
On the classification of definable ccc
forcing notions

Haim Horowitz and Saharon Shelah

Abstract

We show that for a Suslin ccc forcing notion Q adding a Hechler real, ZF + DCω1 + ”All
sets of reals are IQ,ℵ0-measurable” implies the existence of an inner model with a

measurable cardinal. We also further investigate the forcing notions from [HwSh:1067],
showing that some of them add Hechler reals (so the above result applies to them) while

others don’t add dominating reals.1

Our paper can be seen as part of a line of research motivated by the following general
problem:
Problem: Classify the nicely definable forcing notions.
For further discussion of that problem, see [Sh:666]. The following problem arises
naturally from the results of [HwSh:1067] and [HwSh:1094] (see the first section of
this paper for a brief presentation of the results from [HwSh:1067]):
Problem: Classify the Suslin ccc forcing notions according to the consistency
strength of of T + ”All sets of reals are IQ,κ-measurable” where κ ∈ {ℵ0,ℵ1} and
T ∈ {Z∗, ZF, ZF +ACω, ZF +DC,ZF +DCω1} (or even T = ZFC), and similarly
for T ′ = T +WOℵ1 , where T is as above and WOℵ1 = ”There exists an ω1-sequence
of distincet reals”.
Remark: The ideals IQ,κ and the notion of I-measurability will be defined in the
first section. The theory Z∗ is defined in [HwSh:1094].
Following theorem D below, we would now like to find reults that discern between
the forcing notions Q1

n and Q2
n from [HwSh:1067]. This goal is achieved by first

showing that Q1
n adds a Hechler real while Q2

n doesn’t add dominating reals. We
then relate this result to the above classification problem by proving that if Q is a
Suslin ccc forcing notion adding a Hechler real, then ZF +DCω1 + ”All sets of reals
are IQ,ℵ0-measurable” implies the existence of an inner model with a measurable
cardinal. In particular, this is true for Q1

n. We intend to extend our result to other
Suslin ccc forcing notions not adding Hechler reals in a subsequent paper [F1561].
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By [Sh:176], DCω1 implies the existence of a non-Lebesgue measurable set. It follows
that ZF + DCω1 + ”All sets of reals are IQ,ℵ0-measurable” is inconsistent when Q
is random real forcing, and it also follows that DCω1 doesn’t hold in Solovay’s
model or in models of AD. The problem of finding forcing notions Q for which
ZF + DCω1 + IQ,ℵ0-measurability is consistent (maybe relative to large cardinals)
remains open. In future work [F1424] we shall prove the following result:

Theorem ([F1424]): Suppose there is a measurable cardinal, then in a suitable
generic extension there is an inner model of ZF + DCω1 + ”All sets of reals are
IQ2

n,ℵ1−measurable”.

1. Preliminaries
We summarize the basic definitions and results from [HwSh1067].

Convention: For sequences η and ν, we write η ≤ ν when η is an initial segment of
ν. We write η < ν when η is a proper initial segment of ν.

Definition 1. a. A norm on a set A is a function assigning to each X ∈ P(A) \ {∅}
a non-negative real number such that X1 ⊆ X2 → nor(X1) ≤ nor(X2).

b. Let M be the collection of pairs (Q, η
∼

) such that Q is a Suslin ccc forcing notion
and η

∼
is a Q-name of a real.

In [HwSh1067] we gave an explicit construction of parameters n having the following
properties:

Definition 2: Let N be the set of tuples n = (T, nor, λ̄, µ̄) = (Tn, norn, λ̄n, µ̄n) such
that:

a. T is a subtree of ω<ω.

b. µ̄ = (µη : η ∈ T ) is a sequence of non-negative real numbers.

c. λ̄ = (λη : η ∈ T ) is a sequence of pairwise distinct non-zero natural numbers such
that:

1. λη = {m : η̂m ∈ T}, so T ∩ ωn is finite and non-empty for every n.

2. If lg(η) = lg(ν) and η <lex ν then λη � λν .

3. If lg(η) < lg(ν) then lg(η)� λη � λν .

4. lg(η)� µη � λη for η ∈ T .

d. For η ∈ T , norη is a function with domain P−(sucT (η)) = P(sucT (η)) \ ∅ and
range ⊆ R+ such that:

1. norη is a norm on sucT (η) (see definition 1).

2. (lg(η) + 1)2 ≤ µη ≤ norη(sucT (η)).

e. λ<η := Π{λν : λν < λη} � µη.
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f. (Co-Bigness) If k ∈ R+, ai ⊆ sucTn(η) for i < i(∗) ≤ µη and k + 1
µη
≤ norη(ai)

for every i < i(∗), then k ≤ norη( ∩
i<i(∗)

ai).

g. If 1 ≤ norη(a) then 1
2 <

|a|
|sucTn (η)| .

h. If k + µη ≤ norη(a) and ρ ∈ a, then k ≤ norη(a \ {ρ}).

Definition 3: A. For n ∈ N we shall define the forcing notions Q1
n ⊆ Q

1
2n ⊆ Q0

n as
follows:
1. p ∈ Q0

n iff for some tr(p) ∈ Tn we have:
a. p or Tp is a subtree of T [tr(p)≤]

n (so it’s closed under initial segments) with no
maximal node.
b. For η ∈ lim(Tp), lim(norη�l(sucTp(η � l)) : lg(tr(p)) ≤ l < ω) =∞.
c. 2− 1

µtr(p)
≤ nor(p) (where nor(p) is defined in C(b) below).

2. p ∈ Q
1
2n if p ∈ Q0

n and norη(Sucp(η)) > 2 for every tr(p) ≤ η ∈ Tp.

In [HwSh1067] we proved that Q
1
2n is dense in Q0

n.
3. p ∈ Q1

n if p ∈ Q0
n and for every n < ω, there exists kp(n) = k(n) > lg(tr(p)) such

that for every η ∈ Tp, if k(n) ≤ lg(η) then n ≤ norη(Sucp(η)).
B. Qi

n |= p ≤ q (i ∈ {0, 1
2 , 1}) iff Tq ⊆ Tp.

C. a. For i ∈ {0, 1
2 , 1}, η

i
n
∼

is the Qi
n−name for ∪{tr(p) : p ∈ GQin

∼
}.

b. For i ∈ {0, 1
2 , 1} and p ∈ Q let nor(p) := sup{a ∈ R>0 : η ∈ T+

p → a ≤
norη(sucTp(η))} = inf{norη(sucTp(η)) : η ∈ Tp}.
D. For i ∈ {0, 1

2 , 1} let mi
n = mi,n = (Qi

n, η
i
n
∼

) ∈M where M denotes the set of pairs
of the form (Qi

n, η
i
n
∼

).

Definition 4: For n ∈ N we define m = m2
n = (Q2

n, η
2
n
∼

) by:

a. p ∈ Q2
n iff p consists of a trunk tr(p) ∈ Tn, a perfect subtree Tp ⊆ T [tr(p)≤]

n and
a natural number n ∈ [1, lg(tr(p)) + 1] such that 1 + 1

n
≤ norη(sucTp(η)) for every

η ∈ T+
p .

b. Order: reverse inclusion.
c. η2

n
∼

= ∪{tr(p) : p ∈ GQ2
n
∼
}.

d. If p ∈ Q2
n we let nor(p) = min{n : η ∈ Tp → 1 + 1

n
≤ norη(sucp(η))}.

