
Spectra of Monadic Second-Order Formulas
with One Unary Function

Yuri Gurevich
Microsoft Research
One Microsoft Way

Redmond, WA 98052

Saharon Shelah∗

Mathematics, Hebrew University
Givat Ram, 91904 Jerusalem

and Math. Dept, Rutgers University
New Brunswick, NJ 08903

Abstract

We establish the eventual periodicity of the spectrum of any
monadic second-order formula where
(i) all relation symbols, except equality, are unary, and
(ii) there is only one function symbol and that symbol is
unary.

1 Introduction

Durand, Fagin and Loescher established the eventual peri-
odicity of the spectrum of any monadic first-order formula
with one unary function symbol [3]. (They also discuss the
cases of two unary function symbols and one binary func-
tion symbol; in either of those cases the spectra are more
complicated.) In this paper, we are interested in monadic
second-order logic (MSO).

Let us recall the relevant definitions. The spectrum of a first-
order or second-order formula is the set of the cardinalities
of its finite models. A set S of natural numbers is eventually
periodic if there exist natural numbers θ and p > 0 such that
for every n ≥ θ, if S contains n then it contains n+ p.

Monadic first-order formulas with one unary function sym-
bol are first-order formulas subject to the following two re-
strictions:

• All predicate symbols, with the exception of equality,
are unary.

• There is only one function symbol. It is unary.
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MSO formulas with one unary function symbol are defined
similarly.

Upon learning the result of Durand, Fagin and Loescher, we
noticed that the monadic second-order composition method
gives the following generalization.

Theorem 1.1 (Main Theorem) The spectrum of any
monadic second-order formula with one unary function
symbol is eventually periodic.

Durand, Fagin and Loescher kindly mentioned our gener-
alization at the end of their paper. For no reason, a proof
sketch of the generalization was lying idle all these years.
In this paper we prove the Main Theorem. Additional re-
sults will appear in [17]. We give also a direct proof of
the decidability of the finite satisfiability of MSO formulas
with one unary function symbol. The fact of decidability is
known [12, 1].

The paper is organized as follows. Section 2 presents the
basics of the composition method. Sections 3–6 prepare the
ground for the proof of the Main Theorem; the proof itself
is given in Section 7. Specifically, Section 3 gives simple
facts on eventual periodicity, Section 4 introduces structures
of relevance to the proof of the Main Theorem, Section 5
reduces the Main Theorem to a similar theorem where the
role of formulas is played by special finite fragments of the
theories of function graphs, and Section 6 introduces the
relevant operations on the relevant structures. The direct
decidability result is proven in Section 8.

2 The Composition Method

Under certain circumstances, a composition of structures
gives rise to a composition of their appropriately defined
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types. That observation lies in the heart of the composition
method. We explain a simple version of the method that
goes a long way and that is sufficient for our purposes in this
paper. At the end, we mention some further developments.
Lower your expectation of the feasibility of algorithms.

Let L be a purely relational language of finite vocabulary,
X,Y be models for L, and x1, x2, . . . (resp. y1, y2, . . .) be
elements of X (resp. elements of Y ). In the running ex-
ample of this section and in the rest of this paper, X and
Y are finite, but in general they may be infinite. We write
ϕ(v1, . . . , vj) to indicate that ϕ is a formula with free vari-
ables among v1, . . . , vj .

Definition 2.1 The 0-theory th0(X,x1, . . . , xj) is
the set of atomic formulas ϕ(v1, . . . , vj) such that
X |= ϕ(x1, . . . , xj), and the (d + 1)-theory
thd+1(X,x1, . . . , xj) is the set of d-theories
thd(X,x1, . . . , xj , xj+1) where xj+1 ranges over the
elements of X . �

Let Atom(j) be the set of atomic formulas with variables
among v1, . . . , vj , Box0(j) be the powerset of Atom(j),
and Boxd+1(j) be the powerset of Boxd(j + 1). Every
Boxd(j) is hereditarily finite.

Lemma 2.2 Every d-theory thd(X,x1, . . . , xj) belongs to
Boxd(j).

Proof Induction on d. �

It follows that every thd(X,x1, . . . , xj) is finite. A bound
on the cardinality of thd(X,x1, . . . , xj) is computable from
d and j.

The d-theory thd(X,x1, . . . , xj) is closely associated with
the set of formulas ϕ(v1, . . . , vj) of quantifier depth d such
thatX |= ϕ(x1, . . . , xj).

Lemma 2.3 For every t ∈ Boxd(j), there is a formula
εt(v1, . . . , vj) of quantifier depth d such that the following
hold for allX and all x1, . . . , xj .

1. thd(X,x1, . . . , xj) = t if and only if X |=
εt(x1, . . . , xj).

2. If thd(X,x1, . . . , xj) = t then, for every formula ϕ =
ϕ(v1, . . . , vj) of quantifier depth ≤ d, we have

• if X |= ϕ(x1, . . . , xj) then εt implies ϕ, and

• if X |= ¬ϕ(x1, . . . , xj) then εt implies ¬ϕ.

