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Abstract. Suppose that κ = cf(κ), λ > cf(λ) = κ+ and λ = λκ. We prove

that there exist a sequence 〈Bi : i < κ〉 of Boolean algebras and an ultrafilter

D over κ so that λ =
∏
i<κ

Depth+(Bi)/D < Depth+(
∏
i<κ

Bi/D) = λ+. An

identical result holds also for Length+. The proof is carried in ZFC, and it

holds even above large cardinals.

1. Introduction

The monograph of Monk, [9], lists many cardinal invariants on Boolean alge-

bras. One of them is called Depth, and it concerns with well ordered subsets of

Boolean algebras. But there are two variations of this invariant, as can be seen

from the following:

Definition 1.1. Depth and Depth+ of Boolean algebras.

Let B be a Boolean Algebra.

(ℵ) Depth(B) = sup{θ : ∃b̄ = (bγ : γ < θ), increasing sequence in B}.
(i) Depth+(B) = sup{θ+ : ∃b̄ = (bγ : γ < θ), increasing sequence in B}.

Another invariant is the Length. Again, we have two variations:

Definition 1.2. Length and Length+ of Boolean algebras.

Let B be a Boolean Algebra.

(ℵ) Length(B) = sup{θ : ∃A ⊆ B, |A| = θ such that A is linearly-ordered by

<B}.
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954 SHIMON GARTI AND SAHARON SHELAH

(i) Length+(B) = sup{θ+ : ∃A ⊆ B, |A| = θ such that A is linearly-ordered

by <B}.

Take a look at the definitions of Depth and Depth+. At first glance it seems

that the difference between these two variants has a technical nature. The theme

of this paper is to show that the difference is important, and the ‘correct’ definition

should be Depth+.

Let us consider a Boolean algebra B, such that Depth(B) is a limit cardinal λ.

It might happen that λ is not attained (i.e., there is a chain of length θ for every

θ < λ in B, but no chain of length λ), and it might happen that λ is attained (i.e.,

there is a chain of length λ in B). In both cases, Depth(B) = λ. On the other

hand, Depth+(B) = λ in the first scene, but Depth+(B) = λ+ in the second. The

conclusion is that Depth is less informative than Depth+.

The little example above is very simple, but the same phenomenon reflects in

other related problems, including the problem of ultraproducts. In this paper we

deal with this construction. Let us try to sketch the background and history of

the problem.

Suppose inv is any cardinal invariant on Boolean algebras. Given a sequence

〈Bi : i < κ〉 of Boolean algebras and an ultrafilter D on κ, we can walk in two

courses. In the algebraic route we define a new Boolean algebra B =
∏
i<κ

Bi/D.

Having the algebra B, we compute inv(B). In the set theoretical route we produce

a sequence of cardinals, 〈inv(Bi) : i < κ〉, say θi = inv(Bi) for every i < κ. Now

we compute
∏
i<κ

θi/D.

Monk investigates systematically the relationship between these two routes.

We are looking for constructions which give strict inequalities (in both directions).

We are also interested in the consistency power of these constructions. The most

basic problem here is if such a construction can be carried out in ZFC.

It is consistent with ZFC that
∏
i<κ

Depth(Bi)/D ≤ Depth(
∏
i<κ

Bi/D) for every

ultrafilter D and every sequence 〈Bi : i < κ〉 (see theorem 4.14 in [9]), hence no

ZFC counterexample is available. But what about a ZFC example of the strict

relation
∏
i<κ

Depth(Bi)/D < Depth(
∏
i<κ

Bi/D)? This question is problem number

12 in Monk’s list. A parallel problem arises for the Length invariant (this is

labeled as problem number 22 in the same list).

There is a meaningful difference between these problems. Problem number

12 is still open, and we have some restrictions on the (tentative) existence of a

ZFC construction which gives
∏
i<κ

Depth(Bi)/D < Depth(
∏
i<κ

Bi/D). First, if
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λ > cf(λ) = ℵ0 then such an example is ruled out (see [3] and [4]). Second,

the discrepancy (if exists at all) is limited to one cardinal (under the assumption

λκ = λ, see [2]).

Problem number 22 (about Length) has been solved (in [11], Theorem 15.14).

