a) and {b) as in (B), with the additional properties: 

• S = { s 17 : TJ E Sf} has the reshuffling property; and 
• for all ( E Sf and k,i E w, rge(~~) n rge(~~) = 0 ifi #- k. 

PROOF. We shall refer to the data in (B+), with the given properties, as a 
strong Whitehead A-system. 

Suppose that A'= (S',A~,B~: TJ E S'), ~'/,q(,m, and d(~m is a Whitehead 
A-system (as in (B)); in particular, S' = { s( : ( E S/} is a family of countable 
sets based on A' , where s( = U~=l rge(~'/). In [2, §VII.3A] is contained a 
proof that if there exists a family S' of countable sets based on a A-system A' 
which is A-free, then there is a family S of countable sets based on a A-system A 
which has the reshuffling property. Our task is to examine the proof and show 
how the transformations carried out in the proof can be done in such a way that 
the additional data and properties given in (B) - namely the existence of the 
functions ~~' primes q.;;,m, and integers d~,m satisfying (b) -continue to hold. 
The transformations in question change the given S' and A' into S and A which 
are beautiful, that is, they satisfy the following six properties: 

(i) for ry, v E S, if B17 n Bv i= 0, then there are T E S and a, f3 so that 
ry = T """' (a) and v = T """' (f3); 

(ii) for(, v E Sf and k, i E w, if s~ n s~ #- 0 then k = i, £(() = n = £(v) for 
some nand for all j i= k- 1,1 ((j) = v(j); 

1 Note that this corrects an error in [2]. A list of errata for [2] is available from the first 
author. 
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(iii) for each k and(, sz is infinite and has a tree structure; that is, for each 
( there is an enumeration t~<, t~<, . . . of sz so that for all v, ( E Sf and 
nEw, if t~~~ E s~, then t~< E s~; 

(iv) S is .A-free; 
(v) for all a E E0, A(a) and s<a) are beautiful; and 

(vi) one of the following three possibilities holds: 

(a) every 'Y E E0 has cofinality w and there is an increasing sequence of 
ordinals {'Yn: nEw} approaching 'Y such that for all ( E Sf if ({0) = 'Y 
then s~ = { bn, tn): n E w} for some tn 's; moreover, these enumerations 
of the s~ satisfy the tree property of (iii); 
{b) there is an uncountable cardinal K. and an integer m > 0 so that 
for all 'Y E E0 the cofinality of 'Y is K. and for all ( E Sf, .A< tm = 
K.; moreover, for each 'Y E E0 there is a strictly increasing continuous 
sequence {'Y P : p < K.} co final in 'Y such that for all ( E Sf if ( { 0) = 'Y 
then s~ = b<Cm)} x x, for some x,; 
(c) each 'Y E E0 is a regular cardinal and .A(!') = 'Y; moreover, for every 
( E Sf, s~ = {({1)} X X< for some X,. 

By [2, Thm. VII.3A.6], if S and A are beautiful, then S has the reshufH.ing 
property. Thus it is enough to show that we can transform S' and A' into a 
beautiful Sand A and at the same time preserve the additional structure of (B). 

Let us begin with property {i). We do not changeS' {the tree), but for every 
T E S' \Sf and a E E~, we replace B~,a with B~,a x {T}. Define 

<pZ(m) = (<pt{m), ( r k- 1) E B(tk X {( r k- 1}. 

The definitions of the rest of the data are unchanged. Then (B) {b) continues 
to hold since given the c<, define f by f ( <pZ ( m)) = f' ( <pt ( m)), where f' is the 
function associated with the original data (and the same c<). The function f is 
well-defined because if <pZ1 {m1) = <pZ2 (m2), then <p(~ {m1) = <p(~ (m2). Note that 
property {i) implies that rge( <p~) n rge( <pZ) = 0 if i =f. k. 

Property {ii) of the definition of beautiful is handled similarly. 
To obtain property (iii), we do not change S', but for all T E S' we replace 

B~ with <w B~, the set of all finite sequences of elements of B~. Enumerate st 
as {xL: jEw}. If <pt(m) = xz.im' define 

k( ) ( k · < · ) <wB' <p< m = x(,i : z _ Jm E <tk· 

Given c< {( E Sf), define /(<pZ(m)) = f'(<pt(m)), where f' is the function 
associated with the original data (and the same c<). Again, f is well-defined. 

