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Abstract

Starting from a model of ZFC with a measurable cardinal x, we construct
a generic extension in which « is real-valued measurable, 2% > k and club
principle for x holds. This gives a positive answer to a question of D.H.
Fremlin asking the existence of models of real-valued measurability with
some combinatorial behavior different from that of Solovay’s model of real-
valued measurablility. Some other models related to this question will be

given in the forthcomming [4].

1 Introduction

In his celebrated paper [9], Solovay proved that, if x is a measurable cardinal,
then, by forcing with measure algebra By of Maharam type A > & for appropriate
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), we obtain a model in which x is real-valued measurable. Recall that « is said
to be real-valued measurable if there is a x additive atomless measure u : 'P(n)' -
[0,1]. Existence of such a cardinal is equivalent to the extendability of Lebesque
measure to a o-additive measure on the whole P(R) — which, of course, cannot be
translation invariant under the axiom of choice due to Vitali’s theorem.

Some properties of Solovay’s model follow simply from the fact that the model is
obtained by adding random reals; for example we have the equations cov(null) = A
and non(null) = X, in the model while b and d remain as in the ground model.

On the other hand, it is also known that the existence of a real-valued measur-

able cardinal alone implies a lot of combinatorial consequences. For example:

Theorem 1.1 Suppose that k < 28 is real-valued measurable. Then:

(1) (see [2]) non(null) = Ry, cov(null) > k, b # &, d # k.

(2) k has the tree property. .

(3) (Kunen) If k = 2% then . holds (actually $(S) holds for a lot of station-
ary S C k (Ketonen)). W

For more complete list of such implications see e.g. [2].

Against this back-ground, D.H. Fremlin asked if there is a model of real-valued
measurability which is intrinsically different from Solovay’s models. As one of the
possible answers to this question, we present here a new model in which we have a
real-valued measurable « strictly less than the continuum while club principle for
£ holds.

2 Preliminaries

For a set u let B(,) = Borel(*2), the set of all Borel sets in the generalized Cantor
discontinuum 2. By, is also seen as the Boolean algebra with usual set operations.
In particular, for a € B,y we denote with —a the complement of a,ie. —a ="2\a.
Strictly speaking —a depends on u and hence this notation is rather ambiguous.
This ie because we often identify a with the corresponding element of Borel(*2)
for some u' D u (see below): in this case —a should denote the complement of the
Borel subset of *'2 which corresponds to a. Nevertheless it should be always clear
from the context what is meant with this notation.

For r € R, r > 0, a mapping p : By, — [0, 7] is said to be a [0, r|-measure if

(a) w(@) =0; p(*2)=r;
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or any pairwise disjoint s; € By,), ¢ < w,
b f irwise disioint B, i

w(U ) = 3 u(s:)-

i<w i<w
Kolmogoroff’s extension theorem can be formulated as follows:

Theorem 2.1 (Kolmogoroff) Suppose that (S;, A;) is a measurable space fori € I
and pg is a [0,1]-measure over the product spapce of (Si, A;), i € E (seen as
the subspace of the product space ([licr Si, ®ic1Ai) by the canonical embedding) for
each E € [I|<® such that pg, E € [I|<® are pairwise compatible (as mappings).
Suppose that for each i € I, there is C; C A; such that

(i) ifcn €C; for n € w and NyepCn = O, then there is ny € w such that
Nneng ¢n = 0, and
(ii) pgy(a) = sup{ugy(c) : c€Ci, c C a} for alla € A;.

Then there is the unique [0,1]-measure over ([Tic; Si, ®ic1Ai) extending all ug,
E € [I|<M.

In our context we may apply the theorem in the following form:

Corollary 2.2 Sﬁppose that U is a family of sets closed under union of finitely
many members and p, is a [0,1]-measure on By for u € U. If p,, u € U are
compatible to each other, then, letting u* = JU, there is the unique [0, 1]-measure
p* : By — [0,1] estending all p,, u € U.

Proof Let I = u*. For E € [I|<*, let u € U be such that E C u and pug =
pu! B(gy- Applying Kolmogoroff’s theorem to ug, E € [I|<*, we obtain a [0, 1]-
measure 4* on B(y+) & ®;crB({;}) which is an extension of each u,, u € U because
of the uniqueness of p*[ By). [ (corottary 2.2)

For a [0,1]-measure p on By, let null(x) = {a € By : u(a) = 0}. For
a € By \ null(p), p||a is the [0, 1)-measure on By, defined by

p(bNa)
p(a)

plla (b) =

for b € By).
The following is easily seen:

Lemma 2.3 For a [0, 1]-measure u on By, and a,a’' € B, \ null(p), plla = p|ld’
if and only if a A o' € null(p).
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For u;, ug with u; Nuz = @ and [0, 1]-measures p; : B,) — [0,1] and ps :
Blug) = [0,1], let p1 ® pia : Bu,uuy) — [0, 1] denote the product measure of 4 and
ta. 1 ® pg is characterized by:

i ® pa(ar Nag) = pi(ar) - p2(a2)
for all a; € B(y,) and a3 € Bu,)-

Lemma 2.4 (1) For a [0,1)-measure p on B and a,b € B, \ null(p) with
bCa,
plb = (ulla)llb.
(2) Suppose that uy Nug = 0, p1 : By — [0,1] and p : B,y — [0,1] are
[0, 1]-measures, a1 € B,y \ null(p1) and az € By,) \ null(usz). Then

