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Abstract. We show how to construct, via forcing, splitting families than are

preserved by a certain type of finite support iterations. As an application, we
construct a model where 15 classical characteristics of the continuum are pair-

wise different, concretely: the 10 (non-dependent) entries in Cichoń’s diagram,

m(2-Knaster), p, h, the splitting number s and the reaping number r.

1. Introduction

In this paper we present a method to preserve certain splitting families along
finite support iterations. These splitting families are constructed via forcing, using
specific uncountable 2-edge-labeled graphs1 as support. The main application of
this method is a forcing model where many classical cardinal characteristics of the
continuum are pairwise different, including the splitting number s and the reaping
number r.

We assume that the reader is familiar with Cichoń’s diagram (Figure 1) contain-
ing the characteristics that we will call Cichoń-characteristics. We also investigate
some of the characteristics in the Blass diagram [Bla10, Pg. 481]. Figure 2 illus-
trates both diagrams combined, along with all the ZFC-provable inequalities that
we are aware of. See [Bla10, BJ95] for the definitions and the proofs for the in-
equalities (with the exception of cof(M) ≤ i, which was proved in [BHHH04]). In
the following, we only give the definitions of the non-Cichoń-characteristics that we
will investigate in this paper.

Definition 1.1. (1) For a, b ∈ [ω]ℵ0 , we define a ⊆∗ b iff ar b is finite;
(2) and we say that a splits b if both a ∩ b and b r a are infinite, that is, a +∗ b

and ω r a +∗ b.
(3) F ⊆ [ω]ℵ0 is a splitting family if every y ∈ [ω]ℵ0 is split by some x ∈ F . The

splitting number s is the smallest size of a splitting family.
(4) D ⊆ [ω]ℵ0 is an unreaping family if no x ∈ [ω]ℵ0 splits every member of D. The

reaping number r is the smallest size of an unreaping family.
(5) D ⊆ [ω]ℵ0 is groupwise dense when:

(i) if a ∈ [ω]ℵ0 , b ∈ D and a ⊆∗ b, then a ∈ D,
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Figure 1. Cichoń’s diagram (left). In the version on the right,
the two “dependent” values add(M) = min{b, cov(M)} and
cof(M) = max{non(M), d} are removed; the “independent” ones
remain (nine entries excluding ℵ1, or ten including it). An arrow
x→ y means that ZFC proves x ≤ y.

(ii) if 〈In : n < ω〉 is an interval partition of ω then
⋃
n∈a In ∈ D for some

a ∈ [ω]ℵ0 .
The groupwise density number g is the smallest size of a collection of groupwise
dense sets whose intersection is empty.

(6) The distributivity number h is the smallest size of a collection of dense subsets
of 〈[ω]ℵ0 ,⊆∗〉 whose intersection is empty.

(7) Say that a ∈ [ω]ℵ0 is a pseudo-intersection of F ⊆ [ω]ℵ0 if a ⊆∗ b for all b ∈ F .
(8) The pseudo-intersection number p is the smallest size of a filter base of subsets

of [ω]ℵ0 without pseudo-intersection.
(9) The tower number t is the smallest length of a (transfinite) ⊆∗-decreasing se-

quence in [ω]ℵ0 without pseudo-intersection.
(10) Given a class P of forcing notions, m(P) denotes the minimal cardinal κ such

that, for some Q ∈ P, there is some collection D of size κ of dense subsets of
Q without a filter in Q intersecting every member of D.

(11) Let P be a poset. A set A ⊆ P is k-linked (in P) if every k-element subset of A
has a lower bound in P. A is centered if it is k-linked for all k ∈ ω.

(12) A poset P is k-Knaster, if for each uncountable A ⊆ P there is a k-linked
uncountable B ⊆ A. And P has precaliber ℵ1, if such a B can be chosen
centered. For notational convenience, 1-Knaster means ccc, and ω-Knaster
means precaliber ℵ1.

(13) For 1 ≤ k ≤ ω denote mk := m(k-Knaster) and m := m1. We also set m0 := ℵ1.

Below we list some additional properties of these cardinals. Unless noted other-
wise, proofs can be found in [Bla10].

Fact 1.2. (1) In [MS16] it was proved that p = t.2

(2) The cardinals add(N ), add(M), b, t, h and g are regular.
(3) cof(s) ≥ t (see [DS18]).
(4) 2<t = c.
(5) cof(c) ≥ g.
(6) For 1 ≤ k ≤ k′ ≤ ω, mk ≤ mk′ .
(7) For 1 ≤ k ≤ ω, mk > ℵ1 implies mk = mω (well-known, but see e.g.

[GKMS, Lemma 4.2]).

2Only the trivial inequality p ≤ t is used in this text.
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Figure 2. Cichoń’s diagram and the Blass diagram combined. An
arrow x→ y means that ZFC proves x ≤ y.

This work contributes to the project of constructing a forcing model satisfying:

(♥) All the cardinals in Figure 2 are pairwise different,

with the obvious (ZFC provable) exception of the dependent entries add(M) =
min{b, cov(M)} and cof(M) = max{non(M), d}, and the Martin axiom numbers
m, mk for some 2 ≤ k < ω, and mω, which together can only take one uncountable
value, see Fact 1.2(7).

In this direction [GKS19] constructed a forcing model, using four strongly com-
pact cardinals, where all the ten (non-dependent) values of Cichoń’s diagram are
pairwise different (a situation we call Cichoń’s Maximum), as in Figure 3(A). This
was improved later in [BCM20] by only using three strongly compact cardinals;
finally in [GKMS20] it was shown that no large cardinals are needed for Cichoń’s
Maximum.

A model of Cichoń’s Maximum with the order as in Figure 3(B) was obtained
in [KST19]. Although this model initially required four strongly compact cardinals
as well, the methods of [GKMS20] allow to remove the large cardinal assumptions
also here.

As a next step towards (♥), [GKMS] proved:

Theorem 1.3 ([GKMS]). Under GCH, for any k ∈ [1, ω), there is a cofinality
preserving poset Pk forcing that

(a) Cichoń’s Maximum holds with the order of Figure 3(a).
(b) ℵ1 = mk−1 < mk = mω < p < h < add(N ) (recall m0 := ℵ1).

An analogous result holds for the alternative order of Figure 3(b).
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c

cov(N )

  

non(M)

    

cof(N )

OO

b

OO

d

add(N )

OO

cov(M)

OO

non(N )

OO

ℵ1

OO

(a) [GKS19, GKMS20]

c

cov(N ) // non(M)

  

// cof(N )

OO

b

hh

d

add(N ) // cov(M) // non(N )

gg

ℵ1

OO

(b) [KST19, GKMS20]

Figure 3. The two known consistent orders where all the (non-
dependent) values in Cichoń’s diagram are pairwise different. (A)
corresponds to the model in [GKS19], and (B) to the model
in [KST19] (both proven consistent in [GKMS20] without large
cardinals). Each arrow can be < or = as desired.

In this paper, we continue this line of work by including, in addition, s and r.

Main Theorem. Under GCH, for any k ∈ [2, ω) there is a cofinality preserving
poset forcing that the cardinals in Cichoń’s diagram, mk, p, h, s and r are pairwise
different. More specifically:

(a) Cichoń’s Maximum holds, in either of the orders of Figure 3.
(b) ℵ1 = mk−1 < mk = mω < p < h < add(N ).
(c) s can assume any regular value between p and b.
(d) r can assume any regular value between d and c.

In both theorems above, item (b) can also be replaced by ℵ1 < mω < p < h <
add(N ) while mk = ℵ1 for all k < ω. Those are the only possible constellations of
the Knaster numbers, by Fact 1.2(7), unless you count m as the 1-Knaster-number:
In contrast to Theorem 1.3 (where we do not control r, s), we cannot force m > ℵ1

with the methods we use here. We cannot just iterate over all small ccc forcings
one by one to increase m, as our method requires that all iterands of the forcing
iteration have to be “homogeneous”. So instead of using a certain small forcing
Q̇ as iterand, we will use a finite support product over all variants as iterand. So
only if Q̇ (and therefore all variants) is Knaster,3 this product can be used in a ccc
iteration; accordingly we can increase the Knaster numbers but not m itself.

We remark that the full power of GCH is not required in the Main Theorem,
but we do need some assumption on cardinal arithmetic in the ground model. See
details in Section 7.

In order to include s and r in our main result, we need a new preservation
theorem for splitting families. Previously, the following was known in the context
of FS (finite support) iterations:

[BD85] Hechler forcing (for adding a dominating real) preserves splitting families
witnessing the property LCURsp

(κ) for any uncountable regular κ (see Sec-
tion 3).

