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ABSTRACT. In two recent papers [9, 10] we answered a question raised in the 
book by Eklof and Melder [7, p. 455, Problem 12] under the set theoretical 
hypothesis of <>N 1 which holds in many models of set theory, respectively of 
the special continuum hypothesis (CH). The objects are reflexive modules over 
countable principal ideal domains R, which are not fields. Following H. Bass 
[1] an R-module G is reflexive if the evaluation map u: G--+ G** is an iso-
morphism. Here G* =Hom (G, R) denotes the dual module of G. We proved 
the existence of reflexive R-modules G of infinite rank with G iJ!! G $ R, which 
provide (even essentially indecomposable) counter examples to the question 
[7, p. 455]. Is CH a necessary condition to find 'nasty' reflexive modules? 
In the last part of this paper we will show (assuming the existence of super-
compact cardinals) that large reflexive modules always have large summands. 
So at least being essentially indecomposable needs an additional set theoretic 
assumption. However the assumption need not be CH as shown in the first 
part of this paper. We will use Martin's axiom to find reflexive modules with 
the above decomposition which are submodules of the Baer-Specker module 
Rw. 

1. Introduction 

We will derive our results for abelian groups, but it is an easy exercise to 
replace the ground ring Z by any countable principal ideal domain which is not 
a field. Just notice that we could work with one prime only! For supercompact 
cardinals we refer either to Jech [13] or to Kanamori [14]. If G is any abelian group 
then G* =Hom (G, Z) denotes its dual group, and G is a dual if G ~ D* for some 
abelian group D. 
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146 RUDIGER GOBEL AND SAHARON SHELAH 

Particular dual groups are the reflexive groups D, see Bass [1, p. 476]. Recall 
that 

u = uD: D _____, D** (d _____, u(d)) 
with u(d) ED** and 

u( d) : D* _____, Z ( <p _____, <p( d)) 
is the evaluation map and Dis reflexive if the evaluation map O"D is an isomorphism. 
Recent results about reflexive and dual abelian groups are discussed m [7, 9, 10]. 

In the third section we will show that dual groups, in particular reflexive groups 
may have large summands, hence can't be essentially indecomposable without any 
set-theoretic restrictions. 

THEOREM 1.1. If K is a supercompact cardinal and H is a dual group of car-
dinality 2 K, then there is a direct summand H' of H with X :::; IH'I < K for any 
cardinal x < K. 

This theorem shows that generally we will encounter set theoretic restrictions 
for finding natural classes of reflexive groups. As CH implies Martin's axiom, our 
main result (Theorem 1.2) below gives a new proof of the existence of reflexive 
groups as in [10]. 

In order to prove a result in contrast to Theorem 1.1 we use scalar products on 
the Baer-Specker group P. Recall that 

P=Zw 

is the set of all elements 
x =.L x;e; with X; E Z 

iEw 
where e; E P is defined by the Kronecker symbol and addition is defined component-
wise. Throughout this paper we will adopt the convention in writing elements of 
P as displayed in the last formula. The Baer-Specker group P has the subgroup S 
of all elements x of finite support, that is x; = 0 for almost all i E w. The crucial 
subgroup for constructing reflexive groups is the Z-adic closure ID of S in P. This 
will be our target in Section 3. We will also show that the endomorphism ring of 
such a reflexive abelian group can be Z modulo the ideal of all endomorphisms of 
finite rank. We have the following 

THEOREM 1.2. (ZFC + MA) There are two subgroups H; (i = 1, 2) of the 
Baer-Specker group P with the following properties: 

(i) S <:;; H; <:;;. ID are pure. 
(ii) H; is N1 -free and slender. 

(iii) There is a natural bilinear form <I> : H 1 x H2 _____, Z induced by <I>( e;, ej) = 
IS;,j, (i,j" E w) which yields Hi ~ H2 and H~ ~ H 1 such that H1 and H2 
are reflexive. 

(iv) H; EB Z o/3. H; fori = 1, 2. 
(v) End H; = Z EB Fin H;. 

Note that <p E Hi is induced by <I> if there is h E H2 such that <p = <I>( , h). 
The set Fin H; of all endomorphisms of H; with finite rank image is an ideal of the 
endomorphism ring End H; and the last statement of the theorem means that this 
ideal is a split extension in End H;. 