(1 ® p2)ll(@1 N@r) = (pr]|a1) ® (wzllaz).
Proof (1): Let ¢ € B(,). Then

(i) 1B)(e) = W
_#enbna)  ple)
pa)  wanbd)
_ u(enb) pla)

pla)  p(d)
_ mwlenb) _ .
=) (1l15)(c)

(2): It is enough to show that the both sides of the equation have the same
value for elements of B(y,uu,) of the form ¢; Ne; for some ¢; € By,) and ¢; € Byy,).
This can be shown as follows:

(llfl ® [LQ)(Cl NecaNap N 0,2)
(11 ® p2)(ar N ay)
_ pa(er Nay) - pa(ce Nag)
pi(ar) - pa(as)
= (mlla1)(c1) - (p2llaz)(c2)
= ((ula1) ® (p2llaz))(c1 N e2)

(11 ® p2)ll(a1 Nap))(c1 Ner) =

D (Lemma 2.4)

For u C v, By, can be embedded canonically into Byy) by identifying each
a € By, with the element of By, with the same “definition”. In the following
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we always regard B, as the subalgebra of B,y by this canonical embedding. In
particular, e.g. if a € B(y) and b € B(y), then we mean with a N b the intersection
of b with the element of B(,) which corresponds to a by this embedding.

m, denotes the Borel measure on By, i.e. the [0,1]-measure which makes

[{{z,0)}], € u independent events with m,([{(z,0)}]) = —;— where [t], or [t]p,,,
for t € Fn(u,2) denotes the basic clopen set: {f € 2 : t C f}. Let B, =
By /null(m,). null(m,) is also denoted simply by null.

Concerning forcing, we use “the reverse Jerusalem notation”. Le., in a p.o.-set
P, a condition p € P is stronger than another condition ¢ € P if p <p ¢q. P-names
are denoted by ‘i( , 1/, ey | g,..., etc. We assume that P-names are constructed
as in [8]. i

For ground model set X, X denotes its standard P-name. V denotes the ground
model and G the standard name of V' generic set over the p.o.-set.

3 Free amalgamation of measures

The following theorems are used in later sections.

Theorem 3.1 (D. Fremlin; an instance of 456N in [3]) Suppose that ug = u; Nuy,
and py : Bu,) = [0,1], p2 : Bu,) = [0,1] are [0,1]-measures such that p;| By =
2l B,)- Then there is a [0, 1]-measure fi: B, uu,) — [0,1] extending both y, and
po such that fi(a; N az) = py(ay) - pa(az) for any a; € B,) and a3 € B,) which
are independent events over B, with respect to y; and py respectively.

Proof Let R be the subslgebra of By, u,,) consisting of finite union of elements
of the form:

(¥*) agNa;Nay where ag € Bl(u), a1 € Bu;\uo) and ay € By,\u)-

For c € R, let A, be the set of the partitions of ¢ consisting of elements of the form
(*). We consider A, as a partial ordering with the ordering:

P <P <& Pisarefinement of P’

for P, P' € A..
Now, forc€e R and P € A,, let
. apNay)-papNasg) .
) me=sp { y  ale0w)mne),

ao-a1-a2€P" 1 (ag)#0 #1(ao)
PeA,P< P}.
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Finally, for c € R, let
(1) p*(c) = the inverse limit of up(c), P € A..

We can show that p* is o-additive measure on R. Hence, by Hopf’s Extension
Theorem, u* can be extended to a [0,1]-measure ji : Bu,uu,) — [0, 1] with the
desired property. [ (Theorem 3.1)

We call i as constructed in the proof of Theorem 3.1, the free amalgamation of uy
and py over ug and denote it with p ®uy, pe- Note that, if ug = 0, then p ®u, 42
is just the usual product measure of y and po.

Theorem 3.1 can be extended to the following amalgamation theorem for in-

finitely may measures.

Theorem 3.2 Suppose that S is a A-system with the root u* and, for eachu € S,
let py, : By — [0,1] be a [0,1]-measure such that py| By = puw | By for any
u, u' € 8. Then there is a [0, 1]-measure i : Bys) = [0,1] extending each of pu,

u € S such that for any ug, ..., Un—1 € S and ap € By, -+, An-1 € B, ), f
ao, . . ., an_1 are independent over B, ..., Bn-1) with respect t0 flug, - -5 Pun_s
respectively, then fi(ag N -+ N an-1) = pue(a0) * *+- “ g,y (@n1)-

Proof The construction of measures in the proof of Theorem 3.1 can be extended
to amalgamation of n measures for all n > 2 (see (f») and (1n) below). By this
construction, we obtain a system {uy : U € [8]<*} of [0,1]-measures where
po * Byo = [0, 1] such that

(1) py, U € [S]<M are pairwise compatible;
(2) each py extends p, for all u € U;
(

3) forany ug,..., un—1 € Sand ap € Buo)s - - -5 On-1 € Blun_1)» if ag, ..., Gpn-1
are independent over Bg), ..., B(n-1) with respect t0 fly,,- - -, Hu._, respectively,
then fig(ao M- N @n_1) = Huo(0) * =+ * Pup_1(@n-1) for U € [S]<Me with u, ...,
u,—1 € U.

Applying Corollary 2.2 to these uy’s, we obtain a [0, 1]-measure as desired.