[JS88] Assuming CH, any FS iteration of Suslin ccc posets forces that the ground
model reals form a splitting family.

3Or at least stays ccc in ccc extensions.
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In this paper we will use a splitting family obtained by a FS product of Hechler-
type posets (cf. [Hec72]) which we call GB; the support of GB is a graph B of size
ℵ1 with certain homogeneity properties. We then show that this splitting family is
preserved by certain FS iterations, which we will call “symmetric Suslin-λ-small”.
(Every FS iteration of Suslin ccc posets with parameters in the ground model is
such an iteration, but our application will not use such “full” Suslin ccc forcings.)

Similar preservation techniques have appeared in different contexts. For instance,
concerning preservation of mad (maximal almost disjoint) families, Kunen [Kun80]
constructed, under CH, a mad family that can be preserved by Cohen posets;
afterwards, Steprans [Ste93] showed that, after adding ω1-many Cohen reals, there
is a mad family of size ℵ1 that can be preserved in further Cohen extensions;
Fischer and Brendle [BF11] constructed a Hechler-type poset HA with support (any
uncountable set) A that adds a mad family indexed by A, which can be preserved
not only in further Cohen extensions but after other concrete FS iterations, thus
generalizing Steprans’ result because Hω1

= Cω1
; [FFMM18, Mej19a] showed that

any such mad family added by HA can be preserved by some general type of FS
iterations, but the most general result so far was shown in [BCM20]: Any κ-Fr-
Knaster poset preserves κ-strong-Md-families (with κ uncountable regular; the
mad family added by Hκ is of such type).

There are deep technical differences between the mad family added by this HA,
and the construction of a splitting family in this paper: No structure is needed on
A, and because of this it is clear that Hechler’s posets satisfy HA l HB whenever
A ⊆ B; but we cannot guarantee GB0

l GB for our posets, whenever B0 is a
subgraph of B. Also, GB itself does not add a splitting family, but it just adds a
set of Cohen reals {ηa : a ∈ B} over the ground model (recall that we do not have
intermediate extensions by restricting the support B). Hence, the FS product (or
iteration, which is the same, as the poset GB is absolute) of size κ of such posets
adds a splitting family of size κ (witnessing LCUR(κ)) formed by the previously
mentioned Cohen reals. It is clear that just adding κ many Cohen reals produces
a splitting family satisfying LCUR(κ), but we need to use FS support products of
κ many GB (with B of size ℵ1, instead of just one GB′ with B′ of size κ), and
we need the graph structure on B, to be able to guarantee the preservation of
the new splitting family. The forcing structure is very important here because an
isomorphism of names argument is required for this preservation.

The strategy to prove the main theorem is similar to Theorem 1.3. We first show
how to construct a ccc poset that forces distinct values for the cardinals on the left
side of Cichoń’s diagram, including some of the other cardinal characteristics (like
s in this case). Afterwards, methods from [GKMS20, GKMS] are applied to this
initial forcing to get the poset for the main theorem.

Annotated contents.

§2 We show how to construct, in ZFC, a suitable 2-graph. This is the type of graph
we use as support for GB.

§3 The LCU and COB properties are reviewed from [GKS19, GKMS20, GKMS].
These describe strong witnesses to cardinal characteristics associated with a de-
finable relation on the reals. Examples of such cardinal characteristics are the
Cichoń-characteristics as well as s and r.
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§4 We introduce the forcing GB, which has as support a suitable 2-graph B. We
look at FS iterations of ccc posets, in general, whose initial part is a FS product
of posets of the form GB where B is in the ground model. We define λ-small
history iterations (where on a dense set, conditions have <λ-sized history), as well
as symmetric iterations, and show that symmetric λ-small history iterations allow
us to control s (and later also r).

§5 We define Suslin λ-small iterations, which are λ-small history iterations, and
give consequences of this notions, as well as sufficient conditions to get symmetric
ones.

§6 Closely following [GKS19], we construct a symmetric Suslin-λ-small iteration P0

that separates the cardinals on the left hand side of the diagram, with cov(M) = c
and s = p.

§7 We show how the tools of [GKMS20, GKMS] can applied to P0, resulting in a
forcing that gives the main theorem.

§8 We discuss some open questions related to this work.

2. Suitable 2-graphs

In this section we define and construct suitable 2-graphs.

Definition 2.1. Say that B := 〈B,R0, R1〉 is a 2-edge-labeled graph, abbreviated
2-graph, if

(i) R0 and R1 are irreflexive symmetric relations on B,
(ii) R0 ∩R1 = ∅.

In other words: Between two nodes x and y there is at most one edge, with color
0 or 1. See the example in Figure 4(a).

Concerning 2-graphs, we define the following notions.

(1) If A ⊆ B, denote B|A := 〈A,R0|A, R1|A〉 where Re|A := Re ∩ (A×A).
(2) A partial function (or coloring) η from B into 2 respects B if {η(a), η(b)} 6= {e}

whenever e ∈ 2, a, b ∈ dom η and aReb.

See Figure 4 for examples. The 2-graph of Figure 5 does not have a coloring
(with full domain) respecting it.

A 2-graph B is a suitable 2-graph (S2G) if it satisfies, in addition,

(iii) |B| = ℵ1,
(iv) for e ∈ {0, 1}, B contains some Re-complete subset of size ℵ1,
(v) if a ∈ B and e ∈ {0, 1} then there is some η : B → 2 respecting B such that

η(a) = e.
(vi) For any a, b ∈ B, there is some automorphism f of B such that f(a) = b.

Properties (iv) and (vi) imply for all b ∈ B and e ∈ {0, 1}:
(2.2) b is contained in an uncountable Re-complete subgraph of B.

Remark 2.3. In our applications, we only need the following weakening of property
(v): for any t ∈ [B]<ℵ0 , a ∈ t and e ∈ 2, there is some η : t → 2 that respects B
such that η(a) = e. The only place where (the weakening of) (v) is used is in the
proof of Lemma 4.2(b).

The following definition and lemma will be used to construct a suitable 2-graph:

Definition 2.4. Fix a 2-graph B.
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Figure 4. (a) A (finite) 2-graph. The coloring in (b) does not
respect the graph, the one in (c) does.
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Figure 5. A finite 2-graph which cannot be respected by any coloring.

(1) A finite partial function s : B → 2 with |dom s| ≥ 2 (which we may also
call “finite positive atomic type”) is realized by z ∈ B, if xRs(x)z for any
x ∈ dom s.

(2) Let D ⊆ B. We say D �− B if any such type s : D → 2 which is realized
in B is also realized in D.

Note that we require this only for “types” with at least two edges. So when
checking D �− B we can ignore all b ∈ B which have at most one edge to elements
of D.

Lemma 2.5. Let B = 〈B,R0, R1〉 be a 2-graph and A �− B. Then:

(a) If η : A → 2 respects B and c ∈ B r A, then η can be extended to some
η′ : A ∪ {c} → 2 that respects B.

(b) If in addition B|A satisfies (v) of Definition 2.1 then, whenever c ∈ BrA and
e ∈ 2, there is some η′ : A ∪ {c} → 2 that respects B such that η′(c) = e.

(c) Now assume that all elements of B rA have edges only to elements of A, i.e.,
(B r A)2 ∩ (R0 ∪R1) = ∅. Then under the assumptions of (a), we can extend
η to some η′′ : B → 2; and under (b) we can find some η′′ : B → 2 with
η′′(c) = e.

Proof. (a): By contradiction: Assume that η cannot be extended in such way,
which means that there are x 6= y in A such that xR0c, yR1c, η(x) = 0 and
η(y) = 1. Since A �− B, there is some z ∈ A such that xR0z and yR1z, but this
contradicts that η respects B.
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(b): Assume x0R1−ec for some x0 ∈ A. Then, by Definition 2.1(v), there is
some η : A → 2 respecting B such that η(x0) = 1 − e. By (a) we can extend it to
η′ : A ∪ {c} → 2, and η′(c) has to be e.

So now we assume that c only has e-connections to A (if any). It is enough to
show that there is some η coloring A which assigns 1 − e to all neighbours of c in
A: Then we can again extend it by setting η′(c) = e.

Say that p : wp → A is a 0-1-path if it satisfies

(i) 0 < wp ≤ ω,
(ii) p(0)Rec,
(iii) if n < wp and n ≡ i mod 2 then p(n)R|1−e−i|p(n+ 1), that is,

p(0) R1−e p(1) Re p(2) R1−e p(3) . . . .