We shall now describe some of the basic properties and results on Q1
n and Q2

n proven
in [HwSh1067]:
Theorem A: For n ∈ N, Q1

n and Q2
n are Suslin ccc forcing notions.
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Theorem B: Assume that {pn : n < ω} ⊆ Q2
n, ∧n<ωtr(pn) = η and ∧

n<ω
nor(pn) = k,

then there is p∗ ∈ Q2
n such that:

a. tr(p∗) = η and nor(p∗) = k.
b. p∗ 
Q2

n ”(∃∞n)(pn ∈ GQ2
n)”.

Theorem C: Q1
n and Q2

n add a Cohen real.
Theorem D: Let i ∈ {1, 2} and n ∈ N. The following is consistent relative to
ZFC:
I. ZF
II. Every set of reals equals a Borel set modulo IQin,ℵ1 .
III. There exists an ω1−sequence of distinct reals.
We shall now define the ideals derived from a forcing notion Q:
Definition 5: a. Let Q be a forcing notion such that each p ∈ Q is a perfect
subtree of ω<ω, p ≤Q q iff q ⊆ p and the generic real is given by the union of trunks
of conditions that belong to the generic set, that is, η

∼
= ∪

p∈G
∼

tr(p) and 
Q ”η
∼
∈ ωω”.

Let ℵ0 ≤ κ, the ideal IQ,κ will be defined as the closue under unions of size ≤ κ of
sets of the form {X ⊆ ωω : (∀p ∈ Q)(∃p ≤ q)(lim(q) ∩X = ∅}.
b. Let I be an ideal on the reals, a set of reals X is called I-measurable if there
exists a Borel set B such that X∆B ∈ I.

2. Dominating reals
In this section we shall discern between Q1

n and Q2
n by showing that Q1

n adds a
Hechler real while Q2

n doesn’t add dominating reals.
Remark: We proved in [HwSh:1067] that Q2

n is nw-nep (see [Sh:711] for the defini-
tion), and by [Sh:711], such forcing notions don’t add dominating reals. Here we
provide a direct proof of this fact using the compactness property of Q2

n.
Claim 6: Q2

n doesn’t add a dominating real.
Proof: Let {fα : α < b} be an unbounded family of reals such that {fα : α ∈ W} is
unbounded for every unboundedW ⊆ b (e.g. fα is <∗-increasing). Suppose towards
contradiction that p∗ 
 ”g

∼
dominates fα for every α < b”. For every α < b there are

p∗ ≤ pα and nα < ω such that pα 
 ”fα(n) ≤ g(n) for every nα ≤ n”. Therefore, for
some n∗ < ω, k∗ < ω and ν ∈ ω<ω, the set of α < b for which nα = n∗, nor(pα) = k∗
and tr(pα) = ν is unbounded, let W be the set of those αs. We will now show that
for some α0 < α1 < ... < αl < ... from W and n∗ ≤ m, (fαl(m) : l < ω) is strictly
increasing:
We need to show that for some m such that n∗ ≤ m, the set {fα(m) : α ∈ W} is
infinite. If it’s not true, then for every m such that n∗ ≤ m, there is h(m) such
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that max{fα(m) : α ∈ W} ≤ h(m), and therefore h dominates {fα : α ∈ W},
contrdicting the fact that W is unbounded.
By theorem B, there is q ∈ Q2

n such that q 
 (∃∞l)(pαl ∈ G∼). By the choice of the
pα-s, n∗, W and m, q 
 ”fαl(m) ≤ g(m) for infinitely many l-s”, contradicting the
fact that (fαl(m) : l < ω) is unbounded. �
We shall now prove that Q1

n adds a Hechler real. In order to do that, we shall first
prove that Q1

n adds a dominating real.
Claim 7: a. Q1

n adds a dominating real.
b. Q1

n adds a Hechler real.
Proof (of (a)): Let η ∈ Tn, for every k ≤ lg(η) choose w = wη,k ⊆ SucTn(η) such
that norη(SucTn(η) \ w) = k + 1, |w| is minimal and wη,k+1 ⊆ wη,k. The following
two observations will be useful:
a. Let w = wη,k. If u ⊆ SucTn(η) and k + 2 ≤ norη(u), then u ⊆ SucTn \ w is
impossible as k + 1 = norη(SucTn \ w). Therefore u ∩ w 6= ∅.
b. If u ⊆ SucTn(η), l < k and l + 1 ≤ norη(u), then letting v = u \ w, we have:
1. v ⊆ u and v ∩ w = ∅.
2. By the co-bigness property, l ≤ norη(u ∩ (SucTn \ w)) = norη(v) and v 6= ∅.
3. If u ⊆ SucTn(η) and norη(u) > 2 then min{k, norη(u)− 1} ≤ norη(u \ w).
We shall define by induction on n < ω a Q1

n-name τn
∼

of a member of ω ∪ {ω} as
follows:
a. n = 0: We let τ0

∼
= 0.

b. n = m+ 1: If τm
∼

[G] = ω then τn
∼

[G] = ω. Otherwise, we let τn
∼

[G] = j where j is
the minimal natural number such that n, τm

∼
[G] < j and η

∼
[G] � (j + 1) ∈ wη

∼
[G]�j,n, if

such j exists. Otherwise, we let τn
∼

[G] = ω.

Claim: 
Q1
n τn∼

< ω.

Proof: By induction on n. For n = 0 the claim is obvious, so let n = m + 1. Let
p ∈ Q1

n, we shall find q above p forcing that τn
∼
< ω. By increasing p if necessary, we

may assume wlog that p forces the values τ0
∼

= j0 = 0, τ1
∼

= j1,...,τm
∼

= jm. By the
choice of τk

∼
and the induction hypothesis, j0 < j1 < ... < jm < ω. Without loss of

generality, jm+m+ 1 < lg(tr(p)), and by the definition of Q1
n, we may assume wlog

that n+ 8 < norν(SucTp(ν)) for every tr(p) ≤ ν ∈ Tp. By a previous claim, there is
ρ ∈ wtr(p),n ∩ SucTp(tr(p)), and p ≤ p[ρ≤] forces that τn

∼
≤ lg(tr(p)), as required.

