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Superatomic Boolean Algebras: maximal rigidity

Saharon Shelah

ABSTRACT. We prove that for any superatomic Boolean Algebra of cardinality
> J4 there is an automorphism moving uncountably many atoms. Similarly
for larger cardinals. Each of these results are essentially best possible.

Annotated Content

Introduction
Superatomic Boolean algebras have nontrivial automorphisms

[We prove that if B is a superatomic Boolean Algebra, then it has a quite
nontrivial automorphism; specifically, if B is of cardinality > J4(0), then B
has an automorphism moving > o atoms. We then discuss how much we
can weaken the superatomicity assumptions.]

Constructing counterexamples

[Under some assumptions, we construct examples of superatomic Boolean
Algebras for which every automorphism moves few atoms.]

Sufficient conditions for the construction assumptions

[We deal with the assumptions of the construction in §2 deducing that in
many cases, even usually, the bound in §1 is essentially best possible.]

On Independence

[We show e.g. that J4(o) consistently can be improved.]
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80 Introduction

We show that any superatomic Boolean Algebra has an automorphism moving
uncountably many atoms if it is large enough, really > J4; similarly replacing Rq by
0; (an automorphism moves an atom if its image is not itself). We then show that
those results are essentially best possible. Of course, we can express those results
in topological terms. See [M] and [M1] on Boolean Algebra.

Rubin and Koppleberg [RuKo01] have proved: if {y+ +2*" = A**, then there is
a superatomic Boolean Algebra B of cardinality AT with A atoms and exactly A*
automorphisms answering a question 80 of Monk [M2], i.e. in a preliminary version
asking for a consistent example.

By [Sh 641, §1], provably in ZFC, there is a superatomic Boolean Algebra B such
that |[Aut(B)| < |End(B)| answering question 96 of Monk [M2, p.291].

By [Sh 641, §2], provably in ZFC, there is a superatomic Boolean Algebra B such
that |Aut(B)| < |B|, answering Problem 80 of [M2, p.291]. In fact, if y is strong
limit, u > cf(u) =Rg and A = Min{\ : 2* > 2#}, then there is a Boolean Algebra
B with 2* atoms, 2* elements and every automorphism of B moves < y atoms so
|Aut(B)] < 2¢ < 2.

Notation

0.1 DEFINITION. 1) For a Boolean Algebra B, its operation are denoted by
zNy,zUy,x —y, —z and Op is its zero. Let us define the ideal id, (B) by induction:

ido(B) = {0}
idg(B) ={x1U...Uz, :n <wand xy € B for £ = 1,...,n such that for
some a < f and for each £ € {1,...,n} the element z,/id,(B) is an atom

of B/ido(B) or zp € id(B)}.
Hence for limit § we have

ids(B) = | ids(B).
B<s
Let idoo(B) = _J ida(B).
2) For z € ide(B), let rk(z,B) = Min{a: z € ida+1(B)}.
3) B is superatomic if B = id.(B) and dp(B) is the ordinal « such that B/id,(B)
is a finite Boolean Algebra (so B = idy+1(B)).
4) For a Boolean Algebra B and « € B, let B | = be B restricted to {y € B: y <g z};
clearly B | z is a Boolean Algebra.
5) Define by induction on n =1,2,...:
Ji(<h) =20 =>"2"
K<
Jni1(< 8) = 270(<0)
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§1 Superatomic Boolean Algebras have nontrivial automorphisms

1.1 THEOREM. Assume

(a) B is a superatomic Boolean Algebra with no automorphism moving > 6
atoms; that is, if ™ is an automorphism of B then
{z :2 € atom(B) and 7(z) # =} is a set of cardinality < 0

(b) 0 regular uncountable.

Then |B| < 3J4(< 0), so if 0 = o then |B| < Jy(0).
REMARK. If |B| is close to J4(< ), the proof says much on the structure of B.

PROOF. Let B be the Boolean algebra satisfying clause (a) and let u be the
number of atoms of B. Without loss of generality

X; B is a Boolean Algebra of subsets of y and its atoms are the singletons
{ah,a<p;soBlEa—-b=ciff a\b=c.

Let I =: [pu]< "B = {x € B: |z| < 6}, clearly I is an ideal of B and let
Y =:{z:2z€Band z/I is an atom of B/I}.
We shall prove (after some preliminary things) that:

Ky if 2 € Y then [z < Jp(< 6), ie. 2277,

We shall say that a set a C u is B-autonomous if (Vy € I)(y N a € B); in this case
we let B [ a = BN Z(a); this notation is compatible with 0.1(4).
Clearly

®1 the family of B-autonomous subsets of ;o is a Boolean ring and even a
Boolean algebra of subsets of u (i.e. closed under a N b,a U b,a\b) and
include I and even B

®o for a B-autonomous set a,B [ a = {z € B : x C a} is a Boolean ring of
subsets of a which include {{a} : a € a}.

®3 if ag,a; are B-autonomous subsets of y,x € Y,a9 C x,a; Cz and B [ ag =
B [ a; over B | (a1 Naz) =B N P(a; Nay), then there is an automorphism
h of B such that h maps ag to a1, a; to ap and a € p\ap\a1 = h({a}) = {a}.

[Why? Let g be an isomorphism from B [ ag onto B [ a; over B | (ag Nay);
now we define a permutation h of atom(B) = {{a} : a < u};let a € ag =
h({a}) = g({a}), h(g({a})) = {a} and & € p\ag\a1 = h({a}) = {a}, by
the demands on g clearly h is a well defined permutation of atom(B). Now
h can be naturally extended to an automorphism & of P (u) as a Boolean
Algebra, it is of order two. We have to check that h maps B onto itself;
even into itself suffice (because of “order two”). Clearly h(z) = z and
h | (B | (#\z)) is the identity. So it is enough to check that: i | (B | z) is
an automorphism of B [ z. But IN(B [ x) is a maximal ideal of the Boolean
Algebra B | z (as = € Y) hence it is enough to check that h maps IN(B | z)
into itself. Asbe IN(B [ z) = b= (b\ap\a1)U (bNapNai)U(bNap\a)U
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(bNaj\ag), and all four are in I; clearly it is enough to check the following
statements: be I & b Cxz\ap\as = h(b) €I, and ¢ <2 & bel & bC
zNag\ai_y = h(b) € I and lastly be I & b C agNay = h(b) € I. The
second implication holds by the choice of g, the first as h(b) = b in this case
and the last one as h | {{a} : @ € agNay} is the identity so again a(b) = b.]
®4 if bGQ i, |b] < 2<% then for some B-autonomous set ¢ we have b C ¢ C p, |c| <
2<Y,
[Why? Find c satisfying b C ¢ C p,|c| < 2<% such that (Vy € [¢]<?)[(32)(y C
z€l)— (3z C )y C z € I)], just close 6 times recalling 6 is regular.
Now if y € I then |y| < 6 hence y Nc € [c]<? so there is z such that
yNecCzel & z Ce¢ henceyNe=yNz e I. This proves that c is
B-autonomous as required.]

Now we return to the promised Xs.