It is clear that, whenever p : wp → A is a 0-1 path, then there is a unique ηp :
ran p → 2 respecting B such that ηp(p(0)) = 1 − e. Some such coloring exists, as
we assume Definition 2.1(v) for B|A. Uniqueness is clear: as p(0) gets color 1− e,
p(1) has to have color e, etc., i.e. ηp(p(n)) = e iff n is odd. Note that

(2.6) ηp(p(n)) = j implies that the edge from p(n) to p(n− 1) has color 1− j

(where we set p(−1) := c).
Let A′ ⊆ A be the union of (the ranges of) all 0-1-paths. We first show that

there is a unique ηc : A′ → 2 respecting B such that ηc(x) = 1− e whenever xRec.
Uniqueness is clear: Each node in A′ lies on a 0-1-path, which determines its

color. Set ηc to be the union of the ηp for all 0-1-paths p. So it is enough to show
that ηc is a function and that it respects B.
ηc is a function: Assume that p, q are 0-1-paths, m < wp and n < wq and p(m) =

q(n). If p(0) = q(0) then there is some η0 : A→ 2 respecting B with η0(p(0)) = 1−e,
and this η0 must extend both ηp and ηq, hence ηp(p(m)) = ηq(q(n)) = η0(p(m)).
So assume p(0) 6= q(0), so in particular p(0)Rec and q(0)Rec. As A �− B, there is
some z ∈ A such that p(0)Rez and q(0)Rez. We can choose η1 : A→ 2 respecting
B such that η1(z) = e. This implies η1(p(0)) = η1(q(0)) = 1− e, hence η1 extends
both ηp and ηq, so ηp(p(m)) = ηq(q(n)) = η1(p(m)).
ηc respects B: Assume towards a contradiction that there are 0-1-paths p, q,

m < wp, n < wq and j < 2 such that ηc(p(m)) = ηc(q(n)) = j and p(m)Rjq(n).
It cannot be that p(0) = q(0) because there is some η0 : A → 2 respecting B with
η0(p(0)) = 1− e, and such η0 must extend both ηp and ηq. Hence p(0) 6= q(0). As
before, A �− B implies that there is some z ∈ A such that p(0)Rez and q(0)Rez,
and there is an η1 : A→ 2 respecting B such that η1(z) = e. Since η1 extends both
ηp and ηq, η1(p(m)) = η1(q(n)) = j and p(m)Rjq(n), a contradiction.

It remains to be shown that ηc can be extended to all of A. For this, choose
any η2 : A → 2 respecting B, and define η : A → 2 by η(x) := ηc(x) if x ∈ A′,
or η(x) := η2(x) otherwise. We claim that η respects B. Assume otherwise, i.e.,
there are x ∈ A′, y ∈ ArA′ and j < 2 such that xRjy and η(x) = η(y) = j. Since
x ∈ A′, there is some 0-1-path p such that x = p(n). By (2.6) ηc(x) = j implies
that the edge between p(n) and p(n−1) is 1−j, but this means that we can extend
p�n to y and get another 0-1-path, a contradiction to y /∈ A′.

(c): First note that, whenever A ⊆ A′ ⊆ B, A′ �− B: Assume b ∈ B r A′. As
there are no connections between b and A′ rA, any finite type over A′ realized by
b is a type over A, which is realized in A as A �− B.
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PRESERVATION OF SPLITTING FAMILIES 9

Therefore, we can construct η′′ by Zorn’s Lemma or by induction (starting with
a suitable η′ as in (b), if required). �

Theorem 2.7. There exists a suitable 2-graph.

Proof. We are going to construct, using forcing notation,4 two relations R∗0 and R∗1
on ω1 such that 〈ω1, R

∗
0, R

∗
1〉 becomes a S2G. Define the poset P whose conditions

are tuples p = 〈Bp, Rp0, Rp1,W p
0 ,W

p
1 , L

p, Ap〉 satisfying the following:

(C1) Bp := 〈Bp, Rp0, Rp1〉 is a 2-graph with Bp ⊆ ω1 countable.
(C2) For each e ∈ 2, W p

e ⊆ Bp is infinite and Rpe-complete, and W p
0 ∩W p

1 = ∅.
(C3) Lp = {ηpa,e : (a, e) ∈ Bp×2} where ηpa,e : Bp → 2 respects Bp and ηpa,e(a) = e,

for any (a, e) ∈ Bp × 2.
(C4) Ap = {fpa,b : (a, b) ∈ Cp} such that Cp ⊆ Bp ×Bp and, for any (a, b) ∈ Cp.

(F1) fpa,b : Dp
a,b → Dp

a,b is a bijection,

(F2) a, b ∈ Dp
a,b and fpa,b(a) = b,

(F3) for any x, y ∈ Dp
a,b and e ∈ 2, xRpey iff fpa,b(x)Rpef

p
a,b(y),

(F4) Dp
a,b �− Bp.

Order P by q ≤ p iff the following is satisfied:

(O1) Bp is a 2-subgraph of Bq, and Bp �− Bq,
(O2) Cp ⊆ Cq and W q

e ∩Bp = W p
e for e ∈ 2,

(O3) for any a ∈ Bp and e ∈ 2, ηpa,e ⊆ ηqa,e, and

(O4) for any (a, b) ∈ Cp, fpa,b ⊆ f
q
a,b.

Note that P 6= ∅. Indeed, choose disjoint W •0 ,W
•
1 ⊆ ω1 of size ℵ0, and define

B• := 〈B•, R•0, R•1〉 where B• := W •0 ∪W •1 and, for e ∈ 2, xR•ey iff x, y ∈W •e . It is
easy to construct an L• such that 〈B•, R•0, R•1,W •0 ,W •1 , L•, ∅〉 is a condition in P.

Recall that, for any σ-closed poset and arbitrary ℵ1-many dense subsets, there
is a filter intersecting these dense sets. So, after showing that P is σ-closed, we can
obtain a suitable 2-graph from a filter intersecting suitable dense sets.

P is σ-closed: Let 〈pn : n < ω〉 be a decreasing sequence of conditions in P.
Denote Bpn = Bn, Rpn0 = Rn0 , and so on. Set B :=

⋃
n<ω B

n, Re :=
⋃
n<ω R

n
e

and We :=
⋃
n<ωW

n
e for e ∈ {0, 1}, B := 〈B,R0, R1〉, and C :=

⋃
n<ω C

n. For
(a, b) ∈ C set fa,b :=

⋃
n≥m f

n
a,b where m = min{n < ω : (a, b) ∈ Cn}. For a ∈ B

and e ∈ 2, set ηa,e :=
⋃
n≥m η

n
a,e where m = min{n < ω : a ∈ Bn}. Put L := {ηa,e :

(a, e) ∈ B × 2}, A := {fa,b : (a, b) ∈ C}, and q := 〈B,R0, R1,W0,W1, L,A〉. It is
easy to see that q ∈ P and that it is stronger than each pn.

The following sets are dense in P:

(I) Da∗ := {p ∈ P : a∗ ∈ Bp} for any a∗ ∈ ω1. Let p ∈ P and assume a∗ /∈ Bp. We
define q ≤ p in Da∗ as follows:

(i) Bq := Bp ∪ {a∗};
(ii) Rqe := Rpe and W q

e := W p
e for e ∈ {0, 1};

(iii) Cq := Cp,
(iv) fqa,b := fpa,b for all (a, b) ∈ Cp.

Obviously we can extend each old ηqa,e (by assigning an arbitrary value e to a∗),

and picking two such extensions for e = 0, 1 we get the required ηqa∗,e.

4Equivalently we could formulate it as an inductive construction, taking care of ℵ1-many
requirements in ω1-many steps.

Paper Sh:1199, version 2020-07-27. See https://shelah.logic.at/papers/1199/ for possible updates.



10 M. GOLDSTERN, J. KELLNER, D.A. MEJÍA, AND S. SHELAH

It is clear that Bp �− Bq, as the new node has no edges. This implies that
Dq

(a,b) = Dp
(a,b) �− Bq, as �− is transitive (the same argument will apply to the

following dense sets as well).

(II) Ea∗,b∗ := {p ∈ P : (a∗, b∗) ∈ Cp} for any a∗, b∗ ∈ ω1. Without loss of generality
assume that p ∈ P and a∗, b∗ ∈ Bp, but (a∗, b∗) /∈ Cp. We want to find some q ≤ p
in Ea∗,b∗ . When a∗ = b∗, it is enough to set fqa∗,b∗ = idBp , Cq := Cp ∪ {(a∗, a∗)},
and leave the other components as in p. So assume that a∗ 6= b∗.

