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Abstract

We construct a Borel maximal cofinitary group.1

Introduction
The study of mad families and their relatives occupies a central place in modern set
theory. As the straightforward way to construct such families involves the axiom of
choice, questions on the definability of such families naturally arise. The following
classical result is due to Mathias:
Theorem ([Ma]): There are no analytic mad families.
In recent years, there has been considerable interest in the definability of several
relatives of mad families, such as maximal eventually different families and maximal
cofinitary groups. A family F ⊆ ωω is a maximal eventually different family if
f 6= g ∈ F → f(n) 6= g(n) for large enough n, and F is maximal with respect to
this property. The following result was recently discovered by the authors:
Theorem ([HwSh1089]): Assuming ZF , there exists a Borel maximal eventually
different family.
As for maximal cofinitary groups (see definition 1 below), several consistency results
were established on the definability of such groups, for example, the following results
by Kastermans and by Fischer, Friedman and Toernquist:
Theorem ([Ka]): There is a Π1

1-maximal cofinitary group in L.
Theorem ([FFT]): b = c = ℵ2 is consistent with the existence of a maximal
cofinitary group with a Π1

2−definable set of generators.
Our main goal in this paper is to establish the existence of a Borel maximal cofinitary
group in ZF . We intend to improve the current results in a subsequent paper, and
prove the existence of closed MED families and MCGs.
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The main theorem
Definition 1: G ⊆ S∞ is a maximal cofinitary group if G is a subgroup of S∞,
|{n : f(n) = n}| < ℵ0 for every Id 6= f ∈ G, and G is maximal with respect to these
properties.
Theorem 2 (ZF ): There exists a Borel maximal cofinitary group.
The rest of the paper will be dedicated for the proof of the above theorem. It will
be enough to prove the existence of a Borel maximal cofinitary group in Sym(U)
where U is an arbitrary set of cardinality ℵ0.
Convention: Given two sequences η and ν, we write η ≤ ν when η is an initial
segment of ν.
Definition 3: The following objects will remain fixed throughout the proof:
a. T = 2<ω.
b. ū = (uρ : ρ ∈ T ) is a sequence of pairwise disjoint sets such that U = ∪{uρ : ρ ∈
T} ⊆ H(ℵ0) (will be chosen in claim 4).
c. <∗ is a linear order of H(ℵ0) of order type ω such that given η, ν ∈ T , η <∗ ν iff
lg(η) < lg(ν) or lg(η) = lg(ν) ∧ η <lex ν.
d. For every η ∈ T , Σ{|uν | : ν <∗ η} � |uη|.
e. Borel functions B = B0 and B−1 = B−1

0 such that B : Sym(U)→ 2ω is injective
with a Borel image, and B−1 : 2ω → Sym(U) satisfies B(f) = η → B−1(η) = f .
f. Let A1 = {f ∈ Sym(U) : f has a finite number of fixed points}, A1 is obviously
Borel.
g. {fρ,ν : ν ∈ 2lg(ρ)} generate the group Kρ (defined below) considered as a subgroup
of Sym(uρ).
Claim 4: There exists a sequence (uρ, f̄ρ, Āρ : ρ ∈ T ) such that:
a. f̄ρ = (fρ,ν : ν ∈ Tlg(ρ)).
b. fρ,ν ∈ Sym(uρ) has no fixed points.
c. Āρ = (Aρ,ν : ν ∈ Tlg(ρ)). We shall denote ∪

ν∈Tlg(ρ)
Aρ,ν by A′ρ.

d. Aρ,ν ⊆ uρ ⊆ H(ℵ0) and Σ{|uη| : η <∗ ρ} � |Aρ,ν |.
e. ν1 6= ν2 ∈ Tlg(ρ) → Aρ,ν1 ∩ Aρ,ν2 = ∅.
f. If ρ ∈ 2n and w = w(..., xν , ...)ν∈2n is a non-trivial group term of length ≤ n then:
1. w(..., fρ,ν , ...)ν∈2n ∈ Sym(uρ) has no fixed points.
2. (w(..., fρ,ν , ...)ν∈2n( ∪

ν∈2n
Aρ,ν)) ∩ ∪

ν∈2n
Aρ,ν = ∅.

g. {fρ,ν : ν ∈ Tlg(ρ)} generate the group Kρ (whose set of elements is uρ) which is
considered as a group of permutations of uρ.
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Proof: We choose (uρ, f̄ρ, Āρ) by <∗-induction on ρ as follows: Arriving at ρ, we
choose the following objects:

a. n1
ρ such that Σ{|uν | : ν <∗ ρ}2lg(ρ)+7 � n1

ρ and let n0
ρ = n1

ρ

2lg(ρ) .
b. Let Hρ be the group generated freely by {xρ,ν : ν ∈ Tlg(ρ)}.
c. In Hρ we can find (yρ,n : n < ω) which freely generate a subgroup (we can do it
explicitly, for example, if a and b freely generate a group, then (anbn : n < ω) are
as required), wlog for w1 and w2 as in 4(f) and n1 < n2 we have w1yρ,n1 6= w2yρ,n2 .
Now choose A1

ρ,ν ⊆ {yρ,n : n < ω} for ν ∈ 2lg(ρ) such that ν1 6= ν2 → A1
ρ,ν1∩A

1
ρ,ν2 = ∅

and n0
ρ ≤ |A1

ρ,ν |.
d. Let Λρ = {w : w = w(..., xρ,ν , ...)ν∈Tlg(ρ) is a group word of length ≤ lg(ρ)}.
As Hρ is free, it’s residually finite, hence there is a finite group Kρ and an epi-
morphism φρ : Hρ → Kρ such that φρ � (( ∪

ν∈2lg(ρ)
A1
ρ,ν) ∪ Λρ ∪ {wa : w ∈ Λρ ∧ a ∈

∪
ν∈2lg(ρ)

A1
ρ,ν}) is injective (note that there is no use of the axiom of choice as we can

argue in a model of the form L[A]). WLOG Kρ ⊆ H(ℵ0) and Kρ is disjoint to
∪{uν : ν <∗ ρ}.
We now define the following objects:
a. uρ = Kρ.
b. Aρ,ν = {φρ(a) : a ∈ A1