PrOOF OF K,. Toward contradiction assume z € Y and |z| > Jp(< 6); let
a; € z for i < (Ja(< 6))T be pairwise distinct, let a; be a B-autonomous set
of cardinality < 2<% such that {a;;c : ¢ < 2<%} C a; (exists! by ®,), and
without loss of generalitya; C x (just use a; Nz, it is as required by ®;). For
some club C of (Jz(< 6))F, we have i < j € C = a; N {ajte 1 € < 2<%} =0
hence i < j € C = |a;\a;| > 2<%. Now I N P(a;) has cardinality < |a;|<¢ < 2<¢
(as 6 is regular) hence B | a; has cardinality < 2<¢. Hence there are a stationary
S C{s< (o< H)F :cf(6) = (2<% *} and a* such that i € S & j €8S & i #
Jj = a;Na; = a* (the A-system lemma). Also the number of isomorphism types
of (B | a;,{a})aca~ is at most < Jy(< 6) hence for some i < j from C NS we
have B | a; = B | a; over B [ a*, but |a;\a;| > 2<% > ¢ hence by ®3 there is an
automorphism h of B which moves > 2<¢ atoms, contradiction.
Next

M [Y/I] < Ja(< 0).

[Why? If not, we can find z; € Y for i < (J3(< 6))* such that i #
J= /1 # x;/I. As |z;| < Jz(< 0) by Ky, by the A-system lemma for
some unbounded A C (J3(< 6))* the set (z; : ¢ € A) is a A-system hence
without loss of generality (z; : ¢ € A) are pairwise disjoint (by substruction;
not really needed just clearer). As B [ z; is a Boolean Algebra of cardinality
< Jy(< 0) (as IN P(x;) is a maximal ideal of B | z; and IN P (x;) C [z;]<°
and |z;] < Ja(< ) by Ky) there are at most J3(<?) isomorphism types of
B [ ;. So for some ¢ # j in A we have B [ z; = B [ z;, so as in the
proof of ®3 there is an automorphism h of B mapping z; to z;, z; to z; and
h 1 (BT (1g —x; —x;)) is the identity hence h moves > |z;\z;| > 6 atoms
because z; # z; mod I.]

Choose a set {4 : @ < a* < J3(< 6)} of representatives of Y/I and let z* =
U Ta, 80 ¥ C p,lz*| < J3(< H).

a<la*
Define J = {a € B: anz* = 0}.
R, JCI.

[Why? If not, there is x € J\I such that z/I is an atom of B/I so z/I €

lwe can use also {a;;¢ : € < 0}
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{zo/I : a < a*}, so for some «,z/I = x4/ hence |z\zo| < 6 hence
|z Nzo| =6 hence x N z* # 0 hence z ¢ J, a contradiction.]

Define an equivalence relation & on B : y; &y, iff y1 Na* = y2 Nz*. Clearly &
has < 2/*"| equivalence classes and 217! < J4(< 6); also y; &y, — yi\y2 € J, in
fact y18y2 <« (y1Ays € J) (see J’s definition). Choose a set of representatives
{yy : v < 7*} for & so |y*| < 24(< 6) and let B* be the subalgebra of B which
{yy : 7 < 7"} generates. So |B*| < J4(< 6) and, being superatomic, the number
of ultrafilters of B* is also < J4(< ). Next B is generated by J UB* as for y € B
there is v such that y&y, and y, € B*,y —y, € J,yy —y € J hence y € (JUB*).
For D an ultrafilter of B* let Zp = {a < u: Vy e B*)(a €y <y € D)}.

Clearly

K5 for every a € p\z* there is a unique ultrafilter D = D[] on B* such that
a € Zp (and the number of such ultrafilters is < 34(< 6)).

Now

Xe p < 3u(<0).

[Why? Assume that not. By ®4 for each i < p we can find a B-autonomous
a; such that |a;| < 2<% and [i,i+2<%) C a;; let a; = {Bic : € < &;} with B;.
increasing with ¢. Clearly for some unbounded A C (J4(< 6))* for alli € A
the following does not depend on i : &; and D[3; ] for € < &; (use Kj), and
{u € [e:)<?: {Bic:i€u} €I}, and for ¢ < 2<% e = £(4,¢) = the unique ¢
such that §; . = i+ ( and without loss of generality for j < iin A,a;N[i,i+
2<¢) = (. By the A-system lemma without loss of generality for some a*
we have: for i < j in A,a; Na; = a*. So by ®; the set a* is B-autonomous
and also a;\a* is so we can use a;\a*, so without loss of generality for i # j
in A,a;Na; =0 and as |z*| < J4(< 0) clearly without loss of generality i €
A= a;Nz*=0. So for i # j in A there is a permutation g of order two of
p interchanging a;,a;, that is g(8ic) = Bje,9(Bj) = Bie and g({8}) = 6
for 3 € p\a;\a;. Clearly g can be extended to an automorphism § of & (u)
and § | B* is the identity (the proof is like that proof of ®3 using “B is
generated by JUB*”). So we get a contradiction.]

So [J] <[] = p<? < (Fa(< 0))<? = Tu(< 0) and |B*| < |B/&| < Tu(< 6) s0
as B is generated by J U B* together we get the desired conclusion. Oi1

1.2 DiscussiON. 1) We can weaken the assumption “B is superatomic” to
“B/I.p[B] is superatomic”, where: for a Boolean Algebra B and infinite cardinal
6 we define I4[B] = {z € B : B | « has (algebraic) density < 6} (see a little in
[Sh 397, §1]). For B superatomic this is the I in the proof of 1.1 on such Boolean
Algebras.

[We can choose a maximal set Z of pairwise disjoint elements of {x € B : x # Og:
and 7(B | z) < 6}, now without loss of generality B is a Boolean subalgebra of
P(u) such that z € Z = z € [u]<%, and continue as in the proof of 1.1.]

2) What if we just assume “B/I.g[B] is atomic”? One point in the proof may
fail: the number of ultrafilters of B* is not necessarily < |B*| < J4(< 6) but
is < 2Bl < 927" < 3:(<f), so we should replace J4(< ) by Js(< 6) in the
conclusion.

3) We may above think of replacing “m(B [ x), algebraic density, is < §” by “d(B |
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x), topological density, is < 6” (recalling that any Boolean Algebra B’ can be
embedded into a Boolean subalgebra of &2 (d(B’)).

1.3 DiscussiON. 1) We can adapt 2.1 from §2 below to this case, i.e. show
that Js(< 6) cannot be improved in general. E.g. let (d¢ : ( < A = 2*) be an
independent family of subsets of u (so any finite Boolean combination of them is
infinite) and let B* be the Boolean subalgebra of 92(u) generated by {d, : a < A =
20} U{{i} 1 i < p}. Welet N =2 let {c% : v < N} be an independent family of
subsets of A and let X* = U XoU{z} 1y <X} We ignore &' (and omit clause

a<p
(k) of the assumption) and among the generators of B, clause (i), (ii) remains and

(43i)" ¢ = {z € X: for some a € d¢ we have z € Xy} U{z}: (€ ch,y € [p,\)}

2) We may consider replacing automorphism by monomorphisms. The problem is
only in the proof of 2.1, “f maps J; into J;” does not seem to follow.