The set Bq will be the union of Z many copies of Bp, where b∗ in the m-th copy
is identified with a∗ in the m+1-th copy. In more detail: Denote B0 := Bp. Find a
sequence 〈B′m : m ∈ Zr{0}〉 of pairwise disjoint subsets of ω1 of size ℵ0 and disjoint
to B0. Set a0 := a∗, a1 := b∗, and for m ∈ Z r {0, 1} choose pairwise different
am ∈ ω1 r

(
B0 ∪

⋃
m∈Zr{0}B

′
m

)
. For m 6= 0 put Bm := B′m ∪ {am, am+1}. Note

that, for any m,n ∈ Z, if |m−n| > 1 then Bm∩Bn = ∅, and Bm∩Bm+1 = {am+1}.
Choose a bijection gm : Bmr{am+1} → Bm+1r{am+2} such that gm(am) = am+1,
and let fqa∗,b∗ = f :=

⋃
m∈Z gm, which is a bijection from Bq(a∗,b∗) :=

⋃
m∈ZBm onto

itself. Define for e ∈ 2 and x, y ∈ Bq(a∗,b∗), xRqey iff:

x 6= y, they belong to the same (unique) Bm and f (−m)(x)Rpef
(−m)(y).

It is clear that Bp = B0 �− Bq, as any x ∈ Bq rBp has connections to at most
one node in Bp (to either a∗ or b∗).

We setW q
e := W p

e and Cq := Cp∪{(a∗, b∗)}, and leave the partial automorphisms
in p unchanged, i.e., fqa,b := fpa,b for (a, b) ∈ Cp.

It is now enough to show that we can extend every old ηpa,e to ηqa,e : Bq → 2,

and find for each new b ∈ Bq and e ∈ 2 a suitable ηqb,e.

Assume η0 := ηpa,e ∈ Lp. We extend η0 in the following way: Let e1 := ηpa,e(a1).
Set η1 := ηpa1,e1 ∈ Lp. We now extend η0 to B1 by setting η(f(x)) := η1(x)
for x ∈ B0; and continue by induction (to the right and also to the left). In
more detail: define ηn : Bn → 2 and η−n : B−n → 2 by recursion on n ∈ ω
as ηn+1 := ηpa,ηn(an+1) ◦ f−(n+1) and η−(n+1) := ηpb,η−n(a−n) ◦ fn+1 (we already

have η0 from the start). All these functions are compatible, so we can define
ηqa,e :=

⋃
m∈Z ηm, and it is clear that it respects Bq.

Similarly, we get new ηqa,e for a ∈ Bq r Bp. Concretely, ηqa,e := ηqf−m(a),e ◦ f−m
where m is the one with minimum absolute value such that a ∈ Bm, and ηqf−m(x),e

is defined as in the previous paragraph.

(III) E′a∗,b∗,c∗ := {p ∈ P : (a∗, b∗) ∈ Cp, c∗ ∈ Dp
a∗,b∗} for any a∗, b∗, c∗ ∈ ω1.

Without loss of generality, assume p ∈ P, (a∗, b∗) ∈ Cp and c∗ ∈ Bp r Dp
a∗,b∗ .

Denote Dp := Dp
a∗,b∗ . Let c0 := c∗ and, for m ∈ Z r {0}, choose pairwise different

cm ∈ ω1 r Bp. Set Dq := Dp ∪ {cm : m ∈ Z} and f : Dq → Dq extending fpa∗,b∗
such that f(cm) := cm+1. Define q as follows:

(i) Bq := Bp ∪ {cm : m ∈ Z r {0}};
(ii) A new node cn has an Re-edge to fn(x) iff c0 = c∗ has an Re-edge to x.

(iii) W q
e := W p

e ;
(iv) Cq := Cp;
(v) fqa∗,b∗ = f (with Dq

a∗,b∗ = Dq), and the other partial automorphisms are

unchanged (i.e., for (a, b) ∈ Cq r {(a∗, b∗)}, fqa,b := fpa,b).
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Bp �− Bq: Let s : Bp → 2 be a type realized by cn (n 6= 0). Then actually
dom(s) ⊆ Dp, as cn only has connections to Dp. As Dp �− Bp, and the type
s′ := s ◦ fn is realized by c∗ = c0, we know that s′ is realized by some z ∈ Dp.
Then s is realized by fn(z) ∈ Dp ⊆ Bp.
Dq
a∗,b∗ = Dq �− Bq: If x ∈ Bq r Dq, then x ∈ Bp and has edges only to Bp.

So any s : Dq → 2 realized by x has domain in Dp, and as Dp �− Bp, this s is
realized in Dp ⊆ Dq.

To see that we can extend all old ηpa,e to ηqa,e : Bq → 2, and that we can find ηqcm,e
for e < 2 and m 6= 0, it is enough to note that all the assumptions in Lemma 2.5(c)
are met (where we use A = Bp and B = Bq).

(IV) E′′α,e := {p ∈ P : ∃b∗ ∈ W p
e (b∗ ≥ α)} for α < ω1 and e ∈ 2. Choose

b∗ ∈ ω1 r (Bp ∪ α) and define q such that

(i) Bq := Bp ∪ {b∗}, and the new node b∗ is Re-connected to exactly the nodes
in W p

e , and has no R1−e-connections.
(ii) W q

e := W p
e ∪ {b∗} and W q

1−e := W p
1−e,

(iii) Cq := Cp,
(iv) fqa,b := fpa,b for all (a, b) ∈ Cp.
Bp �− Bq: Let s : Bp → 2 be realized by b∗. This implies that dom s ⊆ W p

e and
s(x) = e for all x ∈ dom s. Since W p

e is infinite, there is some z ∈ W p
e ⊆ Bp such

that xRpez for all x ∈ dom s.
Given any old ηpa,e, we can extend it to a function ηqa,e with domain Bq by

Lemma 2.5(a); and for arbitrary e ∈ 2, we get ηqb∗,e by Lemma 2.5(b). (Again, we

use A = Bp and B = Bq.)

Let D be the collection of all dense sets defined above. Since P is σ-closed
and |D| = ℵ1, there is some filter G ⊆ P intersecting all the dense sets in D.
Set R∗e :=

⋃
p∈GR

p
e and Ue :=

⋃
p∈GW

p
e for e ∈ {0, 1}. Since G ∩ Da 6= ∅ and

G∩Ea,b 6= ∅ for any a, b ∈ ω1, we have
⋃
p∈GB

p = ω1 and
⋃
p∈G C

p = ω1×ω1. Set

B := 〈ω1, R
∗
0, R

∗
1〉, which is a 2-graph. It is clear that Bp is a 2-subgraph of B for

any p ∈ G. On the other hand, E′′α,e∩G 6= ∅ for all α < ω1 and e ∈ 2, which implies
that Ue is an R∗e-complete subset of ω1 of size ℵ1. Even more, Ue ∩ Bp = W p

e for
any p ∈ G, and U0 ∩ U1 = ∅.

For a ∈ ω1 and e ∈ 2 set ηa,e :=
⋃{ηpa,e : a ∈ Bp, p ∈ G}. It is routine to check

that ηa,e : ω1 → 2 respects B. This guaranties (v) of Definition 2.1.
For a, b ∈ ω1, set fa,b :=

⋃{fpa,b : (a, b) ∈ Cp, p ∈ G}. Since G ∩ E′a,b,c 6= ∅ for

any c ∈ ω1,
⋃
p∈GD

p
a,b = ω1 and fa,b is a B-automorphism. This shows property

(vi) of Definition 2.1. Therefore, B is a S2G. �

3. Cardinal Characteristics, COB and LCU

Many classical characteristics can be defined by the framework of relational sys-
tems as in e.g. [Voj93, Bla10]. Say that R := 〈X,Y,R〉 is a relational system if X
and Y are non-empty sets, and R is a relation. The following cardinal characteris-
tics are associated with R.

d(R) := min{|D| : D ⊆ Y and ∀x ∈ X ∃y ∈ D (xRy)};
b(R) := min{|F | : F ⊆ X and ¬∃y ∈ Y ∀x ∈ X (xRy)}.
In this work, we are particularly interested in relational systems R such that
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(RS1) X and Y are subsets of Polish spaces Z0 and Z1, respectively, and absolute
for transitive models of ZFC (e.g. they are analytic);

(RS2) R ⊆ Z0×Z1 is absolute for transitive models of ZFC (e.g. analytic in Z0×Z1).

When these properties hold we say that R is a relational system of the reals. In all
the cases explicitly mentioned throughout this paper, X and Y are Polish spaces
themselves and R is Borel in X × Y . In this case, there is no problem to identify
X = Y = ωω, and we call R, or rather the characteristics b(R) and d(R), Blass-
uniform (cf. [GKMS, §2]).

