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Abstract. For every countable structure M we construct an ℵ0-stable count-

able structure N such that Aut(M) and Aut(N) are topologically isomorphic.
This shows that it is impossible to detect any form of stability of a countable

structure M from the topological properties of the Polish group Aut(M).

1. Introduction

In [1] Rosendal isolates a property of topological groups which he calls (local)
(OB) and proves that if M is the countable, saturated model of an ℵ0-stable theory
then Aut(M) has (OB). Again in [1], Rosendal asks if the property local (OB) is
satisfied by the group of automorphisms of any countable model of an ℵ0-stable the-
ory. In [2] Zielinski answers this question in the negative by exhibiting a countable
model of an ℵ0-stable theory whose group of automorphisms is not locally (OB).

In the present study we show that any attempt at a topological characterization
of the group of automorphisms of a countable stable structure is doomed to fail:

Theorem 1. For every countable1 structure M there exists an ℵ0-stable countable
structure N such that Aut(M) and Aut(N) are topologically isomorphic with respect
to the naturally associated Polish group topologies.

The theory Th(N) of Theorem 1 is NDOP and NOTOP, but this will not be
proved here, since it appears to be outside of the scope of this study.

2. Proofs

The main technical tool in the proof of Theorem 1 will be a new notion of inter-
pretability, which we call Lω1,ω-semi-interpretability. To make the exposition com-
plete we first introduce the classical notion of first-order interpretability (cf. Defini-
tion 2), and then define the notion of Lω1,ω-semi-interpretability (cf. Definition 4).

Definition 2. Let M and N be models. We say that N is interpretable in M if
for some n < ω there are:

(1) a ∅-definable subset D of Mn;
(2) a ∅-definable equivalence relation on D;
(3) a bijection α : N → D/E such that for every m < ω and ∅-definable subset R

of Nm the subset of Mnm given by:

R̂ = {(ā1, ..., ām) ∈ (Mn)m : (α−1(ā1/E), ..., α−1(ām/E)) ∈ R}
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is ∅-definable in M .

Notation 3. Let τ be a language.

(1) For R ∈ τ a predicate, we denote by k(R) = k(R, τ) the arity of R.
(2) Given a τ -structure M and a τ -formula ϕ(x̄) = ϕ(x0, ..., xn−1), we let:

ϕ(M) = {ā ∈Mn : M |= ϕ(ā)}.
(3) Given a τ -structure M , we denote by |M | the domain of M (although we will

be sloppy in distinguishing between the two), and by ||M || the cardinality of M .
(4) Given a τ -structure M and A ⊆ M , we denote by Aut(M/A) the set of auto-

morphisms of M which are the identity on A.

Definition 4. Let:

(i) τ` (` = 1, 2) be relational languages (for simplicity);
(ii) ∆M`

= ∆` ⊆ Lω1,ω(τ`) (` = 1, 2) be sets of formulas;
(iii) ∆2 = {ϕ ∈ Lω1,ω(τ2) : ϕ is an atomic τ2-formula};
(iv) M` (` = 1, 2) be τ`-structures.

We say that M2 is ∆1-interpretable in M1 by the scheme s and function F̄ when:

(A) s = {s(p) : p ∈ SM2
} ∪ {s(R, p̄) : R ∈ τ2, p̄ = (p` : ` < k) ∈ S

k(R)
M2
}, where:

(a) p ∈ SM2
= {tp∆2

(a, ∅,M2) : a ∈M2};
(b) s(p) = (rp(x̄m(p)), Ep(ȳm(p), z̄m(p))) ∈ ∆1 ×∆1, m(p) < ω, and Ep(M1) is

a non-empty equivalence relation on rp(M1);

(c) s(R, p̄) is a τ1-formula from ∆1 of the form ϕ(R,p̄)(x̄
0
m(p0), ..., x̄

k−1
m(pk−1)),

with x̄im(pi)
= (xi0, ..., x

i
m(pi)−1), for every i < k;

(B) F̄ = (Fp : p ∈ SM2), where:
(a) Fp is a one-to-one function from p(M2) = {a ∈ M2 : p = tp∆2(a, ∅,M2)}

onto rp(M1)/Ep(M1);
(b) for every predicate R of τ2 we have: if k = k(R), ā ∈ Mk

2 , and, for every
` < k, p` = tp∆2

(a`, ∅,M2), b̄` ∈ rp`(M1) and Fp`(a`) = b̄`/Ep`(M1),
then:

M2 |= R(a0, ..., ak−1) iff M1 |= ϕ(R,p̄)(b̄0, ..., b̄k−1).