Proof Both claims are proved by induction on d, and both
times the case d = 0 is obvious. Let d = c+ 1 > 0.

1. The desired εt(v1, . . . , vj) is the conjunction of for-
mulas ∃vj+1εs(v1, . . . , vj+1) where s ∈ t and formulas
¬∃vj+1εs(v1, . . . , vj+1) where s ∈ Boxc(j + 1) − t.

2. Assume that thd(X,x1, . . . , xj) = t. Every formula
ϕ = ϕ(v1, . . . , vj) of quantifier depth ≤ d is equivalent to
a Boolean combination of formulas ∃vj+1ϕi(v1, . . . , vj+1)
where the quantifier depth of every ϕi is ≤ c. Therefore it
suffices to prove the second claim for the case when ϕ has
the form ∃vj+1ψ(v1, . . . , vj+1).

First suppose that X |= ϕ(x1, . . . , xj). Then there
exists xj+1 such that X |= ψ(x1, . . . , xj+1). Let
s = thc(X,x1, . . . , xj+1). Clearly, s ∈ t. By
the induction hypothesis, εs implies ψ. It follows that
∃vj+1εs(v1, . . . , vj+1) implies ϕ, and therefore εt implies
ϕ.

Second suppose that X |= ¬ϕ(x1, . . . , xj). By contra-
diction suppose that εt is consistent with ϕ. Then there
exist Y and y1, . . . , yj+1 such that Y |= εt(y1, . . . , yj) ∧
ψ(y1, . . . , yj+1). By the first claim, thd(Y, y1, . . . , yj) = t,
and so the c-theory s = thc(Y, y1, . . . , yj+1) belongs to
t. By the induction hypothesis, εs implies ψ. Hence
∃vj+1εs implies ϕ. Since s ∈ t = thd(X,x1, . . . , xj),
we have X |= εs(x1, . . . , xj , xj+1) for some xj+1. Hence
X |= ϕ(x1, . . . , xj) which is impossible. �

Corollary 2.4 There is an algorithm that, given a d-theory
thd(X) and a sentence ϕ of quantifier depth d decides
whetherX |= ϕ.

Corollary 2.5 For every sentence ϕ of quantifier depth d,
there are d-theories t1, . . . , tk such that any X |= ϕ if and
only if thd(X) ∈ {t1, . . . , tk}.

There is a close connection between finite theories and
Ehrenfeucht-Fraı̈ssé games.

Lemma 2.6 The following are equivalent:

1. thd(X,x1, . . . , xj) = thd(Y, y1, . . . , yj),

2. the duplicator has a winning strategy in
EF d((X,x1, . . . , xj), (Y, y1, . . . , yj)).

Proof Induction on d. The case d = 0 is obvious. Sup-
pose that d = c+ 1 > 0.
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1→2. Without loss of generality, on the first step, the
spoiler chooses some element xj+1 in X . The c-theory
thc(x1, . . . , xj+1) belongs to thd(X,x1, . . . , xj) and there-
fore to thd(Y, y1, . . . , yj). So the duplicator can find an
element yj+1 ∈ Y such that thc(X,x1, . . . , xj+1) =
thc(Y, y1, . . . , yj+1). In the rest of the game, the duplica-
tor uses the winning strategy guaranteed by the induction
hypothesis.

2→1. By the virtue of symmetry, it suffices to prove that
every member thc(X,x1, . . . , xj+1) of thd(X,x1, . . . , xj)
equals some member thc(Y, y1, . . . , yj+1)) of
thd(Y, y1, . . . , yj)). Consider a play where the
spoiler starts by choosing an element xj+1 in X
and the duplicator chooses some yj+1 in Y such
that he has a winning strategy in the remainder
game EF d((X,x1, . . . , xj+1), (Y, y1, . . . , yj+1)). By
the induction hypothesis, thc(X,x1, . . . , xj+1) =
thc(Y, y1, . . . , yj+1)). �

To illustrate the most basic version of the composition
method, we give a simple example. Later in this paper we
define a finite forest as a finite acyclic directed graph, where
every vertex has at most one outgoing edge, together with a
unary relation Orphan that consists of the vertices without
outgoing edges, the orphans. (Actually we will use finite
forests that may be endowed with additional unary relations,
but for now let’s forgo that expansion.)

Every finite forest is obtained from a singleton forest by
means of the disjoint union operationX + Y and the unary
operation X ′ that attaches a root to the given forest X and
thus turns it into a tree.

Lemma 2.7

1. The d-theory of thd(X+Y ) is uniquely determined by
the d-theories thd(X) and thd(Y ).

2. The d-theory of thd(X ′) is uniquely determined by the
d-theory thd(X).

Proof Use Ehrenfeucht-Fraı̈ssé games (and Lemma 2.6).
�

This lemma can be called the first-order composition lemma
for finite forests. It allows us to define the operations
thd(X)+thd(Y ) = thd(X+Y ) and (thd(X))′ = thd(X ′)
on d-theories. Both operations on d-theories are com-
putable.