Hence each H; is separable and essentially indecomposable, which means any 
decomposition H; = C EB E must have a summand E or C of finite rank. New 
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REFLEXIVE SUBGROUPS OF THE BAER-SPECKER GROUP 147 

algebraic and combinatorial methods and some old techniques from earlier papers 
like [11] or [4] will be used to prove Theorem 1.2. 

2. Reflexive groups of cardinality ::::; 2No under Martin's axiom 

In this section we will now construct essentially indecomposable reflexive groups 
under Martin's axiom MA. This contrasts with the results in Section 3 concerning 
the existence of arbitrarily large summands of reflexive groups larger than a super-
compact cardinal. As above let P = flnEw enZ be the Baer-Specker group of all 
elements 

iEw 

Here e; can be viewed as the element x = ( x;1 ) 1 with coefficients x;1 = 8;1 the 
Kronecker symbol. Hence 

iEw 

is a subgroup of P of all elements x of finite support 

[x] = { i E w : X; -j. 0} 

and P/S is algebraically compact by an old result of Balcerzyk (see Fuchs [8]). 
Obviously P/S is torsion-free or, equivalently, S is pure in P. Pure subgroups 
X ~ P are denoted by X ~* P. Moreover, let IIJ) be the Z-adic closure of S in 
P, so IIJ)jS is the maximal divisible (torsion-free) subgroup of P/S which has size 
2No. If H is an abelian group, then Fin H denotes the ideal of all endomorphisms 
0' E End H with Im 0' of finite rank. The groups we want to construct will be 
sandwiched between Sand IIJ). 

We will use Martin's axiom for 0'-centered sets, which is a (proper) consequence 
of the well-known Martin's axiom and equivalent to the combinatorial principle 
P(2N°) (see below) as shown by Bell [2]. Recall that D ~ lfl is dense in the poset 
lfl if for any p E lfl there exists d E D such that p ::::; d. Martin's axiom is based 
on posets lfl with c.c.c. using that p, q E lfl are compatible if there is r E lfl with 
{p, q} ::::; r. Recall that F ~ lfl is bounded by r, say F::::; riff::::; r for all f E F. A 
set X ~ lfl is directed if all finite subsets of X are bounded in X and X is called 
0'-centered (or 0'-directed) if it is the countable union of directed subsets. Replacing 
c.c.c. by '0'-centered' MA turns into Martin's axiom for 0'-centered sets: 

Let :D be a collection of dense subsets D of the poset l,p. If I:DI < 2No and (l,p, ::::;) 
is a 0'-centered poset then there is a :D-generic subset G C ~fl. Hence G is directed 
and meets every DE :D, i.e. G n D "1- 0. 

See [7, p. 164] for MA with c.c.c. Note that the main result in Bell [2] is that 
Martin's axiom for 0'-centered sets is equivalent to 

The combinatorial principle P(2No): If :D is a collection of subsets of w such 
that I:D I < 2No and n F is infini~e for every finite F ~ :D' then there is an infinite 
B ~ w such that B \ D is finite for all D E :D. 

Martin's axiom will help us to define a scalar product or bilinear form <I> on 
suitable pairs lHl = (H1 , H 2 ) of pure subgroups H1 of IIJ). We begin with 

<I>: S x S----. Z with <I>(e;,ej) = 8ij· 
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148 RUDIGER GOBEL AND SAHARON SHELAH 

Hence «<> is the unique integer valued, bilinear form on S x S. By continuity it 
extends uniquely to the non-degenerate, symmetric bilinear form 

«<> : j[J) x ][JJ -----. Z where Z is the Z-adic completion of Z. 

We keep this map fixed throughout this section and also denote restrictions to pairs 
of subgroups by «1>. Note that Z is the cartesian product of the additive groups of 
p-adic integers over all primes p and if 

a=~ a;e; E ][JJ and b = ~ b;ei E ][JJ, then«<>( a, b) = ~ a;bi 
iEw iEw iEw 

is well-defined and symmetry «<>(a, b)= «<>(b,a) is obvious. Now we consider pairs 
IHI = (H1, H2) such that «<> I (H1, H2) takes only values in Z. More precisely, let 
IHI E lfJ if and only if the following hold for j = 1, 2: 

(i) S ~ Hj ~* ][JJ 
(ii) IHj I < 2No 

(iii) q> : Hl X H2 _____. z. 
We now define a partial order on lfj. 

