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Abstract. In this paper we study the notion of strong non-reflection, and its contra-
positive weak reflection. We say θ strongly non-reflects at λ iff there is a function F : θ → λ
such that for all α < θ with cf(α) = λ there is C club in α such that F¹C is strictly in-
creasing. We prove that it is consistent to have a cardinal θ such that strong non-reflection
and weak reflection each hold on an unbounded set of cardinals less than θ.

1. Introduction. In this paper we study the notion of strong non-
reflection, which was introduced in [4] and is further studied in [3]. We
prove that for a fixed θ we can have an unbounded set of cofinalities at
which strong non-reflection holds, and an unbounded set where it fails.

Definition 1. Let θ be a regular cardinal, and let λ be an ordinal with
λ ≥ θ.
• Sλθ = {α < λ | cf(α) = θ}.
• Sλ<θ = {α < λ | cf(α) < θ}.
• If θ is uncountable, then λ strongly non-reflects at θ iff there is a

function F : λ → θ such that for all α ∈ Sλθ there is C club in α such that
F ¹C is strictly increasing. We will write SNR(λ, θ) for this.
• λ weakly reflects at θ iff λ does not strongly non-reflect at θ.

In [4] Džamonja and Shelah prove some theorems connecting weak club
principles, saturated ideals, and the ideal I[λ, θ) consisting of those A ⊆ λ
such that there is h : λ → θ increasing on a club at every point of A ∩ Sλθ .
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92 J. Cummings et al.

In particular, Theorem 2.5 of that paper shows that a certain weak club
principle is incompatible with saturated ideals at successors of singulars,
and Theorem 2.8 connects weak reflection and the weak club principle.

In [3] strong non-reflection is used as a tool to show that different in-
stances of stationary reflection are independent. For example, it is shown
there that “every stationary subset of Sℵ3

ℵ0
reflects at a point in Sℵ3

ℵ2
” is con-

sistent with “every stationary subset of Sℵ3
ℵ1

has a non-reflecting stationary
subset”.

We make a few remarks about the definitions. The next lemma is implicit
in Observation 1.2.3 of [4].

Lemma 1. Let λ be an ordinal , and 〈λi : i < λ〉 a λ-sequence of ordinals
with cf(λi) 6= θ. Let F : λ→ θ and Fi : λi → θ witness strong non-reflection
at θ for λ and each of the λi. Then there is G :

∑
i<λ λi → θ witnessing

strong non-reflection for
∑
i<λ λi.

P r o o f. Define G(
∑
i<j λi) = F (j) and G(

∑
i<j λi + ν) = Fj(ν) for

0 < ν < λj . It is easy to check that this works.

It is proved in [4], using the previous lemma, that the least λ which
weakly reflects at θ is a regular cardinal greater than θ.

As the terminology suggests, there is a connection between weak reflec-
tion and the more familiar notion of stationary reflection.

Definition 2. Let κ < µ < ν be regular cardinals. Then Ref(ν, µ, κ) iff
for every stationary S ⊆ Sνκ there is α ∈ Sνµ such that S ∩ α is stationary
in α. We will also use Ref(ν, µ,< κ) as a shorthand for “∀δ ∈ REG ∩ κ
Ref(ν, µ, δ)”.

The next fact shows that strong non-reflection at θ is antithetical to
stationary reflection to points of cofinality θ.

Lemma 2. Suppose that λ strongly non-reflects at θ. Then for every
stationary S ⊆ λ there is T ⊆ S stationary such that T ∩α is non-stationary
for all α ∈ Sλθ .

P r o o f. Use Fodor’s Lemma to find T on which F : λ→ θ witnessing the
strong non-reflection is constant. If C ⊆ α is a club on which F is strictly
increasing then C meets T in at most one point.

It is not hard to see that if 〈Cα : α < κ+〉 is a ¤κ-sequence then the
function F : α 7→ o.t.(Cα) witnesses that κ+ strongly non-reflects at κ. More
is true, see 1.7 of [4]. The following remark is immediate from the definition.

Lemma 3. If θ = cf(θ) < λ < λ∗, and λ weakly reflects at θ, then λ∗

weakly reflects at θ.

