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Abstract: The �rst part of this paper is an expository overview of the authors’
recent work on Keisler’s order, a far-reaching program of understanding basic
model-theoretic structure through the lens of regular ultrapowers. We motivate
the problem and explain how this work connects model theory and set theory,
leading to theorems on both sides. In the second part of the paper, we prove a
new theoremwhich shows that, in some sense, saturating ultrapowers of the ran-
dom graph is much less complex than it appeared. More precisely, we prove that
for a class of regular �lters D on �, |�| = � > ℵ0, the fact that P(�)/D has little
freedom (as measured by the fact that any maximal antichain is countable) does
not prevent extendingD to an ultra�lterD1 on � such that��/D1 is �+-saturated
whenever � is a model of the theory of the random graph. This result has cat-
alyzed our subsequent work on ultrapowers of simple unstable theories, and we
brie�y discuss some future directions of this work.
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1 Introduction
Keisler’s order is a long-standing (and far-reaching) program for comparing the
complexity of unstable theories, proposed in Keisler 1967 [6]. Themeasure of com-
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plexity, roughly speaking, is the relative di�culty of producing saturated regular
ultrapowers. The order� already has signi�cant connections to classi�cation the-
ory, and we believe the present investigations will shed further light on the struc-
ture of simple unstable theories.

The goal of the present paper is �rst, to give an expository introduction to re-
cent progress on Keisler’s order, and second, to prove a surprising theoremwhich
has catalyzed our subsequent work on Keisler’s order for simple theories. The im-
portance of this theorem can be described as follows. Previously, in [17], we had
shown that the di�erence between saturation for random graphs and for linear
order was visible in an interval of the form (�, � = 2�). Theorem 3.2 shows it is vis-
ible in an interval of the form (ℵ0, �). Thus Theorem3.2 improves [17] Theorem 11.1,
although the current paper does not supercede [17]: we rely here on the substan-
tial background technology built there, andmoreover the propertyQr1 developed
there appears useful for more general arguments. Still, this new opening leads
to a (long and hard) program of analyzing the fundamental structure of simple
theories which we sketch in §1.2.1 and which is currently work in progress.

The present section is primarily expository. In §1.1 below, we de�ne Keisler’s
order and survey what was known. In §1.2 we present this paper’s main result,
Theorem 3.2, and explain the relevance for simple theories. In §1.3, we describe
the known points of contact between regular ultra�lters and theories. In §1.4, we
discuss several theorems of set theory which have come from this program. §2
contains de�nitions and other preliminaries. §3 contains the proof of the paper’s
main theorem.

1.1 Keisler’s order and model theory

This subsection, written primarily for model theorists, aims to explain Keisler’s
order and our recent work.

For transparency, all languages are countable and all theories are complete.
We say that the ultrapower��/D is regular when D is a regular ultra�lter on �,
De�nition 2.1 below. A key property of regularity is that:

Fact 1.1. (Keisler [6] Corollary 2.1 p. 30; see also Shelah [20].VI.1) Let� ≡ � in a
countable signature,� ≥ ℵ0,Da regular ultra�lter on�. Then��/D is�+-saturated
if and only if��/D is �+-saturated.
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1.1.1 What is Keisler’s order and why is it model-theoretically interesting?

Questions of saturation have long been central tomodel theory. Morley’s theorem
is a fundamental example. Suppose we anachronistically de�ne the Łos order on
complete countable theories:
– �1 ��� �2 if

– (for all�2 �� �2, |�2| = �,�2 is saturated) implies
– (for all�1 �� �1, |�1| = �,�1 is saturated)

– �1 �� �2 if �1 ��� �2 for all � > ℵ0

Then Morley’s theorem shows that �� has a minimum class, a maximum class,
and no other classes, i.e. either all uncountable models of some given countable
theory are saturated, or else the theory has some unsaturated model of every un-
countable size.

Keisler’s order may be thought of as generalizing this hypothetical “Łos or-
der” in the following powerful way: rather than considering all uncountable
models, we consider only regular ultrapowers (so “saturated” becomes “�+-
saturated”). This reveals a richer �eld of comparison:we compare not by cardinal-
ity, but by provenance. Each��1 /D �� �1 is naturally compared to models��2 /D
of �2, built using the same ultra�lterD on �. More precisely:
De�nition 1.2. (Keisler [6]) Let �1, �2 be complete countable �rst-order theories.
1. Let D be a regular ultra�lter on �. Write �1 �D �2 when (for all �2 �� �2,
��2 /D is �+-saturated) implies (for all�1 �� �1,��1 /D is �+-saturated).

2. Write �1 �� �2 if for any regular ultra�lterD on �, �1 �D �2.
3. (Keisler’s order)Write �1 � �2 if for all in�nite �, �1 �� �2.
By Fact 1.1,� is a pre-order on theories, usually thought of as a partial order on the
equivalence classes. [Note that by 1.1, �1 �D �2 is equivalent to “for all�1 �� �1,
�2 �� �2, (��2 /D is �+-saturated) implies (��1 /D is �+-saturated).”]

Keisler proved that�had at least aminimumandmaximumclass, and asked:

Question 1.3. (Keisler 1967) Determine the structure of Keisler’s order.

Surprising early work of Shelah established the model theoretic signi�cance of�
(note the independent appearance of dividing lines from classi�cation theory).