DEFINITION 2.1. If IHI, IHI' E llJ then IHl ~ IHI' if and only if H 1 ~ H{ and H 2 ~ 
H~. 

The next crucial lemma of this paper will show under MA that llJ is a rich 
structure. 

MAIN LEMMA 2.2. (ZFC + MA) Let IHl = (H1, H2) E lfj, bE P \ ][JJ and bn E 
H1 for nEw. Then there is a= L:iEw a;ei E ][JJ such that for H{ = (H1 , a)* ~ ][JJ 
and IHI' = (H{, H 2 ) the following hold. 

(i) IHl ~ IHI' E lfJ and«<>( a, b) E Z \ Z. 
(ii) (a) Either L:iEw a;bi rj_ H{ 

(b) or there is t E Z such that (bJ- tej :jEw) is a free direct summand 
of finite rank. 

Remark. By symmetry we obtain a dual result of the Main Lemma 2.2 with 
a E H~ and «<>(b, a) E Z \ Z and (ii) accordingly. From a E ][JJ, it follows that 
L:iEw a;bi E P is well-9-efined as a member of the Z-adic completion of P. 

Proof. Let b = L:iEw b;ei E P \ ][JJ and IHI = (H1, H2) E lfJ be given by 
the lemma. Moreover we assume that condition (ii)(b) of the lemma does not 
hold. This is to say that we must show (ii)(a) of the lemma. This implication will 
follow at the end of the proof from density of the sets D~tno and density will be a 
consequence of the assumption just made. 

We want to approximate a E H{ by a forcing notion J', a partially ordered set, 
used for application of MA. The elements p E J' are triples 

(MP,AP,nP) with AP = (af: l < [P), MP = {m~ = ~ Xtaf: x = ~xiei E uP} 

subject to the following conditions 
(i) uP is a finite subset of H 2 , 

(ii) [PEw, af, m~ E Z, and nP EN. 

l<lP iEw 

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Sh:727



REFLEXIVE SUBGROUPS OF THE BAER-SPECKER GROUP 149 

We calllP the length of the finite sequence of integers AP and note that nlm means 
n divides m in Z. In order to turn J into a partially ordered set let p ::; q for some 
p, q E J if the following holds: 

uP<;;; uq, [P::; lq, AP = Aq f [P, 

nPinq and if [P < [ < [q then nPiaq 
' - l' 

if x = L xlel E uP then m~ = m~ =: L Xlaf or equivalently L XLaf = 0. 
lEw l<lP jP~l<lq 

If p, q E J, then let 

P"'Q {::} (lP=lq,AP=Aq,nP=nq) 

and note that "' is an equivalence relation on J. If p E J, then let 

Jp={qEJ:q"-'p}. 

Surely J decomposes into countably many such uncountable equivalence classes JP. 
We claim that each of them is directed. If q1 , q2 E JP then nq; = nP, APi = AP, [Pi = 
[P hence q· = (Mq; AP nP) and if x = "'. x e E uq' n uq2 then 

' t ' ' ' L...tEw t z ' 

mq' = ~ x.aq' = ~ x,aP = mq2 
x ~"t ~"t x· 

i<lql i<lP 

Mq' = {m~ = L x;af: x E uq'} = Mq' U Mq2 , 

i<lP 

hence q' = (Mq', AP, nP) is a member of J and q1 , q2 ::; q'. The claim is shown and 
by definition 

(2.1) (J, ::;) is a a--centered poset, 

as required for applications of MA for a--centered sets. 