We are now ready to state the main result.
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A consistency result on weak reflection 93

Theorem 1. Let GCH hold , let θ be regular , and suppose that there are
cardinals 〈λi, θi, κi : i < θ〉 such that for all i < θ,

(1) λi = cf(λi) < λ+
i < θi = cf(θi) < κi, and κi is measurable.

(2) λi > (sup{κj | j < i})++.

Then there is a generic extension in which SNR(θ, λi) and Ref(κi, θi,
< θi) hold for every i. In particular , by Lemmas 2 and 3, θ weakly reflects
at θi.

The proof will involve two stages. First we force functions that witness
the strong non-reflection at the points λi, via an iterated forcing with Easton
support. An important feature of the construction is that the individual
steps in the forcing have an increasing degree of strategic closure, and at
any stage a witness to the desired degree of strategic closure was added by
the previous stages.

We will show that the first stage preserves the measurability of all
the κi. In the second stage we will force with a product of the Lévy col-
lapses Coll(θi, < κi), and use Baumgartner’s argument from [2] to show
that Ref(κi, θi, < θi) holds in the extension.

2. Forcing strong non-reflection. Let σ and λ be regular cardinals
with σ < λ. In this section we define a forcing P(σ, λ) which adds a function
from λ to σ witnessing strong non-reflection for λ at σ. We could make
the same definition for λ an arbitrary ordinal greater than σ, but for our
purposes it will suffice to restrict ourselves to regular cardinals.

Definition 3. Conditions in P(σ, λ) are functions p such that dom(p)
< λ, rge(p) ⊆ σ, and for every β ≤ dom(p) if β ∈ Sλσ then there is a club C
in β such that p¹C is strictly increasing.

The condition p extends the condition q iff p ⊇ q. We write this as p ≤ q.
Clearly this forcing has at most σ<λ conditions, so enjoys the (σ<λ)+-c.c.

There are several pieces of information about the closure properties of the
forcing that we will need later.

Lemma 4. Let 〈pα : α < %〉 be a strictly decreasing sequence of conditions
in P(σ, λ), where % ∈ Sλ6=σ. Then p =

⋃
α pα is the greatest lower bound for

the sequence.

P r o o f. Notice that cf(dom(p)) = cf(%) 6= σ, so that if β ≤ dom(p) and
cf(β) = σ then β ∈ dom(pα) for some α < %. There is C club in β such that
p¹C = pα¹C is strictly increasing.

We remind the reader of the notion of strategic closure.
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94 J. Cummings et al.

Definition 4. Let P be a partial ordering, and let η be an ordinal.

(1) The game G(P, η) is played by two players I and II, who take turns
to play elements pα of P for 0 < α < η, with player I playing at odd stages
and player II at even stages (nota bene: limit ordinals are even).

The rules of the game are that the sequence that is played must be
decreasing (not necessarily strictly decreasing), the first player who cannot
make a move loses, and player II wins if play proceeds for η stages.

(2) P is η-strategically closed iff player II has a winning strategy in
G(P, η).

(3) P is <η-strategically closed iff for all ζ < η, P is ζ-strategically closed.

We say that a forcing notion P is <λ-distributive iff it does not add any
<λ-sequence of ordinals to the ground model (equivalently, the intersection
of fewer than λ dense open sets is non-empty). The following lemma is easy.

Lemma 5. If P is <λ-closed it is λ-strategically closed , and if P is
<λ-strategically closed it is <λ-distributive.

Notice that P(σ, λ) will only contain conditions of lengths unbounded
in λ if SNR(µ, σ) holds for all µ < λ. This condition is actually enough to
make P(σ, λ) <λ-strategically closed.

Lemma 6. Suppose that all µ ∈ [σ, λ) are strongly non-reflecting at σ.
Then P(σ, λ) is <λ-strategically closed.

P r o o f. Let η < λ. If η < σ then player II can win with the following
strategy: he plays p2γ :=

⋃
α<2γ pα.