Proposition 2.8 The first-order theory of finite forests is
decidable.

Proof By Corollary 2.4, it suffices to show that the set
Sd of the d-theories of finite forests is computable. Every
member of Sd is obtained from the d-theory of the singleton
forest by means of the two operations on d-theories. Since
Sd is finite, this allows us to compute Sd. �

Now we turn to MSO logic. It is convenient to represent
second-order structures as special first-order structures.

Definition 2.9 The Boolean associate B(X) of a structure
X is the atomic Boolean algebra whose atoms are the ele-
ments of X together with

• the relations of X as relations of B(X), and

• an additional unary relation Atomic that consists of the
atoms. �

Definition 2.10 The MSO d-theory Thd(X) is the first-
order d-theory thd(B(X)). �

Remark 2.11 The definition of first-order d-theories above
had a prerequisite: the first-order language is purely rela-
tional. The point of the prerequisite is to ensure that ev-
ery Box0(j) is finite. In the presence of function symbols,
the set Atom(1) is already infinite. The prerequisite can
be waived for Boolean associates because, in the case of
Boolean algebras, we have only finitely many inequivalent
terms. But then the definition of Atom(j) should be mod-
ified so that only terms in an appropriate normal form are
used in atomic formulas. �

Our example generalizes to MSO.

Lemma 2.12

1. Thd(X + Y ) is uniquely determined by Thd(X) and
Thd(Y ).

2. Thd(X ′) is uniquely determined by Thd(X).

This lemma can be called the MSO composition lemma for
finite forests. It allows us to define the operationsThd(X)+
Thd(Y ) = Thd(X + Y ) and (Thd(X))′ = Thd(X ′) on
d-theories. Both operations on MSO d-theories are com-
putable.

Proposition 2.8 and its proof generalize to the MSO case
but we give an alternative proof that bounds the size of the
minimal forest with a given MSO d-theory.
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Proposition 2.13 There is a computable function F (d)
such that, for every d and every finite forest X , there is a
forest Y of cardinality ≤ F (d) with Thd(X) = Thd(Y ).

Proof Given a number d, build a finite sequence S =
(X1, X2, . . .) of finite forests as follows. X1 is the singleton
forest. Suppose thatX1, . . . , Xk have been constructed and
let i, j range over {1, . . . , k}. If there is a finite forest Y of
the formX ′

i orXi +Xj such that Thd(Y ) differs from any
Thd(Xi), choose any such Y and setXk+1 = Y ; otherwise
halt.

The sequence S contains the MSO d-theory of every finite
forest. The length of S is bounded by the cardinality of
the Boxd(0) for the first-order language of the Boolean as-
sociates of finite forests. The cardinality of any Xk+1 is
bounded by the double of the maximal cardinality of the
forests in X1, . . . , Xk. This gives the desired F (d). �

The proposition implies that the MSO theory of finite
forests is decidable. The decision algorithm is non-
elementary, but there is no elementary algorithm for that de-
cision problem. This follows from Stockmeyer’s result that
the decision problem for the first-order theory of words is
known to be non-elementary [18, 14]. Words can be seen as
special trees with additional unary relations. The order rela-
tion (on the positions) which is a given in Stockmeyer’s the-
orem is MSO definable from the successor relation which is
a given in our case.

Remark 2.14 One subtlety of the composition method is
that it is sensitive to the precise choice of language. We
explain this on the example of finite forests where, to sim-
plify notation, we ignore the difference between subsets of
a forestX and the elements of B(X).

We mentioned above that Thd(X ′) is determined by
Thd(X). Let r be the root of X ′, let R be the single-
ton forest containing r, let A1, . . . , Aj be arbitrary sub-
sets of X ′, let Bi = Ai ∩ {r}, and let Ci = Ai − Bi.
More generally, Thd(X ′, A1, . . . , Aj) is determined by
Thd(R,B1, . . . , Bj) and Thd(X,C1, . . . , Cj). But this
claim of unique determination fails if we abandon the unary
relation Orphan which might have seemed to play no role
until now. Orphan is needed already in the case d = 0 and
j ≥ 2. Indeed, let x be any element of X , A1 = B1 = {r}
and A2 = C2 = {x}. In order to determine whether there
is an edge from x to r, we need to know whether x is an
orphan in X .

This little exercise shows also another subtlety of the
method. Notice how neatly each set Ai splits into subsets
Bi and Ci. It would be less convenient to work with first-
order d-theories thd(X,x1, . . . , xj) instead of second-order

d-theories Thd(X,A1, . . . , Aj). Elements are not split-
table. The method fits MSO better than first-order logic.
�

The origins of the composition method can be traced back
to the Feferman-Vaught article on “the first-order properties
of products of algebraic systems” [4]. Läuchli introduced d-
theories in the context of weak monadic second-order logic;
he proved that the weak MSO theory of linear order is de-
cidable [11]. (The weak MSO is the version of MSO where
second-order quantification is restricted to finite sets.)