Example 3.1. ([Voj93, 2.2.2] or [Bla10, §4 & §5]) The splitting number s and the
reaping number r are Blass-uniform: Denote Rsp := 〈2ω, [ω]ℵ0 , Rsp〉 where xRspy
iff x�y is constant except in finitely many points of y. Then s = b(Rsp) and
r = d(Rsp).5

Also all Cichoń-characteristics are Blass-uniform. The Blass-uniform relational
systems we use for these characteristics are (as in the Cichoń’s Maximum con-
structions) in some instances slightly different from the “canonical” ones. See
e.g. [BCM20, Ex. 2.16], [Mej19b, Ex. 2.10] and [GKS19, §1] for the definition of the
Blass-uniform relational systems corresponding to the Cichoń-characteristics.

As in [GKMS20] we also look at relational systems S = 〈S, S,≤〉 where ≤ is an
upwards directed partial order on S. Here cp(S) := b(S) is the completeness of S,
and cof(S) := d(S) is the cofinality of S. Recall that, whenever S has no greatest
element, cp(S) ≤ cof(S), and equality holds when the order is linear.

The following is a very useful notion to calculate the value of cardinal charac-
teristics (specially in forcing extensions).

Definition 3.2 (cf. [GKS19, §1]). Fix a directed partial order S = 〈S,≤〉 and a
relational system R = 〈X,Y,R〉. Define the property:

Cone of bounds.
COBR(S) means: There is a family ȳ = {yi : i ∈ S} ⊆ Y such that

∀x ∈ X ∃ix ∈ S ∀j ≥ ix (xRyj).

When L = 〈L,≤〉 is a linear order, we additionally define
Linear cofinally unbounded.
LCUR(L) means: There is a family x̄ = {xi : i ∈ L} ⊆ X such that

∀y ∈ Y ∃i ∈ L∀j ≥ i (¬(xjRy)).

In the following remarks we address very natural characterizations and conse-
quences of these properties.

Remark 3.3 (Tukey connections and COB). Let ȳ be a witness of COBR(S). By
the definition of COBR(S) we have that the functions f : X → S and g : S → Y ,
defined by f(x) := ix and g(i) := yi, form a Tukey connection from R into S. So
we conclude that

COBR(S) holds iff R ≤T S,

where ≤T denotes the Tukey order.

5It would be more natural to consider the relational system 〈[ω]ℵ0 , [ω]ℵ0 , R〉 where xRy iff
either x ⊇∗ y or ω r x ⊇∗ y, but Rsp is more suitable in our proofs. It is not hard to see that

both relational systems are Tukey-equivalent.
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Remark 3.4 (Duality and LCU). Let R = 〈X,Y,R〉 be a relational system. The
dual of R is the relational system R⊥ := 〈Y,X,R⊥〉 where uR⊥v ⇔ ¬(vRu). It is
clear that d(R⊥) = b(R) and b(R⊥) = d(R). Also, given a linear order L,

LCUR(L) iff COBR⊥(L).

Hence, by Remark 3.3,
LCUR(L) iff R⊥ ≤T L.

When L has no greatest element, L⊥ is Tukey-equivalent to L, so

LCUR(L) iff L ≤T R.

Although LCU is a particular case of COB, they are used with different roles in our
applications, so it is more practical to use different notations.

As a direct consequence of these remarks:

Lemma 3.5 (cf. [GKS19, §1]). Let R be a relational system, S a directed partial
order and let L be a linear order without greatest element. Then

(a) COBR(S) implies cp(S) ≤ b(R) and d(R) ≤ cof(S).
(b) LCUR(L) implies b(R) ≤ cp(L) = cof(L) ≤ d(R).

In our applications we aim to force COBR(S) and LCUR(L) for a given relational
system of the reals R; this will help us compute the value of b(R) and d(R) in
generic extensions. For this purpose, the following variation of Definition 3.2 is
very practical.

Definition 3.6 ([GKMS20]). Let R = 〈X,Y,R〉 be a relational system of the reals,
S = 〈S,≤S〉 a directed partial order, L = 〈L,≤L〉 a linear order, and let P be a
forcing notion. Define the following properties.

COBR(P, S): There is a family ˙̄y = {ẏi : i ∈ S} of P-names of members of Y V
P

such that, for any P-name ẋ of a member of XV P
there is some i ∈ S such that


P ∀j ≥S i (ẋRẏj).

LCUR(P, L): There is a family ˙̄x = {ẋi : i ∈ L} of P-names of members of XV P

such that, for any P-name ẏ of a member of Y V
P

there is some i ∈ L such that


P ∀j ≥L i (¬(ẋjRẏ)).

Remark 3.7. Concerning the properties COBR(P, S) and LCUR(P, L), the rela-
tional system R (i.e., both base sets as well as the relation) are interpreted in the
generic extension (this is why we required these objects to be definable), while S
and L are taken as sets in the ground model (not interpreted).

It is clear that COBR(P, S) implies 
P COBR(S). Although the converse is not
true in general, it holds in the cases we are interested in, when P is ccc and cp(S)
is uncountable. More precisely, if cp(S) is uncountable and P is cp(S)-cc then

COBR(P, S) is equivalent to 
P COBR(S). Moreover, P forces cp(S)V
P

= cp(S)V

and cof(S)V
P ≤ cof(S)V , so, by Lemma 3.5, in the generic extension COBR(S)

implies cp(S)V ≤ b(S) and d(S) ≤ cof(S)V .
Likewise, LCUR(P, L) implies 
P LCUR(L), and the converse holds whenever L

has no greatest element, cof(L) is uncountable and P is cof(L)-cc.
However, the restriction “cp(S) is uncountable and P is cp(S)-cc” is not required

for the following result.
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Figure 6. A condition p ∈ GB is a binary function as in (A),
whose domain is a finite square Fp × np. The order is illustrated
in (B): a condition q is stronger than p if q extends p and the new
(horizontal) binary sequences between np and nq respect B�Fp.

Lemma 3.8 ([GKMS20, Lemma 1.3]). Let R be a relational system of the reals,
S a directed partial order without greatest element, and let P be a forcing notion.
If µ = cp(S)V and λ = cof(S)V , then

(a) COBR(P, S) implies 
P“µ ≤ b(R) and d(R) ≤ |λ|”.
(b) If L = S is a linear order, then LCUR(P, L) implies


P “b(R) ≤ |λ| ≤ λ ≤ d(R)”.

4. Preserving splitting families with symmetric iterations

4.A. The single forcing GB. Using suitable 2-graphs, we define a poset which
will be used as factor for the forcing adding the splitting families we aim to preserve.
See Figure 6 for a graphic description of this forcing.

Definition 4.1. Let B = 〈B,R0, R1〉 be a suitable 2-graph. Define the forcing GB

whose conditions are functions p : Fp× np → {0, 1} where Fp ∈ [B]<ℵ0 and np < ω
(also demand Fp = ∅ iff np = ∅). The order is defined by q ≤ p iff

(i) p ⊆ q,
(ii) for each k ∈ [np, nq), the map Fp → 2, a 7→ q(a, k) respects B, that is, if

e ∈ {0, 1}, a, b ∈ Fp, and aReb, then {q(a, k), q(b, k)} 6= {e}.
For a ∈ B denote by η̇a the name of the generic real added at a, that is, GB forces
that, for any k < ω, η̇a(k) = e iff p(a, k) = e for some p in the generic set.

For p ∈ GB denote supp p := Fp.

Lemma 4.2. Let B = 〈B,R0, R1〉 be a suitable 2-graph. Then:

(a) GB is σ-centered.
(b) For any a ∈ B, GB forces that η̇a is Cohen over V .
(c) Any p ∈ GB forces that, for any k ≥ np, the map Fp → 2, a 7→ η̇a(k) respects

B, that is, if e ∈ {0, 1}, a, b ∈ Fp and aReb, then η̇a(k) and η̇b(k) cannot both
be e at the same time.

(d) Assume for i ∈ {1, 2}:
• e ∈ {0, 1}, pi ∈ GB, ci ∈ Fpi , c1Rec2,
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• Q is a poset, GB lQ,
• ḃ is a Q-name of an infinite subset of ω,
• qi ≤ pi in Q and qi 
Q η̇ci�ḃ ≡ e,

Then q1 and q2 are incompatible.

(e) If f : B → B is a B-automorphism, then f̂ : GB → GB defined by f̂(p)(α, n) =
p(f−1(α), n) (where Ff̂(p)

:= f [Fp]), is a p.o.-automorphism.