§2 Constructing counterexamples

We would like to show that the bound from §1 is essentially best possible.
The construction (in 2.1) is closely related to the proof in §1, but we need various
assumptions. So in particular k here corresponds to sup{|B [ a| : a € Y} <
Jo(< 8) there, u here corresponds to Y| < J3(< 6) there, A’ here corresponds to
latom(B)| < 34(< 6) there. We shall deal with them later.

2.1 LEMMA. Assume
(a) 0<k<pu<XN<Xandf=cf(f) >
(b) there is an o/ C [u]*0 almost disjoint (i.e. A # B € o = |ANB| < Xg)
such that (VA € [u]?)(3B € &)(B C* A) and || =
) B=(Ba: o< u)
(d) By is a superatomic Boolean Algebra with < k atoms such that any auto-
morphism of B, moves < 0 atoms and |B,| < \; moreover if ¢1,co € I,

(see below) and f is an isomorphism from B, | (1 —c1) onto By, | (1 — ¢2)
then 6 > |{z € atom(By) : x <, c1 or f(z) # z}|

(e) In={beB,:|{z € atom(B,) : z < b}| < 8} is a mazimal ideal of B,

(f) there is an infinite set {a, : n < w} of pairwise distinct atoms of B, such
that for every a € I, the set {n <w:a, < a} is a finite

(9) if o # [ then for no ay € 1o, a3 € Ig do we have
Bo [ (1B, — @a) = Bg | (1g, — ap)

(h) B* is a superatomic Boolean Algebra

—
S

i) B* has u atoms
(4) p
() B* has \ elements?

2if there is a tree .7 with < u nodes and > A branches (= maximal linearly ordered subsets)
then such B* exists
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(k) if N > p then we have x, &' satisfying:

(1) (a) &' C [N]R is a MAD family of cardinality x such that: if 7 is
a partial® permutation of X', Dom(w) = M\ Z;, Rang(r) = N\ Zy where
Z = 71U Zy € [N]<Y satisfying A € o' = |(AAT"(A))\Z| < Ro, then
7 has support {a < X : w(a) # a} of cardinality < 0

(2) (B) for some ideal I* of B* containing idy(B*) the Boolean algebra
B*/I* is isomorphic to {a C x : a is finite or co-finite}; so x < |B*| = A
follows.

Then we can find B such that:

(o) B is a superatomic Boolean Algebra
() B has N atoms and X elements

(v) every automorphism g of B moves < 6 atoms; i.e.
H{z € atom(B): g(x) # z}| <.

PrOOF. Without loss of generality B* is a Boolean Algebra of subsets of pu
with {{a} : @ < u} being the atoms of B*. If N = p let &' =0, x = 0,I* = B*.

Without loss of generality B, is a subalgebra of #2(X,) and the set of atoms
of B, is {{z} : x € X,}. Without loss of generality o # § = X, N Xz = 0 and let
X =U{X,:a<u}

XN =pletY* =0andif ' > p,let Y* C B* besuch that |[Y*| = x and {y/I* :
y € Y*} is the set of atoms of B*/I* with no repetitions; without loss of generality

Ko for every y € Y* for some «,y/idy(B*) is an atom of B*/id,(B*) and
(V2)[z <p- y — (z € ido(B*) =2z € I*)).

[Why is this possible? For each y € B*\I* let « = a(y) = Min{rkp-(y —
x) : x € I} and choose z exemplifying it, so (y — z))/idq(B*) is the union of
finitely many atoms of B*/id,(B*), say y1/ido(B*),...,yn/ide(B*) where n > 1
and without loss of generality y, <p« y. So {yi,...,yn} cannot be all in I'* and
there cannot be two y, € B*\I*, so there is a unique ¢ = £(x) such that y, ¢ I*, let
zy = (1 = yg(s)) U xg. Now {y — z; : y € Y*} is as required.]

Let Y be such that Y C B, (y/ id(y-)(B*) : y € Y) list with no repetitions
{y/ idrk(y,B) : ¥/idrk(y,B+)(B*) an atom of B* /id,y(, g-)(B*) and rk(y,B*) > 0} and
let D, be the ultrafilter on B* generated by {y} U {1l —z : z € B* rk(z,B*) <
rk(y,B*)} for each y € Y. Without loss of generality Y* C Y. Also as B*/I*
is isomorphic to the Boolean Algebra of finite, co-finite subsets of x clearly y €
Y\Y* = {y € Y*: ¢y —y € idu p-)(B*)} is finite so without loss of generality is
empty for y € Y\Y™* (singleton for y = Y* of course), note that if \’ > p then Y*
is of cardinality |&/’| and without loss of generality |Y\Y*| = A.

Let g be a one-to-one function from p onto X and for A € & (from clause
(b)) let {yax : k < w} list A without repetition. Let ¢* : u — p be g*(y) =
the unique o < p such that g(y) € X,. For each A € &, choose if possible
an infinite u = ugy C w such that (¢*(ya k) : £ € u) is with no repetitions and
(g*(vak) : k € u) converge to some D,y = ya € Y; that is, (Vz € B*)(z € Dy «
Ro > {k:9*(vak) ¢ z}|. Note that the only case u is not well defined, is when the

3i.e. 7 is one to one such that Dom(w) C A and Rang(w) C A
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set {g*(vak) : k € u} is finite. Why? As in the justification of Ky above, i.e. by
the properties of superatomic Boolean Algebras. Assume now (justified in the end)

X; we have (a[A] : A € &7, us well defined) such that:
(1) (4) «a[A] < p and afA] € ya
(2) (#3) (VzeY)a[Al €z z2€ Dy,] and
(3) (le) a[Al] = O([AQ} =4 A1 = Ag.

For o < plet an be {g(vaxr) : k €uatif A€ o, alA] = o and uy is well defined,
and () otherwise. Toward defining our Boolean Algebra let {27 : v € [u,A")} be
pairwise distinct elements not in X. Let &#” = {{u+i:1€ A} : A€ &'} so it is
a maximal almost disjoint family of countable subsets of [y, A’), as in clause (k) of
the assumption so if 4 = )\ then &” =0 = &' N —pu=0,(N —p)¥° =0 = |YV*|
and if X' > p then |&"| = |&/'| = x = |Y*| so let (dy : y € Y*) list &” with no
repetitions.

Now we define our Boolean Algebra B. It is the Boolean Algebra of subsets
of X* = X U{z} :v € [u,\)} generated by the following (recall that a, may be
empty)(recall that X = U{X, : a < u}):

Ko (i) thesets {a € B, :la| <0}U{aUaq:a € By,lal > 60} when oo <

(i6) {22} for v € [u, X)
(173) the sets ¢, (for y € Y') where

cy =t {x € X :for some a < p we have z € X, & {a} <p- y}U
{22 :yeu,XN)andy € Y* and vy € dy}.