Shelah generalized the method to full MSO and used it in
particular to prove in a uniform way all known decidabil-
ity results for the MSO theories of various classes of linear
orders [15]. He introduced (k1, . . . , kd)-theories compris-
ing sentences whose prenex form has d blocks of quanti-
fiers: k1 quantifiers of one kind (say, existential quantifiers),
followed by k2 quantifiers of the other kind, followed by
k3 quantifiers of the first kind, and so on. A d-theory is
a (k1, . . . , kd)-theory where every ki = 1. In the theory
of linear orders, the main composition lemma is about the
addition (that is concatenation) of linear orders. In [15],
an important role was played by two generalizations of the
classical Ramsey theorem (one for dense orders and another
for uncountable well orderings) that take advantage of the
fact that, for each d, the d-theories of linear orders together
with the derived addition operation form a semigroup.

MSO logic is arguably the right paradigm for the compo-
sition method. Composition theorems reduce the theory of
a composition of structures to a composition of their finite
theories, but — even in the case of first-order composition
theorems — the reduction depends on the MSO theory of
the index structure. MSO composition theorems reduce the
MSO (k1, . . . , kd)-theory of a composition of structures to
some MSO (�1, . . . , �d)-theory of the index structure with
disjoint unary relations t where t(i) means that t is the
(k1, . . . , kd)-theory of the ith component.

The authors used the method on numerous occasions. Arti-
cle [5] lays a technical foundation for more advanced appli-
cations of the method. Section 3 of the survey [6] describes
the composition method (calling it the model-theoretic de-
cidability technique) and Section 5 mentions various appli-
cations of the method. See also the dissertation [20] and
exposition [19]. A recent sophisticated use of the composi-
tion method over finite structures is found in [16].

The power of the method is under-appreciated. Throughout
the years we saw various problems that could be solved by
the composition method. This claim was put to the test a
couple of years ago when Alexander Rabinovich posed a
conjecture to the first coauthor who insisted that the method
will confirm or refute the conjecture. The conjecture was
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confirmed [7], and Rabinovich went on to use the method
[13].

The present paper uses the simple form of the composition
method explained and exemplified above.

Remark 2.15 One of the reviewers asked how does the
composition method compare with the automata-theoretic
method. The application domains of the two methods inter-
sect. For example, the decidability of S1S, established first
by means of Büchi automata [2], has also a simple model-
theoretic proof [15, 6]. Rabin used automata to prove the
decidability of the MSO theory, known as S2S, of the infi-
nite binary tree [12, 1]. It is not clear whether the composi-
tion theory can be used for the purpose. One of the conse-
quences of Rabin’s result is the decidability of the MSO the-
ory of rational order. This consequence was proved, more
directly and naturally, by the composition method [18].
This alternative proof generalizes to a class of dense linear
orders (so-called short modest linear orders) [8] to which
the automata method does not seem to apply. At least on
one occasion, the two methods were used in a complimen-
tary way [9]. The automata method has been used much
more for establishing complexity results. Lemma 8.1 is one
modest example of the use of the composition method for
that purpose. �

The composition method is inherently model-theoretic, like
that of Ehrenfeucht-Fraı̈ssé; it may be a useful addition to
your toolbox.

3 Eventually Periodic Sets

Definition 3.1 A set S of natural numbers is eventually pe-
riodic if there exist natural numbers p > 0 (a period of S)
and θ (a p-threshold for S) such that n ∈ S implies n+ p ∈
S for all n > θ. �

The definition of eventual periodicity in [3] is similar ex-
cept that “implies” is replaced with “is equivalent to”. The
following lemma shows that this alteration makes no real
difference.

Lemma 3.2 Assume that a set S is eventually periodic with
a period p and a p-threshold θ. There exists a natural num-
ber θ′ such that

n ∈ S is equivalent to n+ p ∈ S for all n ≥ θ′.

The number θ′ could be called a strict p-threshold for S.

Proof The lemma is trivial if S is finite, so we assume
that S is infinite. For each i = 0, . . . , p− 1, let

Ai = {n ∈ S : n ≥ θ and n = i mod p}.

The desired strict p-threshold θ′ = max{min(Ai) : Ai �=
∅}. �

Corollary 3.3
Every eventually periodic set S has a least period, and the
least period divides any other period of S.

Proof It suffices to prove that the greatest common di-
visor p of periods p1, p2 is a period. Let θi be a strict pi-
threshold and θ = max(θ1, θ2). We show that θ is a p-
threshold for S.

Since p = gcd(p1, p2), there exist integers a1, a2 such that
a1p1 + a2p2 = p. Without loss of generality, a1 > 0 and
a2 < 0. Suppose that n ≥ θ and n ∈ S. Since θ1 is a p1-
threshold, n + a1p1 ∈ S. Since θ2 is a strict p2-threshold,
n+ p = (n+ a1p1) − |a2| · p2 ∈ S. �

Recall that an arithmetic progression is a set of integers of
the form

{b+ jp : j = 0, 1, . . .}.
where p > 0.

