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Abstract

We study the consistency strength of Lebesgue measurability for Σ1
3 sets over a weak set

theory in a completely choiceless context. We establish a result analogous to the
Solovay-Shelah theorem.

Introduction
The following work is motivated by the results from [HwSh1067]. Assuming ZFC
without large cardinals, we constructed a model of ZF where every set of reals is
measurable (in a slightly weaker sense) with respect to the ideal derived from a
Suslin ccc non-sweet creature forcing (a set of reals is measurable with respect to
an ideal I if it equals a Borel set modulo I). As the resulting model doesn’t satisfy
ACω, the following questions arise:

1. Given a set theory T that doesn’t prove ACω, a Suslin ccc forcing notion Q and an
infinite cardinal κ, is T equiconsistent with T+”Every set of reals is IQ,κ-measurable”
(see [HzSh1067] for the definition of IQ,κ)?

2. For T , Q and κ as above, is T + ”Every set of reals is IQ,κ-measurable” equicon-
sistent with T + ACω + ”Every set of reals is IQ,κ-measurable”?

Our main goal is to prove that both of the above questions have a negative answer
when T = Z∗ is a weak set theory that will be defined below, Q is random real
forcing and κ = ℵ0. As Z∗ doesn’t include the Replacement scheme, we can’t prove
the existence of a limit uncouontable cardinal in Z∗, so the point is that the role of
the inaccessible cardinal in the context of ZFC is replaced by an uncountable limit
cardinal in the context of Z∗C. Our proof will follow the old proofs of Solovay ([So])
and Shelah ([Sh176]) on the consistency strength of Σ1

3-Lebesgue measurability, and
our main goal is to show that similar arguments yield an analogous result in Z∗,
where the inaccessible cardinal is replaced by an uncountable limit cardinal.

Basic definitions
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Definition 1: 1. Z− is Zermelo set theory (i.e. ZF without replacement) without
choice and without the powerset axiom (but with the separation scheme).
2. Z− + ℵn is Z−+”the cardinal ℵn exists”.
3. Z∗ is the theory that consists of the following axioms:
a. Z− + ℵ1.
b. P (N) exists.
c. Lα[z] exists for every ordinal α and z ∈ ωω.
d. α + ω exists for every ordinal α.
e. There is no greatest ordinal.
Observation: Recall that there exists a formula φ(x) in the language of set theory
such that:
a. If δ > ω is a limit ordinal, a ∈ ωω and b = Lδ[a], then (b,∈) |= φ(a).
b. If b is a transitive set, a ∈ ωω and (b,∈) |= φ(a), then there is a limit ordinal
δ > ω such that b = Lδ[a].
Convention: From now on, our background theory is Z∗, we do not assume ACω
and by “Borel sets” we refer only to sets of reals having a Borel code.
We shall now define several versions of Lebesgue measurability and the null ideal
(not that the different versions are not equivalent without choice).
Definition 2: 1. A set X ⊆ R is 1-null if there exists a Borel set B such that
X ⊆ B and µ(B) = 0.
2. A set X ⊆ R is 2-null if for every n < ω there exists a Borel set Bn such that
X ⊆ Bn and µ(Bn) < 1

n+1 .
Remark: 1-null implies 2-null, and the definitions are equivalent under ACω.
Definition 3: A set X ⊆ R is i−measurable (i = 1, 2, 3) if:
i = 1 : There exists a Borel set B such that X∆B is 1-null.
i = 2 : There exists a Borel set B such that X∆B is 2-null.
i = 3 : For every n < ω, there exist Borel sets B1 and B2 such that X∆B1 ⊆ B2
and µ(B2) < 1

n+1 .
It’s easy to see that i−measurability implies j−measurability for i < j.
Claim and notation 4: 1. X is 3-measurable iff X has the same inner measure
and outer measure, which will be denoted by µ∗.
2. X ⊆ R is 2-null iff µ∗(X) = 0. �

A lower bound on the consistency strength
Claim 5: a. Suppose that V |= Z∗. The following version of Fubini’s theorem
holds:
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If A ⊆ R is not 2-null and ≤ is a prewellordering of A such that every initial segment
(i.e. {y : y ≤ x}) is 2-null, then there exists a set which is not 3-measurable.
2. If in addition ≤ is Σ1

2, then there exists a non-3-measurable Σ1
3 set. In partic-

ular, throughout the following proof, at least one of the following Σ1
3 sets is not

3-measurable: CB,a, Bn,i, A, B0, B1 and B2.
Proof: Suppose that all sets are 3-measurable and we shall derive a contradiction.
For every Borel set B ⊆ [0, 1] × [0, 1] and a ∈ [0, 1], define CB,a := {s1 ∈ [0, 1] :
a ≤ µ({s2 : (s1, s2) ∈ B})}, and similarly, define Ca,B := {s2 ∈ [0, 1] : a ≤ µ({s1 :
(s1, s2) ∈ B})}.
Subclaim 1: Let B ⊆ [0, 1] × [0, 1] be a Borel set coded by r, and let a, b, r1 ∈ ωω
such that r, a, b ∈ L[r1], if L[r1] |= ”µ(CB,a) = b” then V |= ”µ(CB,a) = b”.
Proof: In L[r] there is a sequence (Un, Sn : n < ω) such that the sets Un ⊆ [0, 1] are
open, the sets Sn ⊆ [0, 1] are closed, Sn ⊆ CB,a ⊆ Un and L[r] |= ”µ(Un \ Sn) < 1

n
”.

We shall prove that µ(Un)V = µ(Un)L[r], µ(Sn)V = µ(Sn)L[r] and V |= ”Sn ⊆ CB,a ⊆
Un” for every n < ω.
We shall work in L[r] and assume wlog that Sn ⊆ Sn+1 for every n < ω. Define R
as the set of triples (n, s1, S) such that:
1. n < ω, s1 ∈ Sn ⊆ CB,a.
2. S ⊆ [0, 1] is closed and µ(S) = a− 1

n
.

