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DUALITY AND THE PCF THEORY

Saharon Shelah and Jindřich Zapletal

Abstract. We consider natural cardinal invariants hmn and prove several duality
theorems, saying roughly: if I is a suitably definable ideal and provably cov(I) ≥
hmn , then non(I) is provably small. The proofs integrate the determinacy theory,
forcing and pcf theory.

1. Introduction

The authors of [8] considered the following cardinal invariant of the contin-
uum. Let c : [2ω]2 → 2 be the partition defined by c(x, y) = ∆(x, y) mod 2
where ∆(x, y) = min{m ∈ ω : x(m) �= y(m)}, and let J be the σ-ideal σ-
generated by the homogeneous sets. It is not difficult to see that J is a proper
σ-ideal; in fact c is the simplest continuous partition of [2ω]2 with this property.
[8] defined the cardinal invariant hm as the covering number of the ideal J . The
invariant hm occurs naturaly in several contexts: it is the minimal number of
Lipschitz-with-constant-1 functions from 2ω to itself such that their graphs and
graphs of their inverses cover the whole square 2ω × 2ω. It is also the mini-
mal number of convex subsets necessary to cover a certain closed subset of the
Euclidean plane. See [8].

It is consistent with ZFC that hm < c; not surprisingly [9], this is exactly
what happens in the Sacks model [8]. On the other hand, hm is a very large
cardinal invariant in that provably hm

+ ≥ c. Here we prove a duality theorem
similar to the one from [9].

Theorem 1.1. Suppose that I is an analytic σ-ideal such that ZFC proves that
cov(I) ≥ hm. Then ZFC proves that non(I) ≤ ℵ3.

Here a σ-ideal is analytic if there is a Σ1
1 set in the plane such that the ideal

is σ-generated by its vertical sections. Similarly, it is possible to define the class
of projective ideals. The theorem remains true for projective ideals if the theory
ZFC is replaced by ZFC+“there are ω many Woodin cardinals”.
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586 SAHARON SHELAH AND JINDŘICH ZAPLETAL

The theorem remains true if the pair cov,non is replaced by any other dual
pair of invariants, such as non, cov or add, cof. However, in order for the various
complexity computations to come out right, in these cases we must restrict
ourselves to the class of Borel ideals.

The pattern persists to some variations of hm. For every natural number n > 0
let cn : [2ω]2 → n be the function defined by cn(x, y) = ∆(x, y) mod n and let
Jn be the σ-ideal on 2ω σ-generated by the sets X such that c′′nX �= n. Define J1

to be the ideal of countable sets. Define hmn to be the covering number of the
ideal Jn . It is not difficult to show that c = hm1 ≥ hm = hm2 ≥ hm3 ≥ hm4 ≥ . . .
and (hmn)n−1 ≥ c for every number n. Again, hmn can be rewritten as the
smallest number of functions in a certain class necessary to cover the cube (2ω)n

with their graphs. We have

Theorem 1.2. Let n > 0. Suppose that I is an analytic σ-ideal such that ZFC
proves that cov(I) ≥ hmn . Then ZFC proves that non(I) ≤ ℵn+1.

In case of n = 1 this improves the original duality theorem of [9], and the
obtained bound ℵ2 is optimal. Finally,

Theorem 1.3. Suppose that I is an analytic ideal such that ZFC proves that
cov(I) ≥ minn hmn . Then ZFC proves that non(I) ≤ ℵω2+1.

The remarks after Theorem 1.1 remain in force for 1.2 and 1.3.
The proofs of the above theorems integrate the effective descriptive theory,

determinacy theory, forcing, and pcf theory. This paper contains only the ar-
guments that are specific to the ideals Jn in question. The general theory of
definable proper forcing is encapsulated into several facts, stated without proof.
For the detailed development of this theory, the reader is referred to the mono-
graph [9].