In order to apply MA effectively we must define dense subsets of J which 
describe 'local properties' of the desired a E ][)). If x = L:iEw x;e; E H2 , mE N, l0 E 
w, then let 

D~ = {p E J: x E uP}, D?,. = {p E J: mlnP}, 

Dto = {p E J: lo ::; [P}, D';, = {p E J: L b1af ¢. m mod nP} 
l<lP 

and for d E H 1, t E Z and no E N, let 

D~tno = {p E J: 3m EN (mlnP, no L afbi- t L afe;- d ¢. 0 mod m][)))}. 
i<lP i<lP 

First note that we defined < 2No subsets of J as required for MA. Next we want 
to show that all these sets are dense in J. The first three cases are easy while the 
remaining two cases need work. For D~ with x = L:iEw x;e; we take any p E J 
and define q like p just by enlarging uq = uP U {x}, let m'! = L:l<lP x1af and 
enlarge Mq = { m~ : y = L:iEw y;e; E uP} U { m'!} as well, hence p ::; q and D~ 
is dense in J. Similarly take any p ::; q E J with mlnq, hence D?,. is dense. For 
Dto replace any AP by Aq = (AP)A(O, ... , 0) with (0, ... , 0) a vector of l0 zeros 
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150 RUDIGER GOBEL AND SAHARON SHELAH 

and let uq = uP, zq = lP + l0 , nq = nP. In the fourth case we first notice that 
b = I:iEw b;e; E P \ ]])) by hypothesis, hence there is s' E N such that the set 

W = {k E w: bk E Z \ s'Z} is infinite. 

Suppose p E ~ contradictt> the density of D;, for some m E N, hence 

(2.2) there is no q E D;, with p 'S: q. 

We write 
uP= {a1, ... ak-d ~ H2 and let aj = Laj;e;. 

iEw 

Also consider the k x w-matrix (sEw) 

(G)= 

ak-1,1 

b1 

as well as the (k- 1) x w-matrix 

(H)= ( 
au 
a21 

ak~1,1 

a12 

a22 

ak-1,2 

a1s 

) a2s ... 

ak-l,s 

which is obtained by deleting the last row of bs's of the matrix (G). We pick finite 
subsets w of [lP, w) and consider the column vectors gf ( l E w) of the first matrix 
(G) and hf ( l E w) of the second matrix (H) accordingly and claim that for all 
finite 

lEw lEw 

The proof "¢=" is trivial. For "=?", suppose for contradiction that 

lEw lEw 

for some finite w ~ [lP, w) and d1 E Q. Hence 

(2.4) 
lEw lEw 

Multiplying this homogeneous system of equations and the inequality by a large 
enough natural number we may assume that 

d1 E nPZ for alll E w. 

We now want to define q > p with q E D;, and distinguish two cases. If I:l<lP b1af -1 
m then choose nq large enough such that nPinq and I:l<lP b1aP - m "¢ 0 mod nq 
and put uP= uq,Mp = Mq,AP = Aq. Then p < q and I:l<lq b1aj "¢ m mod nq 
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REFLEXIVE SUBGROUPS OF THE BAER-SPECKER GROUP 151 

hence q E D;. is a contradiction, see (2.2). 
sup (w U {ZP}) and define q such that 

If Ll<lP blaf = m, then choose zq > 

{ 
af(t) if 

a[(t) = d01 if 
if 

t E [0, [P) 

lEw 
l E [lP,w) \ w. 

Set uq =uP ~ H 2 and using (2.4) let nq be large enough such that nPinq but v ¢. 0 
mod nq. It follows p < q and 

L bta[ = L bta[ + L b1d1 = m + v. 
l<lq l<lP lEw 

Hence q E D;. is another contradiction, see (2.2). The linear dependence (2.3) 
between the hf's and gf's is shown. Now we want to use (2.3) to derive a final 
contradiction for (2.2). For each finite w ~ w we have a Q-vector space Vw = 
(hf : l E w) of finite dimension :S k. Hence there is an r E w and a finite 
w* ~ [lP, w) such that hf ( l E w*) is a maximal independent set and Vw• has 
maximal dimension lw*l = r :S k. If w* ~ w ~ [lP,w) for some finite w, then the 
sub-matrix (Hw) = (hf,l E w) of (H) has finite column rank r, hence row rank r 
as well and there is a subset z C { 1, ... , k - 1} of size r such that 

{ aj I w : j E z} is maximal independent. 