So we can suppose that A'= (S',.A~,B~: 'TJ E S') and S' = {s( : ( E S/} 
satisfy also properties {i), {ii) and (iii). The proof of [2, Thm. VII.3A.5] shows 
that one can define A and S which are beautiful and such that 
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there is a one-one order-preserving map 1/J of S into S' such that 
for all TJ E S, .A11 = A~( 11 ); and for each ( E Sj, there is a level-
preserving bijection Oc; : sc; -+ s~(() such that for all(, v E Sf, 
if XEs~(()' y E s~(v) and X =I= y, then 0(1(x) =I= o;;1(y).2 

Observe that TJ ESf if and only if 1/J(TJ) E Sj since .A11 = A~(1J)" We use 
the functions 1/J and Oc; to define the additional data in (B): let qc;,m = q~((),m 

and dtm = d~((),m; moreover, define <~'Z(m) = 0( 1 (cp~(()(m)). Given cc; for 
( E sf, define c~(() = cc; and let Cv be arbitrary for v E Sj \ 1/J[S]. Then since 
the original data satisfy (B), f' : US' -+ Z and a~,i (v E Sj, j E w) exist. 
Let /(cpZ(m)) = f'(cp~(()(m)); the (contrapositive of the) final hypothesis on Oc; 
implies that f is well-defined. Let ac;,m = a~((),m" Then for each ( E Sf, the 
equation 

n 

q~•((),ma~((),m+r+l = a~((),m+r+ L d~((),ma~((),e+ L f'(cp~(()(m))+c~(()(m) 
l<r k=l 

is the desired equation 
n 

qc;,ma(,m+r+l =ac;,m+r+ Ldtmac;,e+ Lf(cpZ(m))+cc;(m). 
l<r k=l 

D 

5. (B+) IMPLIES (A+) 
THEOREM 11. Let A be a regular uncountable cardinal such that (B+) holds, 

i.e., there is a strong Whitehead A-system. Then 
(A+) there are 2-X strongly .A-free Whitehead groups of cardinality A. 

PROOF. Given a strong Whitehead A-system (S, .A11 , B 11 : 77 E S) together 
with <pz, qc;,m, d~,m' we use them to define a group Gin terms of generators and 
relations. Our group G will be the group F / K where F is the free abelian group 
with basis 

(3) 

and K is the subgroup of F generated by the elements wc;,m = 

n 

(4) qc;,mZ(,m+r+l - Z(,m+r- L dtmzc;,e- L <~'Z(m) 
l<r k=l 

for all m E w, and ( E Sf. Let us see first that G is a Whitehead group. 
(For this we need only (B).) It suffices to show that every group homomorphism 
1/J : K ---+ Z extends to a homomorphism from F to Z. (See, for example, [2, 
p.8].) Given 1/J, define cc;(m) = 1/J(wc;,m) for all m E w, and ( E Sf. Then by 

2 Note that this is a clarification and correction of the first paragraph of the proof of [2, 
Thm. VII.3A.5, p. 213]. Also, in the third paragraph of that proof, 'ljJ should be '1/J- 1 . 
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(B) (b), there are integers a, ,j ( ( E Sf, j E w) and a function I : US --+ Z such 
that for all ( E Sf and mEw, 

n 

(5) C((m) = q(,ma(,m+r+l- a(,m+r- L dtma(,l- L l(cp~(m)). 
l <r k=l 

Define() : F---+ Z by setting() f US= I and O(z,,i) = a<,i· We just need to 
check that() extends 1/J. But for all ( E Sf and mEw, we have 

n 

O(w(,m) = q(,ma(,m+r+l- a(,m+r- L dtma(,l- L l(cp~(m)) 
l<r k=l 

by the definitions of() and of W(,m· Thus O(w,,m) = c<(m) = '1/J(w(,m), by (5). 
Next let us show that G is not free. (Here again, we need only (B).) The 

proof is essentially the same as that of Lemma VII.3.9 of [2, pp. 205f], but we 
will give a somewhat different version of the proof here. The proof proceeds by 
induction on n where n is the height of our A-system. For each a< A, let Ga be 
the subgroup of G generated by 

{z(,j: ( E Sf,((O) <a, jEw} uU{s,: ( E Sf,((O) <a}. 