The notation in the paper follows the set theoretic standard of [1]. Whenever
X is a set, x ∈ X its element and f : (2ω)X\{x} → 2ω is a function, by the graph
of the function f we mean the collection {�r ∈ (2ω)X : �r(x) = f(�r � X \ {x})}.
For a σ-ideal I on the reals, the cardinal cov(I) and non(I) denote the smallest
size of a family of sets in the ideal covering the whole real line, and the smallest
size of an I-positive set respectively. If B is an I-positive set, then I � B is the
ideal generated by I and the complement of B.

2. The forcings associated with hmn

The following is a basic simple observation.

Lemma 2.1. Fix a number n > 0.
1. The ideal Jn is σ-generated by closed sets.
2. The ideal Jn is nontrivial, i.e. 2ω /∈ Jn .

As proved in [7], the partition c2 is the minimal open partition of [2ω]2 into
two pieces such that the σ-ideal generated by the homogeneous sets is proper,
in the sense that if d is any other such a partition then there is a Borel injection
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i : 2ω → 2ω such that for all x �= y ∈ 2ω d(i(x), i(y)) = c2(x, y). Similar
minimality result holds true for the partitions cn .

Proof. The partitions cn are continuous. Therefore, if X ⊂ 2ω is a generating
set of the ideal Jn (the image c′′n [X]2 does not contain some number m ∈ n),
then even its closure is such a generating set of the ideal Jn (its image under cn
still does not contain that number m). The first item immediately follows.

For the second item we will just show that the ideal Jn is a subideal of the
meager ideal, for every number n > 0. Fix the number n and let X ⊂ 2ω be a
closed generating set of the ideal Jn so that the image c′′n [X]2 leaves out some
number m ∈ n. It will be enough to show that the set X is nowhere dense. And
indeed, if s ∈ 2<ω is a finite sequence representing some basic open set, prolong
it to obtain a sequence t ⊃ s whose length is equal to m modulo n. By the choice
of the set X, for one of the sequences t�0, t�1 the set X contains no infinite
binary sequences extending it. Thus the set X is nowhere dense as desired.

Now look at the partial order Pn of Jn -positive Borel sets ordered by inclusion.
By Lemma 1.2 and 1.3 of [10], this poset adds a single real which falls out of
all Jn -small sets and it is proper. In fact, this partial order has a natural
combinatorially simple dense subset. Call a tree T ⊂ 2<ω n-fat if it is nonempty
and for every node s ∈ T and every number m ∈ n there is a splitnode t ⊃ s in
the tree T whose length is equal to m modulo n.

Lemma 2.2. If T is an n-fat tree then [T ] /∈ Jn . Moreover, if A ⊂ 2ω is an
analytic set, then either it contains a subset of the form [T ] for some n-fat tree,
or else it belongs to the ideal Jn .

Proof. The regularity property of analytic sets can be proved in several ways;
we give a classical determinacy argument following the proof of the perfect set
theorem. Suppose that A ⊂ 2ω is a set. Consider the game Gn(A) where
players Adam and Eve alternate to play finite binary sequences s0, s1, . . . and
bits b0, b1, . . . respectively such that Adam’s sequences si form an extension
increasing chain such that s�

i bi ⊂ si+1 and the length of the sequence si is equal
to i modulo n. Adam wins if

⋃
i si ∈ A.

First, Adam has a winning strategy in the game Gn(A) if and only if the set
A contains all branches of some n-fat tree. If σ is a winning strategy for Adam
then the downward closure of the set of all sequences that can arise in a play
according to the strategy σ is an n-fat tree and all of its branches belong to the
set A. On the other hand, if [T ] ⊂ A is an n-fat tree then Adam can easily win
the game Gn(A) by playing only splitnodes in the tree T .