ρ,ν}.

c. For ν ∈ 2lg(ρ), let fρ,ν : uρ → uρ be multiplication by φρ(xρ,ν) from the left.
It’s now easy to verify that (uρ, Āρ, f̄ρ) are as required, so U = ∪{uρ : ρ ∈ T}. �
Definition and claim 5: A. a. Given f ∈ Sym(U), let g = F1(f) be g∗B(f), where
for ν ∈ 2ω, g∗ν is the permutation of U defined by: g∗ν � uρ = fρ,ν�lg(ρ) (recall that ū
is a partition of U and each fρ,ν belongs to Sym(uρ), therefore g is well-defined and
belongs to Sym(U)).
b. Let G1 be the subgroup of Sym(U) generated by {g∗ν : ν ∈ 2ω} (which includes
{F1(f) : f ∈ Sym(U)}).
c. Let I1 be the ideal on U generated by the sets v ⊆ U satisfying the following
property:
(∗)v For some ρ = ρv ∈ 2ω, for every n, there is at most one pair (a, ν) such that
ν ∈ T , a ∈ v ∩ uν and ρ ∩ ν = ρ � n.
c(1). Note that I1 is indeed a proper ideal: Suppose that v0, ..., vn are as above and
let ρ0, ..., ρn witness (∗)vi (i = 0, ..., n). Choose k such that 2k > n + 1 and choose
η ∈ 2k \{ρi � k : i ≤ n}. For each i ≤ n, there is k(i) ≤ k such that η∩ρi = ρi � k(i).
For each i ≤ n, let n(i) be the length ν such that (a, ν) witness (∗)vi for k(i). Choose
η′ above η such that lg(η′) > n(i) for every i, then uη′ ∩ ( ∪

i≤n
vi) = ∅.

d. Let K1 = {f ∈ Sym(U) : fix(f) ∈ I1} where fix(f) = {x : f(x) = x}.
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e. For η ∈ T , a, b ∈ uη, n = lg(η) < ω and let ya,b = ((fη,ρa,b,l , ia,b,l) : l < la,b = l(∗))
such that:
1. ρa,b,l ∈ 2n.
2. ia,b,l ∈ {1,−1}.
3. b = (fη,ρa,b,0)ia,b,0 · · · (fη,ρa,b,l(∗)−1)ia,b,l(∗)−1(a).
4. la,b = l(∗) is minimal under 1-3, ya,b is <∗-minimal under this requirement.
5. il 6= il+1 → ρa,b,l 6= ρa,b,l+1.
By claim 4(g) and definition 3(c), ya,b is always well-defined.
B. There are Borel functions B1,1,B1,2, etc with domain Sym(U) such that:
a. B1,1(f) ∈ {0, 1} and B1,1(f) = 0 iff |fix(f)| < ℵ0.
b. Letting η1 = B(f), B1,2(f) ∈ {0, 1} and B1,2(f) = 1 iff B1,1(f) = 0 and for
infinitely many n, f ′′(A′η1�n) * ∪{uρ : ρ ≤∗ η1 � n} (where A′η1�n is defined in 4(c).
c. B1,3(f) ∈ ω such that if B1,1(f) = B1,2(f) = 0 then for every B1,3(f) ≤ n,
f ′′(A′η1�n) ⊆ ∪{uρ : ρ ≤∗ η1 � n}.
d. B1,4(f) ∈ {0, 1} and B1,4(f) = 1 iff B1,1(f) = B1,2(f) = 0 and {la,f(a) : a ∈ vn
and B1,3(f) ≤ n} is unbounded, where vn := {a ∈ A′η1�n ⊆ uη1�n : f(a) ∈ uη1�n}.
e. B1,5(f) ∈ ω such that: If B1,4(f) = B1,2(f) = B1,1(f) = 0 then B1,5(f) is a
bound of {la,f(a) : a ∈ vn and B1,3(f) ≤ n}.
f. B1,6(f) ∈ {0, 1} such that: B1,6(f) = 1 iff B1,1(f) = B1,2(f) = B1,4(f) = 0 and
for every m there exists n > m such that: There are a1 6= a2 ∈ vn such that for some
l, l < min{la1,f(a1), la2,f(a2)}, ρa1,f(a1),l 6= ρa2,f(a2),l and ρa1,f(a1),l � m = ρa2,f(a2),l � m.
g. B1,7(f) is a sequence (an = an(f) : n ∈ B1,8(f)) such that if B1,6(f) = 1 then:
1. an ∈ vn
2. B1,8(f) ∈ [ω]ω

3. lan,f(an) = l(∗) = B1,9(f)
4. l∗∗ = B2,0(f) < l∗

5. (ρan,f(an),l∗∗ : n ∈ B1,8(f)) are pairwise incomparable.
6. For every l < l∗, the following sequence is constant: (TV (ρan,f(an),l ≤ ρak,f(ak),l) :
n < k ∈ B1,8(f)).
h. B2,1(f) is a sequence (An = An(f) : n ∈ B2,2(f)) such that if B1,1(f) = B1,2(f) =
B1,4(f) = B1,6(f) = 0 then:
1. B2,2(f) ∈ [ω]ω

2. An ⊆ A′η1�n (recalling that η1 = B(f))
3. la,f(a) = l∗ = B2,3(f) for n ∈ B2,2(f) and a ∈ An

4

Paper Sh:1095, version 2020-06-03. See https://shelah.logic.at/papers/1095/ for possible updates.