It suffices to prove that for all a in a stationary subset of A, Ga+l/Ga is not 
free (cf. [2, IV.L7]). In fact, we will show that Ga+dGa is not free when a is 
a limit point of E0 and belongs to C n E0, where Cis the cub 

{a < A : whenever cp~(m) E U{B(,B) : /3 < a} then 3a E sf 
with a(O) <a and cp~(m) E rge(cp~)}. 

We begin with the case n = 1. T;h.en for all a E C n E0 such that a is a 
limit point of E0, Ga+liGa is non-free because it is as described in the first part 
of Lemma 8 (with generators {Z(a),j :jEw}), since for all mEw, cp(a)(m) E 
B(a) = U{B(.a) : /3 < a} by the definition of a A-system (because a is a limit 
point of E0) and hence cp(a) (m) EGa since a E C. 

Now suppose n > 1 and the result is proved for n - 1. Again, let a E C n E0 
such that a is a limit point of E0. Again we have that cpHm) EGa for all mEw 
when ((0) =a. We will consider the A(a)-system A (a). (See Definition 6.) Note 
that A(o) has height n -1, and the group Ga+l/Ga is defined as in (3) and (4) 
relative to this A(a)-system. Hence by induction Ga+l/Ga is not free. 

Finally, we will use the reshuffling property given by (B+) to prove that G 
is strongly A-free. As in the proof of [2, VII.3.11], we will prove that for all 
a E AU { -1} and all /3> a, G,a/Ga+l is free. Let I= {( E Sf: ((0) < /3}, and 
let <I be the well-ordering given by the reshuffling property for I and a. Lets~ 
denote rge(cp~). We claim that there is a basis Z,a,a of G,a/Ga+l consisting of 
the cosets of the members of the following two sets: 

{z(,j :a< ((0) < /3, and either j < r or 
3k s.t. cp~(j- r) ¢ U{st : v <I(}} 
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{cp~(m): cp~(m) i U{s~: v <I(} and 
3i < k[cp~(m) i U{st: v <I(})}. 

To see that the elements of Z13,o. generate G13/Go.H, we proceed by induction 
with respect to <I to show that the coset of every Z(,j (((0) < {3,j E w) and the 
coset of every element of S( (((0) < {3) is a linear combination of the elements of 
Zf3,o.· Since S( \U{sv: v <I(} is infinite, for each jEw such that Z(,j +Ga+l i 
Zf3,on there is t > j such that Z(,t + Ga+l belongs to Zf3,o.· Without loss of 
generality, t = j + 1. Then 

n 

Z(,j = q(,j-rZ(,t- L dL-rz(,l- L cp~(j- r) 
l<r k=l 

by (4). By induction each cp~(j- r) + Ga+l is a linear combination of members 
of Zf3,o. (because cp~(j- r) E U{s~: v <I(} since Z(,j + Ga+l i Zf3,o.); hence 
Z(,i + Ga+l belongs to the subgroup generated by the members of Zf3,o.· 

For each m, i E w, if cp~(m) E U{ s~ : v <I (},then by induction cp~(m)+Go.+l 
is a linear combination of elements of Zf3,a· Otherwise, cp~(m) + Go.+l belongs 
to Zf3,a unless i is minimal such that cp~ ( m) i U{ s~ : v <I (}. But in the latter 
case, 

n 

L'P~(m) = q(,mZ(,m+r+l- Z(,m+r- Ld~,mZ(,£ 
k=l l<r 

so its coset is a linear combination of elements of Zf3,o.; thus since cp~ ( m) +Go.+ 1 E 
Z(3,a for all k # i, cp~(m) + Go.+l belongs to the subgroup generated by the 
elements of Zf3,a. This completes the proof that Zf3,o. is a generating set. To see 
that the elements of Zf3,a are independent, compare coefficients in F. 