If σ ≤ η < λ then by hypothesis there is a function F : η → σ witnessing
strong non-reflection. Player II will play p2γ := (

⋃
α<2γ pα) _ F (γ). We

check that this is a winning strategy.
Let 2δ be an even stage of cofinality σ in G(P(σ, λ), η). There is D club

in δ such that F ¹D is strictly increasing. If we define C = {lh(p2γ) | γ ∈ D}
then C witnesses that II does not lose at stage 2δ.

We will be interested in forcing strong non-reflection to several values of σ
simultaneously. For this we will use a certain dense subset of the <λ-support
product of the appropriate P(σ, λ).

Definition 5. Let A ⊆ REG ∩ λ. Then P(A, λ) is the set of functions
p such that

(1) dom(p) = (A ∩ γ)× γ for some γ < λ.
(2) If dom(p) = (A ∩ γ) × γ and σ ∈ A ∩ γ then α < γ 7→ p(σ, α) is a

condition in P(σ, λ).

If p, q ∈ P(A, λ) then p ≤ q iff p extends q.
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A consistency result on weak reflection 95

Clearly |P(A, λ)| ≤ λ<λ, so the forcing has the (λ<λ)+-c.c. We also record
some information about the closure of the forcing.

Lemma 7. Let 〈pα : α < %〉 be a strictly decreasing sequence of condi-
tions in P(A, λ), where cf(%) 6∈ A. Then the condition p given by p(i) :=⋃
α<% pα(i) is the greatest lower bound for the sequence.

The next lemma is easy, with a proof almost identical to that of Lemma 6.

Lemma 8. Let A and λ be as above. Suppose that for all σ ∈ A, all
µ ∈ [σ, λ) are strongly non-reflecting at σ. Then P(A, λ) is <λ-strategically
closed.

3. The iteration. The idea of the construction is now to define A =
{λi | i < θ} (where the λi are as in the statement of Theorem 1) and to
iterate P(A ∩ λ, λ) for all regular λ ≤ θ. A crucial point will be that the
forcing at stage λ is <λ-strategically closed, using Lemma 8 and the fact
that in the iteration we have already arranged the required instances of
non-reflection below λ.

We will do a “Reverse Easton” iteration, that is to say, an iteration where
direct limits are taken at strongly inaccessible limit stages and inverse limits
are taken at other limit stages. We will refer to [1] for details about this sort
of iteration, and we will also follow the notation of that paper (in particular,
Pα is the forcing up to stage α and Q̇α ∈ V Pα is the forcing at α).

Formally, we will define Q̇α to be {0} if α is not a regular cardinal, and
to be P(A∩α, α)V Pα if α is regular. We will collect some information about
the iteration in the following lemma.

Lemma 9. Let Pα and Q̇α be as above, and let Ṙβ,α be the canonical
iteration in V Pβ such that Pβ ∗ Ṙβ,α has a dense subset isomorphic to Pα.
Then for all regular α ≤ θ,

(1) |Pα| ≤ α.
(2) V Pα |= GCH, so in particular V Pα |= |Q̇α| = α.
(3) Pα+1 has the α+-c.c. In addition, if α is Mahlo, then Pα has the

α-c.c.
(4) V Pα |= Q̇α is <α-strategically closed.
(5) For all regular β < α, Rβ,α is <β-strategically closed in V Pβ .
(6) Pα preserves all cardinals and cofinalities.

P r o o f. The proof will be by induction on α. Most of the proof is straight-
forward, using the results of Section 2 in [1] to power the induction. The
distinctive point here is in showing that clauses (4) and (5) hold at α, given
that we have proved the lemma for regular cardinals less than α.

By construction, Pα forces that for every λ ∈ A and every regular car-
dinal β ∈ [λ, α) we have SNR(β, λ). As we remarked after Lemma 1, this
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96 J. Cummings et al.

implies that for every ordinal γ ∈ [λ, α) we have SNR(γ, λ). By Lemma 8
this means that P(A ∩ α, α) is <α-strategically closed in V Pα .

Finally, to see that clause (5) holds one should check that Theorem 2.5
of [1] is still true if “κ-closed” is replaced by “<κ-strategically closed”. This
is routine, the point is that a term for a strategy can be applied to a term
for a condition to get a term for a stronger condition.