4. (il : l < l∗) = (ia,f(a),l : l < l∗) (recalling definition 5(e)) for every n ∈ B2,2(f)
and a ∈ An.
5. 1

B′2,3(f)(n) ≤
|An|
|vn| where B′2,3(f)(n) ∈ ω \ {0}, B2,3(f)(n) � |vn| and vn is defined

in 5(B)(d).
6. B2,4,n(f) = ρ̄∗n = (ρnl : l < l∗) = (ρa,f(a),l : l < l∗) for every n ∈ B2,2(f) and
a ∈ An.
7. (TV (ρnl ≤ ρml ) : n < m ∈ B2,2(f)) is constantly B2,5,l(f)
i. B2,6(f) ∈ {0, 1} is 1 iff B1,1(f) = B1,2(f) = B1,4(f) = B1,6(f) = 0 and in (h)(7),
B2,5,l = false for some l < l∗.
j. B′2,6(f) ∈ {0, 1} is 0 iff B1,1(f) = B1,2(f) = B1,4(f) = B1,6(f) = 0 and B2,6(f) =
0
Proof: By the proof of Ramsey’s theorem and the arguments which are implicit in
the proof of claim 7 below. Note that while the statement “there exists an infinite
homogeneous set” is analytic, we can Borel-compute that homogeneous set. See the
proof of claim 6 in [HwSh:1089] for more details. �
Definition and claim 6: a. 1. Let H3 be the set of f ∈ Sym(U) such that:
α. B1,1(f) = 0
β. If B1,2(f) = B1,4(f) = B1,6(f) = 0 then B′2,6(f) = 1
a. 2. H3 is Borel.
b. For f ∈ Sym(U) let Gf be the set of g ∈ Sym(U) such that:
1. If f /∈ H3 then Gf = {F1(f)}.
2. If f ∈ H3 then Gf be the set of g such that for some (B, η1, η2, ā, b̄, c̄, d̄, ē, ν̄) we
have:
A. B ⊆ ω is infinite.
B. η1 = B(f) ∈ 2ω and η2 ∈ 2ω.
C. ā = (an : n ∈ B).
D. If n ∈ B then an ∈ A′η1�n = ∪

ρ∈2n
Aη1�n,ρ ⊆ uη1�n (recall that we denote ∪

ρ∈2n
Aη1�n,ρ

by A′η1�n).

E. b̄ = (bn : n ∈ B) and ν̄ = (νn : n ∈ B), νn ∈ T , such that for each n ∈ B,
bn = f(an) and bn ∈ uνn . c̄ = (cn : n ∈ B), d̄ = (dn : n ∈ B) and ē = (en : n ∈ B)
are such that bn, cn ∈ uνn and en ∈ uη1�n.
F. For every n ∈ B, g(an) = f(an) = bn.
G. For every n ∈ B, g(bn) = F1(f)(an) = en.
H. For every n ∈ B we have cn = F1(f)−1(f(an)) and g(cn) = F1(f)(f(an)) = dn.
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I. If b ∈ U is not covered by clauses F-H, then g(b) = F1(f)(b).
J. g has no fixed points.
K. One of the following holds:
a. For every n ∈ B, η1 � n <∗ νn, lg(η2 ∩ νn) > max{lg(νm) : m ∈ B ∩ n} hence
(νn ∩ η2 : n ∈ B) is ≤ −increasing.
b. For every n ∈ B, νn = η1 � n and l(an, f(an), n) is increasing (see definition 5(e)).
c. For every n ∈ B, νn = η1 � n and in addition, l(an, f(an), n) = l∗ for every n,
ian,f(an),l = il for l < l∗ and for some l∗∗ < l∗, the elemnts of (ρan,f(an),l∗∗ : l∗∗ < l∗)
are pairwise incomparable. �
Claim 7: If f ∈ H3 then there exists g ∈ Sym(U) such that for some (B, η1, η2, ā, b̄, ν̄),
g and (B, η1, η2, ā, b̄, ν̄) are as required in claim 6(c)(2) (and therefore, there are also
(c̄, d̄, ē) as required there). Moreover, g is unique once (B, η1, η2, ā, b̄, ν̄) is fixed.
Remark 7A: In claim 9 we need g to be Borel-computable from f , which is indeed
the case by the discussion in the proof of claim 5 and by the proof of claim 6 in
[HwSh:1089].
Proof: f ∈ H3, so B1,1(f) = 0.
We shall first observe that if g is defined as above, then g is a permutation of U
with no fixed points. It’s also easy to see that g is unique once (B, η1, η2, ā, b̄, ν̄) has
been chosen. Therefore, it’s enough to find (B, η1, η2, ā, b̄, ν̄) as required.
Case I (B1,2(f) = 1): For infinitely many n, f ′′(A′η1�n) * ∪{uρ : ρ ≤∗ η1 � n}.
In this case, let B0 = {n : there is a ∈ A′η1�n such that f(a) /∈ ∪{uρ : ρ ≤∗ η1 �
n}, and for every n ∈ B0, let an be the <∗-first element in A′η1�n witnessing that
n ∈ B0. Let bn = f(an) and let νn ∈ T be the sequence for which bn ∈ uνn .
Apply Ramsey’s theorem (we don’t need the axiom of choice, as we can argue in
some L[A]) to get an infinite set B ⊆ B0 such that ck,l � [B]k is constant for every
(k, l) ∈ {(2, 1), (2, 2), (2, 4), (3, 1), (3, 3)}, where for n1 < n2 < n3:
a) c2,1(n1, n2) = TV (lg(ν1) < lg(ν2)).
b) c2,2(n1, n2) = TV (νn2 ∈ {νn : n ≤ n1}).
c) c3,1(n1, n2, n3) = TV (lg(νn2 ∩ νn3) > νn1).
d) c3,3(n1, n2) = νn2(lg(νn1 ∩ νn2)) ∈ {0, 1,undefined}.
We shall prove now that (lg(νn) : n ∈ B) has an infinite increasing subsequence:
Choose an increasing sequence n(i) ∈ B by induction on i such that j < i →
lg(νn(j)) < lg(νn(i)). Arriving at stage i = j + 1, suppose that there is no such n(i),
then {f(an) : n ∈ B \n(j)} ⊆ ∪{uρ : lg(ρ) ≤ lg(νn(j))}, hence {f(an) : n ∈ B \n(j)}
is finite. Similarly, {νn : n ∈ B \ n(j)} is finite, and therefore, there are n1 < n2 ∈
B \ n(j) such that νn1 = νn2 and f(an1) = f(an2). As f is injective, an1 = an2 , and
by the choice of the an, an1 ∈ uη1�n1 and an2 ∈ uη1�n2 .
This is a contradiction, as uη1�n1 ∩ uη1�n2 = ∅.
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Therefore, there is an infinite B′ ⊆ B such that (lg(νn) : n ∈ B′) is increasing, and
wlog B′ = B.
Now we shall note that if n1 < n2 < n3 are from B, then lg(νn2 ∩ νn3) > lg(νn1):
By the choice of B, c3,1(n1, n2, n3) is constant for n1 < n2 < n3, so it suffices to
show that c3,1 � [B]3 = true. Let n1 = min(B) and k = lg(νn1) + 1. The sequence
(νn � k : n ∈ B \ {n1}) is infinite, hence there are n2 < n3 ∈ B \ {n1} such that
νn2 � k = νn3 � k. Therefore, lg(νn1) < k ≤ lg(νn2 ∩ νn3), and as c3,1 is constant on
[B]3, we’re done.
For n < k ∈ B such that k is the successor of n in B, let ηn = νn ∩ νk. Suppose
now that n < k < l are successor elements in B, then lg(ηk) = lg(νk ∩ νl) >
lg(νn) ≥ lg(νn ∩ νk) = lg(ηn), and ηn, ηk ≤ νk, therefore, ηn is a proper initial
segment of ηk and η2 := ∪