Theorem A. (Shelah 1978 [19] Chapter VI)

T1 ⊲ T2 ⊲ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅? ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ � T���

where T1 ∪ T2 is precisely the class of countable stable theories, and:
1. �1, the minimum class, is the set of all � without the �nite cover property.
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2. �2, the next largest class, is the set of all stable � with the f.c.p.
3. There is a maximum class T���, containing all linear orders (i.e. SOP, in fact
���3 [21]), however, its model-theoretic identity is not known.

Formany years therewas little progress, and the unstable case appeared relatively
intractable despite the �ourishing of unstable model theory.

Very recently, work of Malliaris and Shelah has led to considerable advances
in our understandings of how ultra�lters and theories interact (Malliaris [9]-[12],
Malliaris and Shelah [14]-[17]). For an account of some main developments, see
the introductory sections of [14] as well as [17]. Most of the seismic shifts are un-
derground and not yet visible as divisions in the order. Still, one can update the
diagram:

T1 ⊲ T2 ⊲ T� ⋅ ⋅ ⋅? ⋅ ⋅ ⋅ ⊲ ⋅ ⋅ ⋅? ⋅ ⋅ ⋅T�� � ⋅ ⋅ ⋅? ⋅ ⋅ ⋅ � T���

T� denotes the minimum unstable class (not yet characterized, but contains the
random graph). T�� denotes the simple non low theories, which are not known to
be an equivalence class but are all strictly above (=more complex than)T�. Amore
�nely drawn diagram would also show that there is a minimum ��2 theory, and
that at limit � ���2 su�ces for maximality, see §1.4. Note that it is not yet known
whether the order is �nite, or linear.

1.2 Prolegomena to our main theorem

Earlier this year, building on our prior work described above, we had shown that
the question of saturation of ultrapowers could be substantially recast in terms
of a two-stage approach, involving a more set-theoretic stage [constructing a so-
called excellent �lterD on � admitting a surjective homomorphism j : P(�) → B

onto a speci�ed Boolean algebra, with j−1({1B}) = D] followed by a more model-
theoretic stage [constructing a so-called moral ultra�lter on the Boolean algebra
B, a step de�ned in terms of “possibility patterns” of formula incidence repre-
sented in the theory].

This advance allowed us to give the �rst ZFC�-dividing line among the unsta-
ble theories, and the�rst dividing line since 1978: separating theKeisler-minimum
unstable theory, the random graph �rg, from all non-low or non-simple theories.

Theorem B. (Malliaris and Shelah [17]) Suppose �, � are given with � < � ≤ 2�.
Then there is a regular ultra�lterDon�which saturates ultrapowers of all countable
stable theories and of the random graph, but fails to saturate ultrapowers of any
non-low or non-simple theory.
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Convention 1.4. We say that a regular ultra�lter D1 on � “saturates ultrapowers
of �” to mean that whenever� �� �,��/D is �+-saturated.
Naturally this result raised many further questions. Chief among them was the
role of � < � ≤ 2�, which appeared to have a strong model-theoretic motivation
by analogy to [18], and in terms of what might be called the “Engelking-Karłowicz
property of the random graph:” in the monster model of the random graph, if
|�| = � and � < � ≤ 2� then there is some set � such that every nonalgebraic
� ∈ �(�) can be �nitely realized in �. The role of � in the proof of Theorem B was
as the size of amaximal antichain of a quotient Boolean algebra at the key transfer
point in the inductive ultra�lter construction, i.e., the point where the excellent
�lter D has been built. When � < �, this “lack of freedom” at the transfer point
was su�cient to guarantee the non-saturation result for any ultra�lter D1 ⊇ D,
and as indicated, when � ≤ 2�, model-theoretic considerations made it possible
to guarantee saturation of the random graph for someD1 ⊇ D.

In this paper we show that, contrary to initial expectations, the situation here
is fundamentally di�erent and the second restriction on � is unnecessary. Rather
it is, within the regime of so-called excellent �lters on some arbitrary but �xed �,
always possible to extend to an ultra�lter which will saturate the random graph,
even when � = ℵ0 at the transfer point:
Main Theorem. Let ℵ0 ≤ � ≤ � = |�|. Suppose that G∗ andD satisfy:
1. D is a regular, excellent �lter on �
2. G∗ ⊆ ��, |G∗| = 2�
3. G∗ is aD-independent family of functions
4. D is maximal subject to (3)
Then for some ultra�lterD1 ⊇ D, and all� �� �rg,��/D1 is �+-saturated.
Moreover, the proof itself modi�es the usual inductive construction of an ultra�l-
ter by means of independent functions by introducing so-called approximations;
this has been signi�cant for our subsequent work.

Note that when (�,D,G) is (�, ℵ0)-good it is always possible to extend D to
an ultra�lterD1 which saturates all stable theories. [It su�ces to ensure that the
coinitiality of � in (�,<)�/D1 is ≥ �+.] Our theorem here shows that if D is excel-
lent this is additionally always possible for the randomgraph. It complements our
construction in [15] of a �lterD, necessarily not excellent, no extension of which
is able to saturate the random graph.
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1.2.1 What avenues of investigation does this suggest for simple theories?