We make some remarks about this construction.

(1) Since cardinals and cofinalities are preserved, a witness to strong
non-reflection added at some stage by some P(σ, λ) will remain a witness at
all subsequent stages.

(2) At stage θ we forced with P(A, θ), so added witnesses to all the strong
non-reflection that is claimed in Theorem 1.

4. Preserving measurability. As we mentioned in the first section,
we want to show that for each i the measurability of κi is preserved by the
iteration Pθ. It is enough to argue that κi is measurable in the extension
by Pκ+

i
+1, because the rest of the forcing is κ+

i -strategically closed, so that
the power set of κi does not change and a measure remains a measure. For
brevity, we will denote κi by κ throughout this section.

Let G be Pκ-generic over V , let g be P(A∩κ, κ)-generic over V [G], and let
h be P(A ∩ κ+, κ+)-generic over V [G][g]. Let j : V →M be the ultrapower
map arising from a normal measure U on κ. We list some facts about j and
M , all of whose proofs can be found in [5].

(1) crit(j) = κ.
(2) κM ⊆M .
(3) Hκ+ ⊆M .
(4) κ+ = κ+

M .
(5) κ+ < j(κ) < j(κ+) < κ++.
(6) M = {j(F )(κ) | F ∈ V and dom(F ) = κ}.
The strategy of the proof will be to define, in V [G][g][h], an extension

of j : V → M to a new embedding j : V [G][g][h] → N ⊆ V [G][g][h].
The existence of such an extension will imply that κ is still measurable in
V [G][g][h].

We start by comparing the iterations Pκ++1 and j(Pκ++1). The forcing
j(Pκ++1) is an iteration defined in M , forcing strong non-reflection at co-
finalities in the set j(A) ∩ j(κ+) for all M -regular cardinals up to j(κ+).
Since A ∩ κ is bounded in κ and λi+1 > κ+, we see that

A ∩ (κ+ + 1) = j(A) ∩ (j(κ+) + 1) = A ∩ κ.
By the resemblance between V and M , if we compute the iteration

j(Pκ++1) up to stage κ+ we get Pκ++1. We can therefore compute a generic

Sh:571



A consistency result on weak reflection 97

extension M [G][g][h] of M by using the V -generic filters, and observing that
V -generic filters are M -generic.

We claim that V [G][g][h] |= κ(M [G][g][h]) ⊆ M [G][g][h]. Since Pκ+1 is
κ+-c.c. every canonical Pκ+1-name for a κ-sequence of ordinals is in M ,
so that easily V [G][g] |= κ(M [G][g]) ⊆ M [G][g]. The forcing Qκ+ is <κ+-
strategically closed in V [G][g], so it adds no κ-sequence of ordinals, and we
are done.

In M [G][g][h] let R = Rκ++1,j(κ) be the canonical factor forcing to pro-
long G∗g∗h to a j(Pκ)-generic. We claim that R is κ+-strategically closed in
V [G][g][h]. This follows from the fact that R is <κ++

M -strategically closed in
M [G][g][h] and the fact that V [G][g][h] |= κ(M [G][g][h]) ⊆M [G][g][h]. The
point is that if player II plays for κ+ steps in V [G][g][h] using the strategy
from M [G][g][h], then every initial segment of the play is in M [G][g][h], so
that player II does not get stuck at any stage below κ+.

The previous claim explains why we are working in V [G][g][h] rather
than V [G][g]. If we truncate j(Pκ) at κ+ 1 then the rest of the forcing will
be <κ+-strategically closed in V [G][g], but the following stage of the proof
will demand κ+-strategic closure.

Recall that κ+ < j(κ) < κ++. In M [G][g][h] the forcing R is j(κ)-c.c. and
has size j(κ), so there are at most j(κ) maximal antichains in that model. In
V [G][g][h] let us enumerate these antichains as 〈Aα : α < κ+〉. Now consider
a run of the game G(R, κ+) in which player I plays the following strategy:
in response to p2γ player I will choose some element qγ of Aγ such that
p2γ is compatible with qγ , and then will play p2γ+1 which is some common
refinement. Player II will play according to some winning strategy; after
κ+ steps we have built a decreasing sequence of conditions which clearly
generates an M [G][g][h]-generic filter H.