Claim: If h ∈ ωω and p ∈ Q1
n, then there is p ≤ q such that q 
 ”h(n) ≤ τn

∼
for every

large enough n”.
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Proof: WLOG 0 < h(0) < h(1) < ... < h(i)... (i < ω). As before, wlog lg(tr(p)) > 8
and tr(p) ≤ ν ∈ Tp → 8 < norν(SucTp(ν)). There is an m such that p forces values
j0, ..., jm for τ0

∼
, ..., τm

∼
, respectively, but doesn’t force a value for τm+1

∼
. Choose a

sequence lg(tr(p)) = n0 < n1 < n2... such that h(ni) < ni+1 (so h(i) < ni) for every
i < ω. We shall define a condition q as follows: η ∈ Tq iff:
1. η ∈ Tp.
2. If l ∈ [ni, ni+1) is such that l < lg(η), then η � (l + 1) /∈ wη�l,i.
Tq is obviously closed downwards. For every η ∈ Tq, if lg(η) ∈ [ni, ni+1) then
SucTq(η) = SucTp(η) \ wη,i = SucTp(η) ∩ (SucTn(η) \ wη,i). Note that by the co-
bigness property, Tq is a perfect tree. For every j < ω, let J = max{nj+1, k

p(j+ 1)}
(see definition 3(3)). For every η ∈ Tq such that J ≤ lg(η), there is l such that
j+ 1 ≤ l and lg(η) ∈ [nl, nl+1). It now follows that j = min{j, l} ≤ norη(SucTn(η)\
wη,l) = norη(SucTq(η)). Choose ρ ∈ Tq such that 2 < norν(SucTq(ν)) for every
ρ ≤ ν ∈ Tq and define q′ = q[ρ≤]. Obviously, p ≤ q′ ∈ Q1

n. We shall prove
that q′ 
 ”n > m → h(n) ≤ τn

∼
”. Suppose it’s not true and we shall derive a

contradiction. By the assumption, there is r ∈ Q1
n such that q′ ≤ r, for some

n > m, r forces values jm < jm+1 < ... < jn for τm
∼
, ..., τn

∼
and jn < h(n). WLOG

jn < lg(tr(r)) and denote ρ = tr(r) � jn, ν = tr(r) � (jn + 1). ν ∈ SucTq(ρ),
therefore, for the i that satisfies ni ≤ jn < ni+1 we have ν /∈ wρ,i by the definition
of q. As r 
 ”τn

∼
= jn” and jn < lg(tr(r)), it follows from the definition of τn

∼
that

ν = tr(r) � (jn + 1) ∈ wtr(r)�jn,n = wρ,n. As m < n → wρ,n ⊆ wρ,m, it follows that
n < i. Recall that by the properties of h, it follows that h(n) < h(i) < ni ≤ jn,
and therefore, r 
 τn

∼
= jn > h(n), contradicting the choice of r. This contradiction

shows that q′ is as required.
Proof (of (b)): Let (τn

∼
: n < ω) be as in the previous proof, we shall define the

following Q1
n-names:

1. For every i < ω, let li
∼

= max{l : η
∼
� (τi
∼

+ 1) ∈ wη
∼
�τi
∼
,i+l}.

2. The name ki
∼

will be defined by induction on i as follows: ki
∼

= min{k : k >

i, ∧
j<i
k > kj

∼
, lk
∼
> 1}.

3. ρ
∼

= (τn
∼

+ lkn
∼
∼

: n < ω).

In the rest of the proof we shall use the following terminology: Let D be Hechler’s
forcing. Given I ⊆ D and f ∈ ωω, we say that f satisfies I if there exists (η, g) ∈ I
such that η ≤ f and g(n) ≤ f(n) for every n < ω.
Let I = {(ηn, fn) : n < ω} ⊆ D be a maximal antichain and let p1 ∈ Q1

n, we shall
find q ∈ Q1

n such that p1 ≤ q and q 
Q1
n ”ρ
∼
satisfies I”. Let h′ ∈ ωω a function

satisfying ∧
n<ω

fn ≤∗ h′ and n < h′(n) < h′(n + 1) for every n < ω. Let h ∈ ωω be
the function defined by h(n) = h′(n) + 1.
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By the previous proof, there are p2 and n∗1 such that p1 ≤ p2 and p2 
 ” ∧
n∗1≤l

h(l) ≤ τl
∼

”,
wlog n∗1 ≤ lg(tr(p2)).
Let p ∈ Q1

n, we shall define by induction an increasing sequence lg(tr(p)) = n0 <
n1 < ... such that the following condition holds:
(∗∗) If l1 ∈ [ni, ni+1) and η1 ∈ Tp ∩ ωl1 , then there are l2 ∈ [ni+1, ni+2) and η2 ∈
Tp ∩ ωl2 extending η1, such that for every l ∈ [l1, l2) we have η2 � (l + 1) /∈ wη2�l,0
and ii+1(0) < norη2(SucTp(η2)).
Why can we construct a sequence (ni : i < ω) as above? Suppose that ni+1 was
chosen. For every l1 ∈ [ni, ni+1) there is a finite number of η1 ∈ Tp ∩ ωl1 . Given
such η1, construct by induction on l1 ≤ l a sequence (νl : l1 ≤ l < ω) such that
νl1 = η1 and νl+1 ∈ SucTp(νl) \ wνl,0. As before, wlog norν(SucTp(ν)) > 8 for
every tr(p) ≤ ν ∈ Tp and lg(tr(p)) > 8. By the definition of wνl,0, it follows
that SucTp(νl) \ wνl,0 6= ∅, and therefore we can continue the construction. Let
ν = ∪

l1≤l<ω
νl, then lim

n<ω
(norν�n(SucTp(ν � n))) =∞, and therefore there exists ni+1 ≤

ni+2(η1) such that norν�m(SucTp(ν � n)) > ii+1(0) for every ni+1(η1) ≤ m. Choose
ni+2 greater than ni+2(η1) for every η1 as above. It’s easy to see that ni+2 is as
required.
Fix a sequence (ni : i < ω) as above for p2.
Now choose j∗ and j∗∗ such that:
a. p2 forces the values m0, ...,mj∗−1 for τ0

∼
, ..., τj∗−1

∼
.

b. p2 doesn’t force a value for τj∗
∼
.

c. p2 forces the values k0, ..., kj∗∗−1 for k0
∼
, ..., kj∗∗−1

∼
.

d. p2 doesn’t force a value for kj∗∗
∼

.

Let ν1 = (mi + lli : i < j∗∗) such that p2 forces the sequence of values ν1 for
(τi
∼

+ lki
∼

: i < j∗∗), but doesn’t force a value for kj∗∗
∼

. Choose h ≤ h∗ ∈ ωω increasing
fast enough, for example, h∗(i) = ih(i)+ni+8(0) + max{mj : j < j∗} + 8. The
condition (ν1, ν1 ∪ h∗ � [lg(ν1), ω)) is compatible with a member of I, so let (ν2, h2)
be a common upper bound. We need to find an extension of p2 forcing that ρ

∼
satisfies (ν2, h2).
Choose by infuction on i ∈ [lg(ν1), lg(ν2)] a condition p3,i such that:
a. p3,i is obtained from p2 by extending the trunk using an ηi such that lg(ηi) ∈
[ni, ni+1].
b. lg(tr(p3,i)) < ni+1.
c. p3,i forces the values (m∗j : j < j∗+(i− lg(ν1))) for (τj

∼
: j < j∗+(i− lg(ν1))) (and

therefore also forces thee values (l∗j : j < j∗+(i−lg(ν))) for (lj
∼

: j < j∗+(i−lg(ν)))),
such that j ∈ [j∗, j∗ + (i− lg(ν1)))→ lj ≤ 1.
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d. p3,i doesn’t force a value for τj∗+(i−lg(ν1))
∼

.