By (2.3) b I w is a linear combination of the { aj I w : j E z} and there are unique 
elements ct E Q, l E z such that b I w = LlEz c1a1 I w. If we increase w we have 
the same coefficients by maximal independence. Hence 

(2.5) 
lEz 

We can choose m' E N large enough such that m' c1 E s'Z for alll E z. If t E W is 
large enough, then m'lau for alll E z. Using (2.5) we get 

bt = L c1au E s'Z 
lEz 

contradicting W. Hence D;. is dense in~-

In order to show density of the last collection of subsets, suppose there are 
d E H 1, t E Z and no E N such that 

(2.6) DJtno is not dense in ~-
Hence there is p E ~ such that 

(2. 7) no q E DJtno satisfies p :S q. 

Let uP= { ci = LjEw cje1 : i < k} and [P < l < w. We want to consider extensions 
p :S q with zq = l and hence let 

l-1 

Fl = {(ylP, 0 0 ° 'Yt-d E zl-lp : L cjyj = 0, i < k} 
j=lP 

which is a non-trivial subgroup of the free group zl-lp for any large enough l. Also 
let 

l-1 l-1 

s(ylP, ... , Yl-1) = no(L afbi + LYibi)- t(_L afei + LYiei)- d. 
i<lP i=lP i</P i=lP 
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We claim that 

(2.8) (YIP, . .. , Yl- I) E Fl =? s(ylP, .. . , Yl-1) = 0 holds in lDl. 

If s(ylP, . .. , Yl-d =1- 0 for some (YIP, . .. , Yl-d E F1, then there is some m E N 
such that 

(2.9) s(yiP, ... , Yl-d ¢. 0 mod mlDl. 

We now define some q E ~ taking 

zq = l nq = nP . m uq = uP Mq = {mq = "'"' x,aq . X E uq} 
' ' ' X L......,; ~ • 

i<lq 

where 
if i < [P 
if [P :::; i < l. 

Clearly q E ~ and also q E Ddtno from (2.9), hence p 1:. q from (2.7). On 
the other hand I:~:~p cjaj = 0 from F1 and definition of a; would imply p:::; q, a 
contradiction which proves the claim (2.8). 

If we let 
si = L:sje1 = n0bi- tei E lDl (lP:::; i < w), 

jEw 

then the implication of (2.8) can be written as 
1-1 

L YiSi = d + t L aiei - no L afbi. 
i=IP i<IP i<IP 

From (0, ... , 0) E F1 follows 

(2.10) no L afbi = d + t L aiei 
i<IP i<{P 

and from (YIP, ... , Yl-1) E F1 also follows 
1-1 

(2.11) LYiSi = 0. 

If we view si = LjEw sje1 as an infinite row vector (lP :::; i < l), then from the 
matrix 

( I' 

IP IP 
so s1 sk 

) s6':+1 
1P+1 1P+1 

s1 sk ... 

1-1 1-1 1-1 
so s1 sk 

we have finite column vectors Sn = (s~ : lP :::; i < l) for any nEw. Let c' I [lP, l) be 
the restriction of ci viewed as an infinite column vector restricted to the coordinates 
j such that ZP :::; j < l, then 

(ci I [ZP,l): i < k) 
denotes the vector space over Ql generated by these finite column vectors. We claim 
that 

SnE(ci I[ZP,l):i<k) forallnEw. 
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REFLEXIVE SUBGROUPS OF THE BAER-SPECKER GROUP 153 

Naturally Ft ~ zt-!P ~ Ql-lP. If Ft = (Ft) denotes the subspace of Ql-!P generated 
by Fz, then Ft = (ci I [ZP,l): i < k)j_ where orthogonality is defined naturally by 

uj_ = {x E Q1_ 1p : X. u = 0 l:fu E U} 

for U ~ Q1_ 1v and the obvious scalar product x · u = Li<t-tv x;u;. From (2.11) 
follows -

- j_ 
Ft = (sn : n E w) . 