To construct not just one but 2.x different strongly ..\-free Whitehead groups, 
we use a standard trick: write E0 as the disjoint union lla<.X Xa of ..\ stationary 
sets; then for every non-empty subset W of ..\, do the construction above for 
the generalized ..\-system A= (Sw, A(, B, : ( E Sw) with E0 = llaEW Xa, i.e., 
where Sw = { ( E S : ((0) E llaEW X a}. 0 

6. Appendix: Non-free Whitehead implies 2-uniformization 

A ladder system on a stationary subset E of w1 is an indexed family of 
functions { 1/a : a E E} such that each 1/a : w -t a is strictly increasing and 
sup(rge(TJo.)) = a. If { 'Pa : a E J} is an indexed family of functions each with 
domain w, we say that it has the 2-uniformization property provided that for 
every family of functions Ca : w -t 2 = { 0, 1} (a E J), there exists a function 
H such that for all a E J, H(cp01 (n)) is defined and equals c0 (n) for all but 
finitely many n. It is not hard, given a ladder system on E which has the 2-
uniformization property, to construct, explicitly (by generators and relations), a 
non-free Whitehead group. (See [2, Prop. XII.3.6].) It is more difficult to go the 
other way: starting with an arbitrary non-free Whitehead group of cardinality 
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NI to show that there exists a ladder system on a stationary subset of WI which 
has the 2-uniformization property. This was left to the reader in the original 
paper by the second author [9, Thm. 3.9, p. 277]. The only published proof 
is a rather complicated one in [2, §XII.3]; so considering the importance of this 
result, it seeins to us worthwhile to give another proof which is conceptually and 
technically simpler than that one. The proof given here resembles the original 
proof found by the second author, which was also the basis of the proofs in [3] 
and in this paper. 

Our goal is to prove the following. 

THEOREM 12. If there is a non-free Whitehead group A of cardinality NI, 
then there is a ladder system { TJa : o: E E} on a stationary set E which has the 
2-uniformization property. 

We begin with an observation. It is sufficient to show that the hypothesis of 
Theorem 12 implies that there is a family {cpa : o: E E} of functions which has 
the 2-uniformization property and is based on an WI -filtration, that is, indexed by 
a stationary subset E of WI and such that there is a continuous ascending chain 
{Bv : v E w} of countable sets such that for all o: E E, cpa : w--+ Ba. (Note that 
what we are talking about, in the language of the preceding sections, is a family 
of countable sets based on an NI-system.) Indeed, by a suitable coding we can 
assume that Ba = o: and if the range of cpa is not cofinal in o:, we can choose a 
ladder TJ~ on o:, replace cpa(n) by (cpa(n), TJ~(n)), andre-code, to obtain a ladder 
system onE n C, (for some cub C) which has the 2-uniformization property. 

From now on, let A denote a non-free Whitehead group of cardinality NI. 
Then we can write A as the union, A = Uv<w1 A,.,, of a continuous chain of 
countable free subgroups; since A is not free, we can assume that there is a 
stationary subset E of WI (consisting of limit ordinals) such that for all o: E E 
Aa+dAa is not free. By Pontryagin's Criterion we can assume without loss of 
generality that Aa+dAa is of finite rank and, in fact, that every subgroup of 
Aa+l / Aa of smaller rank is free. Since 

(*) whenever E = UnEwEn, at least one of the En is stationary 
(cf. [2, Cor. 11.4.5]) we can also assume that all of the Aa+dAa (for o: E E) 
have the same rank r + 1 (r ~ 0). In order to make clear the ideas involved in 
the proof of the Theorem, we will give the proof first in the special case when 
r = 0, i.e., Aa+dAa is a rank one non-free group when o: E E, and then describe 
how to handle the extension to the general case. In fact this special case divides 
into two subcases: using ( *) and replacing Aa+l by a subgroup if necessary, ~e 
can assume that either 

(i) for all o: E E, Aa+d Aa has a type all of whose entries are O's or 1 's [and 
there are infinitely many 1's]; or 

(ii) there is a prime p such that for all o: E E, the type of Aa+l/Aa is 
(0, 0, ... 0, oo, 0, ... ) where the oo occurs in the pth place. 
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(See [5, pp. 107ft"].) We next give the easy combinatorial lemmas needed for the 
first, and simplest, subcase. 