Proof. To see (a), first note that since |B×ω| = ℵ1, by Engelking–Kar lowicz [EK65]
there is a countable set H ⊆ 2B×ω such that any finite partial function from
B × ω into 2 can be extended by some member of H. For h ∈ H and n < ω,
let Ch,n := {p ∈ GB : p ⊆ h and np = n}. It is clear that Ch,n is centered and
GB =

⋃
h∈H

⋃
n<ω Ch,n, so GB is σ-centered.

(b): Consider Cohen forcing C := 2<ω ordered by end-extension. For a ∈ B define
pra : GB → C such that, for any p ∈ GB, pra(p) := 〈p(a, k) : k < np〉 if a ∈ supp p,
or pra(p) is the empty sequence otherwise. It is enough to show that pra is a forcing
projection, that is,

(i) for any p, q ∈ GB if q ⊇ p then pra(q) ⊇ pra(p),
(ii) for any p ∈ GB and s ∈ C, if s ⊇ pra(p) then there is some q ⊇ p in GB such

that pra(q) ⊇ s (even pra(q) = s),
(iii) pra[CB] is dense in C (even pra is onto).

Property (i) is easy, (ii) follows by Definition 2.1(v), and (iii) follows by (ii) and
the fact that pra(∅) = 〈 〉.
(c): By the definition of the order of GB.

(d): Assume q ∈ Q is stronger than q1 and q2, so q 
“{k < ω : η̇c1(k) = η̇c2(k) = e}
is infinite”. Hence, there is some p ∈ GB stronger than p1 and p2 forcing the same,
but this contradicts (c) because c1, c2 ∈ Fp and c1Rec2.

(e) is straightforward. �

Remark 4.3. The obvious restriction of GB to, say, the first two coordinates, is
not a projection, and GB is not a FS iteration of length ω1 in any natural way.
Assume, e.g., we restrict to {0, 1} ⊆ B = ω1, and B contains an e-colored edge
from node e to node 2 for e ∈ {0, 1}. Start with a condition p : {0, 1, 2} × n → 2
(for e.g. n = 1), restrict it to p− = p�{0, 1} and extend it to p′ ∈ GB�{0,1} by setting
p′(e, n) = e for e ∈ {0, 1}. Then there is no q ∈ GB, q ≤ p, compatible with p′.

We will use FS iterations where the first step is given by a FS product of posets of
the form GB as above. It is clear that, if B is a S2G in the ground model, then it is
still a S2G in any forcing extension preserving ω1. On the other hand, constructing
GB from B is absolute for transitive models of ZFC, so any finite support product
of posets of the form GB is forcing equivalent to their finite support iteration (as
long as the sequence of 2-graphs lives in the ground model).

4.B. Suitable iterations, nice names and automorphisms. We now intro-
duce some notions associated with these iterations, relevant for the preservation of
splitting families.

From this point on, products of ordinals (such as ω1π) should be interpreted as
ordinal products.

Definition 4.4. A suitable iteration is defined by the following objects:

(I) A cardinal π0 > 0.
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(II) For each δ < π0, a S2G Bδ = 〈Bδ, Rδ,0, Rδ,1〉 with Bδ := [ω1δ, ω1(δ + 1)),

(III) an ordinal π ≥ π1 := ω1π0,
(IV) a FS ccc iteration P of length 1 + (π − π1) where the first iterand is the FS

product of the GBδ for δ < π0, called Pπ1
, and the following iterands are

indexed by ξ ∈ π r π1 and are ccc posets called Q̇ξ.
As usual, we denote with Pξ the result of the iteration up to ξ (for π1 ≤ ξ ≤ π),

and use P to denote either Pπ or the whole iteration (or its definition). See Figure 7
for an illustration.

Remark 4.5. Note that we could also view Pπ1
as (the result of) a FS-iteration

of length π0 (instead of length 1, as we do in the definition). Then we would get
an iteration P of π0 + (π − π1). However, Pπ1 is not a FS iteration of length π1, at
least not with natural iterands, see Remark 4.3.

Let us mention some notation:

Notation 4.6. (1) A real-number-poset is a poset whose universe is a subset of
the set of real numbers. For simplicity, we identify the “set of real numbers”
with the power set of ω.

(2) For notational simplicity we will often identify Pζ+1 (a set of partial functions)

with Pζ ∗ Q̇ζ (a set of pairs (p, q) with p ∈ Pζ and p 
 q ∈ Q̇ζ).
(3) Similarly, we will not distinguish between sequence of names and names of

sequences.

We now define the “support” supp(p) ⊆ π of a condition p (as opposed to the
domain dom(p), which is, as we are dealing with a FS iteration, a finite subset of
the index set {0}∪ (πr π1)). We will also define the “history” H of a name and of
a condition:

Definition 4.7. Let P be a suitable iteration.

(1) For p ∈ Pπ1
set supp(p) :=

⋃
δ∈dom p dom(p(δ)) ⊆ π1. For p ∈ P, set supp p :=

supp(p(0)) ∪ (dom(p) r {0}) (or just dom(p), if 0 /∈ dom(p)).6

(2) For p ∈ P and a P-name τ , we define H(p) ⊆ π and H(τ) ⊆ π as follows:
(i) For p ∈ Pπ1

, H(p) := supp p.
For ξ ≥ π1 we define H by recursion on ξ for p ∈ Pξ and for a Pξ-name τ . (We
assume that H(r) has been defined for all r ∈ Pζ for π1 ≤ ζ < ξ and H(σ) for
all Pζ-names for π1 ≤ ζ < ξ):
(ii) For ξ = ζ + 1 and p ∈ Pζ+1,

H(p) :=

{
H(p�ζ) if ζ /∈ supp p,
H(p�ζ) ∪ {ζ} ∪H(p(ζ)) if ζ ∈ supp p.

(Here, H(p(ζ)) is defined because p(ζ) is a Pζ-name.)
(iii) When ξ > π1 is limit and p ∈ Pξ, then H(p) has already been defined

(because p ∈ Pζ for some ζ < ξ).

6Recall that according to our indexing, dom(p) is a finite subset of {0} ∪ (π r π1) (where we
interpret a FS condition p as a partial function from the index π0 with finite domain dom(p)).

Recall that q := p(0) ∈ Pπ1 , which is the FS product of GBδ for δ < π0. So q has a finite domain
dom(q) ⊆ π0, and if δ ∈ dom(q), then q(δ) ∈ GBδ , so Xδ = dom(q(δ)) (in the sense of the forcing

GBδ ) is a finite subset of [ω1δ, ω1(δ + 1)). According to our definition, supp(q) =
⋃
δ∈dom(q)Xδ.
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0 ω1δ

GBδ

ω1(δ + 1) π1 = ω1π0

Q̇π1

π1 + 1 α

Q̇α

α+ 1 π

Figure 7. A suitable iteration. π1 = ω1π0 is partitioned into π0-
many intervals of length ω1, and Bδ := [ω1δ, ω(δ + 1)), the set of
vertices of the graph Bδ, is the δ-th interval of this partition. A
suitable iteration is a FS product of the GBδ for δ < π0, followed
by a FS iteration of ccc posets. The iterands of the FS iteration
that follow are indexed by α ∈ [π1, π).

(iv) For any Pξ-name τ define (by ∈-recursion on τ)

H(τ) :=
⋃
{H(σ) ∪H(p) : (σ, p) ∈ τ}.

Note that H(x̌) = ∅ for any standard name x̌.7

Remark. H is not a “robust” notion: 
 τ = τ ′ does not imply H(τ) = H(τ ′).
Still, it is a very natural and useful notion, which has appeared (in slightly different
contexts) many times in forcing theory: If τ is a Pπ-name, then H(τ) ⊆ π is the
set of coordinates the name τ “depends on”, more concretely, τ can be calculated
(by a function defined in V ) from the sequence of generic objects at the indices in
H(τ).
In the case of FS iterations where all iterands are real-number-posets (as in [She00,
GKS19]), H(p) is countable for p in a dense set; and “hereditarily nice names” for
reals will also have countable history. In this paper we have to use hereditarily
<λ-names (even for nice names of reals), the reason is indicated in Remark 4.16.

Let us fix some notation regarding the well-known “nice names”:

Definition 4.8. Let A and B be subsets of P.

(1) A P-name ṙ is a nice name for a subset of ω, determined by A, if ṙ has the
form

⋃
n∈ω{(ň, q) : q ∈ An}, where each An is a (possibly empty) antichain in

P, and A =
⋃
n∈ω An.

(2) Analogously, Q̇ is a nice name for a real-number-poset of size <λ , determined

by B, if there is a µ < λ such that Q̇ is a sequence 〈ṙi〉i∈µ of nice names
for subsets of ω determined by Ai, together with a sequence 〈ẋi,j〉i,j∈µ of nice
names for elements in {0, 1} depending on an antichain A′i,j (where ẋi,j = 1

codes ri ≤Q rj),
8 and B =

⋃
i∈µAi ∪

⋃
i,j∈µA

′
i,j .