3. s1 × S ⊆ B.
LetX = ω×[0, 1] and Y = {S : S ⊆ [0, 1] iis closed}, thenX and Y are Polish spaces
and R ⊆ X × Y is a Π1

1 relation. By Π1
1-uniformization, there is a function F ⊆ R

with a Π1
1 graph such thatDom(F ) = Dom(R). By absoluteness, the same is true for

(R,F ) in V . Now, if s1 ∈ Sn then s1 ∈ Sm for every m > n and {F (m, s1) : n ≤ m}
witnesses that s1 ∈ CB,a. Therefore, V |= ”sup{µ(Sn) : n < ω} ≤ µ(CB,a)”.
Similarly we can show that V |= ”µ(CB,a) ≤ inf{µ(Un) : n < ω}”.
Subclaim 2: If B ⊆ [0, 1] × [0, 1] is Borel and a, b ∈ [0, 1], then µ(CB,a) = b → b ≤
µ(B)
a

.
Proof: Let r1 be a real such that a, b and the definition of B (hence of CB,a) are in
L[r1]. As the conclusion holds in L[r1], it follows from the previous claim that it
holds in V as well.
Subclaim 3: Assume Z∗. Fubini’s theorem holds for Borel and analytic sets in
the following sense: If B ⊆ [0, 1] × [0, 1] is Borel/analytic and fl : [0, 1] → [0, 1]
(l = 1, 2) are defined by fl(sl) := µ({s3−l : (s1, s2) ∈ B}), then µ(B) =

∫
f1(s1)ds1 =∫

f2(s2)ds2.
Proof: Let r be a real such that the definition of B is in L[r], and we shall continue
the proof as usual in L[r]. The only point that we have to show is that the above
integrals are well-defined and computed in the same way in L[r] and V . For every
n > 1 and i ≤ n, let Bn,i := {s1 : µ(B1

s1) := µ({s2 : (s1, s2) ∈ B}) ∈ [ i
n
, i+1
n

].
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(Bn,i : i ≤ n) is a partition of [0, 1] for every n. For every n, choose a sequence
(Sn,i, Un,i : i ≤ n) in L[a] such that Sn,i ⊆ Bn,i ⊆ Un,i, Sn,i is closed, Un,i is open
and µ(Un,i \ Sn,i) < 1

2n . Let R1 be the set of sequences (n, i, s1, S) such that:
1. n > 1 and i ≤ n.
2. s1 ∈ Sn,i.
3. S ⊆ [0, 1] is closed and 1

n
− 1

2n ≤ µ(S).
4. S ⊆ B1

s1 .
Let X := {(n, i, s1) : i ≤ n, n > 1, s1 ∈ Sn,i} and Y be the set of closed sub-
sets of [0, 1]. As before, by Π1

1-uniformization, there is a Π1
1-function F1 ⊆ R

such that for every (n, i, s1), if there exists S such that (n, i, s1, S) ∈ R1, then
(n, i, s1, F1(n, i, s1)) ∈ R1. By absoluteness, the same is true in V . Similarly, define
R2 as the set of sequences (n, i, s1, U) such that:
1. n > 1 and i ≤ n.
2. s1 ∈ Un,i.
3. U ⊆ [0, 1] is open and µ(U) < i+1

n
+ 1

2n .
4. B1

s1 ⊆ U .
As before, there is Π1

1 choice function F2 for the relation R2. F1 and F2 witness that
the above integrals are well-defined and have the same value in L[r] and V .
Subclaim 4: If A ⊆ [0, 1] and B = A× A, then µ∗(B) = µ∗(A)2.
Proof: In one direction, let a = µ∗(A) and ε > 0. There is a Borel set A∗ such
that A ⊆ A∗ ⊆ [0, 1] and µ(A∗) ≤ µ(A) + ε. Let B∗ = A∗ × A∗, then µ∗(B) ≤
µ∗(A∗ × A∗) = µ(A∗)2 ≤ (a+ ε)2. Therefore, µ∗(B) ≤ µ∗(A)2.
In the other direction, let a = µ∗(A), b = µ∗(B) and ε > 0. There are Borel sets
A∗ and B∗ such that A ⊆ A∗, B ⊆ B∗, µ(A∗) ≤ µ∗(A) + ε and µ(B∗) ≤ µ∗(B) + ε.
Without loss of generality, B∗ ⊆ A∗×A∗. If s1 ∈ A then a ≤ µ({s2 : (s1, s2) ∈ B∗}),
therefore a = µ∗(A) ≤ µ∗(CB,a) ≤ µ∗(A∗) < a + ε. By Fubini’s theorem for Borel
sets, it follows that a2 ≤ µ∗(B∗). Therefore, µ∗(A)2 − ε = a2 − ε ≤ µ∗(B∗) − ε ≤
µ∗(B), so µ∗(B) = µ∗(A)2 as required.
We are now ready to complete the proof of claim 5.
Without loss of generality A ⊆ [0, 1]. We now define the following sets:
1. B0 = B = A× A

2. B1 = {(x, y) ∈ B : x ≤ y}

3. B2 = {(x, y) ∈ B : y ≤ x}

Suppose that each of the sets A, B0, B1 and B2 are 3-measurable and we shall derive
a contradiction. Choose ε1, ε2 ∈ (0, 1) such that ε1 < ε22 and ε2 <

a2

6 (recall that
A is not 2-null by our assumption). As A is 3-measurable, there are Borel sets A∗
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and A∗∗ such that A∆A∗ ⊆ A∗∗ and µ(A∗∗) < ε1. Similarly, there are Borel sets B∗l
and B∗∗l (l = 1, 2) such that Bl∆B∗l ⊆ B∗∗l and µ(B∗∗l ) < ε1. We shall prove that
µ(B∗l ∪B∗∗l ) < 3ε2. Together we obtain the following:
a2 = µ∗(A×A) = µ∗(B1∪B2) ≤ µ∗(B∗1∪B∗∗1 ∪B∗2∪B∗∗2 ) ≤ µ(B∗1∪B∗∗1 )+µ(B∗2∪B∗∗2 ) <
3ε2 + 3ε2 < a2, a contradiction.