LEMMA 13. Suppose Y and Y' are finite subsets of an abelian group G such 
that IYI 2 < IY'j. Then there exists bEY' such that Y and b + Y are disjoint. 
{Here b + Y = {b + y : y E Y}.j 

PROOF. Choose bEY'\ {x- y: x,y E Y}. 0 

LEMMA 14. For any positive integer p > 1 there are integers ao and a1 and 
a function Fp: Z/pZ---+ 2 = {0, 1} such that for all mE Z with (2Im! + 1)2 < p, 
Fp(m + ae + pZ) = l, for l = 0, 1. 

PROOF. Let ao = 0 and let a1 =bas in Lemma 13, where G = ZfpZ = Y' and 
Y = {m+pZ: (2Im! + 1)2 < p}. Then since Y = ao + Y and a1 +Yare disjoint, 
we can define Fp. (Note that Fp is a set function, not a homomorphism.) D 

PROOF OF THEOREM 12 (in special subcase (i)): For all a E E there is an 
infinite set P01 of primes such that 

Aa+dAa ~{mE Q: n is a product of distinct primes from P01 }. 
n 

Then if Pa = {Pa,n : n E w }, Aa+l is generated over A 01 by a subset {Ya,n : n E 
w} satisfying the relations (and only the relations) 

(t) Pa,nYa,n+l = Ya,O- ga,n 

for some ga,n E Aa. We define cp01 (n) = (p01 ,n,ga,n)· Then {cp01 : a E E} is 
based on an w1-filtration, in fact on the chain {Z x Aa :a< w1}. 

Given functions c01 : w ---+ 2, we are going to define a homomorphism 1r : A' ---+ 
A with kernel Ze and then use the splitting p : A ---+ A' to define the uniformizing 
function H. 

We define 7rv : A~ ---+ Av inductively along with a set function 1/Jv: Av ---+ A~ 
such that 7rv o 1/Jv = 1Av. The crucial case is when 7r01 and 1/Ja have been defined 
and a E E. (When a fl. Ewe can use the fact that Ext(Aa+b Z) ---+ Ext(A01 , Z) is 
onto.) We define A~+l by generators {y~,n: nEw} over A~ satisfying relations 

(tt) Pa,nY~,n+l = Y~,o -1/Ja(ga,n) + aee 

where ae is as in Lemma 14 for p = Pa,n and l = C01 (n). 
In the end we let 7r = Uv'lrv : A' = UvA~ ---+ A and 1/J = Uv'¢v· Then since 

A is a Whitehead group, there exists a homomorphism p such that 1r o p = 1A· 
For any g E A, 1/J(g) - p(g) E ker(rr) = Ze; we will abuse notation and identify 
1/J(g) - p(g) with the unique integer k such that 1/J(g) - p(g) = ke. For any 
wE UaeErge(cp01 ), if w = (p,g), let H(w) = Fp('I/J(g)- p(g) + pZ). 
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Note that w may equal cp0 {n) {= {p0 ,n,9o,n)) for many pairs (a,n). To see 
that this definition of H works, fix a E E. For any nEw, applying p to equation 
(t) and subtracting from equation {tt), we have 

Pa,n(Y~,n+l- P(Ya,n+l)) = Y~,o- P(Ya,o)- (1/Ja(9a,n)- P(9a,n)) + ae 

so that 1/Ja(9a,n)- P(9a,n) is congruent to Y~,o- P(Ya,o) + ae mod Po,n· Then if 
n is large enough, {21 Y~,o- P(Ya,o)l + 1)2 < Po,n so by choice of FPa,n and ae, 

H(cpa(n)) = FPa,n (1/Ja(9a,n)- P(9a,n) + Po,nZ) = 
FPa,n (Y~.o- P(Ya,o) + ae + Po,nZ) = l = Ca(n). 

This completes the proof in the first special subcase. 
For the purposes of the second special subcase we need another combinatorial 

lemma. 

LEMMA 15. Fix a positive integer p > 1. Define a strictly increasing sequence 
of positive integers ti inductively, as follows. Let to= 0. lfti-1 has been defined 
for some i 2:: 1, let ti =ti-l + di where di is the least positive integer such that 
{2pti-1 + 1)2p2t,_1 < pd'. Then for every i 2:: 1 there exists a function . 