Second, Eve has a winning strategy if and only if the set A belongs to the
ideal Jn . If A ⊂ ⋃

i Xi is in the ideal Jn , covered by countably many sets Xi

such that i mod n /∈ c′′n [Xi], then Eve wins by answering Adam’s sequence si in
the i-th round with a bit bi such that no element of the set Xi begins with s�

i bi.
There is such a bit bi because no two elements of the set Xi can first differ at the
number i mod n which is the length of the sequence si. Of course, if Eve plays
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in this way she will win in the end, since the real
⋃

i si will fall out of all the
sets Xi and therefore out of the set A. On the other hand, if Eve has a winning
strategy σ then the set A is in the ideal Jn . For every position p consistent with
the strategy σ which ends after the round ip was completed with some finite
binary sequence tp, let Sp be the downward closure of the set {t ∈ 2<ω : for
no finite sequence s and no bit b it is the case that the play p�s�b observes
all the rules and the strategy σ and t�p s�b ⊂ t}. It is not difficult to verify
that the closed set [Sp] is in the ideal Jn since ip mod n /∈ c′′n [[Sp]]2. We also
have that A ⊂ ⋃

p[Sp]: if some infinite binary sequence x ∈ A fell out of all the
sets [Sp], then a play of the game observing the strategy σ could be constructed
such that the resulting sequence is just x and thus Adam won, contradicting the
assumption that σ was a winning strategy for Eve.

The previous two paragraphs together with the classical determinacy results
of [3] show that Borel sets have the regularity property, and that Σ1

n determinacy
implies that Σ1

n sets have the regularity property. A standard trick described
for example in [2] can be used to reduce the assumption to ∆1

n determinacy for
the regularity of Σ1

n sets, proving the Lemma.

Thus the partial order Pn is in forcing sense equivalent to the ordering of n-fat
trees under inclusion. It is now possible to give a detailed analysis of its forcing
properties, using standard combinatorial methods. However, the approach of
the current paper is completely different. We shall need only the following
consequence:

Corollary 2.3. The ideal Jn is homogeneous. The forcing Pn is homogeneous.

Here,

Definition 2.4. [9] A σ-ideal I on 2ω is called homogeneous if for every I-
positive Borel set B there is a function f : 2ω → B such that the preimages of
I-small sets are I-small.

Homogeneity of an ideal I is a convenient way of securing the equalities
cov(I) = cov(I � B) and non(I) = non(I � B) for an arbitrary positive Borel
set B. If X is a collection of I-small sets covering the set B then the collection
of their I-small preimages covers the whole 2ω; it has size ≤ |X|. And if Y ⊂ 2ω

is an I-positive set, then its f -image is an I-positive subset of the set B; it has
size ≤ |Y |. The key property of homogeneity is that it is frequently preserved
under the iterated Fubini powers of the ideal–[9].

Proof. Suppose that B ⊂ 2ω is a Jn -positive Borel set, and let i : 2ω → B be a
continuous injection respecting the partition cn ; such an injection exists by the
previous lemma. Clearly, the preimages of Jn -small sets must be Jn -small, and
therefore the ideal Jn is homogeneous. The function π defined by π(C) = π′′C
for every Jn -positive Borel set C ⊂ 2ω, is an isomorphism between the poset
Pn and Pn below the condition π(2ω) ⊂ B. Note that Borel injective images of
Borel sets are Borel.
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Corollary 2.5. The ideal Jn is Π1
1 on Σ1

1.

Proof. Every σ-ideal K such that the poset B(2ω) \ K ordered by inclusion is
bounding and contains a Σ1

1 collection of compact sets as a dense subset, is
Π1

1 on Σ1
1–see the appendix of [9]. A direct proof along the lines of [2] is also

possible.

Using Theorem 7.4 of [9] and the previous lemmas it is also possible to con-
clude that the countable support iteration of Pn forcings is the optimal way to
increase the invariant hmn . While this is an interesting fact in itself, it plays no
role in the proofs of the theorems from the introduction.

Corollary 2.6. (ZFC+LC) Suppose n > 0 and x is a tame invariant. If x <
hmn holds in some forcing extension, then it holds in the countable support
iterated Pn -extension.