n<ω
ηn ∈ 2ω. If n < k ∈ B are successor elements, then

lg(ηk) > lg(νn) (by a previous claim), therefore, νn ∩ (T \ νk) is disjoint to η2, hence
νn ∩ η2 = νn ∩ νk = ηn. Therefore, if n < k ∈ B then νn ∩ η2 is a proper initial
segment of νk ∩ η2 and η2 = ∪

n<ω
(νn ∩ η2).

It’s now easy to verify that (B, η1, η2, ā, b̄, ν̄) and g are as required.
Case II (B1,2(f) = 0 and n1 stands for B1,3(f)): There is n1 such that for
every n1 ≤ n, f ′′(A′η1�n) ⊆ ∪{uρ : ρ ≤∗ η1 � n}.
For each n, recall that vn = {a ∈ A′η1�n ⊆ uη1�n : f(a) ∈ uη1�n}. vn satisfies
|A′η1�n \ vn| ≤ Σ{|uν | : ν <∗ η1 � n}, and as Σ{|uν | : ν <∗ η1 � n} � |A′η1�n|, it
follows that Σ{|uν | : ν <∗ η1 � n} � |vn|. Recall also that for a ∈ vn, as f(a) ∈ uη1�n,
by definition 5(e), ya,f(a) is well-defined.
We now consider three subcases:
Case IIA (B1,4(f) = 1): The set of la,f(a),n for a ∈ vn and n1 ≤ n is un-
bounded. In this case, we find an infinite B ⊆ [n1, ω) and an ∈ vn for each n ∈ B
such that (lan,f(an),n : n ∈ B) is increasing. Now let η2 := η1 and define b̄, ν̄ and g as
described in Definition 6. It’s easy to verify that (B, η1, η2, ā, b̄, ν̄) are as required.
Case IIB (B1,4(f) = 0 and B1,6(f) = 1): Case IIA doesn’t hold, but B1,6(f) =
1 and there is an infinite B ⊆ [n1, ω), l∗∗ < l∗ (see below) and (an ∈ vn : n ∈ B)
(given by B1,8(f), B2,0(f) and B1,7(f), respectively) such that:
a. lan,f(an) = l∗ and l∗∗ = B2,0(f) < l∗.
b. ian,f(an),l = i∗l for l < l∗.
c. If n ∈ B and m ∈ B ∩ n, then ρam,f(am),l∗∗ * ρan,f(an),l∗∗.

In this case we define b̄, ν̄ and g as in Definition 6 and we let η2 := η1. It’s easy to
see that (B, η1, η2, ā, b̄ν̄) are as required.
Remark: By a routine Ramsey-type argument, it’s easy to prove that if B1,6(f) = 1
then the values of B1,7(f),B2,0(f) are well-defined and Borel-computable so the
above conitions hold.
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Case IIC (B1,4(f) = B1,6(f) = 0): ¬IIA ∧ ¬IIB. We shall first prove that
B2,1(f), B2,2(f), B2,3(f), (B2,4,n(f) : n ∈ B2,2(f)) and (B2,5,l(f) : l < B2,3(f)) are
well-define and Borel computable.
Let l(∗) be the supremum of the l(a, f(a)) where n1 ≤ n and a ∈ vn (l(∗) < ω
by ¬2A). We can find l(∗∗) ≤ l(∗) such that B1 := {n ∈ B : vn,1 = {a ∈
vn : l(a, f(a)) = l(∗∗)} has at least vn

l(∗) elements} is infinite. Next, we can find
i∗(l) ∈ {1,−1} for l < l(∗∗) such that B2 : {n ∈ B1 : vn,2 = {a ∈ vn,1 :
∧

l<l(∗∗)
ia,f(a),l = i∗(l)} has at least |vn|

2l(∗∗)l(∗) elements} is infinite. For each n ∈ B2,
there are ρn,0, ..., ρn,l(∗∗)−1 ∈ Tn such that vn,3 = {a ∈ vn,2 : ∧

l<l(∗∗)
ρa,f(a),l = ρn,l} has

at least |vn|
l(∗∗)2l(∗∗)2nl(∗∗) elements. By Ramsey’s theorem, there is an infinite subset

B3 ⊆ B2 such that for each l < l(∗∗), the sequence (TV (ρm,l ≤ ρn,l) : m < n ∈ B3)
is constant. Therefore, we’re done showing that the above Borel functions are well-
defined.
Now if B′2,6(f) = 1 then we finish as in the previous case (this time we’re in the
situation of 6(b)(2)(K)(c)). If B′2,6(f) = 0, then we get a contradiction to the
assumption that f ∈ H3, therefore we’re done. �
Claim 8: If w(x0, ..., xk∗−1) is a reduced non-trivial group word, f0, ..., fk∗∗−1 ∈ H3
are pairwise distinct, gl ∈ Gfl (l ∈ {0, ..., k∗∗ − 1}), gl = g∗νl where νl ∈ 2ω \ {B(f) :
f ∈ H3}, l = k∗∗, ..., k∗ − 1 and (νl : k∗∗ ≤ l < k∗) is without repetition, then
w(g0, ...gk∗−1) ∈ Sym(U) has a finite number of fixed points.
Notation: For l < k∗∗, let νl := B(fl).