We choose ηi by induction as follows: Suppose that ηi was chosen. Use (∗∗) to
choose an appropriate η′ ∈ [ni+1, ni+2] for ηi and let u := SucTn(η′i) \ SucTp2

(η′i).
Suppose that we need to force a value for τj

∼
and assume towards contradiction

that wη′i,j \ wη′i,j+1 ⊆ u, then |wη′i,j+1| ≤
|wη′

i
,j |

2 ≤ |wη′i,j \ wη′i,j+1| ≤ |u|, therefore
norη′i(SucTp2

(η′i)) = norη′i(SucTn(η′i) \ u) ≤ i + 2, contradicting the choice of η′i.
Therefore, there exists ηi+1 ∈ Sucp2(η′i) ∩ (wη′i \ wη′i,j+1), and it’s easy to see that
ηi+1 is as required.
Note that for every i ∈ (lg(ν1), lg(ν2)), m∗i−1 ≤ lg(tr(p3,i)) = lg(ηi) ≤ ni+1 ≤
h2(i − 1). Now choose p4 such that p3,lg(ν2) ≤ p4, max(Ran(ν2)) < lg(tr(p4)) and
p4 doesn’t force a value for τj∗+(lg(ν2)−lg(ν1))

∼
(this can be done easily, for example, by

extending tr(p3,lg(ν2)) at each stage to a sequence outside of the appropriate wρ,0).
Now choose p5,i by induction on i ∈ [lg(ν1), lg(ν2)] such that:
a. p5,0 = p4.
b. p5,i forces a value for τj∗+(lg(ν2)−lg(ν1))+(j−lg(ν1))

∼
iff j < i. This value will be denoted

by mj∗+(lg(ν2)−lg(ν1))+(j−lg(ν1)).
c. For lg(ν1) ≤ j < i, p5,i forces that kj∗∗+(j−lg(ν1))

∼
= j∗+(lg(ν2)−lg(ν1))+(j−lg(ν1)).

d. For lg(ν1) ≤ j < i, ν2(j) = mj∗∗+(j−lg(ν1)).
Let p5 = p5,lg(ν2). It’s easy to see that p5 
 ”ν2 ≤ ρ

∼
”. We need to show that we can

choose p5,i as above. At stage i of the induction, by the choice of conditions of the
form p3,j, lj ≤ 1 for every j < j∗ + (lg(ν2)− lg(ν1)). By the definition of the names
kj
∼
, we want p5,i to force that

η
∼
� (τj∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))

∼
+1) ∈ wη

∼
�(τj∗+(lg(ν2)−lg(ν1))+((i+1)−lg(ν1))

∼
),j∗+(lg(ν2)=lg(ν1))+((i−1)−lg(ν1))+2.

If we can guarantee that, we should satisfy clause (c). Note that tr(p5,i) will assume
the role of η

∼
� (τj∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))

∼
+ 1).

In order to satisfy clause (b), we need to guarantee that tr(p5,i) ∈ wtr(p5,i)′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))
(where tr(p5,i)′ is obtained from tr(p5,i) by removing the last element), while every
initial segment ν of tr(p5,i) avoids wν′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1)). Finally, in order
to satify clause (d), we need to guarantee that the value nortr(p5,i)′(Sucp4(tr(p5,i)′))
is large enough such that the following will hold:
wtr(p5,i)′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))+i∗ \ wtr(p5,i)′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))+i∗+1 6= ∅
(where i∗ = ν2(i − 1) −mj∗∗+((i−1)−lg(ν1))). Note that by the choice of the sequence
(ni : i < ω) and the conditions p3,i, it follows that 0 ≤ i∗. As we saw when we
chose the conditions p3,i, it’s enough to guarantee that j∗ + (lg(ν2)− lg(ν1)) + ((i−
1) − lg(ν1)) + i∗ + 2 < nortr(p5,i)′(Sucp4(tr(p5,i)′)). Now, for ν := tr(p5,i−1), repeat
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the argument that appeared in (∗∗) and extend ν to η′i ∈ Tp4 such that for ev-
ery l ∈ (lg(ν), lg(η′i)), η′i � (l + 1) /∈ wη′i�l,0, and such that j∗ + (lg(ν2) − lg(ν1)) +
((i − 1) − lg(ν1)) + i∗ + 2 < norη′i(SucTp4

(η′i)). Now choose ηi ∈ Sucp5,i−1(η′i) ∩
(wtr(p5,i)′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))+i∗)\wtr(p5,i)′,j∗+(lg(ν2)−lg(ν1))+((i−1)−lg(ν1))+i∗+1 and
define p5,i := p

[η′i≤]
5,i−1. It’s now easy to see that p5,i satisfies each of the above require-

ments.

Finally, we need to find p6 above p5 that forces h2(l) ≤ ρ
∼

(l) for every lg(ν2) ≤ l.
We already know, by the choice of p2, that the condition holds for large enough l,
therefore there is at most a finite segment [lg(ν2),m∗] that we need to take care
of. By the proof of claim 7(a), there is p5 ≤ p′6 such that tr(p5) = tr(p′6) and
p′6 
 ”lg(tr(p5)) ≤ τn

∼
→ h2(n) ≤ τn

∼
”. Therefore, we may assume wlog that p5 forces

values for τn
∼

for every n ∈ [lg(ν2),m∗]. We need to show that p5 doesn’t force values
for lkn

∼
where n ∈ [lg(ν2),m∗]. If we succeed, we can repeat thee argument that lead

us from p2 to p5 in order to guarantee that h2(n) ≤ ρ
∼

(n) for every n ∈ [lg(ν2),m∗].
It’s easy to see that this is indeed the case, as during the construction of p5, the
trunk of p5 is the first place where lklg(ν2)−1

∼
is decided. �

3. The additivity of the ideals derived from a Suslin ccc
forcing notion adding a Hechler real
We shall now prove that under ZF+DCω1 (or actually under a weaker assumption),
if Q is a Suslin ccc forcing notion adding a Hechler real, then the additivity of IQ,ℵ0 is
ℵ1. This will allow us to prove in the next section that ZF+DCω1+measurability for
the ideal derived from such forcing notions implies the existence of an inner model
with a measurable cardinal. A main concept in the following proof is a variant of
the rank function for Hechler forcing originally introduced in [GiSh:412].

Claim 8: Assume ZF + (∃A ⊆ ω1)(ℵ1 = ℵL[A]
1 ).

a. Let D be Hechler forcing and let ηdom
∼

be the canonical generic real, then there
exists a sequence (Bα : α < ℵ1) of elements of ID,ℵ0 such that ∪

α<ℵ1
Bα /∈ ID,ℵ0 .

b. The above is true for every Suslin ccc forcing notion Q adding a Hechler real.

Remark: 1. The assumptions of the above claim follow from ZF +DCω1 .

2. Although in the following proof we shall define the sets (Yε : ε < ω1) and choose
(Λε, Yε) ∈ Yε for every ε < ω1, there is no use of DCω1 and it’s enough to assume
that ℵ1 = ℵL[A]

1 for some A ⊆ ω1: Given such A, as L[A] |= ZFC, it follows from
the proof that there exists a sequence ((Λε, hε) : ε < ℵL[A]

1 ) in L[A] as required. As
ℵ1 = ℵL[A]

1 and the requirements on (Λε, hε) are absolute, the sequence is as required
in V .

Proof of 8(a): For ε < ω1, let Yε be the set of pairs (Λ, h) = (Λε, hε) such that:
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1. Λε ⊆ ω<ω is a tree.