Lemma 3.4 ([3]) A set of natural numbers is eventually pe-
riodic if and only if it is a finite union of arithmetic progres-
sions and singleton sets.

Corollary 3.5 The union of finitely many eventually peri-
odic sets is eventually periodic.

Lemma 3.6 If the sets S1, . . . , Sm are eventually periodic
then so is the set

{n1 + · · · + nm : every ni ∈ Si}

Proof Suppose that Si is eventually periodic with period
pi and pi-threshold θi, and let p be the least common multi-
ple of p1, . . . , pm. Then S is eventually periodic with period
p and a p-threshold θ = θ1 + · · · θm. Indeed suppose that
n ∈ S and n ≥ θ. Then n = n1 + · · ·+nm where ni ∈ Si.
There is an index i such that ni ≥ θi. We have

n+p = n1+· · ·+ni−1+(ni+p)+ni+1+· · ·+nm ∈ S. �
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4 Structures of Interest

In the rest of the paper, all structures are finite. It is often
convenient to view unary relations as sets.

Definition 4.1 A partial-function graph is a directed graph
where every vertex has at most one outgoing edge together
with the unary relation Orphan that consists of the vertices
without outgoing edges. The expression “partial-function
graph” may be abbreviated to “PF-graph”. �

The relation Orphan is added for technical reasons; we saw
already in Remark 2.14 that the composition method is sen-
sitive to the language. Orphan allows us to express the ab-
sence of orphans in a quantifier-free way: Orphan = ∅.

Definition 4.2 A function graph is a PF-graph where every
vertex has exactly one outgoing edge. �

The edge relation of a PF-graph will be denoted by E. If
E(x, y) holds (so that there is an edge from x to y), then y
is the parent of x, and x is a child of y. Children of the same
parent are siblings. A vertex without a parent is an orphan.

A nonempty sequence x0, . . . , xn of vertices such that
E(xi, xi+1) holds for every i = 0, . . . , n − 1 is a path of
length n from x0 to xn. A path is trivial if its length is zero;
otherwise the path is proper. If there is a path from x to y
then x is a descendant of y and y is an ancestor of x. If there
is a proper path from x to y then x is a proper descendant
of y and y is a proper ancestor of x.

An n-vertex substructure of a PF-graph is a cycle if the n
vertices form a proper path x0, . . . , xn−1, x0. A vertex is
cyclic if it belongs to a cycle. A PF-graph without a cycle is
acyclic.

A colored PF-graph X is a PF-graph together with a fi-
nite collection of unary relations, the colors. The set of the
names of the unary relations is the palette ofX . It is conve-
nient to think of colors as sets of vertices.

Proviso 4.3 In the rest of this paper, a PF-graph is always
finite and colored.

A PF-graph is connected if every two vertices have a com-
mon ancestor. A connected PF-graph has at most one or-
phan.

Definition 4.4 A tree is a connected PF-graph with an or-
phan; the orphan is the root of the tree. �

A connected function graph is a connected PF-graph with-
out an orphan. It has a unique cycle and is formed by the
cyclic vertices and their descendants.

In any PF-graph, the relation “x and y have a common an-
cestor” is an equivalence relation. It partitions the PF-graph
into connected components.

Definition 4.5 A forest is an acyclic PF-graph. �

A PF-graph X is a forest if and only if every component
of X is a tree if and only if every component of X has an
orphan. A PF-graph X is a function graph if and only if no
component of it has an orphan.

5 Finite Theories

An MSO PF-graph formula χ is an MSO formula in the
vocabulary of PF-graphs. The spectrum of χ is the set of
the cardinalities of PF-graphs satisfying χ.

Lemma 5.1 For every MSO formula ϕ with one unary
function symbol, there exists an MSO PF-graph formula χ
such that (i) every PF-graph satisfying χ is a function graph
and (ii) the spectrum of ϕ equals the spectrum of χ.

Proof We start with a construction. First, replace in ϕ the
unary function with its graph. For example, a subformula
f(x) = y becomes E(x, y), and a subformula f(f(x)) =
f(y) may become

∃x′∃z(E(x, x′) ∧ E(x′, z) ∧E(y, z))

Second, augment the resulting PF-graph formula with a
conjunct Orphan = ∅. This gives the desired χ.

Claim (i) is obvious. To prove (ii), notice that every model
X of ϕ gives rise to a function graph Y satisfying χ such
that |X | = |Y |; in fact, the underlying set of Y is that ofX .
Let ϕ′ be the formula obtained from χ by replacing every
atomic formula E(x, y) with equation f(x) = y; clearly
ϕ′ is equivalent to ϕ. Every function graph Y satisfying χ
gives rise to a modelX of ϕ′, and therefore of ϕ, such that
|Y | = |X |; in fact, the underlying set of X is that of Y . �

Fix an arbitrary palette π.