By a previous subclaim, µ∗(CB∗∗2 ,ε2)V ≤ µ∗(CB∗∗2 ,ε2)L[a] ≤ µ∗(B∗∗2 )
ε2

< ε2 (where a is
as in the subclaim). Let C2 := CB∗∗2 ,ε2 nd let B′2 := B∗2 ∩ ([0, 1] \ C2 × [0, 1]). The
following inequalities hold:
1. µ∗(B∗2) ≤ µ∗(B∗2 ∩ (C2 × [0, 1])) + µ∗(B∗2 ∩ ([0, 1] \ C2 × [0, 1]))
2. µ∗(B∗2 ∩ (C2 × [0, 1])) ≤ µ∗(C2 × [0, 1]) ≤ µ∗(C2) < ε2

Therefore, it suffices to show that µ∗(B∗2 ∩ ([0, 1] \ C2 × [0, 1])) ≤ ε2. Given s2 ∈
[0, 1] \ C2, the following holds: µ∗({s2 : (s1, s2) ∈ B∗2}) ≤ µ∗({s2 : (s1, s2) ∈ B2}) +
µ∗({s2 : (s1, s2) ∈ B∗∗2 }) ≤ 0 + ε2 where the last inequality follows by the choice
of s1, the definition of B2 and the theorem’s assumption. By Fubini’s theorem, the
desired conclusion follows.
The proof for l = 1 is similar, where CB∗∗2 ,ε2 is replaced by Cε2,B∗∗1 and the rest of
the arguments are changed accordingly. �
Theorem 6: Assume Z∗.
1. If every Σ1

3 set of reals is 3-measurable, then ℵL[x]
1 < ℵ1 for every x ∈ 2ω, hence

ℵ1 is a limit cardinal in L.
2. If in addition ACω holds, then ℵ1 is inaccessible in L.
Proof: We follow a similar argument as in [Sh176]. Assume towards contradiction
that ℵL[x∗]

1 = ℵ1 for some x∗ ∈ 2ω. For every x ∈ 2ω, let (Bx,i : i < i(∗)) list all
of the Borel null subsets of 2ω (i.e. their Borel codes, recalling that ”µ(A) = 0” is
absolute) in L[x∗, x] (we can do it uniformly in (x, x∗)). Denote = B∗x,i = BV

x,i and
B∗x,<i = ∪

j<i
B∗x,j. Let B∗x = ∪

i<i(∗)
B∗x,i.

Case I: There exists x∗∗ ∈ 2ω such that B∗x∗∗ is not 2-null.
Work in V : Denote B = B∗x∗∗ and define the following prewellordering on B: x ≤ y
iff for every i, y ∈ B∗x∗∗,<i → x ∈ B∗x∗∗,<i.
Cleary, every initial segment of (B,≤) has the form B∗x∗∗,<i, and hence is 2-null. As
B is not 2-null, it follows by claim 5 that there exists a non-3-measurable Σ1

2-set, a
contradiction.
Case II: B∗x is 2-null for every x ∈ 2ω.
We shall first describe the original stages of the proof in [Sh176], then we shall
describe how to modify the original proof in order to obtain the desired theorem.
The new changes and arguments will be presented in this section, while the proofs
from [Sh176] will appear in the appendix.
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Outline of [Sh176]:
We fix a rapidly increacing sequence (µ(k) : k < ω) of natural numbers, say, µ(k) =

22222176k

.
Step I (existence of a poor man generic tree): Suppose that B ⊆ 2ω has
measure zero, then there are perfect trees T0, T1 ⊆ 2<ω, functions ml : Tl → Q and
natural numbers n(k) (k < ω) such that lim(Tl) ∩ B = ∅, ml(η) = µ(lim(Tl) ∩
(2ω)[η≤]) and:
A) 1. m0(<>) = 1

2 and for every η ∈ T0, µ(lim(T0) ∩ (2ω)[η≤]) has the form k
4lg(η)+1

for 0 ≤ k ≤ 4lg(η)+1, and k 6= 0 iff η ∈ T0.
A) 2. m1(<>) = 1

2 , and for every η ∈ T1, if lg(η) ≤ n(k) then µ(lim(T1)∩(2ω)[η≤]) ∈
{ 1

4n(k)+1 : 9 < l < 4n(k)+1}.

B) For every η ∈ 2n(k) ∩ T1, 2n(k)(1− 1
µ(k)) < µ(lim(T1) ∩ (2ω)[η≤]).