2. a. If ρ ∈ Λε then ∧
k<ω

ρ̂ < k >∈ Λε or SucΛ(ρ) = ∅.

b. If ν1, ν2 ∈ ωk, ν1 ∈ Λε and ν1(l) ≤ ν2(l) for every l < k, then ν2 ∈ Λε.

c. There is no infinite branch through Λε.

3. h : Λ→ ε+ 1 is a function such that:

a. hε(<>) = ε.

b. ρ1 < ρ2 ∈ Λ→ hε(ρ1) > hε(ρ2).

c. If hε(ρ) = ζ + 1 then ∧
k<ω

hε(ρ̂ < k >) = ζ.

d. If hε(ρ) = ζ where ζ is a limit ordinal, then ζ ≤ lim
k<ω

(hε(ρ̂ < k >)).

Subclaim: a. Yε 6= ∅ for every ε < ω1.

b. For every ε < ζ < ω1 and (Λ1, h1) ∈ Yε, there exists (Λ2, h2) ∈ Yζ such that
Λ1 ⊆ Λ2.

Proof of subclaim: For (Λ1, h1) ∈ Yε and (Λ2, h2) ∈ Yζ , define (Λ, h) = (Λ1, h1) +
(Λ2, h2) as follows:

1. Λ = Λ1 ∪ Λ2.

2. h(η) = hi(η) for η ∈ Λi \ Λ3−i, h(η) = max{h1(η), h2(η)} for η ∈ Λ1 ∩ Λ2.

It’s easy to see that (Λ, h) ∈ Ymax{ε,ζ}. We shall now prove the subclaim by induction
on ε < ω1. We shall prove both parts of the subclaim together.

In order to prove clause (a), at stage ζ + 1, choose (Λζ , hζ) ∈ Yζ , take ω copies
of (Λζ , hζ), join them at the trunk and define hζ+1 accordingly. At stage ζ where
ζ is a limit ordinal, choose an increasing sequence (ξζ,k : k < ω) with limit ζ,
use the induction hypothesis to choose an increasing sequence (with respect to ⊆)
((Λξζ,k , hξζ,k) : k < ω) such that (Λξζ,k , hξζ,k) ∈ Yξζ,k , join the trees Λξζ,k at the trunk
and define hζ naturally. It’s easy to see that the trees and functions that we obtained
are as required.

In order to prove clause (b), we proved that at stage ζ, Yζ 6= ∅. Now, for ε < ζ
and (Λε, hε) ∈ Yε, choose (Λζ , hζ) ∈ Yζ and define (Λ, h) := (Λε, hε) + (Λζ , hζ), then
Λε ⊆ Λ is as required.

We now fix a sequence ((Λε, hε) : ε < ω1) ∈ L[A] such that (Λε, hε) ∈ Yε.

The following definition is a variant of a definition that appeared in [GiSh:412]:

Definition: Let p∗ = (t∗, f ∗) ∈ D and let I = {rk : k < ω} be a maximal antichain
above p∗. Let A = {tr(rk) : k < ω}. We shall define rkp∗,A(ρ) ∈ Ord ∪ {∞} for
every t∗ ≤ ρ ∈ ω<ω by defining when α ≤ rkp∗,A(ρ):

1. α = 0 : This is always true.
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2. α = 1 : α ≤ rkp∗,A(ρ) iff for every l ∈ [lg(t∗), lg(ρ)), f ∗(l) ≤ ρ(l), and there is
no ν ∈ A such that p∗ ≤ (ν, f ∗ � [lg(ν), ω)), lg(ν) ≤ lg(ρ) and l ∈ [lg(t∗), lg(ν)) →
ρ(l) ≤ ν(l).

3. α > 1 : α ≤ rkp∗,A(ρ) iff for every β < α, for infinitely many k, β ≤ rkp∗,A(ρ̂ <
k >).

Subclaim: a. If ω1 ≤ rkp∗,A(ρ) then rkp∗,A =∞.

b. If p∗, A and I are as above, then rkp∗,A(t∗) < ω1.

Proof of clause (a): We shalll prove by induction on ω1 ≤ ε that if ω1 ≤ rkp∗,A(ρ)
then ε ≤ rkp∗,A(ρ). For ε = ω1 the claim is obvious. Suppose that ε > ω1 and let
ζk = rkp∗,A(ρ̂ < k >).

Case I: There exists ζ < ω1 such that {k : ζ < ζk} is finite. In this case, rkp∗,A(ρ) ≤
ζ + 1 < ω, a contradiction.

Case II: Suppose that the assumption of case I doesn’t hold, let ζ∗ = sup{ζk : k <
ω, ζk < ω1} < ω1. The set u = {k : ζk > ζ∗} is infinite, therefore by the choice of ζ∗,
if k ∈ u then ω1 ≤ rkp∗,A(ρ), and by the induction hypothesis, ∧

ζ<ε
ζ ≤ rkp∗,A(ρ). It

now follows from the definition of the rank that ε ≤ rkp∗,A(ρ).

Proof of clause (b): Suppose that the claim is false, then we can choose ρn ∈ ωlg(t
∗)+n

by induction on n < ω such that ρ0 = t∗, ω1 ≤ rkp∗,A(ρn) and m < n → ρm ≤ ρn
(here we use subclaim (a) and the definition of rkp∗,A). Let f ′ = ∪

n<ω
ρn, then

p′ := (t∗, ∪
n<ω

ρn) ∈ D is above p∗: For every n, 1 ≤ ω1 ≤ rkp∗,A(ρn), and therefore by
the definition of the rank for α = 1, f ∗(l) ≤ ρn(l) for every l ∈ [lg(t∗), lg(ρn)]. We
shall derive a contradiction by showing that p′ contradicts each rk. Suppose towards
contradiction that p′ is compatible with rk. As lg(t∗) ≤ lg(tr(rk)), we need to find
l ∈ [lg(t∗), lg(tr(rk))) such that tr(rk)(l) < f ′(l), that is, for n > lg(tr(rk)) we need
to find l ∈ [lg(t∗), lg(tr(rk))) such that tr(rk)(l) < ρn(l). As tr(rk) ∈ A, it follows
by the definition of ”1 ≤ rkp∗,A(ρn)” that there exists such l.

We shall now proceed with the proof of the main claim.

For ε < ω1, k < ω and Λ = Λε as above, we shall define the following objects:

a. ΩΛ,k = {η0̂(2n0 + 1)̂η1̂(2n1 + 1)̂...̂ηk : ni < ω and each ηi is a maximal element in
Λ}.

b. ΩΛ = ∪
k<ω

ΩΛ,k.

c. Ω+
Λ,k = {ν̂ < 2n >: ν ∈ ΩΛ,k, n < ω}.

d. Ω+
Λ = ∪

k<ω
Ω+

Λ,k.

e. IΛ = {(η, η̂(0 : n < ω)) : η ∈ Ω+
Λ}.

f. Bε = {ν ∈ ωω : η ∈ Ω+
Λ → ¬(η ≤ ν)}.
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Bε is Borel, and in order to show that Bε ∈ ID,ℵ0 , it’s enough to show that IΛ is a
maximal antichain (it will follow from this fact that one of the members of Ω+

Λ is an
initial segment of ηdom, and therefore, ηdom /∈ Bε).