Note that

®o(1) XoNag, XpNae has at most one element when a #
(17) XoNXgis 0 (except when a = f3),
(134) aq Nag is finite (when a # B) by < being MAD
v) (XoUaq) N (XgUag) is finite for @ # B < p which holds by clauses (i) +
(if) + (iii)
(v) ifa < pandy €Y, then the set (X,Uaq)\cy is finite or the set (XqUaq)Ney
is finite.
[Why? As a[A] = o, A € o implies that (g*(yax) : kK < w) converge to ya
and either y € Dy, or 1g« —y € D, ]

(iv

Clearly

®; B is a subalgebra of £(X™*), including all the singletons hence is atomic;
has X atoms and X elements.
[Why? The least trivial is z € X = | | Xo = {z} € B, but if z € X,, then

a<p

{z} is an atom of B, hence by ®q belongs to B.]

® for o < p, wehave a € B, & |a| <0 =a€B & B |a=DB,[abut
a € B, = B, | a is superatomic so {a € B, : |a] < 0} C ids(B).
[Why? For the first implication we should check that every one of the
generators of B listed in Xy(4), (72), (7i7) above satisfies: its intersection with
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a belong to B, [ a. For My (i7) this is trivial, for Ko(i) use ®q (i) — (iv) and
for My (7i7) use ®o(v). The rest follows.]

fora < ptheset [T =:{a€B:a C X, Ua, and |a| < 6} satisfies

(1) (i) itisequalto{aUb:aeB, & |a] <8 and b C a, is finite}

(2) (i9) it is a maximal ideal of B [ (X4 Uag)

(Why? Easy. The main point concerns (X,Uaq)N(X3Uag) satisfying clause
(i) when it has cardinality < @ this holds by ®¢(iv) and (X, Uaq) Ncy has
cardinality < 8 or (X, U aq)\cy has cardinality < 6 which holds by ®q(v).]
a<pu=XoUay € 1do(B)

[Why? First X, Ua, € B by clause (i) of Ky above, second if X, Ua, ¢
idoo (B) then by ®2 for some ordinal ( we have [a € B, & |a| <0 = a €
id¢(B)], hence by ®3 above (X, U a,) is an atom of B/id¢(B) for ¢ large
enough, hence X, U a, belong to id¢41(B), contradiction.]

for @ < p, B [ (XqUay) = B, hence if @ < 8 < w then for no ¢, such that
Ca € Ba,ca <B Xa Uaqg,|cal < 6 and cg € B,cg <g XgUag,|cs| < 8 do
we have B [ (Xo Uao\ca) =B | (XgUag\cg).

[Why? By clauses (f) + (e) of the assumption, the first phrase holds. The
“hence” follows by clause (g) of the assumption.]

be the ideal of B generated by U IZu{zl:yepN)}

a<p

Jl - idoo (B)

J1 C [X*]<% is a (proper) ideal.

[Why? For clause (i), note that id (B) is an ideal of B and the generators
of J; are in it by ®4 (for X, Ua, that is for the members of I}) and by the
{z3} being atomic (for y € [u, \')). Clause (ii) is obvious.]

We shall prove that

®7

B/J; is isomorphic to a homomorphic image of B*.

Toward proving ®7 let S = {z : vy € [, \")} and define a function h as follows: its
domain is {¢y : y € Y} U{XaUaq : @ < p} and h(cy) =y, h(Xa Uaq) = {a}, so h
is into B*. Now

(*)o

Licensed to AMS.

(XaUag)/Jh is an atom of B/J;

[why? by ®s.]

{b/J1 : b€ Dom(h)} is a subset of B/J; which generates it
[why? see the definitions of B and of J; and by ®3.]

ifng <n<wm <m< wyo,..., Y1 € Y is with no repetitions and
Qg, - . ,m—1 < i is with no repetitions, then:
n—1 m—1
in B, =: ﬂ Cy, N ﬂ (Xa, Uag,) — U Cyp U U (Xa, Uag,) belongs
<ny <my f=n, {=m,
to Jy iff
n—1 m—1
in B*, 75 =: ﬂ ye N ﬂ {ae} — U ye U U {a¢} is empty.
£<ny £<m, l=n, f=m,
[Why? First, assume that the second statement holds (i.e. 72 = @) then by
n—1
the choice of the ¢,’s trivially 7] =: ﬂ (ey,\S)N ﬂ Xo, — U (cy, \S)U
2<ny £<my {=n,
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m—1

U KXo, = U{Xg :B* = {a} < 7} =0but (rfAr) CSU U aq, and
£=m, {<m
Ao, € [X*]<? (but a4, ¢ B, if a4, #0) and 7{ =0, so 7, C S mod [X*]<?.

Now assume 73 N S is infinite, hence A’ > p. So {d, : z € Y*} is a MAD

family of subsets of X"\, in fact is &/”. Hence {{z} :v € d.}:2€Y*} isa
MAD family of subsets of S = {2 : v € [u, \')}. So necessarily for some z €
Y* we have 7NSN{z% : v € d.} is infinite. AsyNSN{z% 1y €d.} C ¢y, for
¢ < ny, and id; (B*/J;) is a maximal ideal and the choice of Y, Y* necessarily
ye = z, hence yo = z,m; = 1. Similarly ¢ € [ny,n2) = y; # 2z hence
e n,m)=yeNyo=yeNz € id(zp)(B) = {2} 1y €d.} Ney,| <No.

Hence clearly ¢ € [n1,n) = y¢ ¢ D, but yg € D, and o < p = {a} ¢ D,
(as z € Y!) hence B* = “r, > 07, contradiction to our present assumption,
so necessarily 71 N S is finite.

Hence m — U (Xa,Uaq,) = 11N is finite hence € J; and also for each

L<my
¢ < my, the set 1N(X4,Vaq,) is (11 AT )N(Xa,Uar) C ( U ar)N (X, Uaa,)
k<m

which is necessarily countable but also belongs to B hence belongs to I C
J1 so together 71 € J1. So really 7o = 0 = 7 € Jj.
Second, if the second statement fails that is, 75 # (), then for some £ <
u,B* = {4} < 72, but then Xg C 7{ and as above 71 US 2 X3 mod J; but
SNXg=10,s0 Xg Cm mod Ji; now Xg ¢ Jy (as | Xs| > 60 by clause (e) of
the assumptions) hence 7, ¢ J;. So we have proved (*)s.]

As B* is superatomic and the choice of {{a}: a < u} UY (a set of representations
of {y/ida(B*) : a, y satisfies B* ¢ id,(B*) and y/id,(B*) an atom of B* /id, (B*)})
clearly by ()2 the statement ®7 follows, in fact h induces an isomorphism h from
B/Jy onto B*. But B* is superatomic and Jy C ideo(B) by ®¢(¢) hence

®s B is superatomic.

Now as {{a} : @ < p} are the atoms of B* clearly {X, Uas/J1 : @ < p} are the
atoms of B/J; (h is an isomorphism from B/Jy onto B*) and as Jo C [X*]<? while
| Xo Uag| > 0, clearly

® Jy = BN[X*]<C.

For the rest of the proof let f € AUT(B) and toward contradiction we assume
sup(f) = {z € atom(B) : f(z) # x} has cardinality > 6.