Step II: Definitions of finite and full systems (see definitions 1-4 in the appendix).
Step III: Showing that the family of finite systems satisfies ccc (claim 5 in the
appendix).
Step IV: Forcing with finite systems over L[x∗] to get a full system in L[x∗]. As
the existence of a full system is equivalent to the existence of a model to a Lω1,ω(Q)
sentence, this is sufficient by absoluteness and Keisler’s completeness theorem.
Step V: We use the full system in order to define two Σ1

3 sets of reals (those are
the red and the green sets in [Sh176]), which will turn out to be non-measurable.
Step VI: Showing that the green and red sets are disjoint, are not null and have
outer measure 1, arriving at a contradiction.
Back to the proof of theorem 6:
We shall describe how each of the above steps should be modified in order to obtain
the proof of our theorem.
Step I: Claim: The claim in step I of [Sh176] holds when B is a Borel set of
measure (say) < 1

1000 . This will be used in order to show that the red and green sets
are not 2-null (this is step VI).
Proof: Let r be a real that codes B. The proof is as in [Sh176], where now we work
in L[r]. Observe that the tree T constructed there satisfies lim(T )∩A = ∅ where A
is an open set of measure < 1

1000 containing B (and the construction depends only
on A).
Steps II-III: No change is needed.
Step IV: Assuming Z∗ we can prove Keisler’s completeness theorem as well as the
forcing theorem in L[r] for every r (see the discussion on forcing over models of Z∗
in the end of this section). Therefore we can repeat the argument in the original
Step IV.
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Step V: No change.
Step VI:We shall freely use the notation and definitions from [Sh176] (see definition
7 and claims 8-11 in the appendix).
Claim A: The formulas φrd and φgr are contradictory.
Proof: Suppose that x satisfies both formulas. By definition 7 in the apendix,
there is a poor man generic tree over L[x∗] denoted by T rd0 and a poor man generic
tree over L[x∗, T rd0 ] denoted by T rd1 witnessing φrd(x). Repeating the proof of claim
9 in the appendix, in L[x∗, x, T rd0 , T rd1 ] there is a partition Ārd = Ārd(x) = (Ardn :
n < ω) of ω1 to countably many homogeneously red sets. Similarly, as x satis-
fies φgr, in L[x∗, x, T rd0 , T rd1 , T gr0 , T gr1 ] there is a partition Āgr = Āgr(x) = (Agrn :
n < ω) of ω1 to countably many homogeneously green sets. As ω1 is regular in
L[x∗, x, T rd0 , T rd1 , T gr0 , T gr1 ], we get a contradiction.
Claim B: The formulas φ′rd and φ′gr are contradictory.
Proof: Suppose that φ′rd(z) ∧ φ′gr(z), then for some x, y and natual n∗ we have
φrd(x) ∧ φgr(y) and {n : x(n) 6= y(n)} ⊆ {0, ..., n∗}. Let Ārd(x) and Āgr(y) be as
in the previous proof, and for every n,m < ω let Bn,m = Ardn ∩ Agrm . For some
n,m, Bn,m is infinite. Let αk be the kth element of Bn,m. Recalling that i1 < i2 <
i3 → h(i1, i2) 6= h(i2, i3), then for some k and j we have h(αk, αj) > n∗. Therefore
red = x(h(αk, αj)) = y(h(αk, αj)) = green (recalling that αk, αj ∈ Ardn ∩Agrm ), which
is a contradiction.
Claim C: Ard = {x : φrd(x)} and Agr = {x : φgr(X)} are not of measure zero.
Proof: This is the same argument as in claim 10 in the appendix, the only difference
is that instead of taking a Gδ set of measure zero covering Ard, we take for every
0 < ε a Borel set of measure < ε covering Ard. By the modified construction of the
poor man generic tree, we continue as in the original proof.
Claim D: Ard is not 3-measurable.
Proof: As in [Sh176] (claim 11 in the appendix). �

An upper bound on consistency strength (following Levy)
Historical remark: While Solovay’s proof used the collapse of an inaccessible cardinal
(which results in a model of DC), our proof follows an older argument of Levy that
used the collapse of a limit uncountable cardinal.
Theorem 7: A→ B where:
A) 1. V |= Z∗C.
2. V = L.
3. λ is a limit cardinal > |P (N)| such that µ < λ→ 2µ < λ.
4. P = Π{Pµ,n : µ < λ, n < ω} is a finite support product such that Pµ,n = Col(ω, µ).
5. G ⊆ P is generic, ηµ,n = ηµ,n

∼
[G] : ω → µ is the generic of Pµ,n.
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6. In V [G] we define V1 = V [{ηµ,n : µ < λ, n < ω}], i.e. the class of sets in
V [G] hereditarily definable from parameters in V and a finite number of members
of {ηµ,n : µ < λ, n < ω}.

B) 1. V1 |= Z∗.

2. V1 |= ℵ1 = λ.

3. If λ is singular in V then then V1 |= cf(λ) = ℵ0.

4. If λ is regular in V then V1 |= cf(λ) = ℵ1.

5. The following claim holds in V1: If (a)+(b)+(c) hold then (d) holds where:

a. Q is a defnition of a forcing notion (with elements which are either reals or belong
to H(ℵ1)) with parameters in V1 satisfying c.c.c., such that Q is absolute enough in
the following sense: There is t̄∗ = ((µi, ni) : i < n(∗)) such that Q is definable using
η̄t∗ = {ηµi,ni : i < n(∗)} and parameters from V , and if t̄ = ((µl, nl) : l < n) then
QV [η̄t∗t] lQV1 .

b.1. η
∼
is a Q-name of a real, i.e. a sequence of ℵ0 antichains given in V [η̄t̄∗ ].

b.2. The generic set can be constructed from η
∼
in a Borel way.

c. The ideal I = I(Q,η
∼

),ℵ0 (see [HwSh1067]) satisfies: t̄∗ ≤ t̄1 ≤ t̄2 → IV [η̄t̄1 ] =

P (P (N))V [η̄t̄1 ] ∩ IV [η̄t̄2 ].

Remark: Note that P (N)V1 = ∪{P (N)V [η̄t̄] : t̄ has the form ((µi, ni) : i < n)}.

d. Every X ⊆ ωω equals a Borel set modulo I.

We shall first outline Solovay’s original proof from [So], then we shall describe how
to smilarly prove the above theorem.