D (Theorem 3.2)

We shall call the [0, 1]-measure f constructecd as in the proof of Theorem 3.2 the
free amalgamation of y,, u € S over u*. The free amalgamation [ is characterized
by the following equations which correspond (1) and (}):

Let R’ be the subset of By js) consisting of finite unions of elements of the form
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(*¥) a.Nay,N---Na,,_, for n € w where ug, ..., up—; € U and a, € By,
Quo € B(uo\u')’ ceey Qu, o € B(un_l\u*)-
For c € R, let A, be the set of partitions of c consisting of elements of the form

(*+). P < P' for P, P' € A, let P' < P be defined just as before.
For ¢c € R’ of the form (x*) and P € A,, let

* Puo(a, Nag) - «- - Pu,_ (@, Nay_y) .
c) =su :
(ta) pp(c) p{ E 1 (al)
a,Naj, N--Na, _ €P,
r1(al)#0
P'e Ap, P'< P}.
Then
in p*(c) = the inverse limit of up(c), P € A..
P

4 The model V®?

For cardinals R; < k < A, let Q = Q) » be the p.o.-set defined as follows:
(A) pe@Q & p= (uP,uP) where:

(a) uP € [A]<~.

(b) |uné*| < 6 for all strongly inaccessible 6.

(c) uP is a [0,1]-measure on Biys).
(B) Forp,qeQ,q<qgp & thereisanr € Q such that g <epr T <pr p Where
<pr and <gp, are defined as follows where “pr” and “apr” stand for “pure” and
“anti-pure” respectively:
(C) Forp,q€Q,

(a) ¢<prp & v C uland yf extends u?. For y = supv?, P B((usny)our)
is the free product of 4? and p9 B(ue\ur)ny)-

(b) ¢ <eprp» & u” =uland u? = pP||a for some a € By \ null(u?).

We shall call a as in (C)(b) a witness of ¢ <,pr p. Note that the witness of
g <apr P is unique upto elements of null(u?) by Lemma 2.3. We shall also say that
a witnesses g <, p and denote ¢ = p||a.
~ ForpeQ,let B(y) = Bu)/null(u?). For a € Bys), [a], (or a/null(u?)) denotes
the equivalence class of a modulo null(u?).

The following lemma shows that the relation <q is a partial ordering on Q:
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Lemma 4.1 (1) <, and <gp, are transitive relations.

(2) Forp, g, 7 € Q, if 1 <pr g Zopr P, then there is qd € Q such that r <gpr
q, Spr p.

(3) <gq is a partial ordering on Q.

Proof (1) is clear by definition of <,, and <gp. For (2), suppose that r <pr ¢ <apr
p. Let a € Bys) \ null(pP?) witness q¢ <qpr p. Without loss of generality, we may
assume that —a € By) \ null(y?) as well. Put u? = u’. Let p* : Bl (—a) =
[0, u?(—a)] be any [0, uP(—a)]-measure extending pP| (B[ (—a)) freely and let
p? : Bi,ey = [0,1] be defined by

u? (b) = p(bNa) - pP(a) + p*(b\ a)
for b € B(y). Then, letting ¢ = (u?,u?), we have ¢ <, p and r <gpr ¢ by
r=¢|la.
(3): It is enough to show the transitivity of <g. Suppose that p, ¢, r € P are
such that p <g g <g r. By definition of <q, there are s, s’ € @ such that
P Zapr S <pr ¢ Zapr s’ <pr T
By (2) we can find an s” € @ such that

n i
P <apr $ Zapr § SprS Spr T

It follows by (1) that p <,pr 8" <pr 7. Thus p <g 7 as desired. [ (Lemma 4.1)

For g € @, let
APqu{peQ :pSaprq}'

Lemma 4.2 Suppose that p, ¢ € Q with p <pr ¢ and a € By \ null(p?). Then
plla <pr glla.

Proof Let v = supu? and u = (uP \ w9) N~. It is enough to show that
(ql|a)] Biusryuur) is the free product of pla and (g||a)] Buny-
Suppose that b; € B,y and by € Bun,). Then by Lemma 2.4,(2) we have:

(glla) (b1 N b2) = (g Biusrmuun)llalby N bs)
= (p ® (q] Burw))lla(br N bs)
= ((plla) ® ((a] Burm))lla))(br N )
= plla(b1) - (a] Burm)lla(ba).

D (Lemma 4.2)
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Lemma 4.3 (1) Forq € Q, (AP2,<,,) is equivalent to the forcing by the mea-
sure algebra of Maharam type < |u?|.

(2) (APqQ, Sapr) <(Q, SQ) [q.
Proof (1): The mapping
® : AP2 — Bg); glla— [a],

is well-defined and a dense embedding of AP into By

(2): First we show that, p, p' € APqQ are compatible in (Q, <q) if and only if
they are compatible in (APZ, <,).

If p, p € AP? are compatible in (APR, <qpr) then clearly they are also com-
patible in (Q, <g).

Conversely, suppose that p, p’ € APqQ are compatible in (Q, <g) and let r* € Q
be such that r* <q p, p’. Let a and o’ be the witnesses of p <,,r q and p’ <eopr 4
respectively. Let r, r' € Q be such that r* <5 7 <, p and r* <,,, 1/ <pr P,
and let b, ¥’ € B,.» be witnesses of r* <, 7 and r* <apr 7' respectively. Then
p(anb) = p(a' N¥) = 1. It follows that a Na’ € By \ null(u9). So letting
rt = g||(aNa’), we have r' € APR and rt <, p, p'. Thus p and p' are compatible
in (AP2, <upr).

Now suppose that I C APqQ is predense in (APqQ y Zapr)- It is enough to show
that I is predense below ¢ in (Q, <g).