Recall that J; = {a € B : |a|] < 0} and {{z} : * € X*} are the atoms of B
so necessarily f maps J; onto itself. Note that {(X, Uaq)/J1 : a < p} list the
atoms of B/J; by ®¢ + ®7. Assume f(XqUaq)/J1 = (XgUag)/J1,a # B; let
1= (XaUas) — f7H(XpgUag) and c2 = (XgUag) — f(Xa Uag), so both being
the difference of two members of B are in B and ¢; < X, Uaq,c2 < XgUag and
of course c¢1,co € Jp hence |¢1] < 6 and |c2] < 6. Now ¢; < X, Uag,|c1] < 0
implies ¢1 € I} so ;N X, € I, and ¢1\ X, is finite; similarly coNXp € I, c2\Xg is
finite. Clearly f | (B | (XqUaq — ¢1)) is an isomorphism from B | (X, Uas — ¢1)
onto B | (X3 Uag — cp), contradicting ®s by the “moreover” part of the clause
(d) of the assumption of Lemma 2.1. Hence the automorphism which f induced
on B*/I; maps each atom to itself hence is the identity. Also for @ < p we have
(Xa Uan)Af(XaUag) € Ji, that is, has cardinality < 6. So
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X3 for each a < p, letting ¢} =: ((Xo Uaa) — fH(Xa Uag)) € Jp and 2 =:
(XoUan) = f(XaUay) € J we have f | (B, | (1 —ck)) is an isomorphism
from B | (X, Uaq —cl) onto B | (X, Ua, —c2)
hence

Xy Z, =:{z:z an atom of B, and = <p_ ¢ V f(x) # z} has cardinality < 6

by clause (d) of the assumptions on B,. Let v =: {& < p : for some z € X, we
have f({z}) # {z}}. Assume (toward contradiction) for the time being

X5 v has cardinality > cf(0).

For o € v choose z, € X, such that f({z,}) # {zo} and possibly shrinking v

without loss of generality o, € v = {zo} # f({zg}). Let ¢ : v — p+ 1 be

such that f({za}) € Xgi(a) where we stipulate X, = S. Applying the above to

f~1 we could have chosen (x;,;,7;) by induction on i < cf(f) such that o; €

0, F({m}) # (i} s € Xa f({i}) € Xoy and ag,7 € {07 + § < iP\{u}, and

let v = {a; : i < cf(#)} without loss of generality either ¢’ is one-to-one into u or g’

is constantly pu. Now by clause (b) of the assumption without loss of generality for

some A € o/ we have A C {z, : a € v}]. So a[A] < p is well defined and

{z € Xapa)Uaara) : f{z}) <B Xa(a) U aqa)} does not belong to I;’[A]; so by Xs

(applied to o = a[A] and the properties of ci[ n ci[ 4)) an easy contradiction.

We can conclude that =5 hence v has cardinality < cf(#) hence [{x € X : f(z) #

z}] < 0. If p =X we are done so assume p < X.

Now S = {z% 1y € [, N)} = X"\ X C X* satisfies:

®g(c) (Vb e B)(bN S infinite = 1 < rk(b/J;,B/J1)) and

(B) if S’ satisfies the property of S in clause («), then [S’\S| < 0

[Why? Clause («) is proved by inspecting the definition of B. As for clause
(B), if |S'\S| > 6 as S'\S C X clearly then there is A € & such that
{g(i) : i € A} C* S'\S. First if & =: a[A] is well defined then X, Ua, € B,
tk((Xo Uay))/J1,B/J1) = 0 < 1 but (Xq Uas) NS D a, is infinite;
contradiction. Second if a[A] is not well defined then for some o < p we
have {g(i) : 1 € A} N X, is infinite and we get a similar contradiction.]

Hence for n = 1,-1 the set S} =: {z} : v € [, \') and f*({z3}) € X has
cardinality < 0. Let S7 = S;' U S}.

Also for every y € Y™ letting v = rk(y,B*) we have ¢;Af(cy) € Ji, (just
recall that the automorphism that f induced on B/J; is the identity, and recall
that [d C S & d € J; = d is finite by ®g¢], hence the symmetric difference of
H{z3} oy € dy}\S} and {f{z}} : v € dy }\ S} is finite.

As &' = {d, : y € Y*} is a MAD family of subsets of \\x as in clause (k)(«)
of the assumption, the set {y € [u, \') : f({z2}) # {23}} is of cardinality < 6; so
seemingly we are done.

Not exactly: we have assumed X;.

To eliminate this extra assumption we make some minor changes. First without
loss of generality B* is a Boolean Algebra of subsets of {& : o < p even} with the
singletons being its atoms. Second, for A € &7, if possible we choose u = u 4 as fol-
lows, as we can replace u4 by any infinite subset, without loss of generality [clause
(c) is possible as in the justification of Xy above]:
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(a) if case («) occurs in (b) below then
(g*(vak) : k € u) is with no repetitions

(b) either () or () where
(1) () 9*(vax) is odd for every k € u

(2) (B) g*(vax) is even for every k € u

(¢) if case (B) occurs in clause (b), then there is a unique y = y4 € Y such that
({g*(yak)} : k € u) converge to D,,.

Note

(%) if ua is not well defined then for some finite w C p we have
{9(vak)  k<w} C U Xg.

acw
Now we choose (a[A] : A € &, us well defined ) such that:

(x*) (a]A]: A € &7, uy well defined) is with no repetitions, each a[A] is an odd
ordinal < p and if possible it lists all of them.

Clearly without loss of generality B*/id; (B*) is nontrivial hence Y # @ so choose
y* € Y. Now we define a function g from B* into Z?(u) as follows:

g9(z) ={a < p:ais even and € z or a = a[A] hence odd,
A€ o, us and ya are well defined and x Nya ¢ idyy(y, s)(B*) or
ais odd but ¢ {a[A]: A € &,us and y4 are well defined} and
cNy* ¢ idpy~m) (B)}.

Easily g is a homomorphism from B* into () as B* is superatomic. Let B** be
the Boolean Algebra of subsets of p generated by Rang(g) U {(a) : @ < p}. Now
we just replace B* by B** C Z2(u). Os 4

2.2 Discussion:

Why do we use MAD families & C [u]®0 and not C [u]¥*? If we use the
latter, we have to take more care about superatomicity as the intersections of such
members may otherwise contradict superatomicity.

§3 Sufficient conditions for the construction’s assumptions

Here we shall show that the assumptions of 2.1 are reasonable. Now in 3.2 we
shall reduce the clause (k) of 2.1 to Pr(X,0) where Pr formalizes clause (b) there.
In 3.3, 3.5 we give sufficient conditions for Pr(u, o). In fact, it is clear that (high
enough) it is not easy to fail it. In 3.10 we give a sufficient condition for a strong
version of clauses (e) - (f) of 2.1 (and earlier deal with the conditions appearing in
it). So at least for some cardinals 6 the statement “not having the assumptions of
2.1” with 6 = o™ (for simplicity) x = Ja(c), x = J3(c) and X such (h) + (i) + (j)
of 2.1 holds has large consistency strength.
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3.1 DEFINITION. 1) Pr(x, i, 6) means that u > 0 for some & we have:
a) o C ()™

b) & is almost disjoint, i.e. A# B€ &/ = |AN B| <Ny
c) || =x

(d) (VB € [14")(34 € #)[A C* B).