The gap in [11] is one cardinal, but it seems that a larger gap is possible (and we

hope to prove it in a subsequent work). Likewise, strict inequalities for Length

were forced in [8] under some large cardinals assumptions before the ZFC theorem

has been discovered. So our knowledge about Length is deeper than our knowledge

about Depth (with respect to ultraproducts).

Anyway, using the more informative definitions of Depth+ and Length+ yields

a plenty of ZFC counterexamples, as we shall try to prove in the present work.

We also direct the reader to [5, §4] in which related results are proved.

Our notation is standard. We follow the terminology of [6] and [9] in general.

We shall use the notion of a regular ultrafilter, so we need the following definition:

Definition 1.3. Regular Ultrafilters.

Let D be an ultrafilter on κ.

D is regular if there exists a sequence 〈Wi : i < κ〉, each Wi belongs to [κ]<ℵ0 ,

and {i < κ : ζ ∈Wi} ∈ D for every ζ ∈ κ.

The property of regular ultrafilters to be used in the main theorem is that∏
i<κ

λi/D = λκ, in particular it equals λ if we choose a cardinal which satisfies

λκ = λ as in the theorem below. This concept and basic fact go back to Keisler,

see [1].

We shall make use of the Delta-system lemma. For the general theorem and

proof, one may consult [7]. We need just the simplest form which says that if θε
is an uncountable regular cardinal and Fε is a collection of θε-many finite sets,

then there exists a finite set rε and Iε ∈ [Fε]
θε so that {x, y} ∈ [Iε]

2 ⇒ x∩y = rε.

By abuse of notation, we may assume that rε is a set of natural numbers which

are the indices of the members in the finite sets of Iε. For a club set E let acc(E)

be the set of accumulation points of E, i.e. the set {δ : δ = sup(E ∩ δ)}.
Dealing with Boolean algebras, we quote a specific case of Sikorski’s extension

theorem. A detailed proof can be found in [6]:

Theorem 1.4. Extending homomorphisms.

Let B1 be a Boolean algebra, generated freely by 〈xγ : γ < µ〉 except some set

Γ ⊆ {(xα ≤ xβ) : α, β < µ} of relations between the generators. Assume B2 is

another Boolean algebra, and a function f is defined on 〈xγ : γ < µ〉 into B2 such
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that (xα ≤ xβ) ∈ Γ⇒ f(xα) ≤B2
f(xβ).

Then there is a homomorphism f̂ : B1 → B2 which extends f .

�
Assume 0 < γi < κ+ for every i < κ. One can form the product

∏
i<κ

γi/D,

when D is an ultrafilter on κ. Each member of the product is an equivalence class

of functions in
∏
i<κ

γi. The equivalence relation is defined by D, i.e., f <D g ⇔

{i < κ : f(i) < g(i)} ∈ D. The following is known (see [9] p. 90, and [10] chapter

VI §3):

Theorem 1.5. Increasing chains in ultraproducts.

(a) For every κ ≥ ℵ0 and every uniform ultrafilter D on κ there exists an

increasing chain of length κ+ in κκ/D.

(b) For every κ ≥ ℵ0 and κ+ ≤ ∂ = cf(∂) ≤ 2κ there exists a regular ultrafilter

D on κ so that in κκ/D (and even in ωκ/D) there exists an increasing

chain of length ∂.

�

2. Ultraproducts of Boolean algebras

Let us begin with the following lemma:

Lemma 2.1. The transitivity lemma.

Suppose D is a uniform ultrafilter on κ, ∂ ∈ [κ+, 2κ], 0 < γi < κ+ for every i < κ

and in
∏
i<κ

γi/D there exists an increasing chain of length ∂.

Then one can choose 〈<i: i < κ〉 and 〈gi : i < κ〉 so that:

(a) <i is a partial order on ∂, for every i < κ.

(b) gi is a function from ∂ into γi, satisfies ζ <i ε⇒ gi(ζ) < gi(ε) for every

i < κ.

(c) If ζ < ε < ∂ then {i < κ : ζ <i ε} ∈ D.