So suppose r <g q. We show that r is|compatible with an element of I. Let
s € Q be such that 7 <gpr 5 <p, g and let b, € By be such that r = s||b. Since I

is predense below g, we have \

By
> “lalg : glla€ I}= 18-

Hence there is a € Byys) such that g|la € I and ¢ = aNb € Bye) \ null(y?®). Now
slle <pr glla by Lemma 4.2. Hence, by Lemma 2.4,(1), s|lc = (s]|a)|lc <¢ q]la-
Similarly, s||c = (s||a)||c = 7||c <apr T [ (Lemma 4.3)

Lemma 4.4 Suppose that p, q, r € Q, ¢ <pr p and v <,pr p. Then q and r are
compatible in Q. Furthermore, there is an s € Q such that s <gp q and s <prT.

Proof Let a € Byr) be a witness of r <, p. Then g|la <, p|la = r by Lemma
4.2 and g||la <,pr ¢. Thus s = g||a is as desired. 1 (Lemma 4.0)

Lemma 4.5 Suppose that p, ¢ € Q and up = u? N 9. If pP| Bu) = 1] By, then
p and q are compatible.
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Proof Let u™ = u? Uu? and p" = pP ®,, 9. Then r <, p, q. [ (Lemma 4.5)

For p, g € Q with pP| By = 4] By, for ug = u? Nud, r as in the proof of Lemma
4.5 is denoted by p ® gq.
For p € Q and X C X let pf X = (u? N X, pP| B(urnx))- p[X € @ and
p] X <prpforany pe Q and X C A. For X C A, let

RQIX={peQ: v CX}

Clearly Q | X = {p] X : p€ Q}.

Lemma 4.6 Suppose that a < A.
(1) Forpe @ andq€ Qla, if g <qg p| «a, then p and q are compatible.

(2) If a is a strong limit or a successor of a strong limit then Q | a < Q.

Proof (1): Let ¢’ € Q | a be such that ¢ <gpr ¢' <pr p[ . Let a € B,y be such
that ¢ = ¢'||a, u" = u?U u” and let u" be the free amalgamation of p? and pP over
u? N« (see Theorem 3.1). Let r = (u”, u") and r’' = r||a. Then r’ <, ¢ by Lemma
4.2 and ' <gpr 7 <pr P

(2): We first show that if ¢, ¢ € @ | o are compatible in @ then they are
compatible in Q | a. So suppose that 7 € Q is such that r <g ¢, ¢’. Let s,
s' € Q be such that 7 <gpr s <pr g and 7 <gpr 8" <pr ¢’ with @ € Bys \ null(p®)
and o' € B, \ null(p*) witnessing 7 <gpr s and 1 <gp ' respectively. Let
w C u” be such that |u| = |u?| 4+ |u? | + Rp, W Uu? C u and a, a’ € By).
Then we have 7} u <gpr $] u <pr g and 7] u <gpr §'[ u <pr ¢'. By (A)(b) we have
|u| = |u?| + |u% | + Rg < . Hence we can find @ C o such that u? Uu? C 1,
lu\ (W Uu?)| =|a\ (wUu?)|, @is an end-extension of u? Uu? and so that @
satisfy the requirement (A)(b). Let f : u — @ be a bijection with f] (uf Uu?) =
idyque - f induces an isomorphism of r[ u, s u and r| u to some 7, 3, § such that
Ww=u=u=a,rF <apr § <pr g and T <gpr 5 <pr ¢'. This shows that ¢ and ¢’
are compatible in @ | a.

Now suppose that I C @ | « is predense in Q[ a. We show that I is also
predense in Q. Let p € @ be arbitrary. By the assumption there is ¢ € I such that
p| a and q are compatible. Let r € Q | a be such that r <¢g p[ a, g. By (1), r and
p are compatible. Hence ¢ and p are compatible. [ Cemma 1.6)

Lemma 4.7 Suppose that pll-q“7 € V” for some p € Q and Q-name 7. Then
there is a ¢ € Q, g <pr p such that I = {r € APqQ : 7 decides T} is predense below
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Proof Let g;, 741 € Q, i < w; be defined inductively such that

0) go=p;

(1) (g : i <w) is a decreasing sequence with respect to <;

(2) For limit v < w, let ¢, = (u%, u%") where u% = U, u% and p% is the
measure on Biye) generated from U, u%;

(3) Forall i <wy, ripg <apr Qi+1, Ti+1 decides T and r;,, is incompatible with
all 7541, j < i provided that there are such ¢;;,, r;;; otherwise we let Giv1 = ¢;
and 74 = (0, 0).

Note that (2) is possible by Corollary 2.2.
Claim 4.7.1 There is a 6 < w; such that 754, = (0, 0).

- Otherwise Ti+1, ¢ < wy are pairwise incompatible. For each i < w; let a;;; be
the witness of r4; <epr giy1. Let u* = U, u¥ and p* = Ui<w, #%. Then p* is
a [0, 1]-measure on B(,-) and a;11/null(y*), i < w; are pairwise disjoint non-zero
elements of By,.)/null(y*). This is a contradiction to the c.c.c. of By /null(p*).

'—I (Claim 4.7.1)

Now, let 6* < w; be minimal with 75, = (0, 0) and let ¢ = g5». We show that
this q is as required. By Lemma 4.4, for each i < 6*, we can find ri1 € Q such
that 7, <epr g and rf; <p riyy. Let I' = {r}, : i < &*}. By (3), every elements
of I' decides 7.

‘Hence it is enough to show that I’ is predense below gq.