The parameter � measuring the freedom available in the underlying Boolean al-
gebra during ultra�lter construction, i.e. � in De�nition 2.9 below, appears signif-
icant for “outside de�nitions” of simple theories. Given Theorem 3.2, the natural
question is whethermembership in the Keislerminimumunstable class is charac-
terized by: wheneverD is regular and excellent and (�,D,G) a (�, ℵ0)-good triple,
someultra�lterD1 ⊇ D saturates�. By our prior results,� < �blocks saturation of
non-simple or non-low theories (this can be circumvented by introducing a com-
plete �lter on the quotient Boolean algebra). Thus, the current focus is simple low
theories.

By increasing the range of possible �, Theorem 3.2 opens the door to a strati-
�cation of simple low theories. That is, we will want to try to distinguish between
classes of theories based on various cardinal invariants of the Boolean algebras
P(�)/D. Our previous result, Theorem B above, distinguished between the ran-
dom graph (su�ces to have antichains of size �) and non-low theories (necessary
to have antichains of size �) when � < � ≤ 2�. So to see �ner divisions in the un-
stable low theories, onemight need to assume failures of GCH. In light of Theorem
3.2 this is no longer necessary.

The property � = ℵ0 appears connectedwith amodel-theoretic coloring prop-
erty introduced in work in progress of the authors.

1.3 Translations between set theory and model theory

A fundamental part of investigating Keisler’s order involves construction of ul-
tra�lters, thus combinatorial set theory. Isolating “model-theoretically meaning-
ful properties” and determining implications and nonimplications between them
gives a useful perspective on ultra�lters. We now include two “translation” theo-
rems from [14]. (Some de�nitions are given in the Appendix.)

Theorem C. (Malliaris and Shelah [14] Theorem F) In the following table, for each
of the rows (1),(3),(5),(6) the regular ultra�lter D on � fails to have the property in
the left column if and only if it omits a type in every formula with the property in
the right column. For rows (2) and (4),D fails to have the property on the left then it
omits a type in every formula with the property on the right.
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Set theory: Model theory:
properties of �lters properties of formulas

(1) �(D) ≥ �+ A. �nite cover property
(2) lcf(ℵ0,D) ≥ �+ ** B. order property
(3) saturates ��� C. independence property
(4) �exible, i.e. �-�exible ** D. non-low
(5) good for equality E. ��2
(6) good, i.e. �+-good F. strict order property

Proof. The characterization of the maximum class via good ultra�lters and the
de�nition of the f.c.p. are due to Keisler 1967 [6], see [14] for details. (1)-(2) Shelah
1978 [19] VI.5. (3) Straightforward by quanti�er elimination. (4) Malliaris 2009 [9].
(5) Malliaris 2010 [11]. (6) Shelah 1978 [19] VI.2.6.

Theorem D. (updated version of Malliaris and Shelah [14] Theorem 4.2) Assume
that D is a regular ultra�lter on � (note that not all of these properties imply regu-
larity). Then:
(1) ← (2) ← (3) ← (5) ← (6), with (1) ↛ (2), (2) ↛ (3), (3) ↛ (5), and

whether (5) implies (6) is open. Moreover (1) ← (4) ← (5) ← (6), where (3) ↛ (4)
thus (2) ↛ (4), (4) ↛ (3), consistently (4) ↛ (5), consistently (4) ↛ (6); and (4)
implies (2) is open.
“Consistently” throughout Theorem D means assuming a measurable cardinal.
One of the surprises of [14]-[15] was the relevance of measurable cardinals in con-
structing regular ultra�lters. This bridges a certain cultural gap between regular
�lters, typically used inmodel theory, and complete ultra�lters, used primarily in
set theory. §1.4 gives some consequences.

1.4 Set-theoretic theorems and aspects of this program

We now discuss some set-theoretic results of our program, from [14] and [17].
First, “consistently (4) ↛ (6)” in Theorem D above addressed a question

raised in Dow 1985 [2] about whether OK �lters (introduced by Kunen, Keisler) are
necessarily good. We proved that consistently the gap may be arbitrarily large:

Theorem E. (Malliaris and Shelah [14] Theorem 6.4) Assume � > ℵ0 is measurable
and 2� ≤ � = ��. Then there exists a regular uniform ultra�lterD on � such thatD
is �-�exible, thus �-OK, but not (2�)+-good.
Notably, the failure of goodness is “as strong as possible” given the construction:
D will fail to (2�)+ saturate the random graph, thus any unstable theory. See [14]
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§1.2 for an account of this result. As explained there, this is a natural context in
which to study further weakenings of goodness. The two papers [14]-[15] contain
several ultra�lter existence theorems.

We now describe a program from our paper [16]. Because of the Keisler-
maximality of linear order, but also for set theoretic reasons (e.g. cardinal invari-
ants of the continuum), it is natural to study cuts by de�ning:

De�nition 1.5. ([16]) LetD be a regular ultra�lter on �, |�| = �. Let C(D) be the set
of all (�1, �2) such that �1, �2 ≤ � are regular and (N,<)�/D has a (�1, �2)-cut.
De�nition 1.6. ([16]) Say that a regular ultra�lterD on � has �-treetops if for any
tree (T,�) and any in�nite regular cardinal � < �, in � = (T,�)�/D any strictly
��-increasing �-indexed sequence has a��-upper bound.
Both model-theoretic and set-theoretic considerations pointed to the question of
whether �+-treetops implies �+-good.

We had shown that an ultra�lter D on � has �+-treetops if and only if C(D)
has no symmetric cuts, so the question was:

Question 1.7. Given � ≤ � �⇒ (�, �) ∉ C(D), what are the possible C(D)?
Theorem F. (Malliaris and Shelah [16]) Suppose that for all � ≤ �, (�, �) ∉ C(D).
Then C(D) = 0, andD is good.