(
(
(

2) If we omit x we mean “some x”.
3) We call & C [A®° saturated if for every A € [A]®° not almost contained? in a
finite union of members of o/, almost contains a member of <.

3.2 Fact: 1) Clause (b) of the assumption of 2.1 is equivalent to Pr(u, u, cf(8)).

2) Clause (k)(a) of the assumption of 2.1 follows from Pr(x’, \',0) & x = x’+2%°.
3) If &7 C [u]™ is almost disjoint and is saturated then Pr(|<7|, s, Ry).

4) If p = p0 > 6 then Pr(u,0) = Pr(u,p,0) and x # p = - Pr(x, u,6).

5) If 6 < g < pp and Pr(usg,0) then Pr(uy,6).

PROOF. 1) Read the two statements.
2) Let o C [N]® exemplify Pr(x’, X, 6). For each A € & we can find (Ba:( <
2%0) such that:

(#)(7) Bag € [A]%
(13) ¢ #e= BacN By, is finite
(#i7) if 7 is a partial one-to-one function from A to A such that z € Dom(w) —

x # () then for some ¢ < 2% we have o € Ba¢ = a ¢ Dom(m)V () ¢
Ba.

[Why? First find (B} . : ( < 2%0) satisfying (i), (ii), let (m¢ : ¢ < 2%0) list the 7’s
from (iii) and choose B4 ¢ € [B;LC]NO to satisfy clause (iii) for .

Lastly, let &’ be any MAD family of subsets of A extending {Ba¢ : A € & and
¢ < 2%} ]

Having found (Ba : ¢ < 2%°) we let &’ = {Ba¢: A € & and ( < 280}, it has
cardinality |./'| + 280 = x’ + 2% and is as required in clause (k)(a) of 2.1.

3), 4), 5) Easy. Oso

3.3 CramM. 1) Assume

(@) Kn < Knt1 < K < fin < fpt1 < p forn < w

(b) k=3 kn, it =2 pnand max pcf{k, :n <w} > p

(¢) k strong limit and 25 > p*

(d) (un : n < w) satisfies the requirements from [Sh 513, §1] or at least the

conclusion, i.e.
(1) © forevery A > u for some n we have: ifa C Reg NA\u and |a| < p
then sup pcf,un-complete(a) S A

4“A is almost contained in B”, i.e. A C* B means that A\B is finite.
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Then for every A > k:

@an we can find {A, o < a*} such that
(1) (a) each A, has the form (Aa, @ n < w), it belongs to H [A]"" and

n<w
for each o we have (Ay 4 1 n < w) pairwise disjoint

(2) (B) if a # 3, then Ay, Ag are almost disjoint which means that f €
IT Aen & £ € J] Asn = [Rang(f) N Rang(f')] < R

n<w n<w
(3) (v) ifAc H [A]"" then for some a < a* and one to one function

n<w

hi,hs € Yw we have Kk = hm<|AQ7h1(n) N Aa,hz(n)l n < u)>.

2) If £ =No,kn = 1, ft < ping1 < o= S{pe 1 £ <w} <28 and @ of (1), then the
conclusion of (1) holds.

3) We can conclude in (1) that: there is o C (AN, an almost disjoint family such
that (VB € [N)(34 € o7 )(A C B).

PrOOF. By [Sh 460], [Sh 668, §3] (even more).

3.4 REMARK. 1) Are the hypotheses of 3.3(1) reasonable?
la) Assume that  is strong limit of cofinality Ny < & and 2% > x*¥. We let
fr, = KT There is a sequence & = (K, : n < w) as in clause (a), (b), (c) of
3.3(1); such & exists (by [Sh:g, Ch.IX,85], and it is hard not to satisfy clause (d)
(see [Sh 513]).
1b) Clause (c¢), i.e. k strong limit, is needed just to start the induction.
2) Similarly for 3.3(2).

We quote Goldstern Judah and Shelah [GJSh 399] which implies 3.5(1) and (2).

3.5 CLAM. 1) Assume CH + SCH + (Vu)(cf(p) = Ro & 2% < pp— O,4).
Then there is a saturated MAD family 7\ C [AJR0 for every uncountable A (of
cardinality A\®° ).

PRrROOF. 1) This is the main result of Goldstern, Judah and Shelah [GJSh 399].

3.6 DEFINITION. Let u > 6.
1) Let % be the class of a = {(a, : n < w) such that |a,| < 0,a, C ani1,[cf(f) =
Ny = lan| < 6] and = lim supy|ans1\an]. Let S5, =1 {a:a = (an :n < w) €
S5 and a, € [}
3) For a € ¥ let set{a) = {w : |w| = Vg and w C U a, and n < w = |lwN
n<w
an\ U ae| < Rg}.

f<n
4) For a.b € . let a <* b mean set(a) 2 set(b).
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5) We say a,b € .%, are compatible if (3¢ € H)la <* ¢ & b< ¢ & UC” C
n

U anﬂU by] (if cf(f) = Ry < 6, this is equivalent to “ U anﬁU b,” has cardinality
n n nw n

9).

3.7 DEFINITION. 1) For 6 < p let Ky, be
Xp . thereis #* C %, such that: )
(1) (a) for every a € . , there is b € * compatible with a

(2) (b) ifa#be .#* then set(a)n set(b) = (.

2) For 6 < p, let @’9# mean:
X, if # C Sp, has cardinality < p then we can find " C % , such that:
(1) (a) for every a € . there is b € .* such that b
(2) (b) for every b € .#* there is a € .# such that b
(3) (c) (set(b):be #*) are pairwise disjoint.

<a
<a

3) We may replace p by a set A (but obviously Xy 4 is equivalent to Xy 4 and
&é),A to ®9,|A\)-

3.8 FACT. 1) Assume 0 > cf(f) = Ng is strong limit, 0 = ¥{0,, : n < w},0, <
On+1 and b € A . Then we can find & C . such that:

(a) if a € & then (Vn)(3Im)(a, C by,) (so a < b)

(b) ifa € o then |a,| = 6, moreover otp(a,) = 6, and a,,4+1 is an end extension
of a,

(¢) if a € o then (a, : n < w) is increasing

(d) a' # a® then set(a')n set(a®) =0

(e)

e) if ¢ € .% is compatible with b then it is compatible with a for some a € <.

2) If (Vo < 6,)(Ja|? < 0, = cf(6,)) and <, is a well ordering of U{b,, : n < w} for
a < o, then we can strengthen (b) to

(b)t fora <o and a € & and n < w, otp(by, <a| bn) = 0, and if ¢ < Vg then
bn+1 is a <4-end extension of b,,.

3)abe %, 4 are incompatible iff U anN U by, has cardinality < 6 (cf(f) = Ry <
n<w n<w

6 suffice).