Proof. Fix any sequence 〈fε : ε < ∂〉 so that fε ∈
∏
i<κ

γi/D for every ε < ∂, and

ζ < ε < ∂ ⇒ fζ <D fε. Such a sequence exists by the assumptions of the lemma.

For every i < κ, define:

ζ <i ε⇔ (ζ < ε < ∂) ∧ (fζ(i) < fε(i)).

As <i is a partial order over ∂ for every i < κ, part (a) is satisfied. For every

ε < ∂ we define gi(ε) = fε(i), so gi : ∂ → γi for every i < κ. Notice that ζ <i ε
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implies gi(ζ) = fζ(i) < fε(i) = gi(ε), hence part (b) is satisfied as well. Finally,

if ζ < ε < ∂ then fζ <D fε which amounts to {i < κ : ζ <i ε} = {i < κ : fζ(i) <

fε(i)} ∈ D, hence part (c) is established and the proof is accomplished. �

This lemma enables us to define our Boolean algebras in the main theorem. We

shall use the lemma in order to make sure that the order of the Boolean algebras

is transitive. We need another lemma, which says that a special kind of a Delta-

system can be created on a singular cardinal λ with uncountable cofinality:

Lemma 2.2. The singular Delta-system.

Suppose λ > cf(λ) = ∂ > ℵ0, and {uα : α < λ} is a collection of finite sets.

Assume 〈θε : ε < ∂〉 is an increasing continuous sequence of cardinals which

tends to λ so that θ0 = 0, θ1 > ∂ and θε+1 is a regular cardinal for every ε < ∂.

There is a set B ∈ [λ]λ and an unbounded subset T ∈ [∂]∂ such that for every

γ0, γ1 ∈ B, γ0 < γ1 we have the following:

(a) If γ0, γ1 ∈ [θε, θε+1) for some ε ∈ T , then uγ0 ∩ uγ1 = rε for some fixed

finite set rε.

(b) If γ0 ∈ [θε, θε+1), γ1 ∈ [θζ , θζ+1) and ε < ζ are from T , then uγ0∩uγ1 = r∗
for some fixed finite set r∗.

(c) rε0 ∩ rε1 = r∗ for every ε0 < ε1 from T .

(d) |B ∩ [θε, θε+1)| = θε+1, for every ε ∈ T .

Proof. For every ε < ∂ we have θε+1-many members in the collection {uα : α ∈
[θε, θε+1)}, hence there exists Iε ⊆ [θε, θε+1), |Iε| = θε+1 and a fixed finite root

rε so that:

γ0, γ1 ∈ Iε, γ0 < γ1 ⇒ uγ0 ∩ uγ1 = rε.

Notice that Iε satisfies part (a) of the lemma, and consequently every shrinking

of Iε satisfies it. Since ∂ > ℵ0 there exists a set T ∈ [∂]∂ such that {rε : ε ∈ T}
is a Delta-system, and r∗ is the root. This gives us part (c) of the lemma.

For every ε ∈ T let I−ε be the following set:

{γ ∈ Iε : [(uγ \ rε) ∩
⋃
ε∈T

rε 6= ∅]
∨

[(uγ \ rε) ∩
⋃
β<θε

uβ 6= ∅]}.

Clearly, |I−ε | ≤ θε + ∂ for every ε ∈ T . Consequently, |Iε \ I−ε | = θε+1 for every

ε ∈ T , hence B =
⋃
{Iε \ I−ε : ε ∈ T} is a member of [λ]λ. We claim that B is as

required.

Indeed, part (a) holds for every Iε, so also for Iε \ I−ε . Part (c) has been

established, and part (d) follows from the equality |Iε \ I−ε | = θε+1. Part (b)
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follows from removing I−ε (at each ε ∈ T ) which gives r∗ as the intersection of

every pair of members from distinct layers. �

Remark 2.3. A parallel statement can be phrased upon replacing the finite sets

uα by finite sequences γ̄α. We shall use, below, the sequence version (the proof

is the same, but the notation is more cumbersome).

�
We can state now the main result of the paper:

Theorem 2.4. The main theorem.

Assume λ > cf(λ) = ∂, ∂ ∈ [κ+, 2κ] and D is a uniform ultrafilter on κ which

satisfies the conclusion of Theorem 1.5.

