Maximal independent sets in Borel graphs and large cardinals

Haim Horowitz and Saharon Shelah

Abstract

We construct a Borel graph G such that ZF + DC + "There are no maximal independent sets in G" is equiconsistent with ZFC + "There exists an inaccessible cardinal".

Introduction

The main result of this note is motivated by our recent study of maximal almost disjoint families and their relatives. Recall that $\mathcal{F} \subseteq [\omega]^{\omega}$ is a MAD family if $A \neq B \in \mathcal{F} \to |A \cap B| < \aleph_0$, and \mathcal{F} is maximal with respect to this property. Maximal eventually different (MED) families are the analog of MAD families where elements of $[\omega]^{\omega}$ are replaced by graphs of functions from ω to ω , namely, $f, g \in \omega^{\omega}$ are eventually different if $f(n) \neq g(n)$ for large enough n, and $\mathcal{F} \subseteq \omega^{\omega}$ is a MED family if the elements of \mathcal{F} are pairwise eventually different and \mathcal{F} is maximal with respect to this property.

Questions on the (non-)existence and definability of such families have attracted considerable interest for decades. The first results were obtained by Mathias who proved the following theorem:

Theorem [Ma]: There are no analytic MAD families.

As for the possibility of the non-existence of MAD families, the following result was recently proved by the authors (earlier such results were proven by Mathias in [Ma] and by Toernquist in [To] using Mahlo and inaccessible cardinals, respectively):

Theorem [HwSh:1090]: ZF+DC+ "There are no MAD families" is equiconsistent with ZFC.

Quite surprisingly, the situation for MED families turns out to be different:

Theorem [HwSh:1089]: Assuming ZF, there exists a Borel MED family.

A possible approach to explaining the above difference is via Borel combinatorics. The study of Borel and analytic graphs was initiated by Kechris, Solecki and Todorcevic in [KST], and has been a source of fruitful research ever since (see [KM] for a survey of recent results). The above questions on MAD families are connected

¹Date: June 14, 2016.

²⁰⁰⁰ Mathematics Subject Classification: 03E35, 03E15, 03E55.

Keywords: Borel graphs, inaccessible cardinals, forcing, MAD families.

Publication 1093 of the second author.

to Borel combinatorics due to the following observation: There exist Borel graphs G_{MAD} and H_{MED} such that there exists a MAD (MED) family iff there exists a maximal independent set in G_{MAD} (H_{MED}). Therefore, we might try to explain the above difference of MAD and MED families by pursuing the general problem of classifying Borel graphs according to the consistency strength of ZF + DC + "There are no maximal independent sets in G".

The main goal of this note is to show that for some Borel graphs G, ZF+DC+"There are no maximal independent sets in G" has large cardinal strength.

The main result

Definition 1: We shall define a Borel graph G = (V, E) as follows:

- a. V is the set of reals r that code the following objects:
- 1. A linear order I_r of the element of ω or some $n < \omega$.
- 2. A sequence $(s_{r,\alpha}:\alpha\in I_r)$ of pairwise distinct reals.
- 3. A sequence of functions $(f_{r,a}: a \in I_r)$ such that each $f_{r,a}$ is an injective function from $I_{r,< a} := \{b \in I_r: b <_{I_r} a\}$ onto some initial segment of ω .
- b. Given $r_1 \neq r_2 \in V$ and $b \in I_{r_2}$, let $X_{r_1,r_2,b}$ be the set of pairs $(a_1, a_2) \in I_{r_1} \times I_{r_2,< b}$ such that $s_{r_1,a_1} = s_{r_2,a_2}$.
- c. Given $r_1 \neq r_2 \in V$, $\neg(r_1 E r_2)$ holds iff one of the following holds:
- 1. There exists $b \in I_{r_2}$ such that $X_{r_1,r_2,b}$ is an isomorphism from I_{r_1} to $I_{r_2,< b}$ which also commutes with $f_{-,-}$.
- 2. There exists $b \in I_{r_1}$ such that $X_{r_2,r_1,b}$ is an isomorphism from I_{r_2} to $I_{r_1,< b}$ which also commutes with $f_{-,-}$.

Definition 2: Given $r_1 \neq r_2 \in V$, we say that r_2 extends r_1 and denote it by $r_1 <_G r_2$ when $\neg(r_1 E r_2)$ and clause (1) holds in definition 1(c).

Claim 3 (ZF + DC): Let $X \subseteq V$ be an independent set.

- a. X is linearly ordered by $<_G$.
- b. If X is countable then X is not a maximal independent set.