As an aside, let us define the cardinal invariant hmω in the following way. Let
{an : n ∈ ω} be an arbitrary partition of ω into infinite sets, and for distinct
sequences x, y ∈ 2ω define cω(x, y) = n if the smallest number m such that
x(m) �= y(m) belongs to the set an . Let Jω be the σ-ideal generated by the
sets X ⊂ 2ω such that c′′ωX �= ω, and define hmω to be the covering number
of this ideal. The invariant hmω is independent of the initial choice of the
partition {an : n ∈ ω}: if {a′

n : n ∈ ω} is another such a partition, c′ω the
associated function and hm

′
ω the associated invariant, it is not difficult to find a

continuous injection i : 2ω → 2ω reducing the function cω to c′ω in the sense that
c′ω(i(x), i(y)) = cω(x, y) for every two distinct sequences x, y ∈ 2ω. This shows
that hmω ≤ hm

′
ω, and by symmetricity hmω = hm

′
ω. All the previous results all

apply to the case of the invariant hmω. However, it is impossible to generalize
the theorems stated in the introduction to the case of hmω, since the results of
the next section will not be applicable.

3. The iterated Fubini powers of the ideals Jn

The theorems stated in the introduction are proved using a careful analysis
of the countable support iteration of the forcings Pn . We will need to find an
upper bound, in terms of the ℵ function, of the uniformities of the iterated Fubini
powers of the ideals Jn . Recall:

Definition 3.1. [9] Suppose that I is a σ-ideal on the real line and α ∈ ω1 is
an ordinal. The α-th iterated Fubini power of the ideal I is the σ-ideal Iα on
R

α consisting of those sets A ⊂ R
α for which Adam has a winning strategy in

the two person game G(A) of length α. In β-th round of the game G(A) first
Adam plays a set in the ideal I and then Eve chooses a real not in the set. Eve
wins if the sequence of her answers belongs to the set A.

But in fact, in order to streamline the notation, we will not deal with the
ideals Jn directly. For every n > 0 let Kn be the σ-ideal on (2ω)n generated by
the graphs of Borel partial functions from (2ω)n\{k} to 2ω for all k ∈ n. There is
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a natural relationship between the ideals Kn and Jn : consider the bijection gn

between (2ω)n and 2ω defined by gn(x0, x1, . . . xn−1) = y where y(m) = xl(k)
where k is the integer part of m/n and l = m mod n. What is the preimage
of the ideal Jn? Let X ⊂ 2ω be a closed set such that c′′nX misses at least
one value, say k ∈ n. It is not difficult to see that the preimage of the set X
under the bijection g is a graph of a partial Borel function from (2ω)n\{k} to
2ω: if �x = �y are two n-tuples such that gn(�x), gn(�y) ∈ X and �x(m) = �y(m) for
all numbers m ∈ n different from k, then necessarily �x(k) = �y(k) as well, since
otherwise cn(gn(�x), gn(�y)) = k, contradicting the choice of the set X. Thus
clearly {g−1(X) : X ∈ Jn} ⊂ Kn , non(Jn) ≤ non(Kn) and for each countable
ordinal α, non(Jα

n) ≤ non(Kα
n). Thus it will be enough to find the uniformities

of the ideals Kα
n .

Lemma 3.2. Let n > 0 be a natural number and α be a countable ordinal. Then
non(Kα

n) ≤ ℵn+1.

Proof. The following is the key fact in the argument:

Fact 3.3 (Shelah). Let κ > ω1 be a regular cardinal. For every countable limit
ordinal α ∈ ω1 there is a sequence �C = 〈Cδ : δ ∈ κ〉 such that

1. Cδ ⊂ δ is a closed set of ordertype ≤ α

2. for every ordinal δ ∈ κ and every accumulation point γ ∈ Cδ, the set Cγ

is just Cδ ∩ γ

3. for every closed unbounded set E ⊂ κ there is an ordinal δ ∈ E such that
the set Cδ is cofinal in δ of ordertype α and it is a subset of E.