Using l_ again, we have 

(sn: n E w)j_j_ ~ (ci I [lP, l): i < k)j_j_ 

which is 
(sn: nEw)~ (ci I [ZP,[): i < k) 

as dim Q1_ 1v is finite. This shows the claim. 
Now let l be large enough such that (ci I [lP, l) : i < k) has maximal dimension 

k' ::; k and let ci I [ZP, l) ( i < k') be a basis of this vector space. We now can write 

Sn = L rr1ci I [ZP,l) 
i<k' 

with unique coefficients rf1 E Q. By uniqueness these coefficients are independent 
of l for any larger l, say that rf1 = rf. In the system of equations 

Sn = L rrci I [ZP,l), (lP::; l < w,n E w) 
i<k' 

we can also eliminate l and get 

Sn = L rrci I [lP,w), nEw. 
i<k' 

From si and b1 = LnEw /J.hen we have that s~ = nob1-,- t6jn = Li<k' rfc~ for any 
n;:::: [P, hence (n0bi- tej) I [ZP,w) E (ci I [lP,w): i < k') and 

U = (nobj - tej : j E w)* ~ liJI 

has finite rank. Hence U is a free direct summand of liJI, see Fuchs [8]. If no does 
not divide t, then modulo n0 liJI the image of U is (tej + n0 liJI : j E w)* and has 
infinite rank, which is impossible. Hence n0 1t and we rename tn01 by t. Using 
purity, we get that U = (hi - tej : j E w) * is a free direct summand of liJI which 
contradicts our assumption that condition (ii)(b) does not hold. Hence Ddtno is 
dense in J indeed, see (2.6). 

We are ready to apply Martin's axiom. There is a generic set G ~ J which meets 
the dense subsets of J just constructed. We define a = LiEw a;e; such that a; = af 
for any p E G with i < lP. Here we applied Df0 and note that G is directed, hence 
a is well-defined. Also a E liJI by D;,. Let H~ = (H1 , a)* ~ [ll be the pure subgroup 
of [ll generated by H~' = H 1 + Za and JHI' = (H~, H 2 ). Then clearly lHI ~ JHI' and we 
claim that JHI' E ~· It is enough to show (iii) for ~· If c E H~' then c = ka + e 
for some k E N,e E H 1 . If y E H 2 , then consider <I>(c,y) = k<I>(a,y) + <I>(e,y). 
From density of D~ and p ED~ n G and the choice of a follows <I>(a,y) = m~ E 71.. 
and therefore <I>(c,y) E 71... The map <I> extends to H~' x H 2 ----> 71... If x E H~ 
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then tx = h E H~' for some t E N and if x = l:iEw Xiei, h = l:iEw hiei then 
tx = l:iEw txiei = l:iEw hiei and hi = txi for all i E w. Hence 

q>(h,y) = q>(tx,y) = I:txiYi = t(LxiYi) = tq>(x,y) E tznz 
iEw iEw 

and by purity of Z ~* Z also tq>(x, y) E tZ and by torsion-freeness q>(x, y) E Z. 
We have seen that JHI' E ~· Next we claim that 

(2.12) by definition of a and b we have z = q>(a, b)= L biai E Z \ Z. 
iEw 

Note that ai ----+ 0 in the Z-adic topology, hence biai ----+ 0 and z E Z is well-
defined. If z E Z and n E N then l:i<k biai = z mod n for any large enough k, 
which contradicts D~ 1 . 

Finally we show that l:iEw aibi tJ. H~. Otherwise there are t, n EN and dE H1 
such that 

(2.13) 
iEw 

Let p E IG n D~tn from density of D~tn and choose m from the definition of D~tn. 
Hence 

i<[P i<[P 

On the other hand af = ai for all i < lP from p E IG and m\nP by p E D~tn· 
The set IG is directed, hence m\ai for all i 2: lP. Son l:i>Zv aibi E m[J) as well as 
t l:i>Zv aiei E m[J). The last displayed expression become; n l:iEw aibi- ta-d E 
[)) \ m[J) which contradicts (2.13). The Main Lemma 2.2 is shown. D 

From the proof of the Main Lemma 2.2 we have an immediate 

COROLLARY 2.3. IflHI = (H1 ,H2) E ~'a E [))with q>(a,y) E Z for ally E H2 
and lHI~ = (H1,a)* ~[))then (H~,H 2 ) E ~'in particular q,: H~ x H2----+ Z. 

In order to show Theorem 1.2 we want to use an ad hoc and preliminary 
definition. Here we also use that q, is symmetric. 

DEFINITION 2.4. A pair lHI = (H1, H2) of pure subgroups of[)) is a full pair if 
the following holds. 