Suppose not. Then by Lemma 4.3,(2), there is 7' <,, ¢ such that r is incom-
patible with every r,,. It follows that 7’ is also incompatible with every rit1. Let
r <g r’ be such that T and q' € Q be such that r <., ¢' <,r ¢. Then we could
have choosen ¢' and r at §* + 1’st stage of construction as gs-,; and rs+4+1. This is
a contradiction to 4.4, = (0, ). [ emma 4.7)

Proposition 4.8 Q preserves all cardinals < k.
Proof Suppose not. Then there are ¢ € Q, § < k and a Q-name :f such that
9o “I : 6% —) 4 is a one to one mapping”
where 6% denotes the successor cardinal of § in the ground model. Let
v =sup(d N {0, 0 : 0 is strongly inaccessible}).

Let ¢;, s; € Q, a; € B(yw:) for ¢ < 0% be such that:
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(
(1) (gl (A\\v) : i <d%) is a decreasing sequence with respect to <p;
(2)  si <apr ;i and s; decides f(i);
(3) a; witnesses $; <qpr Gi-
Now since |@ | v | < 6, there are X € [61]"", p€ Q | v and n € w\ {0} such that

(4) ¢lv=pforallie€ X;

(5) p¥(a;) 2 ;ll— for alli € X.

Let f : X — & be defined by f(i) = j for ¢ € X and j € ¢ such that
silFa“f() = j”. Then by (4) and (5), f is < n to 1. But this is impossible
Since | X I > 6. D (Proposition 4.8)

Lemma 4.9 Suppose that k is strongly incaccessible. Then Q has the strong K-

C.C.

Proof Suppose that ¢; € @, for i < k* By A-system lemma, there isan S € [k*]="
such that u%, i € S form a A-system, say with root u*. Since | P [0,1]] < &,
there is S’ € [S]*" and u* such that p%| By = p* for all i € S

For i, # € ', let & = u% Uu% and [i be the [0, 1]-measure on B(g) obtained as
the free product of u% and u% over u*. Then, for § = (i, i), we have § <, ¢;, g-

D (Lemma 4.9)

5 Real-valued measurability in V¢

We show that the p.o.-set Q introduced in the last section forces real-valued mea-
surability of x provided that x in V' has enough large cardinal property.
Let us begin with introducing the following notation: Suppose that p € @ and

¢ is a formula in the forcing language over Q. Let

IP,lP = {[a]p rae B(up) \ null(up)’ p“a “—Q “80”}-
Let a* € Byr) be such that
. B,
(%) [@*], = Z @,
and
[], = (a").

Note that [], does not depend on the choice of a*. .
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For a Q-name 7 of an element of V and p € Q, let
7T, = w(ah

for a' € Bur) with [al], = £°® {[a], : a € Bus) \ null(y?), pl|a desides 7}.

We identify each formula ¢ in the forcing language for Q with the Q-name
which gives the truth value of the formula (i.e. either 0 or 1 depending on whether
¢ is forced or not.) and consider [¢], under this identification. Thus [g]; =

[e], + [-¢],-

Lemma 5.1 Suppose that p € Q and ¢ is a formula in the forcing language over
Q. Let a* be as in (x) above. If a* & null(uP), then

Plla* ko “p”.

Proof Otherwise there is some ¢ <q p||a* such that g|Fq“—¢”. Let ¢’ be
such that ¢ <., ¢’ <pr p|la* and let b € B,s) be such that ¢ = ¢'||[b. Since
bNa* & null(u?), there is ag € I, such that bNag & null(u?) by (x). Hence by
the same argument as in the proof of Lemma 4.3,(2), we can show that p||ay and
q are compatible. But p||ag |Fo “¢”. This is a contradiction. [ (Lemma 5.1)

Lemma 5.2 Forp, p' € Q, if p <pr p' then [¢], < [¢],.

Proof Suppose [a]y € I,. Then p'||a|lq “p”. Since p|la <,r p'||la by Lemma
4.2, plla|Fq “9”. As plla <opr p, it follows that [a], € I, ,. Thus lel, < [,

D (Lemma 5.2)

Theorem 5.3 Suppose that A = k* and j : V — M is an elementary embedding
with crit(j) = k and >M C M. Then

@ “& is real-valued measurable”.

Proof In M, we have Q = j(Q) | A by (A)(b). Hence, by Lemma 4.6, Q < j(Q).
Let (7% : k < 2%) be an emumeration of Q-names of mappings from k to some
¥ < K.

Let n: 2" — QX 2"; i — (10(¢), m(¢)) be a surjection such that |np=1"{(q,4)} | =
2" for all (g,1) € Q x 2*. Let (g; : ¢ < 2*) be a sequence of elements of j(Q) such
that

(a) ¢ € 3(Q) 3 (J(A)\ A) for all i < 2% and (g; : i < 2%) is a decreasing
sequence with respect to <p;
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(b) for all i < 2%, there is p; € Q, Pi <pr no(3) such that, in M, for any p' € Q
and ql € J(Q) ~L ]()‘) \ A with P’ Spr ﬁi and q’ Spr i1

Ilj(zm(i))(’g)]]:s,-@q,-H = M(Zm(i))(’i)n;’@q’ :

The construction is possible by closedness of M (for (b), a construction similar to
the one in the proof of Lemma 4.7 is to be applied).
For a Q-name X of a subset of k and ¢ € Q, let

pe(X) = max{[[k € j()N()]Iq,mi g €Q,qd <prq, i <2}
The following is immediate from Lemma 5.1 and the definition of pq:
Claim 5.3.1 Suppose that p € Q, X is a Q-name of a subset of k and ¢* < wy. If
% € i 0q = [k € i ]e

for any p' € Q and ¢’ € (Q) L (J(A\ N)) with p' <pr p and q' <pr gir, then we have
l‘p({() =[ke j({()]]pg,qi,, . — (Claims3.0)