Now we will start to extend j. Define G+ := G ∗ g ∗ h ∗ H, which will
be j(Pκ)-generic over M . We attempt to define j : V [G] → M [G+] by
j(τ̇G) := j(τ̇)G

+
. We check that this is a well-defined elementary embedding,

using the following well-known fact.

Lemma 10. Let k : M → N be an elementary embedding between two
transitive models of ZFC. Let P ∈ M be some forcing , let k(P) = Q, and
suppose that we have G which is P-generic over M and H which is Q-generic
over N . Suppose also that k“G ⊆ H. Then defining k(τ̇G) = k(τ̇)H for every
τ̇ ∈MP gives a well-defined elementary embedding k : M [G]→ N [H], which
extends k : M → N and has k(G) = H.

P r o o f. Easy, using the Truth Lemma and the elementarity of k.

By Lemma 10, it is enough to check that j“G ⊆ G+. G is generic
for Pκ, which was constructed as a direct limit, so every condition p in G
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98 J. Cummings et al.

has support bounded in κ. Since crit(j) = κ, the condition j(p) contains the
same information as p, and since G = G+¹κ, we conclude that j(p) ∈ G+.

Since G+ ∈ V [G][g][h], we see that M [G+] ⊆ V [G][g][h]. Also, we know
that H is generic for a forcing which adds no κ-sequences of ordinals over
M [G][g][h], so that V [G][g][h] |= κ(M [G+]) ⊆M [G+].

Now we aim to lift j further to get a map with domain V [G][g]. In V [G]
the forcing Qκ has cardinality κ, and is <κ-strategically closed with at most
2κ (that is, κ+) many maximal antichains. Since j : V [G] → M [G+] is
elementary, in M [G+] the forcing Qj(κ) is <j(κ)-strategically closed with at
most j(κ+) maximal antichains.

Arguing as before, Qj(κ) is κ+-strategically closed in V [G][g][h]. Since
j(κ+) < κ++ we can repeat the argument from the construction of H to
build g+ which is Qj(κ)-generic over M [G+]. But it is not clear at this point
that we can lift j onto V [G][g], because it may not be the case that j“g ⊆ g+.

We will use Silver’s “master condition” idea. Observe that g ∈ M [G+],
and that g is equivalent to a function p where dom(p) = (A ∩ κ) × κ and
p(σ,−) : α < κ 7→ p(σ, α) witnesses SNR(κ, σ) for each σ ∈ A ∩ κ.

Recall that Qj(κ) is defined to be P(j(A) ∩ j(κ), j(κ)). We claim that
p ∈ Qj(κ). The support condition is satisfied because κ < j(κ) and (as we
saw before) j(A) ∩ j(κ) = j(A ∩ κ) = A ∩ κ. It is enough to show that for
each σ we have p(σ,−) ∈ P(σ, j(κ)), which is to say that for all δ ≤ κ of
cofinality σ there is a club in δ on which p(σ,−) is increasing. This is easy
because V , M and M [G+] agree about cardinals and cofinalities up to κ+.

Since p is a condition in Qj(κ), when we construct g+ we can arrange
that g+ 3 p. We claim that this suffices to guarantee that j“g ⊆ g+. This
follows from the observation that p ≤ j(q) for every q ∈ g, which is true
because q has size less than κ and so j(q) is just a copy of q.

We can now build j : V [G][g] → M [G+][g+], using Lemma 10. Before
we can finish the construction, we need one piece of information about this
embedding. We claim that

M [G+][g+] = {j(F )(κ) | F ∈ V [G][g] and dom(F ) = κ}.
To see this let τ̇G

+∗g+
be some element of M [G+][g+], where τ̇ is a Pj(κ)+1-

name in M . We know that τ̇ = j(f)(κ) for some f ∈ V , and we may
as well assume that f(α) is a Pκ+1-name for every α < κ. Let us define
F ∈ V [G] by F (α) := f(α)G∗g. Since j(G ∗ g) = G+ ∗ g+, we see that
j(F )(κ) = (j(f)(κ))G

+∗g+
= τ̇G

+∗g+
as required.