This Fact was announced in [5], page 136, remark 2.14A. The proof is in [4],
available from the Mathematics ArXiv. Now fix a number n > 0 and a countable
ordinal α ∈ ω1, without loss assuming that α is limit. For every number m ∈ n

use the Fact to choose a club guessing sequence �Cm = 〈Cm
δ : δ ∈ ωm+2〉 on

ωm+2. We may certainly assume that c ≥ ℵn+1 and so we can choose a sequence
�s = 〈sδ : δ ∈ ωn+1〉 of pairwise distinct reals–elements of 2ω. For every n-tuple
�δ ∈ ∏

m∈n ωm+2 such that the sets Cm
�δ(m)

have ordertype α, let 〈�δ(m)(β) : β ∈ α〉
enumerate the nonaccumulation points of these sets in the increasing order,
and let �r�δ ∈ (((2ω)n)α) be the α-sequence whose β-th element is the point
〈s�δ(m)(β) : m ∈ n〉 in the space (2ω)n. It will be enough to show that the set

{�r�δ : �δ ∈ ∏
m∈n ωm+2} is Jα

n -positive.
To prove this, for every Adam’s strategy σ in the transfinite game we need

to find an n-tuple �δ such that the sequence �r�δ is a legal counterplay against the
strategy σ. So fix the strategy σ and by downward induction on m ∈ n find

1. a continuous increasing ∈-tower �Mm = 〈Mm
δ : δ ∈ ωm+2〉 of elementary

submodels of a large enough structure, each of them of size ℵm+1 and such
that Mm

δ ∩ ωm+2 ∈ ωm+2. In particular, we require �Ck : k ∈ n + 1, �s, σ ∈
Mm

0 . Let Em = {δ ∈ ωm+2 : Mm
δ ∩ωm+2 = δ}; this is a closed unbounded

subset of ωm+2.
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2. an ordinal δm ∈ ωm+2 such that the set Cm
δm

⊂ δm is cofinal of ordertype
α and it is a subset of the club Em. For every two numbers k ∈ m ∈ n we
demand that δm ∈ Mk

0 .

Let �δ = 〈δm : m ∈ n〉. We claim that the sequence �r�δ is the desired legal
counterplay against the strategy σ. So look at an arbitrary round β ∈ α and
suppose that the sequence does constitute a legal counterplay up to this point.
What happens at round β?

The important observation is that for every integer k ∈ n, the play up to
this round is in the model Mk

�δ(k)(β)
since it is defined from objects that belong

to this model. In particular, one of the parameters in the definition is the set
Ck

�δ(k)
∩�δ(k)(β) which is in the model by the coherence requirement (2) in Fact 3.3.

The strategy σ now commands Adam to play partial Borel functions {fmk :
k ∈ n, m ∈ ω} such that fmk is a function from (2ω)n\{k} to 2ω. We must show
that the point �r�δ(β) is not contained in the graph of any of these functions. So
choose integers m ∈ ω and k ∈ n. Consider the set Y = {fmk(�u,�v) : �u ∈ (2ω)k

is a sequence all of whose entries are on the �s-sequence, indexed by ordinals
smaller than ωk+1 and �v ∈ (2ω)n\(k+1) is a sequence all of whose entries are
on the �s-sequence, indexed by ordinals in the set

⋃
k+2∈l∈n+2 Cl

�δ(l)
}. This set

is of size < ωk+2 and it belongs to the model Mk
�δ(k)(β)

. Thus Y ⊂ Mk
�δ(k)(β)

, in
particular s�δ(k)(β) /∈ Y , which by the definition of the set Y means that the point
�r�δ(β) = 〈s�δ(l)(β) : l ∈ n〉 is not on the graph of the function fmk as desired. The
lemma follows.