Claim 5.3.2 (1) For X Ck, if & € j(X), then (X)) =1 for allq € Q.
(2) For X Ck, if & € j(X), then pe(X) =0 for allg € Q.
(3) For q € Q and Q-names X, Y of subsets of K, fqlFo“X C Y7, then

rg(X) < pe(Y)-

~ ~

(4) Forq€ @, v <k and Q-names X, X¢, £ <K, if

alFe“ X =U{Xe: £<}7,
then for any ¢’ <gq q there is ¢" <p ¢' such that py (X) = Yoy g (Xg)

F (1): If k € j(X), then ¢ ® gilj@) “F € §(X)” for any i < 2*. Hence 1 >
pe(X) > p®% (I Uut) = L.

(2): Simlilarly to (1).

(3): Clear.

(4): Suppose that ¢’ <g ¢. Let k < 2" be such that

“—Q“Ikiﬂ—-)’)’-i—l”

and
q”—Q“V’l:<I€(Ik(i)=€ <~ iE')\l(g)”
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for all £ < +.

Let ¢* < 2" be such that ny(i*) = ¢’ and 7,(:*) = k. By (b) in the definition of
(g : i < 2%), the assumption of Claim 5.3.1 is satisfied for p” = p;» and each of X
and )Se, ¢ < . Hence i

ty(X) = [k € H(X)poge,, = 2R € i(XDyraq.,, = 2ty (Xe)-
. <y

<y

—I (Claim 5.3.2)

From this point on, the proof is very similar to the one for real-valued mea-
surability in a random model by Solovay [9]. We shall follow closely the version
of the proof given in Kanamori [7] (the proof of Theorem 17.5 in [7]). The last
paragraphs of our proof in particular are almost identical with the corresponding
part of the proof in [7]. Nevertheless, we also include them for convenience of the
reader.

Claim 5.3.3 Suppose that p € Q, X is a Q-name of a subset of k and r € R with
0<r<1. IfQ Vg <, p3Is<gq (us(X)>r) then we have po(X) > 7.

|- Suppose that Q |= Vg <, p 35 <g q (s(X) > r). We show that Up(X) > 7.

For i < wy, let p; € Q, ji < wy, aiy1, by '\é BuP.'+1®qj'. +1 be defined inauctively
such that

(0) po=p; ,

(1) (pi : i <wi) is a decreasing sequence in Q with respect to <,,;

(2) For alimit v < wi, py = (u, ) where u = U, u? and p is a [0, 1]-measure
on By, extending U;., u¥;

(8) (ji : @ <wi) is a continuously increasing sequence of ordinals < w;;

(4) If we cannot find p;11, jit1, Gis1, big1 satisfying the conditions (5) ~ (7)
in the following, then we let p;1 = p;, jiy1 = j; and a;4, = b;+1 = 0; otherwise:

(5) @iy1Nayyy is a null set with respect to P +®%:+1 for all i < 4

(6) biy1 C @iy, by € B pi+180,) \ null(pP+®%:+1) and

Di+18¢;; .
Mp. 5 - (bita) >r;
WP (ag4)

() (uP+r %, yPor®hiva| (b)) ) “k € 5(X) .
Now, as in the proof of Lemma 4.7, there is the minimal 6* < w; such that
as41 = 0. Let j* = sup{j; : i < &}. {[a,-+1],,5.®qj_ ! ¢ < 6*} is a maximal
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antichain in By, @q,.) by the assumption of the Claim. Let b € B ,ps84;+) be such
that

B(pse®q;s . *
[b]PS"@‘Ij‘ = E (7é+ % ){[bi+1]m*®dj~ 11<6 }

Then we have uP5*®%* (b) > r by (6) and (uPs*®%", uPs*®%"||b) ||-j@) “F € ix)”
by (7) and Lemma 5.1. Since ps+ <pr p, it follows that pp(X) > 7. 1 (©uimsss

Now, for ¢ € Q and @-name X of a subset of k, let

up(X) = inf ({#(X) : a4 <qp}).
By this definition the following is clear:

Claim 5.3.4 For p, p € Q and Q-name X of a subset of k, if p <o D', then
pp(X) > py(X)- =

Let £ be the Q-name such that |Fg “#: P(k) — [0,1]” and

o n(x) =sup ({1p(X) : EG})”

for Q-name X of subset of x and the standard Q-name G of the generic set over
Q. |

The well-definedness of & is yet to be established in course of the proof: At the
moment we consider each “4(X)” merely as an abbreviation of a @-name 7 of a

real such that

Fo“r=sup({1(X) : p€G})”.

Claim 5.3.5 Suppose that ¢ € Q, X is a Q-name of a subset of k and r € [0,1].

Then we have
B(X)2r & gl a(X) 2

I (=): This is clear by definition of A#* (X) and since g Fo“geG”.
(«<): Suppose that g “#(X) = 77 and let 7o € R be such that 0 < o <.
It is enough to show that p3(X) > ro. By definition of #(X), we have

alFo“3s € G (1(X) 2 7o)
By Claim 5.3.4, it follows that

Vp <q ¢ 3s < p (H5(X) 2 70)-
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Hence by definition of u! we have Vp <qIs<gp (us(X ) > 7o). In particular
for any ¢’ <q ¢ we have Vp <g ¢’ 3s <op (p,s( X) > r9). Hence by Claim 5.3.3,
P ( X ) > 1o for any ¢’ <g q. It follows that ,uq(X ) > 1. —  (Claim 5.3.5)

In the rest of the proof, we show that & is well-defined and
IFo“n is a x-additive [0, 1]-measure on P(k)”.