So in this case

(4.9) H(ṙ) =
⋃
p∈A

H(p), and H(Q̇) =
⋃
p∈B

H(p).

7A standard name x̌ = {(y̌,1) : y ∈ x} (for x ∈ V ) hereditarily only uses the weakest condition
1, which in our case (an iteration) is the empty partial function; accordingly H(x̌) = ∅. If the

reader prefers a different formal definition of FS iteration, then they should modify the definition
of H to make sure that H(x̌) = ∅.

8A nice name ẋ of a member of {0, 1} depending on an antichain C ⊆ P (allowed to be empty)
has the form ẋ = {(0̌, p) : p ∈ C}. Note that p 
 ẋ = 1 for all p ∈ C, and q 
 ẋ = 0 for any q ∈ P
incompatible with all the members of C. Moreover, H(ẋ) =

⋃
p∈C H(p).
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It is well known that every name of a subset of ω has an equivalent nice name.
Moreover, as we can choose the conditions of the antichains in any given dense set,
we get the following:

Fact 4.10. (As P is ccc) Let D ⊆ P be dense and let λ be cardinal with uncountable
cofinality.

(a) For any P-name of a real there is an equivalent nice name determined by A ⊆ D
with |A| ≤ ℵ0.

(b) For any name of a poset of size <λ consisting of reals, there is an equivalent
nice name determined by a set B ⊆ D with |B| < λ.

Every automorphism of B induces an automorphism of GB, see Lemma 4.2(e).
Therefore, a π0-sequence h of such automorphisms induces an automorphism of the
(FS) product Pπ1 . Such an automorphism can sometimes be naturally extended
to the whole iteration P (which will allow isomorphism-of-names arguments and
subsequently show LCUsp).

What do we mean by “naturally extend”? Recall that, whenever f : P → P is
an automorphism on some poset P , and τ is a P -name, f sends τ to the P -name

f∗(τ) := {(f∗(σ), f(p)) : (σ, p) ∈ τ}.
Also, (f−1)∗(f∗(τ)) = τ ; and p 
 ϕ(τ) iff f(p) 
 ϕ(f∗(τ)) whenever p ∈ P and

ϕ(x) is a formula. If Q̇ is a P -name and P 
 f∗(Q̇) = Q̇, then we can trivially

extend f to P ∗ Q̇. We say that P is h-symmetric, if this is the case in all steps of
the iteration:

Definition 4.11. Let P be a suitable iteration.

(1) A bijection h : π1 → π1 is a 2G-automorphism if, for each δ < π0, h�Bδ is
an automorphism of Bδ.

(2) Such an h defines an automorphism ĥπ1
of Pπ1

→ Pπ1
, by ĥπ1

(p) :=

〈f̂δ(p(δ)) : δ ∈ dom p〉 where fδ := h�[ω1δ, ω1(δ + 1)) is the automorphism

of Bδ induced by h, and f̂δ is defined as in Lemma 4.2(e).
(3) We say P is h-symmetric if the following inductive construction defines

ĥξ : Pξ → Pξ for all π1 ≤ ξ ≤ π:

(i) For ξ = ζ + 1, we require that 
Pζ ĥ∗ζ(Q̇ζ) = Q̇ζ . (Otherwise

the construction fails.) We then define ĥζ+1 : Pζ+1 → Pζ+1 by

ĥζ+1(p�ζ, p(ζ)) = (ĥζ(p�ζ), ĥ∗ζ(p(ζ))).

(ii) For ξ > π1 limit, set ĥξ :=
⋃
ζ<ξ ĥζ .

In this case set ĥ := ĥπ, which is an automorphism of P.
(4) For any δ0 < π0 and any pair (a, b) ∈ Bδ, fix a 2G-automorphism hδa,b such

that hδa,b(a) = b and hδa,b�Bζ is the identity for any ζ 6= δ. We can pick

such hδa,b by Definition 2.1(vi).

(5) Let H∗ be the group generated by the hδa,b above. So |H∗| = max{π0,ℵ1}.
Note also that for all h ∈ H∗ and δ ∈ π0 we have h[Bδ] = Bδ, and that
supp(h) :=

⋃{Bδ : h�Bδ 6= idBδ , δ < π0} has size ≤ℵ1.
(6) We say that P is symmetric if P is h-symmetric for every h ∈ H∗.

In isomorphism-of-names arguments it is relevant to know when a condition or a

name remains unchanged after applying an automorphism ĥ. The following states
a sufficient condition:
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Lemma 4.12. Assume that P is h-symmetric and π1 ≤ ξ ≤ π.

(a) If p ∈ Pξ and h�(H(p) ∩ π1) is the identity, then ĥξ(p) = p.

(b) If τ is a Pξ-name and h�(H(τ) ∩ π1) is the identity, then ĥ∗ξ(τ) = τ .

(c) Let g := h−1. Then P is g-symmetric and ĝξ = ĥ−1
ξ .

Proof. We show the three statements by induction on ξ.
For (a), we use a case distinction: Assume ξ = π1. If p ∈ Pπ1 then H(p) = supp p,

and whenever h is the identity on supp p, it is clear that ĥπ1
(p) = p. The limit step

is also immediate (there are no new conditions, and for names use ∈-induction).
For the successor step ξ = ζ + 1, assume p ∈ Pζ+1 and that h is the identity

on H(p) ∩ π1. If ζ /∈ supp p, then we have p ∈ Pζ , so ĥζ+1(p) = ĥζ(p) = p by the
induction hypothesis. So assume ζ ∈ supp p. Then H(p) = H(p�ζ)∪{ζ}∪H(p(ζ)),

so by induction hypothesis ĥζ(p�ζ) = p�ζ and ĥ∗ζ(p(ζ)) = p(ζ), thus ĥζ+1(p) = p.

We now show (b) by ∈-induction on τ . If (σ, p) ∈ τ then H(σ) ∪H(p) ⊆ H(τ),

so by induction hypothesis and (a), ĥ∗ξ(σ) = σ and ĥξ(p) = p. Hence

ĥ∗ξ(τ) = {(ĥ∗ξ(σ), ĥξ(p)) : (σ, p) ∈ τ} = {(σ, p) : (σ, p) ∈ τ} = τ

For (c), the steps ξ = π1 and ξ > π1 limit are easy, so we deal with the successor

step ξ = ζ + 1. So assume that ĝζ is defined and ĝζ = ĥ−1
ζ . Since ĥξ is defined,


Pζ ĥ
∗
ζ(Q̇ζ) = Q̇ζ , which implies 
Pζ ĝ

∗
ζ (Q̇ζ) = Q̇ζ , so ĝζ+1 is defined; and for any

p ∈ Pξ, ĝξ(ĥξ(p)) = (ĝζ(ĥζ(p� ζ)), ĝ∗ζ (ĥ∗ζ(p(ζ)))) = p, so ĝξ = ĥ−1
ξ . �

4.C. A digression: Self-indexed products. How to construct a symmetric it-
eration P? We have to make sure that at each step ζ the iterand Q̇ζ is invariant

under ĥ for all h ∈ H∗. One case that will be useful: Q̇ζ is a (ccc) FS product such

that whenever Q̇ is one of the factors, then ĥ∗(Q̇) is also one.

But there is a technical difficulty here: We need 
Pζ ĥ
∗(Q̇ζ) = Q̇ζ (i.e., really

equality, not just isomorphism; as we want to get an actual automorphism of Pζ+1).
This is not possible if we “naively” index the product with an ordinal. For example,

assume Q̇0, Q̇1 are such that 
Pζ ĥ
∗(Q̇i) = Q̇1−i 6= Qi. Then Q̇0× Q̇1 (the product

with index set {0, 1}) is not a valid choice for Qζ , as 
Pζ ĥ
∗(Q̇0× Q̇1) = Q̇1× Q̇0 6=

Q̇0 × Q̇1.
So instead, we define (in the extension) the FS product

∏F of a set F of posets
as the set of all finite partial functions p from F into

⋃F satisfying p(Q) ∈ Q for
all Q ∈ dom(p). We call this object the self-indexed product of the set F .

In our framework, we start with a ground model set Ξζ of Pζ-names of posets.
In the Pζ-extension we let F be the set of evaluations of the names in Ξζ , and let

Q̇ζ be the self-indexed product of F .
Assume that all automorphisms from H∗ can be extended up to ζ.9 We assume

that Ξζ is closed under each h ∈ H∗, i.e., Q̇ ∈ Ξζ implies ĥ∗ζ(Q̇) ∈ Ξζ . So as Ξζ

is also closed under the inverse of h, by Lemma 4.12(c) we even get ĥ∗ζ [Ξζ ] = Ξζ .