Then one can find 〈Bi : i < κ〉 such that:

(ℵ) Depth+(Bi) ≤ λ for every i < κ.

(i) Depth+(B) ≥ λ+ and equality holds if λκ = λ.

Consequently,
∏
i<κ

Depth+(Bi)/D < Depth+(
∏
i<κ

Bi/D).

The idea is to define Boolean algebras which are ‘free enough’ to supply many

homomorphisms on each Boolean algebra. We shall create this algebra such that

if 〈bγ : γ < λ〉 is an increasing chain then one can find two members bγ1 < bγ2
and designate f : Bi → Bi so that f(bγ1) = bγ2 and f(bγ2) = bγ1 . The existence

of this homomorphism is based on the fact that the length of the chain is λ.

This yields a contradiction, since homomorphism (in Boolean algebras) is order

preserving. Consequently, we know that no increasing chains of length λ exist in

Bi for every i < κ, hence part (ℵ) holds. On the other hand, using Lemma 2.1 (c)

for our ultrafilter, we will be able to introduce a λ-chain in the product algebra.

Proof. Assume there are κ, ∂, λ as in the assumptions of the theorem (notice

that for every infinite cardinal κ, the cardinal λ = i∂(ℵ0) can serve; similarly

iδ(ℵ0) for any ordinal δ of cofinality ∂). Let D be a uniform ultrafilter on κ

which satisfies the demands in Theorem 1.5(b). Note that D can be chosen as

a regular ultrafilter. Let 〈θε : ε < ∂〉 be an increasing continuous sequence of

cardinals which tends to λ such that θ0 = 0, θ1 > ∂, and each θε+1 is regular.

Let ξ(α) be min{ε : θε ≤ α < θε+1} for every α < λ. ξ is a ‘block’ function,

and ξ(α) determines the unique interval [θε, θε+1) which α belongs to. For every

i < κ set Γi = {(xiα < xiβ) : [α < β ∧ ξ(α) = ξ(β)]
∨

[ξ(α) <i ξ(β)]}. We define Bi

as the Boolean algebra generated freely from {xiα : α < λ}, except the relations in

Γi. Lemma 2.1 tells us that Bi is a Boolean algebra. This definition accomplishes
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the construction of the Boolean algebras, and recall that B is the ultraproduct

algebra.

We shall elicit an increasing sequence 〈yγ : γ < λ〉 of members of B. For every

γ < λ we set yγ = 〈xjγ : j < κ〉/D. Suppose γ0 < γ1 < λ, so ξ(γ0) ≤ ξ(γ1). If

ξ(γ0) = ξ(γ1) then for every i < κ we have xiγ0 <Bi x
i
γ1 , and since κ ∈ D we

conclude that yγ0 <B yγ1 . If ξ(γ0) < ξ(γ1) then {i < κ : ξ(γ0) <i ξ(γ1)} ∈ D and

consequently {i < κ : xiγ0 <Bi
xiγ1} ∈ D so again yγ0 <B yγ1 .

So far we have proved that Depth+(B) ≥ λ+. Likewise, Depth+(B) ≤ λ+

(when λκ = λ, hence |B| = λ) so part (i) is established. By claim 2.5 below we

shall get Depth+(Bi) = λ for every i < κ, so the proof is accomplished. �

Claim 2.5. Low Depth+ for every Bi.

Depth+(Bi) = λ for every i < κ in the construction above.

Proof. Let 〈θε : ε < ∂〉 be as in the proof above, and let ξ(α) be the block

function defined in that proof. Fix any ordinal i < κ. For every ε < ∂, the

sequence 〈xiα : α ∈ [θε, θε+1)〉 is an increasing sequence in Bi, hence θε+1 <

Depth+(Bi) for every ε < ∂. It means that λ = sup{θε+1 : ε < ∂} ≤ Depth+(Bi).