In fact, the setup in [16] is somewhat more general: we consider what we call “co-
�nality spectrum problems,” which cover a variety of problems including co�nal-
ities of cuts in ultrapowers of linear order. In [16] we also prove two corollaries
of this theorem, one model theoretic, one about cardinal invariants of the contin-
uum. First, ���2 is maximal in Keisler’s order. Second, p = t, where p, t are the
pseudointersection number and the tower number respectively.

This concludes the introduction. We now work towards Theorem 3.2.

2 Preliminaries
Here we de�ne: regular �lters, good �lters, excellent �lters, and good triples.

De�nition 2.1. (Regular �lters) LetD be a �lter on an index set � of cardinality �.
A �-regularizing family {�� : � < �} is a set such that:
– for each � < �,�� ∈ D, and
– for any in�nite � ⊂ �, we have⋂�∈��� = 0
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Equivalently, for any element � ∈ �, � belongs to only �nitely many of the sets ��.
A �lter D on an index set � of cardinality � is said to be �-regular if it contains a
�-regularizing family.D is called regular if it is �-regular, i.e. |�|-regular.
Regular �lters on � always exist, see [1] or [17] top of p. 7.
De�nition 2.2. (Good �lters, Keisler [5]) The �lter D on � is said to be �+-good if
every � : Pℵ0 (�) → D has a multiplicative re�nement, where this means that for
some �� : Pℵ0 (�) → D, � ∈ Pℵ0 (�) �⇒ ��(�) ⊆ �(�), and �, � ∈ Pℵ0 (�) �⇒
��(�) ∩ ��(�) = ��(� ∪ �).

Note that we may assume the functions � are monotonic.
D is said to be good if it is |�|+-good.

Remark 2.3. The importance of good �lters here arises from Keisler’s observation
that whenD is regular, � ⊆ � := ��/D, � ∈ �(�), |�| ≤ �, � = {��(�; ��) : � < �}
then � is realized in � i� there is some multiplicative � : Pℵ0 (�) → D which
re�nes the “existential” map � �→ {� ∈ � : � �� ∃�⋀�∈� ��(�; ��[�])}.
The proof of Theorem 3.2 builds on a main innovation of Malliaris and Shelah
[17], so-called excellent �lters: 2.6 below. For the purposes of the current proof,
the reader may take “excellent” to be a new characterization of “good” which is
most interesting in the casewhereD is a �lter and not an ultra�lter, as is proved in
Theorem 12.3 of the appendix to [17]. (As noted there, however, it is not yet clear
whether various useful restrictions of these two de�nitions will generally coin-
cide.)

Suppose we are given a �lter D, a Boolean algebra B and a surjective ho-
momorphism j : P(�) → B such that j−1({1B}) = D. Roughly speaking, if D is
excellent we may assume that j is “accurate” in the sense that if certain distin-
guished Boolean terms hold on elements b ofB, the same termswill hold on some
j-preimage of bwithout the a priori necessary quali�er “ mod D.” [For details and
history, see [17] §2.] The main example for us here is:

Fact 2.4. Let � ≥ ℵ0 and let D be an excellent, i.e. �+-excellent �lter on �, |�| = �.
Let

� = ⟨�� : � ∈ [�]<ℵ0⟩
be a sequence of elements ofP(�)which ismultiplicative mod D, i.e. for each �, � ∈
[�]<ℵ0 , �� ∩ �� = ��∪� mod D.

Then there exists 
 = ⟨
� : � ∈ [�]<ℵ0⟩ such that:
1. � ∈ [�]<ℵ0 �⇒ 
� ⊆ ��
2. � ∈ [�]<ℵ0 �⇒ 
� = �� mod D
3. �, � ∈ [�]<ℵ0 �⇒ 
� ∩ 
� = 
�∪�
i.e. 
 re�nes � and is truly multiplicative.
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Proof. [17] Claim 4.9.

The e�ect of excellence is to allow a so-called “separation of variables,” [17] Theo-
rem 5.11. That is, as sketched in 1.2, ultra�lter construction can nowbe done in two
stages. First, one builds an excellent �lter with a speci�ed quotient B. One can
then build ultra�lters directly on B which ensure that so-called possibility pat-
terns of a given theory (a measure of the complexity of incidence in �-types) have
multiplicative re�nements. An immediate advantage of this separation is that it
allows us to prove results like Theorem B above. Namely, a “bottleneck” is built
in to the construction by arranging for the c.c. of P(�)/D to be small by the time
D is excellent. This prevents future saturation of some theories, but not all, and
so gives a dividing line. This analysis also pushes one to understand how these
“possibility patterns” re�ect model-theoretic complexity.

Thoughwe include the full de�nition of excellence from [17], Theorem 3.2 will
only use Fact 2.4 above, which the reader may prefer to take as axiomatic.