First, we shall prove that IΛ is an antichain: Suppose that η 6= ν ∈ Ω+
Λ . Note that

by the definition of ΩΛ,k and the assumption on the maximality of the ηls in the def-
inition, if η′ ∈ ΩΛ,k then it has a unique decomposition into a sequence of maximal
elements of Λ separated by odd natural numbers. Suppose towards contradiction
that η < ν ∈ Ω+

Λ , and denote by η′ and ν ′ the initial segments (respectively) obtained
by omitting the last element. ν ′ has a unique decomposition as above, which coin-
cides with the unique decomposition of η′ on the relevant initial segments. Suppose
now that η′ ends with ηk, then in ν ′ ∈ ΩΛ there will be an odd number appearing
after it. On the other hand, η ≤ ν ′, and therefore there is an even number appearing
after ηk in ν ′, a contradiction. Therefore, IΛ is an antichain.

We shall now prove that IΛ is a maximal antichain: Let (ν, f) ∈ D. If there exists
η ∈ Ω+

Λ such that η ≤ ν, then (η, η̂(0 : n < ω)) ≤ (ν, f) and we’re done. Therefore,
we may assume that there is no such η. Let Ω′ = {<>} ∪ {ρ : ρ = η0̂ < 2n0 + 1 >
η̂1̂ < 2n1 + 1 > .̂..̂ηk−1̂ < 2nk−1 + 1 >: η0, ..., ηk−1 ∈ max(Λ) ∧ ρ ≤ ν}, then Ω′ 6= ∅
and since ν has finite length, there is an element ρ of Ω′ of maximal length. Choose
ν1 ∈ Λε such that ρ̂ν1 ≤ ν and ν1 is maximal.

Case I: ρ̂ν1 = ν. Let k be maximal such that ν2 := ν 1̂(f(lg(ρ) + lg(ν1) + i) : i <
k) ∈ Λε. Note that by the construction of Λε, it follows that there is no infinite
branch in the tree, since ν2 = ν 1̂(f(lg(ρ) + lg(ν1) + i) : i < k) ∈ Λε holds for k = 0,
it follows that there is such maximal k. By the definition of the successors at each
stage in Λε (and the definition of ”(Λε, hε) ∈ Yε”) and by the choice of k, it follows
that ν2 is a maximal element in Λε. Let ν3 := ρ̂ν 2̂ < 2f(lg(ρ) + lg(ν1) + k) >, then
ν ≤ ν3 ∈ Ω+

Λ and (ν3, ν 3̂(0 : n < ω)) is compatible with (ν, f).

Case II: ρ̂ν1 < ν. Recall that by the definition of Λε, SucΛε(ρ) = {ρ̂ < k >: k < ω}
or SucΛε(ρ) = ∅, therefore, ν1 ∈ max(Λε). We now have two possibilites: If f(lg(ρ)+
lg(ν1)) is odd, then ρ̂ν 1̂ < f(lg(ρ) + lg(ν1)) >∈ Ω′, contradicting the maximality of
ρ. Therefore, f(lg(ρ)+lg(ν1)) is even, and therefore, ρ̂ν 1̂ < f(lg(ρ)+lg(ν1)) >∈ Ω+,
contradicting the assumption that there is no η ∈ Ω+ such that η ≤ ν.

We now turn to the main part of the claim: ∪
ε<ω1

Bε /∈ ID,ℵ0 .

Proof: Suppose towards contrdiction that ∪
ε<ω1

Bε ∈ ID,ℵ0 , then there is a Borel set
B such that ∪

ε<ω1
Bε ⊆ B and 
D ”ηdom

∼
/∈ B”.

By the definition of the ideal, there is a sequence p̄ = (pn,l : n, l < ω) such that
p̄n = (pn,l : l < ω) is predense for every n < ω and B ⊆ ( ∩

n<ω
∪
l<ω

set(pn,l))c (where
set(η, f) is the set of reals g that extend η such that f(n) ≤ g(n) for every n).

Fix a countable elementary submodel N of Lχ[p̄, (Λε : ε < ω1)] for χ large enough,
such that p̄, (Λε : ε < ω1) ∈ N . Let δ(∗) = N ∩ ωLχ[p̄,(Λε:ε<ω1)]

1 , then Λ = Λδ(∗) is
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well-defined. Let (p̄∗m : m < ω) list the predense subsets of D in N , and for every
m < ω, denote p̄∗m = (p∗m,l : l < ω). For every n < ω, there exists j(n) < ω such
that p̄n = ¯p∗j(n). We shall choose conditions qn by induction on n < ω such that:
a. qn = (νn, fn) ∈ D ∩N .
b. n = m+ 1→ qm ≤ qn.
c. If n = m+ 1 then there exists l such that p∗m,l ≤ qn.
d. ν0 =<>, and if n > 0 then νn = ρn̂ < 2mn > for some ρn ∈ ΩΛ and mn < ω.
Suppose that we can construct such sequence and we shall derive a contradiction:
As (qn : n < ω) is increasing, (νn : n < ω) is increasing too, and ν := ∪

n<ω
νn is a well-

defined function. By the elementarity of N , for every k there is a predense I ∈ N
such that k < lg(η) for every (η, f) ∈ I. Let m = m(k) such that I = {p∗m,l : l < ω}.
As there exists an l such that p∗m,l ≤ qm+1, it follows that k < lg(νm+1), hence
ν ∈ ωω. As (qn : n < ω) is increasing, it follows that ν ∈ set(qn) for every n < ω.
By clause (c) of the induction, for every n = m+1 there is l(n) such that p∗m,l(n) ≤ qn,
therefore ν ∈ set(p∗m,l(m+1)) for every m < ω, therefore ν ∈ ∩

m<ω
∪
l<ω

set(p∗m,l) and
ν ∈ ∩

n<ω
∪
l<ω

set(pn,l) (recall that each p̄n appears also as ¯p∗j(n)). For every predense
I ∈ N , I = {p∗m,l : l < ω} for an appropriate m and ν ∈ ∪

l<ω
set(p∗m,l), therefore ν is

(N,D)-generic and therefore ν /∈ B.
We shall now prove that ν ∈ Bδ(∗), which is a contradiction (since Bδ(∗) ⊆ B). We
need to show that for every η ∈ Ω+

Λδ(∗)
, ¬(η ≤ ν). Suppose towards contradiction

that there exists η ∈ Ω+
Λδ(∗)

such that η ≤ ν. Choose νn long enough such that
η < νn ≤ ν, then by clause (d) of the induction we get to comparable elements of
Ω+

Λδ(∗)
, contradicting the fact that IΛδ(∗) is an antichain.