4)  (a) Mg, implies K ,.

(b) X, is equivalent of Ry , if p1 = .

ProOOF. As in 3.9 below.
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3.9 CraM. Assume 0 is strong limit, 8 > cf(8) = Ng.
1) p € (6,29 then &, from 8.7 holds.
2) Also if & < < (29)+% then X .-
8) If 20 <y and (VA)(2% < X < p, ¢f(A) = Rg — AR = AT +[0)) then X5 .-

PROOF. 1) Straight, as %] = p/ = 2% we can find (a* : a < 2%) listing

F..- Now we choose v(a), b* by induction on a < 2% such that

(a) b € :79’“
b) B<a= set(b?) N set(b*) =0
) éa S a’Y(a)
) v(a) = Min{y : & incompatible with &° for every 3 < a}.
Arriving to a choose y(a) by clause (d), we note that 8 < y(a) = cj = U al®n
Ubg has cardinality < 8, hence we can find b, . < Zﬂ(_“) for e < 2% with (set(by.c) :
n
e < 29) pairwise disjoint. So for all but < 6 + |a| of the ¢ < 2%, b, = by is as
needed.
2) After reading [Sh 460] this is easy and anyhow in subsequent work we give fuller

answers.

3) As in [GJSh 399]. Us.g

3.10 Cram. 1) Assume

o 0 is strong limit, Rg = cf(f) < 8 and 0 < k < 22’ 1 = 2% and Ko . (from
8.7) holds so p = u°.

Then some B = (B, : a < p) satisfies clauses (c) - (g) of 2.1; in fact B, is a
subalgebra of P (k) with 2 levels and id<oo(By) is included in [k]<™ hence B, C
{a C k. a countable or co-countable}.

2) As above except that instead ‘4 strong limit, cf(6) = Ro < 0” we demand 2° =
O > 2% & 9 > cf(f) = Ry or § = Ro+ “there is no infinite MAD family
o C w)o of cardinality < the continuum”.

PROOF. 1) Let 6 = Z 0,0, < 0p1 <8.

n<w

Fact: Letting a* = (0, : n < w), i.e. a =8, we can find 1% = {t, : £ < 3,0 < 2%)
such that:

(1) too € set(@a*) has order type w

) for some one to one onto 7 : 2% x 2% — 2% we write t2,,5 for t2 r(0,9)
(133) if (€1, 1) # (€2, a2) then tp, o, Nig, o, 1S finite

) ifa € %%, and U an, C 0 then for some o < 27 we have 8 < 20 = t2,0,8 €

n<w

set(a)]
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(v) if a,b € F.r and U an U U b, C 6 and set(a)N set(b) = () and h :
n<w n<w

U an — U by, is one to one and maps a, onto b, then for some oty o €
n<w n<w _
set(@),t1,o € set(b) and h maps tg o into a co-infinite subset of ¢; 4.

PROOF OF THE FACT. Straight.

Construction: Let #* = {@” : v < v*} exemplify My, so |v*| < &%, without
loss of generality a € #* & n < w = (otp(an) & an41 is an end extension
of a,); (by 3.8, i.e. by replacing a” by a suitable family C {b : b < a7}). Let
{X, : v < k} be a sequence of subsets of 27 such that y; # 72 = |X,,,\X,| = 2%;
let (Y; : j < p) be a sequence of subsets of « such that j; # jo = |¥;,\Y},| = &, let
g~ be a one to one mapping from 6 into U a} mapping 6, onto a), and lastly let
n<w

t) o = 9y (tea) = {9+(C) : ¢ € tea} for £ < 3,0 <~* hence t , 5 = g/(t3 , 5). Let
t3.08 = 19+(€) : € €taap and [t24,6 Nel is even}.

For j < pu, let &7 be the following family of subsets of x

t8art] o When v <%, o < 27

tg,a,1+ﬁ when v <", 8¢ X,,a < 20
t;,a,1+ﬂ when v < y*; 8 € X, a < 20
t3 .40 When v <" a < 2%,y ¢ Y; and

t3 4,0 When v € Yj.
Clearly
O, V#t" ed; = ' Nt"| <Ny = [t/

Let sz]* be a maximal almost disjoint family of countable subsets of x extending

of;. Let I; be the Boolean ring of subsets of x generated by szf U{{e} e < &}
and B; be the Boolean algebra of subsets of « generated by I;. Now

®, ifig,91 < p and b, b; € [k]? and h is a one to one mapping from by onto by
such that a € Dom(h) = h(a) # «, then for some t° € ,inj,tl € 527: we
have: t° C* by, t! C* b; and h maps t° into a co-infinite subset of t*
[why? for some g < K the set by N U a)® have cardinality 6, so without

n<w
loss of generality by C U a)® and similarly for some v; < k without loss
n<w
of generality b; C U ajt. For £=0,1let b, € [0]° be such that g,, maps
n<w

b, onto by. Now without loss of generality by Nb; = 0 or by = by (recall

we have to preserve "h is from by onto bi”, too!). If by Nby = @ then by

Il
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clause (v) of the fact some #3°, € 7, C «/§ and tJ', € 7, C & will be
as required in the conclusion of ®3. So assume by = by, let b5 = {a € b, :
h o gy, (a) # gy, () }. If b§ has cardinality 6, we get the desired conclusion
(in ®2) as above, so assume |bj| < 6 hence without loss of generality by = 0.
Also if v9 # 1 then | X, \X.,| = 2% hence we can find a non zero ordinal
B € X,,\X,, and by clause (ii) of the fact we can find an ordinal o < 2°
such that (V3 < 20)[7%0(76 C by ] hence we can use ty , 5,5 , 5. So we have
to assume vy = 7 but then g,, = g5, so h [ (bo\bj) is the identity, a
contradiction.]

Oy if iy # iy < pand® Z € [k]<" and h is a one to one function from k\Z

onto £\ Z then for some t° € & " satisfying t° C* Dom(h) and t' € &/ we
have: h"(t%) C* t! and t'\h"(t°) is infinite.
[Why? Let Z; = {a € Dom(h) : h(e) # a}, so by ®2 we know |Z;] < 6.
We know that Y; \Y;, has cardinality p, hence for some v € Y; \Y;, we
have set(d,) N [Z U Z|% = 0. Sot3,, € o, C & and ], € &, C
ot s0 13, is a co-infinite subset of 3 ., 1,13 , o € £\Z\Zy and h maps
13 0.0\Z\Zo to itself a co-infinite subset of t3 , .|

Clearly (B, : j < p) is as required so we are done.
2) Similar proof. Os.10

3.11 CoNcLUSION. 1) Under the assumption Ky ., ,, of 3.10, let A\* = Ded™(u) =
Min{A: there is no tree with < p nodes and > X branches (equivalently, a linear
order of cardinality A and density < p}. Then for any A satisfying p < A < A%,
there is a superatomic Boolean Algebra of cardinality A and p atoms with no au-
tomorphism moving > 6 atoms.
2) Assume: ¢ is uncountable strong limit of cofinality o, ppua(0) = 2% (see [Sh:g,
Ch.IX,85] why this is reasonable) and x = (2¢)%® < 22’ o < (29)*, = 2% and
p < A < Ded(p), eg. A = 2X for x = Min{yx : 2X > pu}. Then there is a
superatomic Boolean Algebra of cardinality A and p atoms, with no automorphism
moving > € atoms.
3) In part (2) we can replace k = (29)7® by xk = 229, if some very weak pecf
hypothesis (whose negation is not known to be consistent and also of §4), e.g.