Assume towards contradiction that b̄ = 〈bγ : γ < λ〉 is an increasing sequence

in Bi. Every member bγ ∈ Bi can be described by a Boolean term and a finite set

of generators, bγ = σγ(. . . , xiα(γ,`), . . .)`<n(γ). Since cf(λ) = ∂ > ℵ0 and there are

just ℵ0-many Boolean terms, we can assume without loss of generality that every

bγ in our increasing sequence is generated by the same term σ (in particular, there

exists a natural number n so that n(γ) = n for every γ < λ). So we may write:

bγ = σ(. . . , xiα(γ,`), . . .)`<n

We may assume (without loss of generality) that the finite sequence 〈α(γ, `) :

` < n〉 is an increasing sequence of ordinals (for every bγ). Observe that each ordi-

nal α(γ, `) lies in a unique interval [θζ(γ,`), θζ(γ,`)+1), which means that ξ(α(γ, `)) =

ζ(γ, `).

By Lemma 2.2 we can make (without loss of generality) the following assump-

tions. We assume that T = ∂ in the lemma, so for every ε < ∂ we have a finite

set rε ⊆ n, acting as the root of the collection {〈α(γ, `) : ` < n〉 : γ ∈ [θε, θε+1)}.
It means that the intersection of {α(γ0, `) : ` < n} and {α(γ1, `) : ` < n} equals

{αε` : ` ∈ rε} for every distinct γ0, γ1 ∈ [θε, θε+1).

Likewise, we assume that the collection {rε : ε < ∂} is a Delta-system whose

root is r∗. It means that rε0 ∩ rε1 = r∗ for every ε0 < ε1 < ∂. Finally, if

γ0 ∈ [θε, θε+1) and γ1 ∈ [θζ , θζ+1) then the intersection of {α(γ0, `) : ` < n} and

{α(γ1, `) : ` < n} equals {α` : ` ∈ r∗}.
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The following property is important for the arguments below:

(∗) We may assume that the finite sequence 〈gi(ζ(γ, `)) : ` < n〉
does not depend on γ.

Namely, this is the same sequence of ordinals

for every γ < λ.

Let us explain why this assumption can be made. The ordinal γi from Lemma

2.1 is less than κ+, and we have but κ-many γi-s. Hence δ = sup{γi : i < κ} <
κ+ ≤ ∂ = cf(∂).

Each sequence of the form 〈gi(ζ(γ, `)) : ` < n〉 is an element of [δ]<ω, so the

number of possible sequences is strictly less than ∂. Since λ > cf(λ) = ∂ we may

assume that we have the same sequence for every γ < λ.

We may assume, in addition, that for some S ⊆ ∂, |S| = ∂ we have the follow-

ing:

ε0, ε1 ∈ S, ε0 < ε1 ⇒
∧

γ∈[θε0 ,θε0+1)

∧
`<n

ζ(γ, `) < ε1.

Actually, the set S for which the proviso above is satisfied is a club subset of

∂. Fix two ordinals ε1, ε2 ∈ S, such that ε1 < ε2. Choose any γ1 ∈ [θε1 , θε1+1)

and γ2 ∈ [θε2 , θε2+1). Set:

Y = {xiα(γ1,`) : ` < n}
⋃
{xiα(γ2,`) : ` < n}.

Set Γ′i = {ϕ ∈ Γi : ϕ mentions only members of Y }. Let BY be the Boolean

algebra generated freely from the members of Y , except the relations mentioned in

Γ′i. Without loss of generality, BY ⊆ Bi (for this, see [12], §3). Since γ1 < γ2 < λ,

Bi |= bγ1 < bγ2 . As all the generators mentioned in bγ1 , bγ2 belong to Y we have

BY |= bγ1 < bγ2 as well.

We define a function f : Y → Y as follows. For every ` < n we define:

f(xiα(γ1,`)) = xiα(γ2,`) f(xiα(γ2,`)) = xiα(γ1,`)

Notice that f is a well-defined permutation of Y (by the Delta-system require-

ments) of order 2, i.e., f ◦ f = IdY . We claim that f maps Γ′i onto itself. Let us

prove this statement.

A typical member of Γ′i is an inequality η = (xiα(γj1 ,`1)
≤ xiα(γj2 ,`2)

) when

j1, j2 ∈ {1, 2}, `1, `2 ∈ n and f(η) is the inequality (f(xiα(γj1 ,`1)
) ≤ f(xiα(γj2 ,`2)

)).