Fi : Zjpt'z --t 2 

and integers a; E { 0, ... , p - 1} (ti-l ::::; n < ti, l = 0, 1) such that whenever 
lmol ::::; pt;- 1 and ai E {0, ... ,p- 1} for j <ti-l, then for l = 0,1 

t;-1 

Fi(mo + L piai + L pna~ + pt;z) = l. 

PROOF. We apply Lemma 13 to the sets Y = {mo + 'Ei<t,_ 1 piai +pt•z: 
lmol ::::;pt'-1, ai E {O, ... ,p-1}} {which has cardinality::=; {2pt'-1 + 1)pt'-1) and 
Y' = {'L,~,:-t~- 1 pnxn + pt;z: Xn E {0, ... ,p- 1}} {which has cardinality pd' ), to 
get bEY'. Then choose a~= 0 for all n, and a}. so that "L,~,:t~_ 1 pna}. =band 
define Fi as in Lemma 14. 0 

PROOF OF THEOREM 12 {in special subcase (ii)): For all a E E 

Aa+l/Aa ~ {m E Q: n is a power of p} 
n 

Then Ao+l is generated over Aa by a subset {Ya,n : n E w} satisfying the 
relations (and only the relations) 

(t) PYo,n+l = Yo,n- 9o,n 

for some 9a,n E A0 • Let C,00 {m) = (9a,j : j < tm+l) for all m E w. Given 
functions c0 : w --t 2, we define 1r v : A~ --t Av with kernel Ze inductively along 
with a set function 1/Jv: Av --t A~ such that 7rv o 1/Jv = 1A.,· The crucial case 
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is when 7ra and 1/Ja have been defined and a E E. Then we define A~+l by 
generators {y~ n : n E w} over A~ satisfying relations 

' 

where f(n) is taken to be ca(i- 1) when ti-l :::; n < ti. In the end we let 
7r = Uv1rv: A'= UvA~--+ A and 1/J = Uv'I/Jv· Then since A is a Whitehead group, 
there exists a homomorphism p such that rrop = 1A. For any wE UaEErge(cpa), 
if w = (gj: j < ti), let H(w) = Fi(En<t; pn('I/J(gn)- p(gn)) +pt;.z). To see that 
this works, fix a E E and for i ~ 1, consider Wi = cpa(i- 1) = (9a,j : j < ti)· 
From the equations (t), for n :::; ti we obtain that 

Pt;Ya,t; = Ya,O - L Pn9a,n 
n<t; 

If we apply p to this and subtract from the corresponding equation derived from 
(tt) we obtain that En<t; pn('I/J(ga,n)- p(ga,n)) is congruent to 

(Y~,o- P(Ya,o)) + L pna~(n) 
n<t; 

mod pt;. So if IY~,o- P(Ya,o)i :::; pti-l , then by our choice of Fi and the a~(n) for 
ti-l:::; n < ti, H(wi) equals ca(i- 1). 

This completes the proof of Theorem 12 when r = 0. 

PROOF OF THEOREM 12 (in the general case): In the general case without 
loss of generality we have either 

(i) for all a E E, Aa+dAa has a free subgroup La/Aa of rank r such that 
Aa+l /La has a type all of whose entries are O's or 1 's [and there are 
infinitely many 1's]; or 

(ii) there is a prime p such that for all a E E, Aa+liAa has a free subgroup 
La/Aa of rank r such that the type of Aa+dLa is (O,O, ... O,oo,O, ... ) 
where the oo occurs in the pth place. 

In other words, Aa+l is generated by Aa and a subset { Za,k : k = 1, ... , r }U 
{Ya,n : nEw} modulo (only) the relations in Aa plus relations: 

(i) (t) Pa,nYa,n+l = Ya,O + E~=l J.La,k(n)za,k- 9a,n for some family of dis-
tinct primes Pa,n and J.La,k(n) E .Z , 9a,n E Aa; or 

(ii) (t) PYa,n+l = Ya,n + E~=l J.La,k(n)za,k- 9a,n for some J.La,k(n) E .Z and 
9a,n E Aa for each n E w. 