(i) There is an increasing continuous chain lHI.:, =(Hal, Ha2) E ~with a E 2No 

whose union is (H1,H2). 
(ii) Ifb E P \[))and dE {1, 2}, there is a E Hd such that q>(a, b) E Z \ Z. 

(iii) If b E [)), then for all d E {1, 2} either b E Hd or for some a E H3-d we 
have q>(a, b) E Z \ Z. 

(iv) If dE {1, 2} and bn E Hd, (nEw), there is a= l:iEw aiei E Hd such that 
(a) either l: aibi tJ. Hd 
(b) or there is t E Z such that (b1- te1 : j E w) is a free direct summand 

of finite rank. 

Remark. As in the Main Lemma 2.2, the element l: ai bi is a well-defined 
member of the Z-adic closure P of P. 
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LEMMA 2.5. (ZFC + MA) There is a full pairlHI = (H1,H2). 

Proof. Enumerate P \ ][)) = {b<> : o: E 2No}, ][)) = { c<> : o: E 2No} and 
][))w = { (b~ )nEw : o: E 2No} with 2No repetitions such that any element appears 2No 
times. We want to construct the ~-chain inductively and let (H01, Ho2) = (S, S). 
By continuity we only have to define ll:lla+l· Alternatively we switch between 1 and 
2, say we are in case Ha 1 and consider ba, Co: and (b~)nEw· By the Main Lemma 
2.2 there is aa E ][))such that (H(<>+l)l' Ha2) E ~where H(o:+l)l = (Hal, aa)* ~ ][)) 
and <P(aa, ba) E Z\Z. Moreover (b~)nEw satisfies condition (ii) of the Main Lemma 
2.2 for bn = b~. If Co: E H(o:+l)l' then let H(a+l)2 = Ha2 and if Co: ~ H(o:+l)l' 
then by Main Lemma 2.2 there is do: E ][)) such that <P(ca, do:) E Z \ Z. We let 
H(o:+l)2 = (Ha2, da)* ~][))and treat (H(a+l)l' H(a+l)2) by a dual argument (case 
2). Hence we get ll:lla+l = (H(a+l)l, H(a+l)2) E ~- This finishes the construction 
of lHI and Definition 2.4 is easily checked. D 

LEMMA 2.6. lf<p E Hi for a full pairlHI = (H1,H2), then there is bE H2 with 
<p=<P(,b) 

Remark A similar result holds for <p E H2. 
Proof. Let bj = ej<p E Z for all j E w, and set b = I:jEw bjej E P. If 

a E H 1 ~ ][)), then write a = I: jEw ajej and by continuity a<p = (I: jEw ajej )<p = 
I:jEw aj(ej<p) = I:jEw ajbj = <P(a, b). Hence <p = <P( , b). If bE P \][)),then by 
Definition 2.4 there is x E H1 with x<p = <P(b, x) E Z \ Z contradicting <p E Hi, 
hence b E ][)). Similarly by Definition 2.4 (iii) we have b E H2 and the lemma 
follows. D 

The pair lHI = (H1,H2) in Lemma 2.6 satisfies conditions (i) and (iii) of The-
orem 1.2. Reflexivity follows easily as in [9] or [10] because the dual maps are 
induced by scalar multiplication. As a subgroup of P, each H; is ~ 1 -free (see Fuchs 
[8]). Slenderness can easily be checked and is left to the reader, hence (ii) of The-
orem 1.2 follows. Condition (iv) can be derived using the arguments in [9] or [10]. 
The final condition ( v) will follow immediately from our next Lemma 2. 7. 

LEMMA 2.7. lflHI = (H1,H2) is a full pair and u E EndH1, then there iss E Z 
such that u-s1 E Fin H1, where Fin H1 is the ideal of End H1 of all endomorphisms 
of finite rank. 