Finally, we say that M2 is Lω1,ω-semi-interpretable in M1 when M2 is ∆1-interpretable
in M1 by the scheme s and function F̄ for some ∆1, s and F̄ .

Fact 5. Let M and N be models, and suppose that N is Lω1,ω-semi-interpretable
in M . Then every π ∈ Aut(M) induces a π̂ ∈ Aut(N), and the mapping π 7→ π̂ is
a continuous homomorphism of Aut(M) into Aut(N).

Proof. Essentially as in the case of first-order interpretability (cf. Definition 2).

Fact 6. Let G and H be Polish group and α : G → H a group isomorphism. If α
is continuous, then α is a topological isomorphism.

Proof. This is well-known.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let M be a countable model. We construct a countable model
N such that:

(1) N is Lω1,ω-semi-interpretable in M (cf. Definition 4);
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(2) for every π ∈ Aut(N) there is a unique π0 ∈ Aut(M) such that π = π̂0 (cf.
Fact 5);

(3) N is ℵ0-stable.

Using Facts 5 and 6, and items (1)-(2) above it follows that Aut(M) and Aut(N)
are topologically isomorphic, and thus by (3) we are done.
We then proceed to the construction of a model N as above. First all notice that
without loss of generality2 we can assume that M is a relational structure in a
language τ(M) = {P(n,`) : n < n∗ 6 ω, ` < `n 6 ω}, where the predicates P(n,`) are
n-ary predicates, and, for transparency, we assume that if M |= P(n,`)(ā), then ā is
without repetitions. We construct a structure N in the following language τ(N):

(i) c ∈ τ(N) is a constant;
(ii) P ∈ τ(N) is a unary predicate;

(iii) for n < n∗ 6 ω and ` < `n 6 ω, Q(n,`) ∈ τ(N) is a unary predicate;
(iv) for n < n∗ 6 ω and ` < `n 6 ω, E(n,`) ∈ τ(N) is a binary predicate;
(v) for n < n∗ 6 ω, ` < `n 6 ω and ι < n, F(n,`,ι) ∈ τ(N) is a unary function;
(vi) for n < n∗ 6 ω, ` < `n 6 ω and j < ω, G(n,`,j) ∈ τ(N) is a unary function.

We define the structure N as follows:

(a) |N | (the domain of N) is the disjoint union of:

PN ∪ {cN = e} ∪ {QN(n,`) : n < n∗ 6 ω and ` < `n 6 ω};

(b) PN = |M | (the domain of M);
(c) QN(n,`) = {(n, `, i, a0, ..., an−1) : at ∈M, i 6 ω, (a0, ..., an−1) /∈ PM(n,`) ⇒ i < ω};
(d) EN(n,`) =

{((n, `, i1, ā), (n, `, i2, ā)) : i1, i2 6 ω, (n, `, it, ā = a0, ..., an−1) ∈ QN(n,`)};

(e) for ι < n, F(n,`,ι)(x) =

{
aι if x = (n, `, i, a0, ..., an−1),

e otherwise;

(f) for j < ω, G(n,`,j)(x) =

{
(n, `, j, a0, ..., an−1) if x = (n, `, i, a0, ..., an−1),

e otherwise.

We now prove items (1)-(3) from the list at the beginning of the proof. Item (3)
is proved in Claim 7. We prove item (2). Let π ∈ Aut(N) and, for a, b ∈ M ,
let π0(a) = b iff π(a) = b. Clearly π0 ∈ Sym(M). For the sake of contradiction,
suppose that π0 /∈ Aut(M). Replacing π with π−1, we can assume without loss of
generality that there are n < n∗ 6 ω, ` < `n 6 ω, ā = (a0, ..., an−1) ∈ Mn and
b̄ = (b0, ..., bn−1) ∈ Mn such that π0(ā) = b̄, M |= P(n,`)(ā) and M 6|= P(n,`)(b̄).
Then the element (n, `, ω, a0, ..., an−1) ∈ N realizes the type:

p = {F(n,`,ι)(x) = aι : ι < n} ∪ {G(n,`,j)(x) 6= x : j < ω},

while the type:

q = {F(n,`,ι)(x) = bι : ι < n} ∪ {G(n,`,j)(x) 6= x : j < ω},

is not realized in N , a contradiction. Hence, π0 ∈ Aut(M) and, easily, π = π̂0 (cf.
Fact 5) and for every π1 ∈ Aut(M) such that π = π̂1 we have that π0 = π1.