It remains to show that we can construct a sequence (qn : n < ω) as above. For
n = 0 there is no problem, so assume that n = m+ 1 and qm = (νm, fm) was chosen
such that it satisfies the induction hypothesis. Denote p∗ = (t∗, f ∗) = (νm, fm). As
{p∗m,l : l < ω} is predense, {p : (∃l)(p∗m,l ≤ p)} is open and dense, and therefore there
exists a maximal antichain r̄ = (rl : l < ω) above p∗ such that each rl is above some
p∗m,k. By elementarity, there is such r̄ in N . Let A = {tr(rl) : l < ω}, then (p∗, r̄, A)
are as in the definition of the rank, and by a previous claim, rkp∗,A(t∗) < ω1. Note
that {p∗, A, t∗} ∈ N , therefore rkp∗,A(t∗) ∈ N and therefore rkp∗,A(t∗) < δ(∗). Let
hδ(∗) : Λδ(∗) → δ(∗) + 1 be as in the definition of Λδ(∗) and let Λ′ be the set of
sequences ρ ∈ Λδ(∗) satisfying the following properties:
1. (t∗, f ∗) ≤ (t∗̂ρ, t∗̂ρ̂f ∗ � [lg(t∗̂ρ), ω)).
2. rkp∗,A(t∗̂ρ) < hδ(∗)(ρ).
Note that Λ′ 6= ∅: As δ(∗) is a limit ordinal, <>∈ Λ′. Let α∗ = min{rkp∗,A(t∗̂ρ) :
ρ ∈ Λ′} and choose ρ∗ ∈ Λ′ such that α∗ = rkp∗,A(t∗̂ρ). There are two possible cases:
Case I: α∗ = rkp∗,A(t∗̂ρ∗) = 0. By the way we defined the rank, there is ν ′m+1 ∈ A
such that (t∗, f ∗) ≤ (ν ′m+1, f

∗ � [lg(ν ′m+1), ω)), lg(ν ′m+1) ≤ lg(t∗̂ρ) and t∗̂ρ(l) ≤
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ν ′m+1(l) for every lg(t∗) ≤ l < lg(ν ′m+1). There exists l∗ such that ν ′m+1 = tr(rl∗),
denote rl∗ = (ν ′m+1, frl∗ ). Choose ki by induction on lg(ν ′m+1) ≤ i such that f ∗(i) ≤
ki, frl∗ (i) ≤ ki and ρ′m,i := ν ′m+1 � [lg(νm), lg(ν ′m+1))̂(kj : j < i) ∈ Λδ(∗). By the
definition of the pairs of the form (Λ, h), it follows that ν ′m+1 � [lg(νm), lg(ν ′m+1)) ∈
Λδ(∗). Additionally, as there is no infinite branch in Λδ(∗), it follows that there
exists a maximal i for which we can choose ki as required. Let ν ′ = ν ′m+1̂(kj :
j < i + 1)̂ < 2(frl∗ (lg(ν ′m+1) + i) + f ∗(lg(ν ′m+1) + i)) > and consider the condition
(ν ′, ν ′ ∪ f ∗∗ � [lg(ν ′), ω)) where f ∗∗(i) = max{f ∗(i), frl∗ (i)} for every i ∈ [lg(ν ′), ω).
It’s easy to see that rl∗ , qm ≤ (ν ′, ν ′ ∪ f ∗∗ � [lg(ν ′), ω)) and that the requirement
from clause (d) in the definition of qm+1 is satisfied.
Case II: α∗ = rkp∗,A(t∗̂ρ∗) > 0. ρ∗ ∈ Λ′, therefore rkp∗,A(t∗̂ρ∗) < hδ(∗)(ρ∗), therefore
by the definition of hδ(∗), for every k large enough, rkp∗,A(t∗̂ρ∗) < hδ(∗)(ρ∗̂ < k >).
Denote β∗ = rkp∗,A(t∗̂ρ∗). By the definition of the rank, the following set is finite:
{k : β∗ ≤ rkp∗,A(t∗̂ρ∗̂ < k >)} =: u1. In addition, the following set is finite:
{k : k ≤ f ∗(lg(t∗̂ρ∗))∨ k ≤ frl∗ (lg(t∗̂ρ∗))}. For every k large enough, k ∈ ω \ u1 \ u2
and β∗ < hδ(∗)(ρ∗̂ < k >). For such k, since k /∈ u1, rkp∗,A(t∗̂ρ∗̂ < k >) < β∗. By the
definition of the rank, rkp∗,A(t∗̂ρ∗̂ < k >) < rkp∗,A(t∗̂ρ∗) for every k large enough.
Therefore, for every k large enough, ρ∗̂ < k >∈ Λ′ and rkp∗,A(t∗̂ρ∗̂ < k >) < α∗,
contradicting the minimality of α∗.
This completes the proof of claim 8(a).
Proof of 8(b): Let f be a Borel function such that 
Q ”f(η

∼
) = ηdom

∼
”. Consider the

sequence (f−1(Bα) : α < ω1) where (Bα : α < ω1) is the sequence constructed in the
proof of 8(a). 
Q ”η

∼
/∈ f−1(Bα)” for every α < ω1, and therefore f−1(Bα) ∈ I(Q,η

∼
),ℵ0 .

Let N be a countable model of ZFC∗ containing the relevant objects, we need to find
g ⊆ Q∩N such that G is (N,Q)-generic and η

∼
[G] ∈ ∪

α<ω1
f−1(Bα). Let H ⊆ D∩N be

(N,D)-generic such that ηdom
∼

[H] ∈ ∪
α<ω1

Bα, it suffices to construct H ⊆ G ⊆ Q∩N
which is (N,Q)-generic. Now N [H] is a model of sufficiently many axioms, and over
N [H] there is a generic G′ ⊆ Q/ηdom

∼
[H], so the required conclusion follows. �

4. A measurable cardinal from regularity properties and DCω1

In this section we shall prove a general criterion for the existence of an inner model
for a measurable cardinal under the assumptions DCω1 + ”all sets of reals have
certain regularity properties”.
Claim 9: The following conditions imply the existence of an inner model of ZFC
with a measurable cardinal:
a. V |= ZF .
b. V0 ⊆ V is an inner model of ZF .
c. In V0, Q is a (definition of) Suslin ccc forcing and η

∼
is a Q-name of a real.

d. I is a σ-ideal on the reals extending I(Q,η
∼

),ℵ0 .
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e. (Bα : α < λ) is a sequence of sets from I(Q,η
∼

),ℵ0 such that ∪{Bα : α < λ} /∈ I.

f. P(ωω)/I |= ccc (which means that there is no sequence (Bα : α < ω1) of elements
of P(ωω)/I such that (α 6= β ∧B′α ∈ Bα ∧B′β ∈ Bβ)→ B′α ∩B′β ∈ I), or just:
f−: There is no sequence (B′α : α < ℵ1) of I-positive sets such that B′α ∩B′β ∈ I for
every α 6= β < ℵ1.
Remark: The condition in clause (f) implies the condition in clause (f−), and they’re
equivalent under ACω1 .
Remark: There is no essential use of assumption (b) in the proof, but it might be
more transparent.
Proof: For every α < λ, let B′α = Bα \ ∪