(x) if a is a countable set of regular cardinal then pcf(a) is countable (or just
< Nn,(*))'

PROOF. 1) We, of course, use Lemma 2.1 with 6% here standing for # there,
so we have to show that the assumptions there holds.
Clause (a) of 2.1 holds trivially.
Clause (b) of 2.1 follows from Xy . (every (VA € [u|®)(3B € &)(B C A)) rather
than just (VA € [1)?"). There is a sequence (B, : a < p) satisfying clauses (c) - (g)
of 2.1 by 3.10. There is a Boolean Algebra B* satisfying clauses (h), (z), () of 2.1
because A < A*, so there is a tree 7 with u nodes and > X branches, let % be a
set of A branches of .7 and let B be the Boolean Algebra of subsets of .7 generated

5by a little more care in indexing, Z € [u]<# is O.K. and we can choose v such that
Uayn € r\2\Z0
n
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by {a:a C T,a is linearly ordered by <r and z € a & y<rz =y <caandais
bounded on a € #'}.
Lastly, clause (k) of 2.1 hold vacuously as we choose \' = p. O3 14

3.12 CLAIM. Assume

((1,) PT(:g, N])
(b) X\* = Min{\: there is a tree with Iz models of > N branches}
(C) :3 <A< AT,

Then there is a superatomic Boolean Algebra with )\ elements Jz atoms and no
automorphisms moving uncountably many atoms.

PRrROOF. The main new point is that we can prove a parallel of 3.10 noting that
as Pr(ds, N1) holds also Pr(3s,N;) holds. O3 12

3.13 REMARK. 1) So clearly in many models of ZFC we get that the bound is
1.1 cannot be improved.
2) The question is whether inductively we can get for many 6’s the parallel of 3.10.
3) We can under weak assumptions add X, pu < X < (M) < X and demand that
the Boolean algebra has p/ atoms. For this we need to check condition (k)(a). We
probably can omit the demand “(\')®0 < \” in the generalization of 3.11 indicated
above, for this we just need to weaken “< is MAD” in 2.1.

3.14 CrAam. 1) Let X > Rg. A sufficient condition for the existence of a
saturated MAD family o/ C [AJ®0 is

Bag letting i.e. = Min{|o/|: o C [w]® is an infinite MAD family, then for

every p satisfying 2% < p < A¥ we have =(a),6 and Ry < 0 = cf(o) <

0 = —(b),,0 where

(1) (a)ue there is a set b C Reg N p\2%0 of cardinality < 6 such that
b/ [b]<X0 is pu-directed, moreover, for no sequence b = (b; : i < ), each
b; € Reg N p\2% finite and ¢ C U{b; :i < 0} & maz pcflc) < p =
Ry > [{i<0:b; C el

(2) (b)ue w is regular, S C {0 < p: cf(0) = cf(0)} is stationary, A =
(As:6 € S), Ay C 4, otp(As) = 0,55 £ 65 = Ag, N As, finite.

2) Similarly concerning &y ,

PRrROOF. As in [Sh 668].
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§4 On independence

In the bound J4(o), the last exponentiation was really sa(u) where

4.1 DEFINITION. 1) sat(p) = sup{|B|* : B is a superatomic Boolean Algebra
with p atoms}.

2) sa(p) = sup{|B| : B is a superatomic Boolean Algebra with u atoms}.

3) sa*t(u,0) = sup{|B|* : B is a superatomic Boolean subalgebra of & (u) extend-
ing {a C p : a finite or cofinite} such that a € B = |a] < 0V |u\a| < 6}.

4) sa(u,0) = sup{|B| : B is as in (3)}.

5) sa*(f) = Min{X: cf(\) > 6 and if p < A then sa™(u,8) < A}

That is, by the proof of Theorem 1.1

4.2 CLAM. If B is a superatomic Boolean Algebra with no automorphism
moving > @ atoms, § = cf(f) > Ro then |B| < sat(J3(< 6)), moreover |B| <
sa™(3(sa*(0))).

4.3 Discussion: Now consistently sa(R;) < 21, as [Sh 620, 8.1] show the consistency
of a considerably stronger statement. It proves that e.g. if we start with V |= GCH
and P is adding R, Cohen reals then in VP (2% =R, < 2™ =R, ., and) among
any N, +1 members of & (w;) there are X, 11 which form an independent family,
i.e. any finite nontrivial Boolean combination of them is nonempty, in other words
“P(wy) has Ny, +1-free precaliber in Monk’s question definition”. (Not surprising
this is the same model for “no tree with R; nodes has 2™ branches” in [B1]).

So the bound J4(#) is not always the right ones though this needs use of more
complicated functions.

We have not looked at the question: does the use of sa*(9) in claim 4.2 reall help?

4.4 CLAIM. Assume
(@) T=TY <p=cf(u) <x
(b) cf(x) =  and (Ve < x)(|al* < x) and (Ve < w)(|al<T < p)
(¢) Q is a forcing notion of cardinality < x such that in V@ : u is a reqular
cardinal and (Va € [x]<*)(3b)[a C b € ([x]<*)V]
(d) P={f:f a partial function from x to {0,1} of cardinality < Y} order by
inclusion (that is, adding a x Y-Cohen).
Then in VOXF we have: (2T = 2<# = x,2# = x* = (x*)V and) sa(u) = x < 2#,
moreover the Boolean Algebra & (u) has x* -free precaliber.

PROOF. Work in V@, like [Sh 620, 8.1], not using “P is o-complete” which may
fail in VQ. Ua.4

On the other hand

4.5 CLAIM. Assume A = (\n : n < w) satisfies Appy = Min{\ : 2% > 2X=},
Then for infinitely many n’s for some pn € [An, Ant1) we have sa(u,) = 2#n = 22
(in fact sat(un) = (2#7)F = (2*~)* except possibly when cf2 ) < 22n-1).
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PRrROOF. By [Sh 430, 3.4] we have for infinitely many n’s u, € [An, Ani1) and

for every regular x < 2 = 2Mn g tree with < Ln+1 nodes, A\, levels and > y
An-branches.

Uas

4.6 Conclusion: 1) Assume 6 is strong limit, 8 > cf(f) = Ry and Pr(226,0) and
A < sat(33(6)). Then

(*)g,n there is a superatomic Boolean Algebra without any automorphism moving
> ¢ atoms such that B has cardinality A (and has J3(0) atoms®).

2) Assume Pr(Jz,R;) and A < sa™(3J3). Then (x)g  holds.

PrROOF. 1) Use 3.10 and 2.1.

2) Similar only replace 3.10 by a parallel claim. Oie
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