Proof. If eju = bJ, j E w, then using that lHl is a full pair, we find a = 
I:iEw a;e; E H1 such that Definition 2.4(iv) holds. By continuity, 

b =au= (L a;e;)u = L anbi E H1 
iEw iEw 

which shows that we are in case (b) of Definition 2.4(iv). The subgroup U = 
(bJ - tej : j E w) is a free direct summand of finite rank of][)). However the image 
of S = ffiiEw e;Z under u- tid is in U, hence S(u- tid) has finite rank, and by 
continuity the same holds for H 1 ( u - t id ) , this is to say that u - t 1 E Fin H 1 . D 
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3. Large reflexive groups 

Let "' be a fixed supercompact cardinal. Then there is a K,-complete, fine 
ultrafilter U over "' such that the constant function 

j: V ----t M =Tilt (V, U) (x ----t j(x)) (j(x)a = x for all o: E "') 

is an elementary embedding of the universe V into the ultra power M; for details 
see Kanamori [14, pp. 471, 298-306, 37-56]. If pis a cardinal, then 

fl(p) = {x E V: ITC(x)l < p} 

is the set of all sets in V hereditarily< p where TC(x) denotes the transitive closure 
of the set x. 

THEOREM 3.1. If"' is a supercompact cardinal and H is a dual group of cardi-
nality 2: "'' then for any x <"' there is a direct summand H' of H with x ~ IH'I < 
"'· 

The following corollary is immediate. 

CoROLLARY 3.2. Every reflexive group of cardinality 2: "'' with "' supercom-
pact, has arbitrarily large summands < "'· 

Proof of Theorem 3.1: Let H = G* = Hom ( G, Z) be as in the theorem. If 
IGI = A1, IHI = A2, then let A > 2>.1 +>- 2 and assume G = A1, H = A2 as sets and 
x < "'· If 1.13 = 1-lJ"'(fJ(A)) is the poset of all subsets of fl(A) of cardinality < "'• 
then by the above there is a /),-complete (normal and fine) ultrafilter D on 1-lJ with 
elementary embedding 

(fl(A), €) -<: M := Ult (1.13, D). 

From H = G* each h E H gives rise to a homomorphism 

if>(h, ) : G ----t Z 

and if> : H EB G ----t Z is a bilinear form. Moreover 

if>(h, ) = 0::::} h = 0, 

hence if> is not degenerate. Let (!: be the set of all N E 1.13 subject to the conditions 
(i) G,H,if> EN 

(ii) X+ 1 ~ N 
(iii) N is an elementary submodel of (fl(A), €). 
(iv) If r = otp (N n A) is the order type of N n A, then (N, €) is isomorphic to 

( fJ ( T), €.)), say by an isomorphism j N. 
By supercompactness (!:ED, hence(!: f 0 and we can choose NEt!:. By Lo§'s 

theorem ([14, p. 47, Theorem 5.2] the desired properties of fJ(A) carry overtoN. 
Now define 

H' = HnN and G' = GnN. 
From x + 1 ~ N E P and X+ 1 ~ A1 = G, A+ 1 ~ A2 = H follows X+ 1 ~ H' and 
x + 1 ~ G', hence 

and by (iii) 

(3.1) 

X~ IH'I <"'and X~ IG'I <"' 

H' ~ H, G' ~ G are subgroups. 
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Similarly, if <P' = <P I H' EB G', then 

<P' : H' EB G' ----. Z 

and from (iii) and <P' we have 
H' = G'*. 

We are ready to use an old trick from functional analysis to show that H' is also a 
summand of H. Let 

G'j_ ={hE H: <P(h,G') = 0} where <P(h,G') = {<P(h,g): g E G'}. 

Clearly G'j_ ~ H, and consider any hE H' n G'j_. We have <P(h, G') = 0 and from 
h E H' follows that in the submodel N the following holds 

N f= (Vx E G'N -----> <P(h, x) = 0). 

By (iii) we also have 

(SJ(-\),~:) f= (Vx E G-----> <P(h,x) = 0), 

hence <P(h, ) = 0 and h = 0 because <Pis not degenerate. We conclude 

H' n G'j_ = 0, G'j_ ~ H. 

In order to show 

(3.2) H' + G'j_ = H 

we consider any hE H = G* and let ¢ = <P(h, ) I G' which belongs toG'*. From 
(3.1) we find h' E H' such that <P(h', ) = ¢. If g' E G' we have 

<P(h- h',g') = <P(h,g')- <P(h',g') = g'¢- g'¢ = 0, 

hence h - h' E G'j_ and h E H' + G'j_, and (3.2) follows. Altogether we see that 
H' is a summand of H of the right size. 0 
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