An outline of Solovay’s proof (for random real forcing)

Step I: Let G ⊆ Coll(ω,< κ) be generic where κ is inaccessible and let x ∈
V [G]∩Ordω, then there exists a genericH ⊆ Coll(ω,< κ) such that V [G] = V [x][H].

Step II: For every formula φ there is a formula φ∗ such that for every x ∈ V [G] ∩
Ordω, V [G] |= φ(x) iff V [x] |= φ∗(x).

Step III: In V [G], ωω ∩ V [a] is countable for every a ∈ Ordω.

Step IV: For every a ∈ ωω, {x ∈ ωω : x is not (Q, η
∼

)-generic over V [a]} ∈ I, where
Q is random real forcing and η

∼
is the name for the generic.

Step V: Given a maximal antichain J ∈ V [a] of closed sets deciding φ∗(a, η
∼

) (where
η
∼

is the name for the random real), we define the desired Borel set as union of
members of J forcing φ∗(a, η

∼
).
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Proof of theorem 7: Suppose that A ⊆ ωω is definable using η̄t̄ for t̄ = ((µi, ni) :
i < n). As before, we shall indicate how to modify Solovay’s original proof for our
purpose.
Step I: Our aim is to prove a result similar to Step I above, where the real parameter
belongs to V1. Suppose that a ∈ V1 is a real (so a = a

∼
[G] for some P-name a

∼
), then

a is definable by a formula φ from a finite number of ηµ,n’s, say {ηµi,ni : i < i(∗)}.
In order to prove that a ∈ V [{ηµi,ni : i < i(∗)}], it’s enough to show that:
Claim: If p ∈ P and p  a

∼
(n) = k then p � Π

i<i(∗)
Pµi,ni  a

∼
(n) = k.

Proof: Suppose towards contradiction that p � Π
i<i(∗)

Pµi,ni ≤ q forces a different value
for a
∼

(n). Let π be an automorphism of P over Π
i<i(∗)

Pµi,ni such that π(p) is compatible
with q (just switch the relevant coordinates), then π(p)  a

∼
(n) = k, a contradiction.

In order to complete this step, we shall prove the following claim:
Claim: If Q l Π

i<i(∗)
Pµi,ni then there is an isomorphism of RO(P) onto RO(Q × P)

that is the identity over RO(Q).
Proof: Let κ > µ > ℵ1 + max{µi : i < i(∗)}. As we assume that V = L (so in
particular we have GCH), the usual proof works.
Conclusion: If G ⊆ P is generic over V and a ∈ (ωω)V1 , then there is a generic
H ⊆ P such that V [G] = V [a][H].
Proof: By the above claims, a ∈ V [{ηµi,ni : i < i(∗)}] for an appropriate finite set of
ηµi,ni ’s. Let Ba be the the complete subalgebra generated by a, then by the previous
claim Ba × P is isomorphic to P (over Ba) and the claim follows.
Steps II: Same as in Solovay’s proof.
Step III: Suppose that G′ ⊆ Π

i<i(∗)
Pµi,ni is generic. We shall use the fact that the

ideal I is generated by sets which are disjoint to some BN such that N ⊆ H(ℵ1)L[G′]

where:
1. N is transitive and ||N || = ℵ0.
2. BN = {η

∼
[H] : H is QL[G′] ∩N -generic over N}.

Work in V1: Let X be the set of ν ∈ ωω (in V1) such that ν is not (N,Q, η
∼

)-generic
where N = (HV [G′](ℵ1),∈). As N is countable in V1 (recall that λ is strong limit)
and ν ∈ (ωω)V1 is generic over N iff it’s generic over V [G′], it follows by the definition
of I that X ∈ I.
Step IV: Suppose that A ⊆ ωω is definable by φ(η̄t̄, x) where η̄t̄ ∈ L[G′] and
G′ ⊆ Π

i<n
Pµi,ni is the generic set obtained by the restriction of G to Π

i<n
Pµi,ni . Let

{pn : n < ω} ⊆ QL[G′] be a maximal antichain and (tn
∼

: n < ω) a sequence of names
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of truth values such that pn  η
∼
∈ A iff tn

∼
= true (such sequences exist by step II).

Let p̄ = (p̄i : i < ω) enumerate all maximal antichains in H(ℵ1)L[G′] (so each p̄i is of
the form p̄i = (pin : n < ω)).

By our assumption, given a generic real η we can define the set Gη in a Borel way
such that:

(∗) Gη is generic over H(ℵ1)L[G′] and η
∼

[Gη] = η.

Now let B := {η : Gη is well-defined, satisfies (∗) above and for some n, pn ∈
Gη ∧ tn

∼
[Gη] = true}. Denote by Bn the set of η ∈ B such that ”η ∈ B” is witnessed

by n.

B is Borel by our assumptions on the forcing. Therefore it’s enough to prove that
A = B mod I.

Let η ∈ ωω (in V1), by step III it’s enough to show that if η is generic over H(ℵ1)L[G′]

(and hence η = η
∼

[Gη] for Gη as in (∗) above) then η ∈ A iff η ∈ B. Indeed, if η ∈ A
(and η = η

∼
[Gη] where Gη is as in (∗)), by the definition of {pn : n < ω} and

(tn
∼

: n < ω), there is some pn ∈ Gη such that tn
∼

[Gη] = true, therefore η ∈ Bn ⊆ B.
Similarly, if η ∈ Bn for some n such that tn

∼
[Gη] = true, then by the definitions of

{pn : n < ω} and (tn
∼

: n < ω), η ∈ A. �

Conclusion 8: A) The following theories are equiconsistent for i ∈ {1, 2, 3}:

1. Z∗C+”there is a limit cardinal > ℵ0”.

2. Z∗C+”there is a strong limit cardinal> ℵ0”.

3(i). Z∗+”every Σ1
3 set of reals is i-measurable”.