2Recall that in this paper we only consider structures in a countable language.
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Finally, we prove item (1). Let (k(n,`,i) : n < n∗ 6 ω, ` < `n 6 ω, i 6 ω) be a
sequence of natural numbers such that:

(n1, `1, i1) 6= (n2, `2, i2) implies 1 < n1 + k(n1,`1,i1) 6= n2 + k(n2,`2,i2).

Let also:

(i’) n+ k(n,`,i) = m(n, `, i);
(ii’) x̄m(n,`,i) = (x0, ..., xm(n,`,i)−1);

(iii’) ȳm(n,`,i) = (y0, ..., ym(n,`,i)−1).

Consider now the following formulas:

(A) ϕ0(x0) : x0 = x0;
(B) θ0(x0, y0) : x0 = y0;
(C) for n < n∗ 6 ω, ` < `n 6 ω and i < ω let:

ϕ(n,`,i)(x̄m(n,`,i)) :
∧

m<m(n,`,i)

xm = xm,

θ(n,`,i)(x̄m(n,`,i), ȳm(n,`,i)) :
∧
m<n

xm = ym;

(D) for n < n∗ 6 ω, ` < `n 6 ω and i = ω let:

ϕ(n,`,i)(x̄m(n,`,i)) :
∧

m<m(n,`,i)

xm = xm ∧ P(n,`)(x0, ..., xn−1),

θ(n,`,i)(x̄m(n,`,i), ȳm(n,`,i)) :
∧
m<n

xm = ym.

Notice now, that:

(I) PN = ϕ0(M)/θ0(M);
(II) QNn,` is in bijection with

⋃
{ϕ(n,`,i)(M)/θ(n,`,i)(M) : i 6 ω}.

Using this observation it is easy to see how to choose ∆M , s, and F̄ = (Fp : p ∈ SN )
as in Definition 4 so as to witness that N is Lω1,ω-semi-interpretable in M .

Claim 7. Let N be as in the proof of Theorem 1. Then Th(N) is ℵ0-stable.

Proof. Let N1 be a countable model of Th(N). It is enough to show that there are
only countably many 1-types over N1. To this extent, let N2 be an ℵ1-saturated
model of Th(N) such that every countable non-algebraic type is realized by ||N2||-
many elements, and define the following equivalence relation E∗ = E∗

(N1,N2) on

N2:

aE∗b iff ∃π ∈ Aut(N2/N1) such that π(a) = b.

We will show that the relation E∗ has ℵ0 equivalence classes, clearly this suffices.
To this extent, notice that:

(?1) if π is a permutation of PN2 which is the identity on PN1 , then there is an
automorphism π̌ of N2 over N1 extending it (recall that N2 is ℵ1-saturated);

(?2)(n,`) if b1, b2 ∈ E(n,`), (Fn,`,ι(b1) : ι < n) and (Fn,`,ι(b2) : ι < n) realize the same

{=}-type over PN1 , and for t = 1, 2 we have bt /∈ {G(n,`,j)(bt) : j < ω},
then there exists π ∈ Aut(N2/N1) such that π(b1) = b2;

(?3)(n,`,j) if b1, b2 ∈ E(n,`), (Fn,`,ι(b1) : ι < n) and (Fn,`,ι(b2) : ι < n) realize the

same {=}-type over PN1 , and for t = 1, 2 we have G(n,`,j)(bt) = bt, then
there exists π ∈ Aut(N2/N1) such that π(b1) = b2.
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Now, using (?1)-(?2)(n,`)-(?3)(n,`,j) and noticing that n, ` and j range over countable
sets, it is easy to see that the relation E∗ defined above has ℵ0 equivalence classes.
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