Proof: Assume towards contradiction that w(x0, ..., xk∗−1) = x
i(m−1)
k(m−1) · ... · x

i(0)
k(0),

{f0, ..., fk∗−1} and {g0, ..., gk∗−1} form a counterexample, where i(l) ∈ {−1, 1}, k(l) <
k∗ and k(l) = k(l + 1)→ ¬(i(l) = −i(l + 1)) for every l < m. WLOG m = lg(w) is
minimal among the various countrexamples. Let C = {a ∈ U : w(g0, ..., gk∗−1)(a) =
a}, this set is infinite by our present assumption. For c ∈ C, define bc,l by induction
on l < m as follows:
1. bc,0 = c.

2. bc,l+1 = g
i(l)
k(l)(bc,l).

Notational warning: The letter c with additional indices will be used to denote the
elements of sequences of the form c̄ from Definition 6(b)(2).
For all but finitely many c ∈ C, (bc,l : l < m) is without repetition by the minimality
of m, so wlog this is true for every c ∈ C.
For every c ∈ C, let ρc,l ∈ T be such that bc,l ∈ uρc,l , and let l1[c] be such that
ρc,l1[c] ≤∗ ρc,l for every l < m. We can choose l1[c] such that one of the following
holds:
1. l1[c] > 0 and ρc,l1[c]−1 6= ρc,l1[c]

2. l1[c] = 0 and ρc,m−1 6= ρc,0
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3. ρc,0 = ... = ρc,m−1

We may assume wlog that (l1[c] : c ∈ C) is constant and that actually l1[c] = 0 for
every c ∈ C. In order to see that we can assume the second part, for j < m let
wj(x0, ..., xk∗−1) = x

i(j−1)
k(j−1) ···x

i(0)
k(0)x

i(m−1)
k(m−1) ···x

i(j)
k(j), then wj(g0, ..., gk∗−1) ∈ Sym(U) is a

conjugate of w(g0, ..., gk∗−1). The set of fixed points of wj(g0, ..., gk∗−1) includes {bc,j :
c ∈ C}, and therefore it’s infinite. For c ∈ C, (bc,j, bc,j+1, ..., bc,m−1, bc,0, ..., bc,j−1) and
wj(g0, ..., gk∗−1) satisfy the same properties that (bc,0, ..., bc,m−1) and w(g0, ..., gk∗−1)
satisfy. Therefore, if (l1[c] : c ∈ C) is constantly j > 0, then by conjugating and
moving to wj(g0, ..., gk∗−1), we may assume that (l1[c] : c ∈ C) is contantly 0.
Let l2[c] < m be the maximal such that ρc,0 = ... = ρc,l2[c], so wlog l2[c] = l∗ for
every c ∈ C. For l < k∗ let η1,l be B(fl) if l < k∗∗ and νl if l ∈ [k∗∗, k∗) (we might
also denote it by ρl in this case). As fl ∈ H3 for l <k∗∗, and ρl /∈ {B(f) : f ∈ H3}
for l ∈ [k∗∗, k∗), it follows that l1 < k∗∗ ≤ l2 < k∗ → η1,l1 6= η1,l2 . Therefore,
(η1,l : l < k∗) is without repetition.
Now let η2,l be defined as follows:
1. If l < k∗∗, let η2,l be η2 from definition 6(b)(2) for fl and gl.
2. If l ∈ [k∗∗, k∗), let η2,l = η1,l.
Let j(∗) < ω be such that:
a. (η1,l � j(∗) : l < k∗) is without repetition.
b. If η1,l1 6= η2,l2 then η1,l1 � j(∗) 6= η2,l2 � j(∗) (l1, l2 < k∗).
c. If η2,l1 6= η2,l2 then η2,l1 � j(∗) 6= η2,l2 � j(∗) (l1, l2 < k∗).
d. j(∗) > 3m, k∗.
e. j(∗) > n(l1, l2) for every l1 < l2 < k∗, where n(l1, l2) is defined as follows:
1. If k∗∗ ≤ l1, l2, let n(l1, l2) = 0.
2. If l1 < k∗∗ or l2 < k∗∗, let (ν1

n : n ∈ B1) and (ν2
n : n ∈ B2) be as in definition 6(b)(2)

for (fl1 , η1,l1) and (fl2 , η1,l2), respectively. If there is no ν1
n such that ν1

n � η1,l1 and no
ν2
n such that ν2

n � η1,l2 , let n(l1, l2) = 0. Otherwise, there is at most one n ∈ B1 such
that ν1

n � η1,l1 and ν1
n ≤ η1,l2 and there is at most one m ∈ B2 such that ν2

m � η1,l2
and ν2

m ≤ η1,l1 . If there are ν1
n and ν2

m as above, let n(l1, l2) = lg(ν1
n) + lg(ν2

m) + 1.
If there is ν1

n as above but no ν2
m as above, let n(l1, l2) = lg(ν1

n) + 1, and similarly
for the dual case.
f. j(∗) > m(l1, l2) for every l1 < l2 < k∗∗ where m(l1, l2) is defined as follows: Let
(ν1
n : n ∈ B1) and (ν2

m : m ∈ B2) be as in definition 6(b)(2) for (fl1 , η1,l1) and
(fl2 , η1,l2), respectively. As η1,l1 6= η1,l2 , |{ν1

n : n ∈ B1} ∩ {ν2
m : m ∈ B2}| < ℵ0,

let s(l1, l2) be the supremum of the length of members in this intersection and let
m(l1, l2) := s(l1, l2) + 1.
We may assume wlog that lg(ρc,l1[c]) > j(∗) for every c ∈ C. We now consider two
possible cases (wlog TV ((ρc,l : l < m) is constant) is the same for all c ∈ C):
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Case I: For every c ∈ C, (ρc,l : l < m) is not constant.