Proviso 5.2 In the rest of the paper, PF-graphs are of
palette π. Accordingly, MSO PF-graph formulas use only
colors of palette π.
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According to Definition 2.9, the Boolean associate B(X)
of a PF-graph X is the finite Boolean algebra with the ver-
tices ofX as the atoms together with the edge relation ofX
as a binary relation of B(X), the colors ofX as unary rela-
tions of B(X), and an additional unary relation Atomic that
consists of the atoms. Let Υ be the vocabulary of B(X).
Notice that the vocabulary Υ does not depend on the choice
of X .

Lemma 5.3 For every MSO PF-graph formula χ, there is
a first-order Υ-formula ψ such that, for every PF-graphX ,
we have

X |= χ if and only if B(X) |= ψ

Proof Obvious. �

According to Definition 2.10, the MSO d-theory Thd(X)
of a PF-graph X is the first-order d-theory thd(B(X)) of
the Boolean associate B(X) of X . In the rest of the paper,
we deal only with MSO d-theories Thd(X) of PF-graphs
X and never with first-order d-theories thd(X). And so the
d-theory of a PF-graphX will mean Thd(X).

By Lemma 2.6, two PF-graphs X and Y have the same d-
theory if and only if the duplicator has a winning strategy in
the d-step Ehrenfeucht-Fraı̈ssé game EF d(B(X),B(Y )).
Every d-theory t = Thd(X) will be called a finite theory
of PF-graphs of depth d. If X is a function graph then t
contains the formula Orphan = ∅ and so every PF-graph Y
with Thd(Y ) = t is a function graph; in this case we say
that t is a finite theory of function graphs.

Definition 5.4 The spectrum of a finite theory t of PF-
graphs of depth d is the set of the cardinalities of the PF-
graphs X with Thd(X) = t. The spectrum of a first-order
Υ-formula ψ is the set of the cardinalities of PF-graphs X
such that B(X) |= ψ. �

Proposition 5.5 In order to prove the Main Theorem, it suf-
fices to prove that the spectrum of any finite theory of func-
tion graphs is eventually periodic.

Proof Assume that the spectrum of any finite theory of
function graphs is eventually periodic, let ϕ be any MSO
formula with one unary function symbol, and let χ be as
in Lemma 5.1. Every PF-graph satisfying χ is a function
graph. It suffices to prove that the spectrum of χ is eventu-
ally periodic.

Let ψ be as in Lemma 5.3. Every PF-graph satisfying χ is
a function graph. It suffices to prove that the spectrum of ψ
is eventually periodic.

Let d be the quantifier depth of ψ. By Corollary 2.5,
there are d-theories t1, . . . , tj of function graphs such that
any function graph X |= ψ if and only if Thd(X) ∈
{t1, . . . , tj}. By Corollary 3.5, the spectrum of ψ of even-
tually periodic. �

Remark 5.6 Since the definable relation Orphan is present
in the vocabulary of PF-graphs, we should be careful with
the notion of a substructure of a PF-graph X . Consider the
following requirement on a subset A of X : for every edge
E(x, y) of X , if A contains x then it contains y. If the
requirement is satisfied then the normal definition of a sub-
structure of X generated by subset A works correctly; oth-
erwise the normal definition does not work correctly. We
will use the notion of substructure only in cases when the
normal definition works. �

6 Composing Graphs and their Theories

Definition 6.1 The sum X + Y of PF-graphs X,Y is the
PF-graph that is the disjoint union of X and Y . �

Every PF-graph is the sum of its connected components.
If X = X1 + · · · + Xm and Y = Y1 + · · · + Yn then
X + Y = X1 + · · · + Xm + Y1 + · · · + Yn. If X,Y are
function graphs then so is X + Y .

If X and Y are disjoint they will be presumed to be sub-
structures of X + Y . If X are Y are not disjoint, one or
both of them should be replaced with isomorphic copies in
some canonic way. (Of course, we are interested in struc-
tures only up to their isomorphism type, so it does not make
any difference how the isomorphic copies are chosen. It is
convenient though to work with structures rather than with
their isomorphism types. In particular, it is convenient that
the components of a PF-graph form a set rather than a mul-
tiset.)

Lemma 6.2 Thd(X + Y ) is uniquely determined by
Thd(X) and Thd(Y ).

Proof Use the Ehrenfeucht-Fraı̈ssé games. �

The lemma justifies the following operation on finite theo-
ries of the same depth.

Definition 6.3 Thd(X) + Thd(Y ) = Thd(X + Y ). �

Obviously the operation is commutative and associative.
For technical reasons, we introduce the notion of dotted PF-
graphs.
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Definition 6.4 A dotted PF-graph (X, a) is a PF-graph X
with a distinguished element a, the dot of (X, a). �

The Boolean associate B(X, a) of (X, a) is the Boolean
associate B(X) of X expanded with a distinguished el-
ement a. The MSO d-theory Thd(X, a) of a dotted PF-
graph (X, a) is the first-order d-theory thd(B(X, a)) of the
Boolean associate of (X, a).