Proof: a. Obvious.

b. By clause (a), there is a linear order I such that $X = \{r_i : i \in I\}$ and $i <_I j$ iff $r_i <_G r_j$. For every $i < j \in I$, let $F_{i,j}$ be the isomorphism from I_{r_i} to a proper initial segment of I_{r_j} witnessing $r_i <_G r_j$. Let I_r be the direct limit of the system $(I_{r_i}, F_{j,k} : i, j, k \in I, j < k)$. For $a \in I_r$, let $s_{r,a}$ be $s_{r_i,a'}$ where $a' \in I_{r_i}$ is some representative of a, and define $f_{r,a}$ similarly. Let $r \in V$ be a real coding I_r , $(s_{r,a} : a \in I_r)$ and $(f_{r,a} : a \in I_r)$, then $\neg (rEr_i)$ for every $r_i \in X$. \square

Theorem 4: ZF + DC + "There is no maximal independent set in G" is equiconsistent with ZFC + "There exists an inaccessible cardinal".

Theorem 4 will follow from the following claims:

Claim 5 (ZF + DC): If there exists $a \in \omega^{\omega}$ such that $\aleph_1 = \aleph_1^{L[a]}$, then there exists a maximal independent set in G.

Claim 6: There is no maximal independent set in G in Levy's model (aka Solovay's model).

Remark: While the set of vertices of G is denoted by V, the set-theoretic universe will be denoted by \mathbf{V} .

Proof of claim 5: Let $(s_{\alpha}: \alpha < \omega_1^{L[a]}) \in L[a]$ be a sequence of pairwise distinct reals, and let $\bar{f}^* = (f_{\alpha}^*: \alpha < \omega_1^{L[a]}) \in L[a]$ be a sequence of functions such that each f_{α}^* is an injective function from α onto $|\alpha| \leq \omega$. For each $\alpha < \omega_1^{L[a]}$, let $r_{\alpha} \in (\omega^{\omega})^{L[a]}$ be the $<_{L[a]}$ -first real that codes $(\alpha, (s_{\beta}: \beta < \alpha), \bar{f}^* \upharpoonright \alpha)$. The sequences $(s_{\alpha}: \alpha < \omega_1^{L[a]}), (f_{\alpha}^*: \alpha < \omega_1^{L[a]})$ and $(r_{\alpha}: \alpha < \omega_1^{L[a]})$ belong to \mathbf{V} , and as $\omega_1 = \omega_1^{L[a]}$, their length is ω_1 .

It's easy to see that $\{r_{\alpha}: \alpha < \omega_1^{L[a]}\}$ is a well-defined set and is an independent subset of V, we shall prove that it's a maximal independent set. Let $r \in V \setminus \{r_{\alpha}: \alpha < \omega_1^{L[a]}\}$ and suppose towards contradiction that $\neg (rEr_{\alpha})$ for every $\alpha < \omega_1^{L[a]}$. There are two possible cases:

Case I: $r_{\alpha} <_G r$ for every $\alpha < \omega_1^{L[a]}$. In this case, I_r is a linear order, and each $\alpha < \omega_1^{L[a]}$ embeds into I_r as an initial segment. Therefore, $\omega_1 = \omega_1^{L[a]}$ embeds into I_r as an initial segment, a contradiction.

Case II: $r <_G r_{\alpha}$ for some $\alpha < \omega_1^{L[a]}$. Let α be the minimal ordinal with this property, then α necessarily has the form $\beta+1$. If $r=r_{\beta}$, then we get a contradiction to the choice of r. If $r \neq r_{\beta}$, then it's easy to see that rEr_{β} , contradicting our assumption. \square