4(i). Z∗+”every set of reals is i-measurable.

B) The following theories are equiconsistent for i ∈ {1, 2, 3}:

1. Z∗C+”there is a regular limit cardinal< ℵ0”.

2. Z∗ + C+”there is strongly inaccessible cardinal”.

3(i). Z∗ +DC+”every Σ1
3 set of reals is i-measurable”.

4(i). Z∗ +DC+”every set of reals is i-measurable”.

5(i). Z∗ + ACℵ0+”every set of reals is i−measurable”. �

A remark on forcing over models of Z∗
In order to guarantee that the generic extensions in our proofs satisfy Z∗, we work in
the context of models of Z∗ of the form L or L[r] for some real r. In this context, we
work with classesW of the following form: There is a formula φ with parameters that
defines the class, and there is a limit ordinal ν < ω2 such that φ definesW ∩Lα[r] in
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Lα+ν [r] when α is a limit ordinal (recall that for every ordinal α, the ordinal α+ωn
exists).
Now, for a set forcing P in a model of the above form, we define the class of P−names
as above. Therefore, for every limit ordinal α we define the intersection of Lα[r] with
the class of names. For the names that we defined, we can prove the forcing theorem
as usual and show that Z∗ holds in the generic extension. In addition, note that
when we force over L[r], as L[r] has a well-ordering <L[r] definable from r, we can
use it to get a well-ordering of the generic extension, hence a model of Z∗C.

Appendix: Can you take Solovay’s inaccessible away? ([Sh176])
We now copy the definitions, theorems and proofs from [Sh176] that are relevant for
understanding the above proofs.
The following definitions are presented as step II in the above correspond-
ing proof.

Definition 1. 1. Let Nn be the set of pairs (t,m) such that:
a. ∅ 6= t ⊆ 2≤n is closed under initial segments, and for every η ∈ t ∩ 2<n, for some
l, η<̂l >∈ t.
b. m : t→ Q is a function such thatm(<>) = 1

2 , 4lg(η)+1m(η) ∈ N∩[1, 4lg(η)+12−lg(η)),
and for η ∈ t ∩ 2<n, m(η) = Σ{m(η<̂l >) : η<̂l >∈ t}.
2. Let N = ∪

n<ω
Nn, we call n the height of (t,m) for (t,m) ∈ Nn and denote it by

ht(t,m). If t′ = t ∩ 2≤n, m′ = m � t′, we let (t′,m′) = (t,m) � n. There is a natural
tree structure on N defined by (t0,m0) ≤ (t1,m1) if (t0,m0) = (t1,m1) � ht(t0,m0).
3. A closed tree T ⊆ 2<ω satisfies (t,m) if T ∩ 2≤ht(t,m) = t and for every η,
µ(lim(T ) ∩ (2ω)[η]) = m(η).
Definition 2. 1. Mk is the set of pairs (t,m) such that for some n = ht(t,m) we
have:
a. ∅ 6= t ⊆ 2≤n is closed under initial segments, and for η ∈ t∩2<n there is l ∈ {0, 1}
such that η<̂l >∈ t.
b. m : t → Q ∩ (0, 1) is a function such that m(<>) = 1

2 , and for η ∈ t ∩ 2<n,
m(η) = Σ{m(η<̂l >) : η<̂l >∈ t}.
c. We define rl = levl(t,m) by induction on l: r0 = 0, ri+1 is the first r > ri
such that r ≤ n, for every η ∈ 2≤r ∩ t, 4r+1m(η) ∈ N, and for every η ∈ 2r ∩ t,
m(η) > 2−r(1− 1

µ(l+1)).
Now we demand that rk is well defined and equals n.
2. Let Mk,n = {(t,m) ∈ Mk : ht(t,m) = n}, Mk,<n = ∪

l<n
Mk,l, M∗,<n = ∪

k<ω
Mk,<n,

M = ∪
k<ω

Mk.

3. For (t,m) ∈Mk, let rk(t,m) = k.
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4. We define the order on M as we did for N .
Definition 3: A finite (full) system S consists of the following:
A. The common part: A finite subset W ⊆ ω1 (the set W = ω1) and a number
n(1) < ω (n(1) = ω) and a function h : [W ]2 → n(1) such that if i1 < i2 < i3 belong
to W , then h(i1, i2) 6= h(i2, i3).
B. The red part:
a. For every (t,m) ∈ M∗,≤n(1) there is a natural number λ(t,m), and for every
(t1,m1) ∈ Nλ(t,m) there is a member ρ(t1,m1, t,m) ∈ t ∩ 2ht(t,m).
b. Let {ηl : l < ω} be a fixed enumeration of 2<ω such that lg(ηl) ≤ l. For every
(t,m) ∈ Mk,≤n(1), l < k, j < k and ξ ∈ W , there is a finite set A(t,m),ξ

l,j ⊆ 2≤λ(t,m)

such that Σ
ν∈A(t,m),ξ

l,j

1
2lg(ν) <

1
2l+j .

c. For every (t,m) ∈ Mk,≤n(1), ξ ∈ W and (t(0),m(0)) ∈ Nλ(t,m) there is a function
f

(t,m),ξ
(t(0),m(0)) : {ηl : l < k} × k → ω.
d. Monotonicity for (a): If (t0,m0) < (t1,m1) (both in M∗,≤n(1)), then λ(t0,m0) <
λ(t1,m1). Moreover, if (t0,m0) < (t1,m1) ∈ Nλ(t1,m1), then ρ(t0,m0, t0,m0) <
ρ(t1,m1, t1,m1).