Definition 6.5 Let (X, a) and (Y, b) be dotted PF-graphs.

1. The dotted sum X � (Y, b) is the non-dotted PF-graph
Z obtained from X + Y by making b the parent of
every orphan in X .

2. The dotted sum (X, a) � (Y, b) is the dotted PF-graph
(X � (Y, b), a).

3. The circular sum (X, a)⊕ (Y, b) is the non-dotted PF-
graph Z obtained fromX + Y by making b the parent
of every orphan inX and making a the parent of every
orphan in Y . �

Lemma 6.6

1. Thd(X � (Y, b)) is uniquely determined by Thd(X)
and Thd(Y, b).

2. Thd((X, a) � (Y, b)) is uniquely determined by
Thd(X, a) and Thd(Y, b).

3. Thd((X, a) ⊕ (Y, b)) is uniquely determined by
Thd(X, a) and Thd(Y, b).

Proof Use the Ehrenfeucht-Fraı̈ssé games. �

The lemma justifies the following operations on finite theo-
ries of the same depth.

Definition 6.7 Let (X, a) and (Y, b) be dotted PF-graphs.

1. Thd(X) � Thd(Y, b) = Thd(X � (Y, b))

2. Thd(X, a) � Thd(Y, b) = Thd((X, a) � (Y, b))

3. Thd(X, a) ⊕ Thd(Y, b) = Thd((X, a) ⊕ (Y, b)) �

The second operation is associative; we will use that fact.

7 Proof of the Main Theorem

Let d be an arbitrary natural number. For each d-theory σ
of function graphs, let pσ be the cardinality of the small-
est function graph with d-theory σ. For each d-theory τ
of dotted PF-graphs, let qτ be the cardinality of the smallest
dotted PF-graph with d-theory τ . Let p be the least common
multiple of the numbers pσ and qτ for σ and τ as above. We
prove that the spectrum of any d-theory s of function graphs
is eventually periodic with period p. By Proposition 5.5, this
implies the Main Theorem.

So let s be an arbitrary d-theory of function graphs and let
X be a sufficiently large function graph with d-theory s. We
construct a function graph Y of cardinality |Y | = |X | + p
such that Thd(Y ) = s. The meaning of sufficiently large
will be clarified in the course of the construction. We con-
sider several cases.

Case 1: The number of components of X exceeds the num-
ber of d-theories of function graphs.

Let X1, . . . , Xm be the components of X in some order,
and let Yi be the sum X1 + · · · + Xi of the first i compo-
nents. We use the fact that the sum operation on PF-graphs
is associative. By the definition of Case 1, there exist i < j
such that Thd(Yi) = Thd(Yj). Let t = Thd(Yi), u =
Thd(Xi+1 + · · ·+Xj), and v = Thd(Xj+1 + · · ·+Xm).
Then t+u = t and t+v = s. Furthermore, t+k ·u = t for
every positive k. By the definition of pu, there is a function
graph Z such that Thd(Z) = u and |Z| = pu. To obtain
the desired Y , augmentX with k = p/pu components iso-
morphic to Z . Clearly, |Y | = |X | + k · pu = |X | + p. The
order of the components does not matter of course but it is
convenient to imagine that the new components come after
Xj and beforeXj+1. Then

Thd(Y ) = t+ k · u+ v = t+ v = s

Case 2: X has a vertex a such that the number of noncyclic
children of a exceeds the number of d-theories of forests.

Each noncyclic child y of a, together with its descendants,
forms a tree; let us call it Ty . Let F be the forest formed
by the trees Ty, so that the number of the components of
F exceeds the number of the d-theories for forests. By the
argument of Case 1, applied to forests rather than function
graphs, there exists a forest G of cardinality |G| = |F | + p
such that Thd(G) = Thd(F ).

Let Q be the function graph obtained from X by removing
the trees Ty so that X = F � (Q, a). The desired function
graph Y = G� (Q, a).

Case 3: X has a cycle of cardinality m that exceeds the
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number of d-theories of dotted trees.

Arrange the vertices of the cycle into a path
a0, . . . , am−1, a0. Let Ti be the tree formed by the
vertex ai and its non-cyclic descendants. We use
the fact that the dotted sum operation on dotted PF-
graphs is associative. For each i ∈ {1, . . . ,m}, let
(Xi, a0) = (T0, a0) � · · · � (Ti−1, ai−1), so that (Xi, a0)
is a dotted tree with root ai−1.

By the definition of Case 3, there exist i < j such that
Thd(Xi, a0) = Thd(Xj , a0). Let (U, ai) = (Ti, ai)�· · ·�
(Tj−1, aj−1) and let t = Thd(Xi, a0), u = Thd(U, ai) so
that t = t � u. Let V be the PF-graph obtained from X
by removing the tree Xj . (V, aj) is a dotted tree with root
am−1, andX = (Xj , a0)⊕ (V, aj). Let v = Thd(V, aj) so
that s = t⊕ v.