Proof of claim 6: Let κ be an inaccessible cardinal and let $\mathbb{P} = Coll(\aleph_0, < \kappa)$, we shall prove that $\Vdash_{\mathbb{P}}$ "There is no maximal independent set in G from $HOD(\mathbb{R})$ ". Suppose towards contradiction that $p \in \mathbb{P}$ forces that X is such a set. Let \mathbb{Q} be a forcing notion such that $\mathbb{Q} < \mathbb{P}$, $|\mathbb{Q}| < \kappa$, $p \in \mathbb{Q}$ and X is definable using a parameter from $\mathbb{R}^{\mathbf{V}^{\mathbb{Q}}}$. By the properties of the Levy collapse, we may assume wlog that $\mathbb{Q} = \{0\}$ and p = 0. If $\Vdash_{\mathbb{P}}$ " $X \subseteq (\omega^{\omega})^{\mathbf{V}}$ ", then $\Vdash_{\mathbb{P}}$ " $|X| = \aleph_0$ ", and by claim 3, X is not a maximal independent set in $\mathbf{V}^{\mathbb{P}}$, a contradiction. Therefore, there exist $p_1 \in \mathbb{P}$ and r_1 such that $p_1 \Vdash_{\mathbb{P}}$ " $r_1 \in X \wedge r_1 \notin \mathbf{V}$ ". Let $\mathbb{Q}_1 < \mathbb{P}$ be a forcing of cardinality $< \kappa$ such that $p_1 \in \mathbb{Q}_1$ and r_1 is a \mathbb{Q}_1 -name. For l = 2, 3 let (\mathbb{Q}_l, p_l, r_l) be isomorphic copies of (\mathbb{Q}_1, p_1, r_1) such that $\prod_{n=1,2,3} \mathbb{Q}_n < \mathbb{P}$ (identifying \mathbb{Q}_1 with its canonical image in the product). Choose $(p_1, p_2) \leq (q_1, q_2)$ such that $(q_1, q_2) \Vdash_{\mathbb{Q}_1 \times \mathbb{Q}_2}$ " $r_1 \neq r_2$ ". As $(q_1, q_2) \Vdash_{\mathbb{Q}_1 \times \mathbb{Q}_2}$ " $r_1, r_2 \in X$ ", then wlog (q_1, q_2) forces that $r_1 < G$ r_2 as witnessed by an isomorphism from I_{r_1} to $I_{r_2, < s}$ for some $s \in I_{r_2}$. Let $q_3 \in \mathbb{Q}_3$ be the conjugate of

 q_1 , then (q_2, q_3) forces (in $\mathbb{Q}_2 \times \mathbb{Q}_3$) that $r_2, r_3 \in X$ and $r_3 <_G r_2$ as witnessed by an isomorphism from I_{r_3} to $I_{r_2, <_S}$. Now pick $(q_1, q_2, q_3) \leq (q'_1, q'_2, q'_3)$ that forces in addition that $r_1 \neq r_3$, then necessarily it forces that $r_1 E r_3$, a contradiction. \square

Open problems

Notation: Given a Borel graph G, let $\psi(G)$ be the statement "There are no maximal independent sets in G".

Problem 1: Classify the Borel graphs according to the consistency strength of $ZF + DC + \psi(G)$.

As the above problem seems to be quite difficult at the moment, it might be reasonable to consider the following subproblems first:

Problem 2: What are the possibilites (in terms of large cardinal strength) for the consistency strength of $ZF + DC + \psi(G)$?

Problem 3: Find combinatorial/descriptive set theoretic/model theoretic properties ϕ_1 and ϕ_2 such that:

- a. $\phi_1(G_{MAD})$.
- b. $\phi_2(H_{MED})$.
- c. $\phi_1(G) \to ZF + DC + \psi(G)$ is equiconsistent with ZFC.
- d. $\phi_2(G) \to ZF + DC \vdash \neg \psi(G)$.
- e. ϕ_1 and ϕ_2 are satisfied by a large collection of Borel graphs.

A solution to problem (3) would explain the difference between MAD and MED families that was discussed in the introduction.

References

[HwSh:1089] Haim Horowitz and Saharon Shelah, A Borel maximal eventually different family, arXiv:1605.07123.

[HwSh:1090] Haim Horowitz and Saharon Shelah, Can you take Toernquist's inaccessible away?, arXiv:1605.02419.

[KM] A. S. Kechris and A. Marks, Descriptive graph combinatorics, Manuscript, 2015.

[KST] A. S. Kechris, S. Solecki and S. Todorcevic, Borel chromatic numbers, Adv. Math. **141** (1999), 1-44.

[Ma] A. R. D Mathias, Happy families, Ann. Math. Logic **12** (1977), no. 1, 59-111. MR 0491197.

[To] Asger Toernquist, Definability and almost disjoint families, arXiv:1503.07577.

(Haim Horowitz) Einstein Institute of Mathematics

Edmond J. Safra campus,

The Hebrew University of Jerusalem.

Givat Ram, Jerusalem, 91904, Israel.

E-mail address: haim.horowitz@mail.huji.ac.il

(Saharon Shelah) Einstein Institute of Mathematics

Edmond J. Safra campus,

The Hebrew University of Jerusalem.

Givat Ram, Jerusalem, 91904, Israel.

Department of Mathematics

Hill Center - Busch Campus,

Rutgers, The State University of New Jersey.

110Frelinghuysen road, Piscataway, NJ 08854-8019 USA

E-mail address: shelah@math.huji.ac.il