De�nition 2.5. LetB be a Boolean algebra and a = ⟨a� : � ∈ [�]<ℵ0⟩ be a sequence
of elements ofB. When � is a �nite set, write �P(�) = ⟨�� : � ⊆ �⟩ for a sequence
of variables indexed by subsets of �.
1. De�ne

�(��P(�)) ={⟨��� : � ⊆ �⟩ : for some � ⊆ �
we have ��� = �� if � ⊆ � and ��� = 0B otherwise}

2. De�ne �B,� to be the set

{�(�P(�)) : �(�P(�)) is a Boolean term such that

B �� “�(��) = 0” whenever �� ∈ �(�) }

3. IfD is a �lter onB then �B,D,� = �B1 ,�1 whereB1 = B/D and �1 = ⟨��/D :
� ⊆ �⟩.

4. IfD is a �lter on a set �, thenD determines �, so we write �D,� for �P(�),D,�.
De�nition 2.6. (Excellent �lters,Malliaris and Shelah [17]De�nition 4.6)LetDbe a
�lter on the index set �.We say thatD is�+-excellentwhen: if� = ⟨�� : � ∈ [�]<ℵ0⟩
with � ∈ [�]<ℵ0 �⇒ �� ⊆ �, then we can �nd � = ⟨�� : � ∈ [�]<ℵ0⟩ such that:
1. for each � ∈ [�]<ℵ0 , �� ⊆ ��
2. for each � ∈ [�]<ℵ0 , �� = �� mod D
3. if � ∈ [�]<ℵ0 and � ∈ �D,�|� , so �(�|P(�)) = 0 mod D,

then �(�|P(�)) = 0
We say thatD is �-excellent when it is �+-excellent for every � < �.
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De�nition 2.7. Given a �lter D on �, we say that a family F of functions from �
into � is independent mod D if for every � < �, distinct �0, . . . ��−1 from F and
choice of �ℓ ∈ Range(�ℓ),

{� < � : for every � < �, ��(�) = ��} ̸= 0 modD
Theorem G. (Engelking-Karłowicz [3] Theorem 3, see also Shelah [20] Theorem
A1.5 p. 656) For every � ≥ ℵ0 there exists a family F of size 2� with each � ∈ F

from � onto � such that F is independent modulo the empty �lter (alternately, by
the �lter generated by {�}).
In particular, such families can be naturally thought of as Boolean algebras, so
we introduce some notation:

De�nition 2.8. Denote byB1�,� the completion of the Boolean algebra generated
by {��,� : � < �, � < �} freely except for the conditions � < � ∧ � < � < � �⇒
��,� ∩ ��,� = 0.
We follow the literature in using the term “good triple” for the following object,
despite the name’s ambiguity.

De�nition 2.9. Good triples (cf. [20] Chapter VI) Let � ≥ � ≥ ℵ0, |�| = �, D a
regular �lter on �, and G a family of functions from � to �.
1. Let FI(G) =

{ℎ : ℎ : [G]<ℵ0 → � and  ∈ Dom() �⇒ ℎ() ∈ Range()}
2. Let FI�(G) = {�ℎ : ℎ ∈ FI(G)} where

�ℎ = {� ∈ � :  ∈ Dom() �⇒ (�) = ℎ()}
3. We say that triple (�,D,G) is (�, �)-pre-good when �,D, G are as given, and for

every ℎ ∈ FI(G) we have that �ℎ ̸= 0 mod D.
4. We say that (�,D,G) is (�, �)-goodwhenD ismaximal subject to this condition.

Fact 2.10. If (�,D,G) is a good triple, then FI�(G) is dense in P(�) mod D.

Observation 2.11. Let D be a �lter on �, B = B1�,� for some 
 ≤ 2�, � ≤ � and
j : P(�) → B a surjective homomorphism such that j−1({1B}) = D. Let G = GB =
{� : � < 2�} ⊆ �� be given by �(�) = j−1(��,�). Then (�,D,G) is a (�, �)-good triple.
We will use the following existence theorem from [17].

Theorem H. (Existence theorem for excellent �lters, [17]) Let � ≤ �, |�| = � and
let B be a �+-c.c. complete Boolean algebra of cardinality ≤ 2�. Then there exists
a regular excellent �lterD on � and a surjective homomorphism j : P(�) → B such
that j−1({1B}) = D.
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Corollary 2.12. Let �, |�| = � ≥ ℵ0, and � with ℵ0 ≤ � ≤ � be given. Let D be an
excellent �lter on � given by Theorem H in the case whereB = B12� ,�. Let GB ⊆ ��
be given by Observation 2.11. Then (�,D,GB) is a (�, �)-good triple.

3 Main Theorem
We now prove that it is possible to saturate the theory �rg of the random graph
using only functions with rangeℵ0. While the construction is a natural evolution
of our argument for (an ultrapower version of) the Engelking-Karłowicz property
in [17] Lemma 9.9, the result was a surprise. Here, notably, we modify the usual
“inductive construction via independent families” to allow a much �ner degree
of control. The calibrations are noted throughout the proof, beginning with 3.3.

Remark 3.1. Note that in Theorem 3.2, possibly 2� << �; indeed, possibly � = ℵ0
while � = |�| is arbitrary.
Theorem 3.2. Suppose that we are given:
1. (�,D,G∗) is a (�, �)-good triple
2. ℵ0 ≤ � ≤ � = |�|
3. D is �-regular
4. D is �+-excellent
Then there is an ultra�lter D1 ⊇ D such that for any � �� �rg, ��/D1 is �+-
saturated.

We shall �x �,D, G∗, �, � as in the statement of Theorem 3.2 for the remainder of
this section. Hypothesis (4), excellence, is used only at one point, in Step 13.