There exists a dotted tree (Z1, c1) such that Thd(Z1, c1) =
u and |Z1| = qu. Let (Z, c) be the dotted sum of p/qu
copies of (Z1, c1) so that |Z| = p. The desired Y =(
(Xj , a0) � (Z, c)

) ⊕ (V, aj). Clearly, |Y | = |X | + p.
Since t� u = t and t⊕ v = s, we have

Thd(Y ) =
(
t� (p/qu) · u) ⊕ v = t⊕ v = s

Case 4: X has a path a0, . . . , am−1 composed of non-cyclic
elements such that m exceeds the number of d-theories of
trees.

This case is similar to Case 3. Trees Ti and dotted trees
(Xi, a0) are defined as above but this time we are interested
in undotted trees Xi. By the definition of Case 4, there
exist i < j such that Thd(Xi) = Thd(Xj). Let (U, ai) =
(Ti, ai) � · · · � (Tj−1, aj−1) and let t = Thd(Xi), u =
Thd(U, ai) so that t = t � u. Let V be the function graph
obtained from X by removing the tree Xj . Clearly X =
Xj � (V, aj). Let v = Thd(V, aj) so that s = t� v.

As in Case 3, there is a dotted tree (Z, c) such that |Z| = p
and t � Thd(Z, c) = t. The desired Y = Xj � (Z, c) �
(V, aj). Clearly, |Y | = |X | + p. Further,

Thd(Y ) = (t� Thd(Z, c)) � v = t� v = s

This completes Case 4.

Finally, let K be the class of function graphsX that do not
fall into any of the four cases. Since X does not fall into
Case 1, it has only so many components. Since X does not
fall into Case 3, the cycle of any component ofX is only so
long. Since X does not fall into cases 2 and 4, every cyclic
element ofX has only so many descendants. It follows that
there is a bound θ on the cardinality of any member of K .
Thus, the spectrum of s is eventually periodic with period p
and p-threshold θ + 1. The main theorem is proved.

Remark 7.1 In the original proof sketch, we used the finite
Ramsey theorem in Cases 3 and 4. Writing up the proof we
realized that these cases are similar to Case 1 where only
the associativity of the sum operation was used. �

8 Finite Satisfiability

Lemma 8.1 There exists a computable function F (d) such
that, for every d and every function graphX , there is a func-
tion graph Y of cardinality ≤ F (d) such that Thd(X) =
Thd(Y ).

Proof The proof is similar to the proof of Proposi-
tion 2.13. For the reader’s convenience, we make it indepen-
dent from Section 7. All we have to do is to show that every
function graph can be constructed from singleton function
graphs by means of the tree operations of Section 6. Unfor-
tunately this is not quite true. We need to revise two aspects
of this plan.

First, it will be easier to deal with a larger class K of fi-
nite structures: function graphs, forests, dotted forests and
singleton dotted function graphs.

Second, we need to extend Definitions 6.1 and 6.5.

Definition 8.2 Let (X, a) and (Y, b) be dotted PF-graphs.

1. X + (Y, b) = ((X + Y ), b).

2. (Y, b) �X = ((X � (Y, b)), b).

For any d, the d-theories Thd(X+(Y, b)) and Thd((Y, b)�
X) are uniquely determined by Thd(X) and Thd(Y, b).
Now we can carry out our plan.

Call a K structure good if it is obtained from singleton K
structures by means of the tree operations. It suffices to
prove that all K structures are good. By contradiction as-
sume that there is a bad K structure and let X be a bad K
structure of minimal cardinality. Clearly X cannot be sin-
gleton. To get the desired contradiction, we show that X is a
composition of K structures of smaller cardinality. Clearly
X is connected; otherwise it is the sum of its components.
We have three cases.

1. X is a function graph X . The cyclic elements of X
form a path a0, . . . , am−1, a0. If m = 1, so that there is a
unique cyclic element, thenX = Y �(Z, a0) where Y is the
forest of the non-cyclic elements ofX andZ is the singleton
function graph containing a0. So m > 1. Let Y be the tree
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formed by a0 and its non-cyclic descendants, and let Z be
the remaining part of X . ThenX = (Y, a0) ⊕ (Z, a1).

2. X is a tree X . Let b be the root of X , Y be the forest of
the non-root elements of X , and Z be the singleton forest
formed by b. ThenX = Y � (Z, b).

3. X is a dotted tree (X, a). Let b be the root ofX , Y be the
forest of the non-root elements ofX and Z be the singleton
forest formed by b. If a = b then (X, a) = (Z, a) � Y .
Otherwise (X, a) = (Y, a) � (Z, b) where b is the root of
X . �

Theorem 8.3 The finite satisfiability problem for MSO for-
mulas with one unary function symbol is decidable.

Proof Use Lemma 5.1 and the lemma above. �
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