For any X C &, if k € j(X), then we have |} “B(X) =17 by Claim 5.3.2(1);
otherwise, i.e. if k ¢ j(X) then |lq “g(f() =0” by Claim 5.3.2(2). In particular,
o “A(R) =17 and |F-q “4(8) = 0". |

Ifplle“X C Y” then pg(X) < py(Y) for any g <@ p by Claim 5.3.2(3).
Hence p ||-¢ “L(X)~< MX)” : Otherwise we can find ¢* <g p and r € Q such that
¢ o “ux) > > N(Y) 7. But then we have p;. (X) > > p -(Y) by Claim
5.3.5. It follows that uq--( X) > pges (Y) for some ¢** <g ¢. This is a contradiction.

In particular, p |}¢ ¢ ,U(X ) = N(Y) ” whenever p |- “ X = Y ”. This shows the
well-definedness of K. LT -7 |

Next, we show that |q “# is finitely additive”. Suppose that |Fo“X,Y C
£ A XNY =0". Weshow that |lq “UXUY)= MX)+K(Y)” follows.

Let pE Q and r1, r; € Q be such that pII-Q “MX) 271 A B(Y) > 727, Then,
by Claim 5.3.2(4), Claim 5.3.3 and by definition of Ky, We have

p;({( U l’) > 11+ 79

Hence by Claim 5.3.5, p || “ HX U Y)” > f1 + ;. By density argument it follows

that |q “Vry,r, € Q ((r1 <HX) A< MY)) = ri+r < KX U Y)) ”
Hence |}q “‘HXUY)” > K(X) + K(Y).

For the opposite 1nequahty, assume that |-o “#(X UY) > KX )+HK(Y)”. Then
we can find p € Q and r3, 1y, 75, 16 € Q such that

pn-q“g(gg)<f~3<f4 A g(¥)<f5<f~6 A g({(ug)zf4+f6”.

For all ¢ <o p we have #3(X) < r3 by Claim 5.3.5. Hence there is an s <q ¢
such that u,(X) < r3. By ClNaim 9.3.3 with “>” replaced by “<”, it follows that
po(X) < 3. Srivmilarly, we get 4,(Y) < rs. We may assume that p is taken so that
the additivity in Claim 5.3.2(4) holds for “XUY”. So

ﬂp(XUY) < #p(XUY) l‘p(X) +Np(Y) Sr3+ 15 <14+ 76

But by Claim 5.3.5, this is a contradiction to p|f-g “4(X UY) > 4 + 7.
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Finally, to show x-additivity, suppose that v < k and X, X, £ < v be Q-names
of subests of k such that |Fo “X = U{X, : £ < ~}”. By finite additivity, we have

o “r(X) 2 Y- K(Xe)

<y
To show the opposite inequality, suppose that there are p € Q and ry, 7, € Q such
that
plre“ Y H(Xe) <f1 <Fa SH(X)".

<y
By finite additivity we have p|-p “H(Xpe; Xe) < 717 for all £ € [y]<®. Hence
by Claim 5.3.5, pp(Xece X¢) < 71 for any t € [y]<®e. Without loss of generality
we may assume that p isNtaken so that the additivity in Claim 5.3.2(4) holds for
‘X = U{%{g : £<v}”. Then we have y,(X) < 1. Hence pp(X) < 1. But this is
a contradiction to p |l-q “#2 < #(X)” by Claim 5.3.5. [ (Theorem 5.3)

6 Stick and club principles

For cardinals v < k the stick principle T: is defined as follows:
(1) IXCk (IX|=sk AVYER"TeX (zC Y)).
For a stationary E C k, the club principle &, (E) is:
(de(E)) Fz; : 1€ E) (Vi € E (z; is a cofinal subset of 1)
VY € [K]* Ji€ B (z; CY)).
Clearly ¢ (E) implies &.(E) and &(E?) implies ¥ where E¥ = {i < k : cf(i) =

v}. For v < V' <K&, T:I implies 7.

.
Random forcing destroys stick principle for every cardinal < the Maharam type
of the forcing. For uncountable v this is because of the fbllowing result by J.
Brendle.
For v < k, let

r(v,k) =min{| F| : FC[x]', VACAIbe F(bCAVbIC A\ A)}
It is clear that T implies that r(v, ) < k.

Theorem 6.1 (J. Brendle, [1]) For uncountable v < k, we habe cov(null) <

i



Sh:E85

Yy

The random forcing B) forces the value of cov(null) to be > A hence |5, “~ !

K

for every uncountable v < k < A.
For v = Ny we have the following:

Lemma 6.2 (Folklore) Suppose thatRo < k < A. Then |5, “ T:° does not hold ”.

Proof Suppose that T;, < K are B)-names of countable subsets of k. we show

that |ls, “{2; : ¢ <k} isnot a T:"-set ”. By the c.c.c. of B), there is an S € [A\]*
such that T, i < K are all Bg-names.
Let §; € A\ S, j < k be pairwise distinct and

a; = [{{&, D}, b =[{{&,0)}]

for j < k. Let
X= {G,a5) : 5 <k}
Then |5, “X € [£]*”. Hence the following claim implies that {z; : i < x} is

forced not to be a T:"-set.
Claim 6.2.1 |5, “z; £ X” for alli < &.