The infrastructure for the proof will be built via several intermediate claims
and de�nitions. Note: When � is a formula, we write �0 for ¬� and �1 for �.
Remark 3.3. In contrast to the usual method, we will not complete the �lter at
each inductive step to a “good” triple. This is a crucial di�erence. Rather, we build
a series of approximations to the �nal ultra�lter. Note that condition (c) on the size
of the approximation is natural, though not needed.

Background Note. An account of why realizing types in ultrapowers amounts
to �nding a multiplicative re�nement is given in [14] §1.2, or see 2.3 below.

1. Approximations For � ≤ 2�, let AP� be the set of pairs a = (A,G) = (Aa,Ga) such
that:
(a) Ga ⊆ G∗
(b) |Ga| ≤ |�| + �
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(c) |Aa| ≤ |�| + �
(d) Aa ⊆ P(�)
(e) (∀� ∈ Aa)(� is supported by Ga moduloD)
(f) 0 ∉ �l⟨D ∪ Aa⟩

The elements of eachAP� can be naturally partially ordered (by inclusion in both
coordinates).

Convention 3.4. For a ∈ AP�, denote by �l⟨D ∪ a⟩ the �lter on � generated by
D ∪ Aa.

2. Aim of the inductive step. Our aim in the key inductive step will be to prove the
following. Note that from a certain point of view, this is about the Boolean algebra
P(�)/D; however, it clari�es our presentation here to refer explicitly to � and to the
given types as they are presented in the reduced product. By quanti�er elimina-
tion, a type here is a choice of � parameters and a function from � to 2.
Claim 3.5. If (�) then (�):
(�) (a) a ∈ AP�

(b) � �� �rg
(c) ℎ� ∈ �� for � < �
(d) � ∈ �2
(e) For � < � < �, if �(�) = �(�) then � �,� = �, and if �(�) ̸= �(�) let

� �,� = {� ∈ � : ℎ�(�) ̸= ℎ�(�)} = � mod �l⟨D ∪ a⟩

(f) � = {(��(ℎ�/D1))[�(�)] : � < �} is a type in ��/D1 for every ultra�lter
D1 ⊇ �l⟨D ∪ a⟩

(�) There are b, � such that:
(a) a ≤ b ∈ AP�+1
(b) � = ⟨�� : � < �⟩
(c) �� ∈ �l⟨D ∪ b⟩
(d) �� ∩ �� ⊆ � �,� mod D for � < � < � such that �(�) ̸= �(�)

The proof will follow from Steps 11-13 below, following some intermediate de�ni-
tions. In Step 13, we verify that Claim 3.5(B) is su�cient to realize the type.

De�nition 3.6. Given any sequence � = ⟨�� : � < �⟩ from Claim 3.5(B), let the
sequence �∗ = ⟨�� :  ∈ [�]<ℵ0⟩ be given by: �{�} = �� for � < �, and �� = ⋂{�{�} :
� ∈ } for  ∈ [�]<ℵ0 , || ≥ 2.
Discussion. Condition (�) corresponds to the data of a randomgraph type over the
parameters {ℎ� : � < �}. De�ne a sequence � = ⟨�� :  ∈ [�]<ℵ0⟩ by || = 1 implies
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�� = �, � = {�, �}, � ̸= � implies �� = � �,� as de�ned above, and |�| ≥ 3 implies
�� = ⋂{�� : � ⊆ �, |�| = 2}. Then � gives a distribution for this type.

Note that � ∈ � �,� implies {(��(ℎ�/D1))[�(�)], (��(ℎ�/D1))[�(�)]} is consistent.
Since random graph types have 2-compactness, and (∃�)��(ℎ�/D1) is sent to � by
the Łos map, item (�)(�) implies that the corresponding sequence �∗ = ⟨�� :
� ∈ [�]<ℵ0⟩ from De�nition 3.6 re�nes�moduloD and is multiplicative mod D.
This will be su�cient to realize the type given the background assumption of ex-
cellence, see Step 13 below.
Data for the key inductive step. Steps 3-10 below are in the context of Claim
3.5, meaning that we �x the data of Claim 3.5(A) and de�ne the following objects
based on it. Thus all objects de�ned here are implicitly subscripted by � and a and
depend on the choice of sequence ⟨� � : � < �⟩ at this inductive step.
3. The set F1� = F1�,a,�. For each � < �, de�ne F1� to be the set of all � ∈ FI(Ga) such
that for some � ≤ �:
1. ℎ�|�� = ℎ�|�� mod D
2. � < � �⇒ ℎ�|�� ̸= ℎ�|�� mod D

i.e., � < � �⇒

{� ∈ �� : ℎ�(�) ̸= ℎ�(�) or ℎ�(�) = ℎ�(�)} = 0 mod D

Note that �xing�� there is a minimal � such that ℎ�|�� = ℎ�|�� mod D. Since the
ordinals arewell ordered, we can choose a least � for which there is such awitness
��.
4. The set F2� = F2�,a,�. For each � < �, choose F2� so that:
1. F2� ⊆ F1�
2. �� ̸= ��� ∈ F2� �⇒ ��, ��� are incompatible functions
3. F2� is maximal under these restrictions

5. Density.Notice that for ℓ = 1, 2Fℓ� is pre-dense, i.e. for every�� ∈ FI(Ga) for some
��� ∈ F1� the functions ��, ��� are compatible.