Corollary 3.4. Let n > 0 be a natural number and let α be a countable ordinal.
non(Jα

n) ≤ ℵn+1.

In order to analyse the countable support iteration in which the forcings Pn

alternate, we need to change the approach a little bit:

Definition 3.5. Suppose that �I is an ω-sequence of σ-ideals on the reals and α

is a countable ordinal. The ideal �Iα on R
ω·α consists of those sets A ⊂ R

ω·α for
which Adam has a winning strategy in the transfinite two person game G(A) of
length ω · α. In the ω · β + n-th round of this game, Adam plays a set in the
ideal �I(n) and Eve responds with a real which is not in this set. Eve wins if the
sequence of her answers belongs to the set A.

Let �K be the ω-sequence of ideals given by �K(n) = Kn+1.

Lemma 3.6. Let α be a countable ordinal. Then non(�Kα) ≤ ℵω2+1.

Proof. Let α be an arbitrary countable ordinal. First we need to fix several
objects whose existence is provable in ZFC.

1. An increasing sequence �κ = 〈κδ : δ ∈ ω2〉 of regular cardinals below ℵω2

such that the true cofinality of their product modulo the bounded ideal on
ω2 is ωω2+1, from [6], Chapter II, Theorem 1.5. This means that there is
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a sequence �h = 〈hγ : γ ∈ ωω2+1〉 of functions in
∏

δ κδ which is increasing
and cofinal in the modulo bounded ordering. Fix such a sequence.

2. A club guessing sequence �C = 〈Cγ : γ ∈ ωω2+1〉 from Fact 3.3. The
sequence will guess closed unbounded subsets of ωω2+1 by segments of
length ω · ω · α. For every ordinal γ ∈ ωω2+1 let C(γ, β) denote the β-th
nonaccumulation point of the set Cγ .

3. A club guessing sequence �D = 〈Dδ : δ ∈ ω2〉 from Fact 3.3. The sequence
will guess closed unbounded subsets of ω2 by segments of length ω · ω · α
again, with similar notational convention for as in the previous item, using
the symbol D(δ, β) for the β-th nonaccumulation point of the set Dδ.

4. Without harm we may assume that c > ℵω2 . So let us fix a sequence
�s = 〈sγ : γ ∈ ωω2+1〉 of pairwise distinct reals (elements of 2ω).

Now suppose that γ ∈ ωω2+1 and δ ∈ ω2 are ordinals such that the ordertypes
of the sets Cγ and Dδ are both ω ·ω ·α. Define a ω ·α sequence �rγδ by setting its
ω · β + n-th element to be the point in the space (2ω)n+1 whose k-th coordinate
for every number k ∈ n + 1 is the real number on the s sequence indexed by the
ordinal hC(γ,ω·(ω·β+n)+k)(D(δ, ω · (ω · β + n) + n − k)). We will show that the
collection {�rγδ : γ ∈ ωω2+1, δ ∈ ω2} is �Kα-positive, proving the lemma. This
means that for every Adam’s strategy σ in the transfinite game we must find
ordinals γ ∈ ωω2+1 and δ ∈ ω2 such that the sequence �rγδ is a legal counterplay
against the strategy.

Fix a continuous increasing ∈-tower 〈Mγ : γ ∈ ωω2+1〉 of elementary submod-
els of large enough structure, each of them of size ℵω2 and such that Mγ∩ωω2+1 ∈
ωω2+1. In particular, �κ,�h, �C, �D, σ ∈ M0. Let E = {γ ∈ ωω2+1 : Mγ ∩ ωω2+1 ∈
ωω2+1}. Since this is a closed unbounded subset of ωω2+1, there must be an
ordinal γ such that the set Cγ ⊂ γ is cofinal of ordertype ω · ω · α and Cγ ⊂ E.