e. Monotonicity for (b): If (t0,m0) < (t1,m1) (both in M∗,≤n(1)) and A
(t0,m0),ξ
l,j is

defined, then A(t0,m0),ξ
l,j = A

(t1,m1),ξ
l,j . Also f (t0,m0),ξ

(t0,m0) ⊆ f
(t1,m1),ξ
(t1,m1) if (t0,m0) < (t1,m1) ∈

Nλ(t1,m1).
f. The homogeneity consistency condition: If (t,m) ∈Mk,≤n(1), ξ < ζ ∈ W , h(ξ, ζ) <
ht(t,m), (t1,m1) ∈ Nλ(t,m) and ρ = ρ(t1,m1, t,m), then:
1. ρ(h(ξ, ζ)) = 0(= red)
or
2. For every l, j < k, j 6= 0 such that f (t,m),ζ

(t1,m1)(ηl, j) = f
(t,m),ξ
(t1,m1)(ηl, j) there is no

perfect tree T ⊆ 2<ω which satisfies (t1,m1) and tηl≤1 is disjoint to ∪
α<k

A
(t,m),ξ
α,j and to

∪
α<
A

(t,m),ζ
α,j .

C. The green part: It is defined similarly, only in (f)(1) we replace 0(= red) by
1(= green).
Definition 4. The order between finite systems is defined naturally (for a given
(t,m), λ(t,m), A(t,m),ξ

l,j , f (t,m),ξ
(t(0),m(0)) remain fixed, W and n(1) might become larger).

The following claim corresponds to step III in the above proof.

Claim 5: The family of finite systems satisfies the countable chain condition.
Proof: Let (S(γ) : γ < ω1) be a sequence of ω1 conditions. By a delta-system
argument, we may assume that for S(0) and S(1) we have: n := n(1)S(0) = n(1)S(1),
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λS(0) = λS(1), ρS(0) = ρS(1) and there is a bijection g : W S(0) → W S(1) such that g is
the identity on W S(0) ∩W S(1) and g maps S(0) onto S(1) in a natural way.

We shall define a common upper bound S. We letW S : W S(0)∪W S(1), n(1)S = n+1.
The function hs is defined as follows: By the above claim, we may assume that
hS(0) agrees with hS(1) on W S(0) ∩W S(1). hs will extend hS(0) ∪ hS(1) as follows: If
ξ < ζ ∈ W S and ξ ∈ W S(l) ⇐⇒ ζ /∈ W S(l) (l = 0, 1), then hS(ξ, ζ) = n. For
each (t,m) ∈ M∗,≤n we let λ(t,m), ρ(−,−, t,m) be as in S(0) and S(1), and for
ξ ∈ W S(l), A(t,m),ξ

l,j and f (t,m),ξ
(t1,m1) are defined as in S(l).

We shall now define the above information for (t,m) ∈ M∗,leqn+1 \M∗,≤n. So let
(t,m) ∈ Mk+1,≤n+1 \ M∗,≤n, hence ht(t,m) = n + 1. Clearly there is a unique
(t(0),m(0)) < (t,m), (t(0),m(0)) ∈M∗,≤n (Mk,≤n). WLOG we shall concentrate on
the red part. Define λ(t,m) = λ((t(0),m(0))) + |W S| + (2k + 1). For every j ≤ k

define an independent family (A(t,m),ξ
k,j : ξ ∈ W S) of subsets of {ν : lg(ν) = λ(t,m)}

such that |A
(t,m),ξ
k,j

|
2λ(t,m) = 1

2k+j+1 .

Define f (t,m),ξ
(t1,m1)(ηl, j) for (t1,m1) ∈ Nλ(t,m), j, l < k + 1 as follows:

1. If j, l < k, ξ ∈ W S(l), let f (t,m),ξ
(t1,m1)(ηl, j) = f

(t0,m0),ξ
(t1,m1)�λ(t0,m0)(ηl, j).

2. If l = k or j = k, we think of f (t,m),ξ
(t1,m1)(ηl, j) as a function of ξ, and we shall define

it arbitrarily as an injective function to ω (recalling that W S is finite).

Defining ρ(t1,m1, t,m) for (t1,m1) ∈ Nλ(t,m):

Let (t0,m0) := (t1,m1) � λ(t(0),m(0)) (by monotonicity, λ(t(0),m(0)) < λ(t,m))
and ρ2 = ρ(t0,m0, t(0),m(0)) ∈ t(0), so lg(ρ2) = ht(t(0),m(0)). We shall find a
proper extension ρ ∈ t of ρ2 that will satisfy definition 3(f). We shall consider the
cases where 3(f)(2) fails, in each such case we need to guarantee that ρ(h(ξ, ζ)) = 0.
Now lg(ρ2) = ht((t(0),m(0))). Recall that (t(0),m(0)) ∈Mk,≤n ⊆Mk, therefore, rk
in definition 2(c) exists and equals ht(t(0),m(0)) = λ(t(0),m(0)). By the definition
of Mk, m(0)(ρ2) > 2−ht(t(0),m(0))(1 − 1

µ(k)). By 2(b), m(0)(ρ2) = ∑
ρ2≤ν∈t∩2n+1

m(0)(ν),

now suppose that |{ν ∈ t∩ 2n+1} : ρ2 ≤ ν| ≤ 2(n+1)−lg(ρ2)(1− 1
µ(k)), then m(0)(ρ2) ≤

2−ht(t(0),m(0))(1 − 1
µ(k)) as m(0)(ν) ≤ 2−(n+1) for every ρ2 ≤ ν ∈ t ∩ 2n+1, which

is a contradiction. Therefore, |{ν ∈ t ∩ 2n+1} : ρ2 ≤ ν| > 2(n+1)−lg(ρ2)(1 − 1
µ(k)).