The set F1� is dense, meaning that for each �� ∈ FI(Fa) there is ��� ∈ F1� such
that�� ⊆ ���.Moreover, it is open,meaning that if��� ∈ F1� and��� ⊆ ���� then���� ∈
F1� . Here by “⊆” we mean that the domain of the smaller function is contained in
the domain of the larger function, and the two functions agree on their common
domain. [Note that � ⊆ �� �⇒ ��� ⊆ ��.]
6. The collision function. For each � < � de�ne the function �� : F2� → � by:

��(�) = min{� ≤ � : ℎ�|�� = ℎ�|�� mod D}
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Note that by the de�nition of F2� , this is the whole story in the sense that if
��(�) = � then for no �� ⊇ � does there exist �� < � such that ℎ�|��� = ℎ�� |���mod D.

7. The new support. By induction on � < � choose �� ∈ G∗ \Ga \ {�� : � < �} (wemake
no further requirements on the sequence, but note the functions will be distinct).

8. The partition. For each � < �, the sequence ⟨�� : � ∈ F2� ⟩ is (by de�nition) a
sequence of pairwise disjoint sets.

9. The re�nement. Let � = ⟨�� : � < �⟩ where for � < �

�� =⋃{�� ∩ (�−1��(�)({0}))
[�(�)] : � ∈ F2� }

where recall that for � ⊆ �, �[1] = �, �[0] = � \ �.
10. De�nition of b. Finally, we de�ne

b = (Ga ∪ {�� : � < �},Aa ∪ {�� : � < �})

Note that in contrast to the “usual” construction, here we have addressed the
problem of realizing a type by using � functions of range ℵ0, rather than a sin-
gle function of range �. Moreover, we do not complete to a good triple at the end
of the inductive step.

11. Proof of Claim 3.5(B)(a).We need to check that b as de�ned in Step 10 satis�es
clauses (a)-(e) of the de�nition of approximation from Step 1. The only non-trivial
part is proving that 0 ∉ �l⟨D ∪ Ab⟩, recalling Convention 3.4.

Suppose we are given �0, . . . ��−1 ∈ Aa and �0, . . . ��−1 < �. It will su�ce to
prove that

⋂
�<�
��� ∩⋂
ℓ<�
�ℓ ̸= 0 mod D

Informally speaking, we �rst try to �nd aD-nonzero set on which the correspond-
ing parameters ℎ�� are distinct. On such a set, the instructions for each ��� are
clearly compatible, so we can then �nd some ��∗ ∈ FI�(G∗), De�nition 2.9, which
is contained in their intersection mod D. We now give the details.

First, by (�)(�) of the inductive step and the fact that �l⟨D∪Aa⟩ is a �lter, there
is� ∈ �l⟨D∪a⟩,� ⊆ ⋂{�ℓ : ℓ < �} such that � < �� < ∧�(�) ̸= �(��) �⇒ ��,�� ⊇ �.
Moreover, by the de�nition of approximation, any � ∈ �l⟨D ∪ a⟩ contains a set
which is supported by Ga. Let � ∈ FI(Ga) be such that �� ⊆ � mod D.

Second, recall that eachF2� is pre-dense. So for each � < ,wemay choose��� ∈
F2�� which is compatible with �. As we can increase �, without loss of generality,
for � <  there is ��� ∈ F2�� such that ��� ⊆ � (choose these by induction on � < ).
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By choice of �, for no � < �� < � is it the case that ℎ�� = ℎ��� on ��. In other words,

� < �� < � ∧ �(�) ̸= �(��) �⇒ ��� (��� ) ̸= ���� (���� )

Thus (identifying functions with their graphs) the function �∗ de�ned by
�∗ = � ∪⋃{��� : � < �} ∪ {(��� , ��) : �� = ��� (���), �� = �(��)}

is indeed a function, thus an element of FI(G∗). Clearly ��∗ ⊆ ��� for each � <
�, and ��∗ ̸= 0 mod D by the hypothesis that (�,D,G∗) is a good triple. This
completes the proof of Step 11.

Now Claim 3.5(B)(b)-(c) obviously hold, so we are left with:

12. Proof of Claim 3.5(B)(d).We now show that if � ̸= � < �, �(�) ̸= �(�) then �� ∩�� ⊆
� �,� mod D. Note that if �(�) = �(�) the inclusion holds trivially, which is why we
assume �(�) ̸= �(�) (so � ̸= �).

Assume for a contradiction that�∗ := (��∩��)\� �,� ̸= 0 mod D. As��, ��, � �,�
are supported by Gb, there is �∗ ∈ FI(Gb) such that ��∗ ⊆ �∗ mod D.

As there is no problem increasing �∗, we may choose �� ∈ F2� , �� ∈ F2� such
that �� ⊆ �∗ ∧ �� ⊆ �∗. In other words, ��∗ ⊆ ��� ∩ ��� . Recall that

� �,� = {� ∈ � : ℎ�(�) ̸= ℎ�(�)}
By the de�nition of � �,�, since ��∗ ∩ � �,� = 0 mod D it must be that ℎ� = ℎ� on
��∗ mod D. Because we chose �� and �� from F2� and F2� , respectively, there must
be �� ≤ � and �� ≤ � so that ℎ� = ℎ�� on ��� , and ℎ� = ℎ�� on ��� . Since equality is
transitive, there is � ≤ min{�, �} such that ℎ� = ℎ� = ℎ� on ��∗ . In the notation of
Step 6, ��(��) = ��(��) = �.