- Let G be a generic filter over Bs. In V[G], let B = B,/G. m, induces a finitely
additive measure m on B. Let b}, j < & be the elements of B corresponding to b;,
J < k respectively. Note that b}, j < « are independent events in (B, m) of measure
1/2. By Borel-Cantelli theorem (which holds also for finitely additive measure) we
have

Y bi=1.
jezf
Hence for any b € B™* there is j € z; such that b- b} # 0. But bilFe“j &€ X”.
Hence b-b; |5 “z; € Z ”X. This shows |5 ‘z; £ X” and, since G was arbitrary,
”_B,\ “fi ZXx”. —{ (Claim 6.2.1)
D (Lemma 6.2)
Stick or club principle at the cardinality of the partial ordering depends rather
on the ground model:

Proposition 6.3 (Folklore) Suppose that & is a regular cardinal and S a stationary
subset of k such that {(S). If P is a K-c.c. p.o.-set of cardinality < k, then

l-p “Ox(S) .
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b7

Proof Without loss of generality, we may assume that the underlying set of P
is k. Let (x; : i € S) be a {x(S)-sequence which guesses subsets of k x k. Le.
z; Cixiand forevery X C k xk, {i € S : XN(ixi)=z;} is stationary. Each z;
can be naturally associated with the P-name z; = {@,p) : (i,p) € z;}. We show
that |-p “(z; : i € S) is a Ox(S)-sequence”.

Let X be a P-name of a subset of k. We may assume that X C {G,p) : i €
k,p € P} and that {p € P : (1,p) € X} is incompatible for all i € k. By the
k~-c.c. of P this set then has cardinality 2 k. Let C be a P-name of a club subset
of k. Again by the k-c.c. of P, there is a club set 6‘ C & such that |Fp“C C C”.

It is enough to show that there is an i € C such that |p“z; = X N 7. Let

X ={(&p) : (i,p) € X}. Then
D={i<r:Vi<iVy<a((fn) €X = y<i)}

is a club subset of k. For i € CN DN S such that z; = X N (i x i), we have

“_P “ fi - X ﬂ Z ” . D (Proposition 6.3)

In contrast to the situation in the generic extension by a random algebra dis-
cribed in Lemma 6.2, it is possible to have stick and club principles for « in the

generic extension by the p.o.-set Q.

Theorem 6.4 Assume that & is strongly Mahlo cardinal and v < k < . Then for
Q = Qn,)\:

() ot 2", |

(b) if S, C EY is stationary and V |= Ok(S,) then |q “®i(S:)”.

Proof (a): We show that [k]” in the ground model is forced to be a " set (i.e.
a set as X in the definition of 1.).
Suppose that p* € Q and Y is a @-name such that p* |-q “Y € [&]"”, say

P* g “{ai : i < k) is an increasing sequence and Y = {a; i<k}

For i < K, let & be the i’th strongly inaccessible cardinal. By assumption {; : i <
k} is stationary subset of «.
For i < K, let ¢;, a;, v; be chosen inductively so that

( ) qi Spr p*’

(2) 7<K

(3) @i € Bpyuy \ null(p%);
4) aillailFq“oi=%".
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By Fodor’s lemma, there are I C &, o** < k, p** € Q such that

(5) I is cofinal in «;

(6) qif&=p*foralliel;

(7) sup(u%) <§; for all 4, j € I with i < j;

(9) otp(u%) = a** for alli € I;

(10) the order preserving mapping Pi;j - u¥ — u% induces an isomorphism from
(Busi), %) to (B(ysy, p%) sending a; to a; for all i, j € I.

Let (i, : n < v) be an increasing sequence in I. Then pu%n»

la;,, n < v are
compatible to each other. Hence by Theorem 3.2, there is the free amalgamation
p? of p%n||a;,, n < v over u?”". Let

q* — (U uqi,.,pﬂ').

n<v

Then we have ¢* <, ¢;,||a;, for all n < v. In particular ¢* <q p* by (1).
By (4), it follows that +;_, n < v are all distinct and

o (i i n<r}” C Y.

This shows that
Fo“VY C[k]*3xr € X(z CY)”

for X = [k)* (in V).

(b): The proof is dsimilar to (1). Using g;, a;, 7; for i < k as well as I C &,
and p** € @ as in the proof of (1), we can show that the ¢),(S*)-sequence in the
ground model becomes a &,(S5*)-sequence in the generic extension.  [J (rheorem 6.4)

7 Concluding remarks
We can put together the results obtained in the previous sections to get:
Theorem 7.1 If
ZFC + “there exists a measurable cardinal”
is consistent, then so is the theory:

ZFC 4+ “there is a real-valued measurable cardinal x < 2% ”
+ “&(EX) for allv < k” + “cov(null) = £”.
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Proof Let k be a measurable cardinal. By moving to the inner model of mea-
surability V[U], we may assume that 2 = k*. Let @ = Qxnx+ be the p.o.-set
introduced in section 4.

By Proposition 4.8 and Lemma 4.9, Q preserves all cardinals. By Theorem 5.3
(here we need 2® = k%), Q forces k to be a real-valued-measurable cardinal. By
Theorem 6.4, &, (E?) is forced for all v < k — actually also &, (E) for all E C
such that O«(E) holds in the ground model. By Lemma 4.3, cov(null) > «. By
Lemma 4.3 and | Q| = «*, 2% = x*. By &(F%*) and Theorem 6.1, it follows that

cov(null) = k. (3 (Theorem 7.1)
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