In this case, for each such c ∈ C, l2[c] < m−1 and bc,l2[c] ∈ uρc,0 = ... = uρc,l2[c] . Now
(bc,l2[c], bc,l2[c]+1) ∈ gi(l2[c])

k(l2[c]), and as ρc,l2[c] 6= ρc,l2[c]+1, necessarily k(l2[c]) < k∗∗. By the
definition of l1[c] and the fact that ρc,l1[c] = ρc,l2[c], necessarily ρc,l2[c] <∗ ρc,l2[c]+1.

For each l < m − 1, if lg(ρc,l) < lg(ρc,l+1), then either gk(l) or g−1
k(l) is as in defi-

nition 6(2)(b), so letting n = lg(ρc,l), (ρc,l, ρc,l+1) here correspond to (η1 � n, νn)
there, and there are (al, bl, cl, dl, el) = (alc, blc, clc, dlc, elc) in our case that correspond to
(an, bn, cn, dn, en) in 6(2)(b). In the rest of the proof we shall denote those sequences
by (al, bl, cl, dl, el), as the identity of the relevant c ∈ C should be clear. In addition,
one of the following holds:

1. i(l) = 1 and gi(l)k(l)(al) = bl.

2. i(l) = −1 and gi(l)k(l)(bl) = al.

Similarly, for l < m − 1, if lg(ρc,l) > lg(ρc,l+1) then the above is true modulo the
fact that now (ρc,l, ρc,l+1) correspond to (νn, η1 � n) and one of the following holds:

1. i(l) = 1 and gi(l)k(l)(bl) = el.

2. i(l) = −1 and gi(l)k(l)(bl) = al.

Therefore, if l = l2[c] then lg(ρc,l) < lg(ρc,l+1), so the first option above holds, and
therefore ρc,l is an initial segment of η1,k(l).

If l = m − 1, then lg(ρc,m−1) > lg(ρc,0) = lg(ρc,m) and therefore ρc,0 is an initial
segment of η1,k(m−1). It follows that ρc,0 = ρc,l2[c] is an initial segment of η1,k(l2[c]) ∩
η1,k(m−1). Recalling that lg(ρc,0) = lg(ρc,l1[c]) > j(∗) and that (η1,l � j(∗) : l < k∗) is
without repetition, it follows that k(m− 1) = k(l2[c]).

We shall now prove that if l2[c] < m − 1 then l2[c] = m − 2. Let (al2[c], bl2[c], ...)
be as above for l = l2[c], so bc,l2[c]+1 = bl2[c], and as k(l2[c]) = k(m − 1), we get
bc,l2[c]+1 = bl2[c] = bm−1. In order to show that l2[c] = m− 2, it suffices to show that
bm−1 = bc,m−1 (as the sequence of the bc,ls is without repetition), which follows from
the fact that ρc,0 <∗ ρc,m−1.

As we assume that the word w is reduced, and as k(m − 2) = k(l2[c]) = k(m − 1),
necessarily i(m− 2) = i(m− 1). We may assume wlog that i(m− 2) = i(m− 1) = 1
(the proof for i(m−2) = i(m−1) = −1 is similar, as we can replace w by a conjugate
of its inverse).

Let w′ = w′(g0, ..., gk∗−1) := g
i(m−3)
k(m−3) · · · g

i(0)
k(0), by the above considerations and as

bm−1 = bc,m−1, it follows that em−1 = gk(m−1)(bm−1) = g
i(m−1)
k(m−1)(bm−1) = g

i(m−1)
k(m−1)(bc,m−1) =

bc,0. We also know that gi(m−2)
k(m−2)(w′(bc,0)) = gk(m−2)(w′(bc,0)) is “higher” than w′(bc,0).

Therefore, gi(m−2)
k(m−2)(w′(bc,0)) = gk(m−2)(w′(bc,0)) = bm−2 = bm−1. It also follows that

w′(bc,0) = am−2 = am−1. Therefore, w′(em−1) = am−1.
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We shall now prove that if l < m − 2 then bc,l+1 = (g∗νk(l)
)i(l)(bc,l). Assume that

for some l < m − 2, gk(l)(bc,l) 6= g∗νk(l)
(bc,l) and we shall derive a contradiction. Let

(am−2, bm−2, ...) be as before for gk(m−2), so (bc,m−2, bc,0) = (am−2, em−2).
Case I (a): k(l) = k(m − 2) = k(m − 1). As the bc,is are without repetition, if
0 < l < m − 2, then bc,l /∈ {bc,m−2, bc,0} = {am−2, em−2} = {al, el}, and of course,
bc,l /∈ {bl, cl, dl} (as it is a “lower” element). Therefore, gk(l)(bc,l) = g∗νk(l)

(bc,l), a
contradiction. If l = 0, then gi(m−1)

k(m−1)(bc,m−1) = bc,0 and (bc,m−1, bc,0) = (bm−1, em−1).
If i(0) = −i(m− 1), then by conjugating gk(0), we get a shorter word with infinitely
many fixed points, contradicting our assumption on the minimality of m.
If i(0) = i(m− 1) = 1, then we derive a contradiction as in the case of 0 < l.
Case I (b): k(l) 6= k(m − 2) = k(m − 1). In this case, we know that gk(l) almost
coincides with g∗νk(l)

, with the exception of at most {al, bl, cl, dl, el}. Let ρc := ρc,0 =
... = ρc,m−2, then necessarily ρc ≤ νk(m−1) = η1,k(m−1) (as gk(m−1) moves bc,m−1 to a
lower uρ (namely uρc), ρc plays the role of η1 � n in Definition 6 for gk(m−1)). By our
assumption, lg(ρc) > j(∗) and (η1,l � j(∗) : l < k(∗)) is without repetition, therefore
η1,k(l) � lg(ρc) 6= ρc, so ρc � η1,k(l). Therefore, when we consider fk(l) and η1,k(l) in
definition 6(b)(2), then ρc has the form νn for some n. By the choice of j(∗), it’s
then impossible to have ρc ≤ η1,k(m−1), a contradiction.
Therefore, am−2 = w′(g0, ..., gk∗−1)(em−2) = w′(g0, ..., gk∗−1)(bc,0) = w′(g∗ν0 , ..., g

∗
νk∗−1

)(bc,0) =
w′(g∗ν0 , ..., g

∗
νk∗−1

)(em−2). In the notation of the claim and definition 6(b)(2), F1(fk(m−2))(am−2) =
em−2, therefore, by composing with w′, we obtain a word composed of permutation
of uρc,m−2 (in the sense of claim 4(f)) that fixes em−2 ∈ uρc,m−2 , therefore, m− 3 = 0
(or else we get a contradiction by claim 4(f)).