Therefore, if 3(f)(2) fails for less than log(µ(k)) quadruples, then we can find ρ that
satisfies the demands in 3(f) (suppose not, then for some c < log(µ(k)), there are
c coordinates above lg(ρ2) such that no extension of ρ2 in t of length n + 1 has 0
in those coordinates. There are 2n+1−lg(ρ2)

2c sequences with 0 in those coordinates,
therefore, the number of extensions in t is at most 2n+1−lg(ρ2)(1 − 1

2c ) which is a
contradiction).

For a given pair (l, j) we want to count the number of ξ ∈ W S such that t[ηl≤]
1

is disjoint to ∪
α<k+1

A
(t,m),ξ
α,j . Our goal is to show that 3(f)(2) fails for < log(µ(k))
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choices of (l, j, ξ, ζ). Now recall that lg(ηl) ≤ l, and by the definition of N , 1
4l+1 ≤

1
4lg(ηl)+1 ≤ m1(ηl). As before, |t[ηl≤]

1 |
2λ(t(0),m(0))−lg(ηl)

> 1
4l+1 . Recall that |{ν ∈ A(t,m),ξ

k,j : ηl ≤

ν}| = |A(t,m),ξ
k,j

|
2lg(ηl) , therefore, if x is the number of sets A(t,m),ξ

k,j that t[ηl≤]
1 is disjoint to,

then by a probabilistic argument, 1
4l+1 < (1− 1

2k+j+l )x.
As (1 − 1

2k+j+l )2k+j+l < 1
e
< 1

2 , it follows that x < 2k+j+l(2l + 2), so we have at
most (2k+j+l(2l+ 2))2 probematic pairs of (ξ, ζ) for a given pair of (l, j). Therefore,
the number or problematic (l, j, ξ, ζ) is at most Σ

l,j<k
(2k+j+l(2l + 2))2 < 2999k, so by

letting µ(k) = 222999k
we’re done. �

The following claim corresponds to step IV in the above proof.

Claim 6. There is a full system in L[x∗].
Proof: The existence of such a system can be described by a sentence ψ in Lω1,ω,
and by Keisler’s completeness theorem it’s absolute. By the previous claim, forcing
with finite systems over L[x∗] preserves ℵ1, hence we can get a full system in L[x∗].
The following claim corresponds to step V in the above proof.

Definition 7. Fix a full system S. We define the formulas φrd(x) and φ′rd(x) (and
similarly, φgr(x) and φ′gr(x)) as follows:
1. φrd(x) holds iff:
a. There is a tree T0 which is a poor man generic tree over L[x∗] (see see clause (A)(2)
of step I in the above proof), so there is (n(k) : k < ω) such that (t(k),m(k)) =
(T0 � 2<n(k),msT � 2<n(k)) ∈ Mk (where for a closed tree T , the function msT is
defined as msT (ν) = µ(lim(T ) ∩ (2ω)[η≤])).
b. There is a tree T1 which is a poor man generic tree over L[x∗, T0] (see clause
(A)(1) of step I in the aboove proof), so (tn,mn) = (T1 � 2≤n,msT1 � 2≤n) ∈ Nn for
every n < ω.
c. For every k < ω, ρSrd(tλ(t(k),m(k)),mλ(t(k),m(k)), t(k),m(k)) ≤ x.
2. φ′rd(x) iff there is y such that φrd(y) and x(n) = y(n) for n large enough.
Claim 8. There above formulas are Σ1

3.
Proof: Being contructible from x∗ is Σ1

2, hence “for every Gδ set B of measure 0,
B ∩ T = ∅ or B is not contructible from x∗” is Π1

2 and the conclusion follows. �
The following claim corresponds to step VI in the above proof.

Claim 9. φ′rd(x) and φ′gr(x) are contradictory.

Proof: Define a coloring of [ω1]2 by x(h(ξ, ζ)) for ξ, ζ < ω1. If φrd(x), there
are T0, T1 and (n(k) : k < ω) witnessing it. For j < ω, ηl ∈ T1 and α < ω

let Aj,l,n be the set of ξ < ω1 such that T ηl≤1 is disjoint to ∪
l,k<ω

C
(t(k),m(k)),ξ
l,j and

f
(t(k),m(k)),ξ
tλ(t(k),m(k)),mλ(t(k),m(k))(ηl, j) = α for large enough k. This is a partition of ω1 to
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countably many homogeneously red sets. Similarly, from φgr(x) we get a partition
of ω1 to countably many homogenously green sets, so we get a contradiction.
Now suppose that φrd(x), φgr(y) and x(n) = y(n) for n > n∗. There is a ho-
mogenously red set A for x and a homogenously green set B for y such that
A ∩ B is uncountable. There is an infinite set {ξn : n < ω} ⊆ A ∩ B such that
h(ξn1 , ξn2) < h(ξn2 , ξn3) has a fixed truth value for n1 < n2 < n3. By definition 6(A),
h(ξn, ξn+1) is strictly increasing, hence it’s > n∗ for n large enough. Therefore, for
n large enough, red = x(h(ξn, ξn+1)) = y(h(ξn, ξn+1)) = green, a contradiction. �
Claim 13: Ard = {x : φ′rd(x)} is not of measure 0.
Proof: Suppose that b is a code for a Gδ set of measure zero covering Ard, then
we get a poor man generic tree T0 over L[x∗, b] and a poor man generic tree T1 over
L[x∗, b, T0] (see step I in the above proof). Now let x ∈ lim(T0) such that T0 and T1
witness φ′rd(x), then x is in no measure zero set coded in L[x∗, b], contradicting the
fact that x ∈ Ard which is covered by the set coded by b. �
Claim 14: Ard is not measurable.
Proof: By the previous claim, its measure is not zero. By the definition of φ′rd, the
measure of {x : φ′rd(x), η ≤ x} (η ∈ 2<ω) is determined by lg(η). Therefore Ard has
outer measure 1, and similarly for Agr. As they’re disjoint, we get a contradiction.
�
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