Our goal is to show that η ∈ Γ′i iff f(η) ∈ Γ′i. For proving this, we distinguish
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five cases:

Case 1 : `1, `2 ∈ r∗.
We shall prove that (xiα(γj1 ,`1)

≤Bi
xiα(γj2 ,`2)

) ∈ Γ′i ⇔ (xiα(γ3−j1
,`1)
≤Bi

xiα(γ3−j2
,`2)

) ∈ Γ′i. Under the assumption `1, `2 ∈ r∗ we have xiα(γ1,`1) = xiα(γ2,`1)
and xiα(γ1,`2) = xiα(γ2,`2). It means that the inequality after applying f is just the

same.

Case 2 : `1, `2 /∈ r∗, and `1 = `2.

Let ` denote the common value of `1, `2. If j1 = j2 then the inequality

xiα(γj1 ,`)
≤ xiα(γj2 ,`) is just an identity, and trivially preserved under f . If j1 6= j2

then (since ` /∈ r∗) we have ¬[ξ(α(γj1 , `)) <i ξ(α(γj2 , `))] so the inequalities

xiα(γj1 ,`)
≤ xiα(γj2 ,`)

and xiα(γj2 ,`)
≤ xiα(γj1 ,`)

do not belong to Γi (and conse-

quently, not to Γ′i).

The above cases cover all the possibilities of `1 = `2, so without loss of gener-

ality `1 6= `2 and at least one of them does not belong to r∗.

Case 3 : j1 = j2.

We have to show that (xiα(γ1,`1) ≤Bi
xiα(γ1,`2)) ∈ Γ′i iff (xiα(γ2,`1) ≤Bi

xiα(γ2,`2)) ∈
Γ′i. This holds by the properties of the Delta-system and the property (∗) above.

Case 4 : j1 6= j2, and ζ(γj1 , `1) 6= ζ(γj2 , `2).

By symmetry, without loss of generality j1 = 1 and j2 = 2. Also, we may

assume that `1 < `2. From (∗) we know that gi(ζ(γ1, `1)) = gi(ζ(γ2, `1)) and

gi(ζ(γ2, `2)) = gi(ζ(γ1, `2)). Hence gi(ζ(γ1, `1)) < gi(ζ(γ2, `2)) iff gi(ζ(γ2, `1))

< gi(ζ(γ1, `2)). In the language of<i we can write ζ(γ1, `1)<i ζ(γ2, `2) iff ζ(γ2, `1)

<i ζ(γ1, `2), see Lemma 2.1(b). But this means that xiα(γ1,`1) <Bi
xiα(γ2,`2) iff

xiα(γ2,`1) <Bi
xiα(γ1,`2), as required.

Case 5 : j1 6= j2, and ζ(γj1 , `1) = ζ(γj2 , `2).

This case follows from the Delta-system properties and (∗).

With f at hand, we employ Theorem 1.4 which ensures the existence of a

Boolean automorphism f̂ : BY → BY extending f . It follows that f̂(bγ1) = bγ2
and f̂(bγ2) = bγ1 , contradicting the order preservation property of any Boolean

homomorphism. �
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The above construction works equally well while replacing well-ordered sets by

linearly-ordered sets. This yields the following:

Corollary 2.6. A Length gap.

Assume λ > cf(λ) = ∂, and ∂ ∈ [κ+, 2κ].

Then we can find D and 〈Bi : i < κ〉 such that:

(ℵ) Length+(Bi) ≤ λ for every i < κ.

(i) Length+(B) ≥ λ+ (and equality holds if λκ = λ).

Consequently,
∏
i<κ

Length+(Bi)/D < Length+(
∏
i<κ

Bi/D).

Proof. The same proof as above, upon noticing that we have used just the

cardinality of the increasing sequence and not the well ordering of it. �

Remark 2.7. (α) It seems that the assumption λκ = λ (for both theorems,

about Depth+ and Length+) can be weakened. Anyway, some assumption

of this kind is needed, as if 2κ > λ then the theorems may fail (unless we

add further assumptions).

(β) By Theorem 1.5, D can be chosen as a regular ultrafilter. Nonetheless, it

seems that the existence of a ∂-increasing chain in κκ/D is essential (and

we hope to prove it elsewhere).

�
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