β<α
Bβ. As ∪{Bα : α < λ} /∈ I, there is

u ⊆ λ such that {B′α : α ∈ u} /∈ I and |u| is minimal (there is no problem about
the AC as u is a set of ordinals). Fix an enumeration (ξα : α < |u|) of u and
let B′′α = B′ξα for α < |u|. (B′′α : α < |u|) is a sequence of pairwise disjoint sets
whose union is I-positive. Let I ′ be the ideal on |u| consisting of sets X such that
∪{B′′α : α ∈ X} ∈ I.
We claim that I ′ is σ-complete: Suppose that (Xn : n < ω) ∈ V such that Xn ∈ I ′
for n < ω, but Y := ∪

n<ω
Xn /∈ I ′. Let An = ∪{B′′α : α ∈ Xn}, then (An : n < ω) ∈ V

and each An is in I, but as Y /∈ I ′, it follows that ∪
n<ω

An /∈ I, contradicting its
σ-completeness. Therefore, I ′ is σ-complete.
We now work in L[I ′]. Let J := I ′ ∩ L[I ′] ∈ L[I ′], then clearly L[I ′] |= ”J is an
ℵV1 -complete ideal on |u|”. We shall prove that L[I ′] |= ”P(|u|)/J |= ℵV1 − cc”.
Suppose not, then in L[I ′] there is a sequence (Aα : α < ℵV1 ) of J-positive sets
such that α < β → Aα ∩ Aβ ∈ J . As J is ℵV1 -complete in L[I ′], we may assume
WLOG that α < β → Aα ∩ Aβ = ∅. In V , let (Cε : ε < ℵV1 ) be the sequence
defined by Cε = ∪{B′′α : α ∈ Aε}. Obviously, ε 6= ζ → Cε ∩ Cζ = ∅. Suppose that
Cε = ∪{B′′α : α ∈ Aε} ∈ I, then Aε ∈ I ′ by the definition of I ′, and as Aε ∈ L[I ′], it
follows that Aε ∈ J , contradicting the choise of Aε. Therefore, each Cε is I-positive,
contradicting the fact that V |= ”P(ωω)/I |= ccc” (and contradicting (f−)).
Therefore, L[I ′] |= ”J is an ℵV1 -complete ideal on |u| such that P(|u|)/J |= ℵV1 −cc”,
and the existence of an inner model for a measurable cardinal follows. �
Our goal now is to use DCω1 and regularity properties in order to derive the count-
able chain condition for P(ωω)/IQ,ℵ0 from the fact that Borel(ωω)/IQ,ℵ0 is ccc.
The following definition is of interest in the absence of choice:
Definition 10: a. We say that a forcing notionQ satisfies the strong chain condition
(scc) if there is no uncountable2 set {Xs : s ∈ S} ⊆ P(Q) such that Xs 6= ∅ for each
s ∈ S, and for every s 6= t ∈ S, if p ∈ Xs and q ∈ Xt then p and q are incompatible.
We define the strong chain condition for boolean algebras similarly.

2So it may be non well-orderable in the absence of choice.
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b. Given a Boolean algebra B and an ideal I, we say that (B, I) |= scc− if there is
no uncountable collection {Xs : s ∈ S} ⊆ P(B) of nonempty subsets of B such that
each of them is disjoint to I and (s 6= t ∈ S ∧Bs ∈ Xs ∧Bt ∈ Xt)→ Bs ∧Bt ∈ I.

c. Given a Boolean algebra B and an ideal I, we say that (B, I) satisfies the weak
countable chain condition (ccc−) if it satisfies the property appearing in clause f− of
claim 9, where instead of a set of cardinality ℵ1 we have an uncountable set.

d. Similarly, we can define κ− scc and κ− scc− for a cardinal κ.

Observation 11: a. scc is equivalent to ccc under DCω1 . In addition, note that in
the above definition it doesn’t follow that ℵ1 ≤ |S|.

b. Similarly, κ− scc is equivalent to κ− cc under ACκ.

The following seems like a natural question:

Question 12: Assume ZF . Is ccc equivalent to scc for Suslin forcing notions?

We shall address the above problem in future work.

Claim 13 (ZF ): Let Q be a Suslin scc forcing notion, then (Borel(ωω), IQ,ℵ0) |=
ccc−. Moreover, (Borel(ωω), IQ,ℵ0) |= scc−.

Proof: We shall first prove ccc−. Let B = Borel(ωω) and suppose that {Bs : s ∈ S}
is a collection of IQ,ℵ0−positive Borel sets such that s 6= t ∈ S → Bs ∩ Bt ∈ IQ,ℵ0 .
For every s ∈ S, let Xs = {p ∈ Q : p 
 η

∼
∈ Bs}. As each Bs is positive, Xs 6= ∅.

Obviously, if s 6= t ∈ S, p ∈ Xs and q ∈ Xt, then p and q are incompatible. As
Q |= scc, it follows that S is countable, hence (B, IQ,ℵ0) |= ccc−.

As for scc−, suppose that {Xs : s ∈ S} ⊆ P(B) is a collection of non-empty subsets
of B, each consisting of positive sets, such that s 6= t ∈ S ∧ Bs ∈ Xs ∧ Bt ∈ Xt →
Bs ∩ Bt ∈ IQ,ℵ0 . For each s ∈ S let Ps be the set of conditions p ∈ Q that force
”η
∼
∈ B′” for some B′ ∈ Xs. Now the rest of the argument is similar to the previous

case. �

Claim 14: Assume ZF + DCω1 . If Q is a Suslin ccc forcing notion (that is, there
are no ℵ1 pairwise incompatible conditions), then Borel(ωω)/IQ,ℵ0 |= ccc.

Proof: ByDCω1 , Q is scc. By the previous claim, it follows that (Borel(ωω), IQ,ℵ0) |=
ccc−. By DCω1 , it follows that Borel(ωω)/IQ,ℵ0 |= ccc: Suppose that {Xs : s ∈ S} ⊆
Borel(ωω)/IQ,ℵ0 is an uncountable antichain, by DCω1 it follows that it has a subset
of size ℵ1, and from this set we can choose representatives and get a contradiction
to ccc−. �

Corollary 15: There is an inner model with a measurable cardinal when the fol-
lowing conditions hold:

1. Q is a Suslin ccc forcing notion and η
∼
is a Q−name of a real.

2. ZF +DCω1 + ”All sets of reals are IQ,ℵ0−measurable”.
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3. There is a sequence (Bα : α < λ) of sets from I(Q,η
∼

),ℵ0 such that ∪{Bα : α < λ} /∈
I(Q,η

∼
),ℵ0 .

Proof: Let I = I(Q,η
∼

),ℵ0 . By claim 9, it’s enough to prove that (P(ωω), I) |= ccc−.
Suppose that {Xs : s ∈ S} is an uncountable collection of I-positive sets such that
s 6= t ∈ S → Xs∩Xt ∈ I. For every s ∈ S, let Ps := {B ⊆ ωω : B is a Borel set such
that B = Xs mod I}. By our assumption, each Ps is non-empty. By DCω1 , there is
an injection f : ℵ1 → S, so there is a sequence (Pf(α) : α < ℵ1), and again by DCℵ1 ,
there is a sequence (Bα : α < ℵ1) such that Bα ∈ Pf(α) for each α < ℵ1. Obviously,
(Bα : α < ℵ1) witnesses that Borel(ωω)/I doesn’t satisfy ccc, contradicting claim
14. �
Corollary 16: a. Let Q be a Suslin ccc forcing notion with generic η

∼
adding a

Hechler real, then ZF +DCω1 + ”Every set of reals is I(Q,η
∼

),ℵ0-measurable” implies
the existence of an inner model with a measurable cardinal.
b. The above claim is true for (Q1

n, η
1
n
∼

) where n ∈ N.

Proof: a. By corollary 15 and claim 8(b).
b. By (a) and claim 7(b). �
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