It follows that w(g0, ..., gk∗−1) = gk(m−2)gk(m−2)g
i(0)
k(0) and g

i(0)
k(0)(em−2) = am−2. Now,

obviously ρc,m−2 ≤ η1,k(m−2), so ρc,m−2 � η1,k(0) = νk(0). By the definition, g∗νk(0)
�

uρc,m−2 = fρc,m−2,νk(0)�lg(ρc,m−2) 6= fρc,m−2,ρc,m−2 . Also F1(fk(m−2)) � uρc,m−2 = g∗νk(m−2)
�

uρc,m−2 = fρc,m−2,ρc,m−2 . Therefore, we get the following: am−2 = g
i(0)
k(0)(em−2) =

(g∗νk(0)
)i(0)(em−2) = (fρc,m−2,νk(0)�lg(ρc,m−2))i(0)(em−2) and em−2 = F1(fk(m−2))(am−2) =

fρc,m−2,ρc,m−2(am−2). In conclusion, we get a contrdiction to claim 4(f), as we have a
short non-trivial word that fixes em−2.
Case II: (ρc,l : l < m) is constant for every c ∈ C (so l2[c] = m − 1). Let
ρc := ρc,0 = ... = ρc,m−1. If gi(l)k(l)(bc,l) = (g∗νk(l)

)i(l)(bc,l) for every l < m, then we
get a contradiction to claim 4(f). Therefore, for every c ∈ C, the set vc = {l <
m : gi(l)k(l)(bc,l) 6= (g∗νk(l)

)i(l)(bc,l)} is nonempty. Without loss of generality, vc doesn’t
depend on c, and we shall denote it by v. For every l ∈ v, if i(l) = 1 then (bc,l, bc,l+1) ∈
{(al, bl), (bl, el), (cl, dl)}, if i(l) = −1 then (bc,l, bc,l+1) ∈ {(bl, al), (el, bl), (dl, cl)}.
We shall now prove that for some k < k∗∗, k(l) = k for every l ∈ v. Suppose
not, then for some l1 < l2 ∈ v, k(l1) 6= k(l2). By the choice of j(∗), each of the
following options in impossible: ρc,l1 ≤ η1,l1 ∧ ρc,l2 ≤ η1,l2 , ρc,l1 ≤ η1,l1 ∧ ρc,l2 � η1,l2 ,

11

Paper Sh:1095, version 2020-06-03. See https://shelah.logic.at/papers/1095/ for possible updates.



ρc,l1 � η1,l1∧ρc,l2 ≤ η1,l2 or ρc,l1 � η1,l1∧ρc,l2 � η1,l2 . Therefore we get a contradiction.
It follows that {k(l) : l ∈ v} is singelton, and we shall denote its only member by
k < k∗∗.
Note that if l1 ∈ v, l2 ∈ v is the successor of l1 in v, l1 + 1 < l2 and c ∈ C then
bc,l1+1 6= bc,l2 (recall that (bc,l : l < m) is withut repetition). We shall now arrive at
a contradiction by examining the following three possible cases (in the rest of the
proof, we refer to l(∗) from Definition 5(A)(e) as “the distance between a and b”,
and similarly for any pair of members from some uη):
Case II (a): gk is as in definition 6(b)(2)(K)(a). In this case, for every l ∈ v, the
only possibilities for (bc,l, bc,l+1) are either of the form (c, d) or (d, c) (and not both,
as we don’t allow repetition). As the distance between c and d is at most 2, we get
a word made of fρ,νs of length ≤ m+ 1 that fixes c, contradicting claim 4(f).
Case II (b): gk is as in definition 6(b)(2)(K)(c). Pick c ∈ C such that lg(ρc) is alseo
greater than m+ l∗ where l∗ is as in definition 6(b)(2)(K)(c) for gk. As the sequence
(bc,l : l < m) is without repetition, necessarily 1 ≤ |v| ≤ 3.
If |v| = 3, then necessarily the sequences (a, b, e) or (e, b, a) occur in (bc,l : l < m),
as well as (c, d) or (d, c). As the distance between a and e is 1 and the distance
between c and d is ≤ 2, we get a contradiction as before.
Suppose that |v| = 2. If the sequence (a, b, e) appears in (bc,l : l < m), we get
a contradiction as above. If (a, e) (or (e, a)) and (c, d) (or (d, c)) appear, we also
get a contradiction as above. If (a, b)/(b, a) and (c, d)/(d, c) appear, as the distance
between a and b is l∗, we get a word made of fρ,νs of length ≤ m + l(∗) fixing c, a
contradiction to claim 4(f). Finally, if |v| = 1 we get a contradiction similarly.
Case II (c): gk is as in definition 6(b)(2)(K)(b). As in the previous case, where the
only non-trivial difference is when either |v| ∈ {1, 2} and the sequence (a, b)/(b, a)
appears in (bc,l : l < m), but not as a subsequence of (a, b, e)/(e, b, a). If for some
c this is not the case, then we finish as before, so suppose that it’s the case for
every c ∈ C. As the distance between c and d is ≤ 2, suppose wlog that |v| = 1,
k = k(m − 1) (by conjugating) and the sequence (bc,l : l < m) ends with a and
starts with b or vice versa. Therefore, every c ∈ C is of the form an or bn (where
n ∈ B and B is as in definition 6(b)(2) for gk) and either gi(0)

k(0) · · · g
i(m−2)
km−2 (an) = bn

or gi(0)
k(0) · · · g

i(m−2)
km−2 (bn) = an, so the distance between an and bn is ≤ m− 1. As C is

infinite, the distance between an and bn is ≤ m− 1 for infinitely many n ∈ B. This
is a contradiction to the assumption from definition 6(b)(2)(K)(b) that the distance
between an and bn is increasing.
This completes the proof of claim 8. �
Claim 9: There exists a Borel function B4 : UU → UU such that for every f ∈ B1,
B4(f) ∈ Gf .
Proof: As in [HwSh:1089], and we comment on the main point in the proof of claim
7. �
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Definition 10: Let G be the subgroup of Sym(U) generated by {B4(f) : f ∈
H3} ∪ {g∗ν : ν ∈ 2ω \ {B(f) : f ∈ H3}}.