For use in (the harder) subcase (ii), define a strictly increasing sequence of 
positive integers ti inductively, as follows. Let to = 0. If ti-l has been defined 
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for some i ~ 1, let ti =ti-l + di where di is the least positive integer such that 

(2pti-1 + 1)2r+2p2t;-1 < pd;. 

Then we have the following generalization of Lemma 15. (Note that when r = 0 
the sequence JL is empty.) 

LEMMA 16. Fix p > 1 and r ~ 0. For every sequence of functions JL = 
(JLl, ... , JLr), where /Lk : w -+ Z and every i ~ 1 there exists a function 

Fi,p. : Zjpt;z-+ 2 

and integers a;,J.L E {0, ... , p - 1} {ti-l ::; n < ti, l = 0, 1} such that Fi,p. and 

a;,J.L depend only on JL f ti {= (JLl f ti, ... ,JLr f ti)) and are such that whenever 
mo, ... , mr are integers with lmkl ::; pt;- 1 for all k::; r and a; E {0, ... ,p- 1} for 

j <ti-l, then 

r t;-1 

Fi,p.(mo+~::)LpiJLk(j))mk+ L pia;+ L pna~,p.+Pt;z)=l. 
k=l j<t; 

PROOF. We apply Lemma 13 with G = Zjpt;z, 

Y = {mo + L~=l (L;<t; pi /Lk(j))mk + L;<t;_ 1 pia;+ Pt;z: 
lmkl ::; pt; , for all k::; r, a; E {0, ... ,p- 1}} 

and 
t;-1 

Y' = { L pnxn + pt;z: Xn E {0, ... ,p -1}}. 

and proceed as in the proof of Lemma 15. 0 
Similarly we have the following generalization of Lemma 14 for use in subcase 

(i). 

LEMMA 17. Given p > 1 and r ~ 0, and a sequence of integers JL = (JLl, ... , JLr), 
let tp be maximal such that (2tp + 1)2r+2 < p. Then there exists a function 

Fp,J.L: ZjpZ-+ 2 

and integers a~,J.L E {0, ... , p - 1} {l = 0, 1} such that whenever mo, ... , mr are 
integers such that imki ::; tp for all k ::; r, then 

r 

Fp,p.(mo + LJLkmk + a!,J.L + pZ) = l. 
k=l 

0 

Now define the function <p0 with domain w by letting 

(i) VJa(m) = ((JLa,k(m): k = 1, ... ,r) ,Pa.,m,ga.,m)i or 
(ii) VJa(m) = ( (JLa.,k(n) : k = 1, ... , r), ga.,n : n < tm+l)· 
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Given functions c0 : w-+ 2, we define 1r 11 : A~ --+ A11 inductively along with 
a set function 1/;11 : A 11 --+A~ such that 7r11 o 1/;11 = 1A.,· The crucial case is when 
7r0 and 1/Ja have been defined and a E E. Then we define A~+l by generators 
{z~,k: k = 1, ... ,r} U {Y~,n: nEw} over A~ satisfying relations 

(i) (tt) Pa,nY~,n+l = Y~,o + E~=l JLa,k(n)z~,k -1/Ja(9a,n) + a~a,n.!Le; or 
(ii) (tt) PY~,n+1 = Y~,n + E~=l /La,k(n)z~,k -1/Ja(9a,n) + a;,n,,..e 

where a~"·"•~' (respectively, a;,n,,..) is as in Lemma 17 (respectively, Lemma 16) 
fori= c0 (n) (respectively, i = c0 (i- 1) if ti-l ::; n < ti ) (and the appropriate 
prime or primes are used). 

In the end we use a splitting p of 7r = U117r11 :A'= U 11 A~--+ A to define H(w) 
as follows: 

(i) if w = ((J.Lk: k = 1, ... ,r) ,p,g), let H(w) = Fp,,..('l/J(g)- p(g) + pZ); or 
(ii) if w = ((JLk(n): k = 1, ... ,r) ,gn: n < ti), let H(w) = 

Fi,,..(En<t; Pn('l/J(gn)- p(gn)) + Pt;z). 

Then we check as before that this definition works. 0 
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