We will now define a filter h+ on Qj(κ+) by setting

h+ := {q | (∃p ∈ h) j(p) ≤ q}.
It is easy to see that h+ is in fact a filter, and certainly j“h ⊆ h+ and
h+ ∈ V [G][g][h]. We claim that h+ is generic. To see this, let D ∈M [G+][g+]
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be a dense subset of Qj(κ+). We know D = j(F )(κ) for some F ∈ V [G][g].
Define E ⊆ Qκ+ by

E =
⋂
{F (α) | F (α) is a dense subset of Qκ+}.

Qκ+ is <κ+-distributive, so that E is dense, and clearly E ∈ V [G][g]. There-
fore there is some p ∈ E ∩ h. Certainly j(p) ∈ h+, and by elementarity
D = j(F )(κ) ⊇ j(E) so that j(p) ∈ h+ ∩D.

In conclusion, we can define j : V [G][g][h] → M [G+][g+][h+] in the
model V [G][g][h], so that κ is still measurable in V [G][g][h].

5. The collapse. To save on notation, we will now denote the model
V Pθ constructed in Section 3 by V . In this model we have the following
situation. For all i,

(1) GCH holds.
(2) λi = cf(λi) < λ+

i < θi = cf(θi) < κi, and κi is measurable.
(3) λi > (sup{κj | j < i})++.
(4) SNR(θ, λi) holds for every i.

We still have to get the reflection property Ref(κi, θi, < θi) for every i.
We will do this by collapsing the measurable cardinals κi, using an idea from
Section 7 of [2]. We will also check that this collapse does not destroy the
strong non-reflection.

Let Si := Coll(θi, < κi). We define S to be the Easton product of the Si;
to be precise, p ∈ S iff p is a function with

(1) dom(p) ⊆ θ.
(2) p(i) ∈ Si for all i ∈ dom(p).
(3) If σ ≤ θ is an inaccessible cardinal and i < σ ⇒ κi < σ, then

dom(p) ∩ σ is bounded in σ.

The ordering is the natural one.
For each i, the forcing S factorises as Sl

i×Si×Su
i , where Sl

i talks about the
coordinates below i and Su

i talks about those above. Using Easton’s Lemma
and the GCH, it is easy to see that S collapses cardinals in the interval [θi, κi)
to θi and preserves all other cardinals. In particular, SNR(θ, λi) still holds
in V S, because λi is still regular and there are no new points of cofinality
λi (this is easy, because by our assumptions on λi we have |Sl

i| < λi, and
Si × Su

i is λ+
i -closed).

For the reflection, it will suffice to check that Ref(κi, θi, < θi) holds in
V S

l
i×Si , because this model agrees with V S up to θi+1. We will look at V S

l
i×Si

in a slightly different way, by writing it as (V Si)S
l
i .

Since GCH holds in V and κi is measurable there, the results of [2] show
that Ref(κi, θi, < θi) holds in V Si . Of course, κi is now θ+

i . We claim that
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100 J. Cummings et al.

Ref(κi, θi, < θi) still holds in (V Si)S
l
i . Observe that |Sl

i| < θi < κi, so that if
S is a stationary subset of Sκi<θi in (V Si)S

l
i then there is T ⊆ S stationary

with T ∈ V Si . By the reflection which holds in V Si , there is γ ∈ Sκiθi such
that T ∩ γ is stationary in V Si . Since |Sl

i| < θi, we see that T ∩ γ is still
stationary in (V Si)S

l
i (and of course γ still has cofinality θi).

We have shown that SNR(θ, λi) and Ref(κi, θi, < θi) hold in V S for all
i < θ. This concludes the proof of Theorem 1.
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MATHEMATICS DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

MADISON, WISCONSIN 53709

U.S.A.

Received 23 February 1995;
in revised form 11 May 1995

Sh:571