Also, fix a continuous increasing ∈-tower 〈Nδ : δ ∈ ω2〉 of elementary submod-
els of large enough structure, each of them of size ℵ1 and such that Nδ∩ω2 ∈ ω2.
In particular, �κ,�h, �C, �D, E, σ, γ ∈ N0. Let F = {δ ∈ ω2 : Nδ ∩ ω2 = δ}. Since
this is a closed unbounded set, there must be an ordinal δ ∈ ω2 such that the
set Dδ ⊂ δ is cofinal of ordertype ω · ω · α and Dδ ⊂ F .

We claim that the sequence �rγδ is a legal counterplay against the strategy
σ. Well, consider the situation at round ω · β + n for some ordinal β ∈ α
and number n ∈ ω. Suppose that up to this point, the sequence constituted
a legal partial play; we want to see that it will provide a legal answer even in
this round. The strategy σ commands Adam to play partial Borel functions
{fmk : k ∈ n + 1, m ∈ ω} such that for each k ∈ n + 1 and each m ∈ ω
the function maps (2ω)n+1\{k} to (2ω). We must show that the n + 1-tuple
�t = �rγδ(ω · β + n) ∈ (2ω)n+1 is not on the graph of any of these functions, that
is �t(k) �= fmk(�t � (n + 1 \ {k})).

To this end, fix integers k ∈ n + 1 and m ∈ ω. Define a function g ∈ ∏
η κη

by letting g(η) to be the supremum of the set {ξ ∈ κη : sξ = fmk(�u,�v), where
�u ∈ (2ω)k is a sequence all of whose entries are on the �s-sequence, and are
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indexed by ordinals < sup{κη′ : η′ ∈ η}, and �v ∈ (2ω)(n+1)\(k+1) is a sequence
all of whose entries are on the �s-sequence and are indexed in the ordinals in the
range of the functions {hγ′ : γ′ ∈ Cγ ∩C(γ, ω · (ω ·β +n)+k)}}. It is immediate
that this set has size < κη and so the function g is well-defined. There are two
important points.

1. g ∈ MC(γ,ω·(ω·β+n)+k). This so happens because the function is defined
from objects contained in the model, in particular from the set Cγ∩γ(ω·(ω·
β+n)+k) which belongs to the model by the coherence of the C-sequence.

2. g ∈ ND(δ,ω·(ω·β+n)+k) by the same reason as in the previous item, this time
using the coherence of the D-sequence.

By the first point, the function g ∈ ∏
δ κδ is dominated by the function

hC(γ,ω·(ω·β+n)+k) from some ordinal on. By the second point, this ordinal must
be smaller than D(δ, ω · (ω · β + n) + k). By the definition of the function g and
the sequence �t = �rγδ(ω · β + n) then, it must be the case that �t(k) �= fmk(�t �
(n + 1 \ {k})) as desired. The lemma follows.

So we have the following. Let �J be the ω-sequence of ideals given by �J(n) =
Jn+1.

Corollary 3.7. Let α be a countable ordinal. non(�Jα) ≤ ℵω2 + 1.

Let Kω be the σ-ideal on (2ω)ω σ-generated by the graphs of partial Borel
functions from (2ω)ω\{n} to 2ω, for all numbers n ∈ ω. The following lemma is
an observation complementary to the previous results in this section. It shows
that the ideal Kω is different from the ideals Kn in that its uniformity can be
arbitrarily large:

Lemma 3.8. p ≤ non(Kω).

Proof. Suppose that A ⊂ (2ω)ω is a set of size < p. We must produce partial
Borel functions {fn : n ∈ ω} such that fn : (2ω)ω\{n} → 2ω and every point in
the set A is on the graph of one of them. First, use the Axiom of Choice to find
a set B ⊂ A so that

1. for all sequences �x, �y ∈ B if �x(m) = �y(m) for all but finitely many integers
m then �x = �y