Claim 11: G is a maximal cofinitary group.

Proof: G is cofinitary by claim 8, so it’s enough to prove maximality. Assume
towards contradiction that H is a counterexample and let f∗ ∈ H\G, so B4(f∗) ∈ G,
and we shall denote f ∗ = B4(f∗).

Case I: f∗ ∈ H3. In this case, by Definition 6, {an : n ∈ B} ⊆ eq(f∗, f ∗) := X (see
thee relevant notation in definition 6), hence it’s infinite. Therefore, f−1

∗ f ∗ � X is
the ientity, but f−1

∗ f ∗ ∈ H and H is cofinitary, therefore f−1
∗ f ∗ = Id so f∗ = f ∗ ∈ G,

a contradiction.

Case II: f∗ /∈ H3. By the definition of H3, B′2,6(f∗) = 0, so the sequences B2,1(f∗) =
(An = An(f∗) : n ∈ B2,2(f∗)), ρ̄n∗ = (ρn,i : i < l∗) = (ρa,f∗(a),i : i < l∗) and
ī = (il : l < l∗) = (ia,f(a),l : l < l∗) (n ∈ B2,2(f∗), a ∈ An) are well-defined, and
for every l < l∗, (ρn,l : n ∈ B2,2(f∗)) is ≤-increasing, so νl := ∪

n∈B2,2(f∗)
ρn,l ∈ 2ω is

well-defined. Let g = (g∗ν0)i0 · · · (g∗νl∗−1
)il∗−1 ∈ G1(we may assume that it’s a reduced

product). Let w1 = {l < l∗ : (∃fl ∈ H3)(νl = B(fl))} and w2 = l∗ \ w1. For l < l∗,
define gl as follows:

1. If l ∈ w1, let gl = B4(fl).

2. If l ∈ w2, let gl = g∗νl .

Let g′ = g
i(0)
0 · · · gi(l∗−1)

l∗−1 . By the definition of G, g0, ..., gl∗−1 ∈ G, hence g′ ∈ G.

Again by Definition 6, if l ∈ w1 then gl = F1(fl) mod I1 and g−1
l = F1(fl)−1

mod I1. Now suppose that g(a) 6= g′(a), then there is a minimal l < l∗ such
that (g∗ν0)i(0) · · · (g∗νl)

i(l)(a) 6= (g0)i(0) · · · (gl)i(l)(a). Let vl = dif(g∗νl , gl), then a ∈
(gi00 · · · g

i(l−1)
l−1 )−1(vl). In order to show that (gi00 · · · g

i(l−1)
l−1 )−1(vl) ∈ I1 it suffices to

observe that for i ∈ w1, functions of the form gi, g
−1
i map elements of I1 to elements

of I1, therefore it follow that g = g′ mod I1. It suffices to show that eq(f∗, g) /∈ I1,
as it will then follow that eq(f∗, g′) /∈ I1, so f−1

∗ g′ = Id on an I1−positive set, hence
on an infinite set. As f−1

∗ g′ ∈ H and H is cofinitary, f−1
∗ g′ = Id, an therefore

f∗ = g′ ∈ G, a contradiction.

So let n ∈ B2,2(f∗) and a ∈ An = An(f∗), and observe that f∗(a) = g(a). Indeed,
by the definition of B2,1(f∗), for every such a, f∗(a) = ((f i0η1�nρn,0) · · · (f il∗−1

η�nρn,l∗−1))(a)
(where η1 is as in the definition of B2,1(f∗)). It’s now easy to verify that the last
expression equals g(a). It’s also easy to verify that ∪

n∈B2,2(f∗)
An /∈ I1, therefore we’re

done.

�

Claim 12: G is Borel.

Proof: It suffices to prove the following subclaim:

13

Paper Sh:1095, version 2020-06-03. See https://shelah.logic.at/papers/1095/ for possible updates.



Subclaim: There exists a Borel function B5 with domain Sym(U) such that if
g ∈ G then B5(g) = (g0, g1, ..., gm) such that G |= ”g = gi00 g

i1
1 · · · gimm ” for some

(i0, ..., im) ∈ {−1, 1}m+1.
Proof: By the definition of G, if g ∈ G then there are m, f0, ..., fm ∈ A1 (possibly
with repetition) and i0, ..., im ∈ {−1, 1} such that g = gi00 · · · gimm where each gi
is either of the form B4(fi) for fi ∈ H3 (in this case, let νi := B(fi)) or g∗νi for
νi ∈ 2ω \ {B(f) : f ∈ H3}.
Now if n is greater than m!, then for some u ⊆ 2n such that |u| ≤ m! < 2n

2 , for every
ρ ∈ 2n \ u we have:
a. For every l ≤ m, gl � uρ = fρ,νl�lg(ρ).
b. g � uρ can be represented as f i0ρ,ν0�lg(ρ) · · · f

im
ρ,νm�lg(ρ) ∈ Sym(uρ).

d. By claim 4(f), the above representation of g � uρ is unique.
Therefore, from g we can Borel-compute ((νi � n : n < ω) : i < m) hence (νi : i < m).
As H3 is Borel and B is injective, the sets {B(f) : f ∈ H3} and 2ω \{B(f) : f ∈ H3}
are Borel. Now if νi ∈ 2ω \ {B(f) : f ∈ H3}, we can Borel compute gi = g∗νi . If
νi ∈ {B(f) : f ∈ H3}, then νi = B(fi) and we can Borel-compute fi (by applying
B−1 from definition 3(e)) hence B4(fi).
�
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