Now we look at the de�nition of ��, ��. Since �(�) = t� ̸= �(�) = t�, we have that
�� ∩ ��∗ ⊆ (�−1� (0))t� whereas �� ∩ ��∗ ⊆ (�−1� (0))t� . Thus �� ∩ �� ∩ ��∗ = 0, which
is the desired contradiction.

13. Finishing the key inductive step.Why is Claim 3.5 su�cient to realize the type?
Let us rephrase the problem as follows.

Corollary 3.7. Let D be the excellent background �lter de�ned at the beginning of
the proof. Let a, ⟨ℎ� : � < �⟩, ⟨� �,� : � < � < �⟩, �, � be as given in Claim 3.5(�) at the
inductive stage . Let ⟨�� : � < �⟩, b be as given by Claim 3.5(�).

Then in any ultra�lterD1 extending �l⟨D ∪ b⟩, the type � is realized.
Proof. Let ⟨�� : � ∈ [�]<ℵ0⟩ be the sequence de�ned in the Discussion in Step
2, which corresponds to a distribution of the type �. Let �∗ = ⟨�� : � ∈ [�]<ℵ0⟩
be constructed from {�� : � < �} as in De�nition 3.6 above. By de�nition �∗ is
multiplicative. In step 12, it was shown that �∗ re�nes � mod D.
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De�ne a third sequence �� = ⟨��� : � ∈ [�]<ℵ0⟩ by ��� = �� ∩ �� for � ∈ [�]<ℵ0 .
Then the sequence �� truly re�nes �, but is only multiplicative moduloD.

By the excellence of D [i.e. Fact 2.4 above] we may replace �� by a sequence
⟨�∗∗� : � ∈ [�]<ℵ0⟩ such that:
– � ∈ [�]<ℵ0 implies �∗∗� ⊆ ��� ⊆ ��
– � ∈ [�]<ℵ0 implies �∗∗� = ��� mod D, thus �∗∗� ∈ �l⟨D ∪ b⟩
– ⟨�∗∗� : � ∈ [�]<ℵ0⟩ is multiplicative

Thus we may realize the type.

Step 14: Adding subsets of the index set.

Claim 3.8. Let � < 2�, a ∈ AP�, � ⊆ � be given. Then there is b ∈ AP�+1 such that
either � ∈ �l⟨D ∪ b⟩ or � \ � ∈ �l⟨D ∪ b⟩.
Proof. Let� = � if 0 ∉ �l⟨D ∪ a ∪ {�}⟩, otherwise let� = � \ �. By the hypothesis
that (�,D,G∗) is (�, �)-good, we may choose a partition ⟨��� : � < �⟩ of P(�)/D1
such that each �� ∈ FI(G∗). Let Gb = Ga ∪⋃{dom(��) : � < �}, and letAb = Aa ∪ {�}.
This su�ces.

Proof of Theorem 3.2.We now prove the theorem.

Proof. (of Theorem 3.2) Without loss of generality, |�| ≤ 2�.
Let ⟨�� : � < 2�⟩ enumerate P(�). Let ⟨ℎ�, �� : � < 2�⟩ enumerate all � ∈ �2

and all ℎ = ⟨ℎ� : � < �⟩with ℎ� ∈ ��, with each such pair appearing 2� times in the
enumeration.

We build the ultra�lter by induction on � ≤ 2�. That is, we choose a� ∈ AP�
by induction on � < 2� such that:
1. � < � �⇒ a� ≤ a�
2. if � = 2� + 1 then either �� ∈ �l⟨D ∪ a�⟩ or � \ �� ∈ �l⟨D ∪ a�⟩
3. if � = 2� + 2 and (a2�+1, ℎ

�, ��) satis�es Claim 3.5(�), then there is � which,
along with a�, satis�es Claim 3.5(�).

4. if � is a limit ordinal then a� is the least upper bound of {a� : � < �} in the
natural partial order, i.e. given by taking the union in both coordinates.

The odd inductive steps are given by Claim 3.8 above, and clearly ensure that
�l⟨D ∪ a2�⟩ is an ultra�lter. The even inductive steps are given by Claim 3.5 above,
and Corollary 3.7 ensures saturation.

Thus lettingD1 = �l⟨D ∪ a2�⟩, we complete the proof.

Sh:1009



336 | Maryanthe Malliaris, Saharon Shelah

Appendix
We include some de�nitions used mainly in §1.3. For details, see [14] §1.

De�nition 3.9. (Shelah [20] De�nition III.3.5) LetD be an ultra�lter on �.

�(D) := min{∏
�<�
��/D : �� < ℵ0, ∏

�<�
��/D ≥ ℵ0}

be theminimumvalue of the product of an unbounded sequence of cardinalsmod
D.

De�nition 3.10. (Good for equality, Malliaris [12]) Let D be a regular ultra�lter.
Say that D is good for equality if for any set � ⊆ � = ��/D, |�| ≤ |�|, there is a
distribution � : � → D such that � ∈ �, � ∈ �(�) ∩ �(�) implies that (� �� �[�] =
�[�]) ⇐⇒ (� �� � = �).
De�nition 3.11. (Lower co�nality, lcf(�, �)) Let� be an ultra�lter on � and � a car-
dinal. Let � = (�,<)�/D. Let � ⊂ � be the set of elements above the diagonal
embedding of �. We de�ne lcf(�, �) to be the co�nality of � considered with the
reverse order.
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