2. B ⊂ A is a maximal set with the previous property.
For each number n let gn be a partial function from (2ω)ω\{n} to 2ω defined by

gn(�x) = z if the sequence �y0 = �x∪{〈n, z〉} is in the set A and for some sequence
�y1 in the set B, �y0(m) = �y1(m) for all numbers m ≥ n. By the property (1)
of the set B, this formula does correctly define the functions gn , and by the
property (2), every point in the set A is on the graph of all but finitely many of
these functions. Now there is a general fact, proved for example in [9] Appendix
B, that every partial function of size < p between Polish spaces is a subset of a
Borel function. Thus for every number n there is a Borel function fn such that
gn ⊂ fn ; clearly every point in the set A is on the graph of all but finitely many
of the functions fn as desired.
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To prove the abovementioned general fact, consider for simplicity a partial
function g : 2ω → 2ω. By a standard almost disjoint coding argument find a
σ-centered forcing adding subsets ȧi : i ∈ ω of 2<ω such that x∩ ȧi is finite if and
only g(x)(i) = 0 for every infinite binary sequence x in the ground model, viewed
as the set of all its initial segments and so a subset of 2<ω. By the small size
of the function g and Bell’s theorem there will be sets ai : i ∈ ω already in the
ground model such that the Borel function f : 2ω → 2ω defined by f(x)(i) = 0
iff x ∩ ai is finite, extends the function g as desired.

4. The duality theorems

The proof of Theorem 1.2 follows the argument for the duality theorem in
the Applications section of [9]. Suppose that n > 0 is a natural number and I
is an analytic ideal on the reals such that ZFC proves cov(I) ≥ hmn . We want
to argue that non(I) ≤ ℵn+1. For this, it is necessary to analyse the countable
support iteration of the Pn forcing. The following Facts use the terminology and
arguments from [9]. Recall:

Definition 4.1. [9] Suppose K is a σ-ideal on the reals and α ∈ ω1 is an ordinal.
A set B ⊂ R

α is K-perfect if the tree T ⊂ R
≤α of all initial segments of

the sequences in the set B has the following two properties. It is K-positively
branching, meaning that for every node t ∈ T the set {r ∈ R : t�r ∈ T} is not in
the ideal K. And it is σ-closed, meaning that for every sequence t0 ⊂ t1 ⊂ . . .
of sequences in the tree T we have

⋃
n∈ω tn ∈ T .

Fact 4.2. For every countable ordinal α ∈ ω1 and every analytic set A ⊂ (2ω)α,
either the set A contains a Borel Jn -perfect subset, or it belongs to the ideal Jα

n .
Under the assumption of the existence of ω many Woodin cardinals, this extends
to all projective sets.

This is an immediate consequence of Lemmas 2.1 and 2.2, Corollary 2.5 and
the work of [9].

Fact 4.3. For every countable ordinal α ∈ ω1 the ideal Jα
n is homogeneous.

This happens because the ideal Jn is homogeneous. It means in particular
that for every Borel Jn -perfect set B ⊂ (2ω)α the invariant non(Jα

n) is equal to
non(Jα

n � B), the smallest size of a Jα
n -positive subset of B.

Fact 4.4. There is a countable ordinal α ∈ ω1, a Borel Jn -perfect subset B ⊂
(2ω)α and a Borel function f : B → R such that f-preimages of I-small sets are
Jα
n -small.

This is true because after the countable support iteration of the Pn -forcing of
length c+, it is still the case that cov(I) ≥ hmn and so there must be a name for
a real which falls out of all ground model coded I-small sets. This name must
be represented by a Borel set and a function as in the above Fact–[9].

Now fix α, B and f from the previous Fact. By Fact 2.3 and Corollary 3.4,
there is a Jα

n -positive subset A ⊂ B of size ≤ ℵn+1. By the properties of the
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function f , the set f ′′A must be an I-positive set of size ≤ ℵn+1, and Theorem 1.2
follows.

The argument for Theorem 1.3 is similar, using the analysis of the countable
support iteration in which the forcings Pn alternate and Corollary 3.7. Theo-
rem 1.1 is just a special case of Theorem 1.2.
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