So in particular ĥ∗ζ [Ξζ ] and Ξζ evaluate to the same set and thus yield the same

self-indexed product, i.e., 
 ĥ∗ζ(Q̇ζ) = Q̇ζ .
We record this fact for later reference:

9For this part all the properties of H∗ are not required; it is just enough that h ∈ H∗ implies
h−1 ∈ H∗.
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Fact 4.13. Assume that Q̇ζ is a “self-indexed” product of Ξζ , and that Q̇ ∈ Ξζ
implies ĥ∗ζ(Q̇) ∈ Ξζ for all h ∈ H∗. Then P forces ĥ∗ζ(Q̇ζ) = Q̇ζ , so we can extend

each h ∈ H∗ to Pζ ∗ Q̇ζ .

We additionally assume that each factor is (forced to be) a real-number-poset.

Assume that (p, q) ∈ Pζ ∗ Q̇ζ . We can densely assume that p decides the finite
domain of q, more specifically, the10 finite set y ⊆ Ξζ such that p forces that

dom(q) is (the set of evaluations of) y. Also, for each Q̇ ∈ y, we can assume that

q(Q̇) is a nice name for a real, determined by some AQ̇. As usual, we can use a
given dense set D ⊆ Pζ instead of Pζ .

For later reference:

Fact 4.14. Assume that Q̇ζ is a “self-indexed” product of Ξζ as described above,
that each factor is forced to be a set of reals, and that D ⊆ Pζ is dense. If (p, q) ∈
Pζ ∗Q̇ζ , then there is a (p′, q′) ≤ (p, q) such that p′ ∈ D decides the (finite) dom(q′),

and each q′(Q̇) is a nice name determined by some AQ̇ ⊆ D. So in particular

(4.15) H((p′, q′)) = H(p′) ∪ {ζ} ∪
⋃

Q̇∈dom(q′)

(
H(Q̇) ∪

⋃
r∈AQ̇

H(r)

)
.

Remark 4.16. This is the reason hereditarily countable nice names are not suffi-
cient in our setting to describe reals: Even the index Q̇ in such a product Q̇ζ is too

complicated. However, as all the self-indexed products Q̇ζ we use will have factors

Q̇ of size <λ, it turns out we can restrict ourselves to hereditarily <λ-names (this
will be the dense set P∗ζ of Definition 5.3).

4.D. Symmetric small history iterations preserve splitting families. We
are finally ready to prove the central fact about preservation of splitting families.

Definition 4.17. Let λ be an uncountable cardinal.

(1) A condition q ∈ P is λ-small, if |{δ < π0 : H(q) ∩Bδ 6= ∅}| < λ.
(2) A suitable iteration P has λ-small history if, for any p ∈ P, there is a λ-small

q ≤ p.
So in particular if P has λ-small history and ẋ is a name of a subset of ω, then

there is an equivalent nice name ḃ which only uses λ-small conditions. In particular

(4.18) |{δ < π0 : H(ḃ) ∩Bδ 6= ∅}| < µ

for any cardinal µ ≥ λ with uncountable cofinality.

Theorem 4.19. Let P be a symmetric suitable iteration with λ-small history. As-
sume ℵ1 ≤ λ ≤ µ ≤ π0 are cardinals with µ regular. Then LCURsp

(Pπ, µ) holds,
and it is witnessed by {η̇ω1δ : δ < µ}.
Proof. Towards a contradiction, assume that there are p ∈ P and a P-name ḃ of an
infinite subset of ω such that

p 
 |{δ < µ : η̇ω1δ�ḃ is eventually constant}| = µ.

Find F ∈ [µ]µ, n0 < ω and e ∈ {0, 1} such that, for any δ ∈ F , there is some pδ ≤ p
in P such that ω1δ ∈ supp(pδ) and pδ 
 η̇ω1δ�(ḃr n0) ≡ e.

10Or rather: a finite set, as different names in Ξζ might evaluate to the same object, i.e.,

index.

Paper Sh:1199, version 2020-07-27. See https://shelah.logic.at/papers/1199/ for possible updates.



PRESERVATION OF SPLITTING FAMILIES 21

We can assume that ḃ is a nice name, more particularly that (4.18) holds, and
we can also assume that p is λ-small. So there is some δ0 ∈ F such that Bδ0 ∩
(H(p) ∪H(ḃ)) = ∅.

Put a := ω1δ0 ∈ Bδ0 . By (2.2), a is contained in an uncountable Rδ0,e-complete
U ⊆ Bδ0 . Recall that by the definition of “symmetric”, there is for each c ∈ U a
2G-automorphism hc ∈ H∗ such that hc(a) = c and such that hc�Bδ is the identity

for all δ 6= δ0. Hence, by Lemma 4.12, ĥcπ(p) = p and (ĥcπ)∗(ḃ) = ḃ, therefore

p′c := ĥcπ(pδ0) ≤ p and, since (ĥcπ)∗(η̇a) = η̇c,

p′c 
 η̇c�(ḃr n0) ≡ e.
Lemma 4.2(d) implies that 〈p′c : c ∈ U〉 must be an antichain, which contradicts
that Pπ is ccc. �

Remark 4.20. The same argument shows that, for any g ∈ ∏δ<µBδ (in the

ground model), {η̇g(δ) : δ < µ} witnesses LCURsp
(Pπ, µ).

5. Suslin-λ-small iterations

We now investigate suitable iterations where the iterand Q̇ζ at step ζ > 0 (i.e.,
after the initial FS product) is

(1) either a restricted (also called: partial) Suslin ccc poset (e.g., random forc-

ing evaluated in some V P−ζ for some complete subforcing P−ζ of Pζ);
(2) or the FS product of (in our application: at most |π|-many) <λ-size posets

of reals.

More formally:

Definition 5.1. Let λ be an uncountable cardinal. A Suslin-λ-small iteration
(abbreviated Sλs) is a suitable iteration P with the following properties:

(S1) π r π1 is partitioned into two sets Σ and Π.
(S2) For ξ ∈ Σ,

(i) P−ξ is a complete subposet of Pξ,
(ii) Sξ is a definition of a Suslin ccc poset (with parameters in the ground

model),

(iii) Q̇ξ is a Pξ-name for (Sξ)V
P−
ξ

.

(S3) For ξ ∈ Π,
(i) Ξξ is a set in the ground model,

(ii) each element of Ξξ is a Pξ-name Q̇ for a poset of size11 <λ consisting of
reals,

(iii) Q̇ξ is (the Pξ-name for) the FS product of Ξξ.

Remark 5.2. Regarding (S3), recall that our setting requires Q̇ξ (to be forced by

Pξ) to be ccc (as suitable iterations have to be ccc). In contrast, in (S2), Q̇ξ will be

always ccc “for free” (in V Pξ as well as in V P−ξ ), as it is an evaluation of a Suslin
ccc definition (see [JS88]).

11That is, each element of Ξξ is forced to have size <λ, whereas the cardinality of Ξξ may be

as large as we want.
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We now show that we can replace such an iteration 〈P′ζ , Q̇′ζ : ζ ∈ π〉 with an

isomorphic version 〈Pζ , Q̇ζ : ζ ∈ π〉: The only difference will be in steps ζ ∈ Π,

where we select (hereditarily) nice names for the factors Q̇ ∈ Ξζ and make sure that

Q̇ζ is self-indexed. In addition, we will define a dense subset P∗ of hereditarily λ-
small conditions, an extended “refined history domain” π+, and a “refined history”
H∗ : P∗ → P(π+). These are formalized in the following notions.

Definition 5.3. Let λ be an uncountable cardinal. A tidy Suslin-λ-small itera-
tion is a Suslin-λ-small iteration P with the following additional components and
properties:

(1) For ξ ∈ π r π1, P∗ξ is a dense subset of Pξ.
(2) P∗π1

= Pπ1 .
(3) If ξ ∈ Σ and p ∈ P∗ξ+1 then p�ξ ∈ P∗ξ , p(ξ) is a nice P∗ξ-name of a real and


Pξ p(ξ) ∈ Sξ ∩ V P−ξ .
(4) For ξ ∈ Π, Ξξ is composed of nice P∗ξ-names for real-number-posets of size <λ

(See Definition 4.8(2)).
In addition, if p ∈ P∗ξ+1 then the following is satisfied:

(i) p�ξ ∈ P∗ξ .
(ii) dom p(ξ) is decided by p�ξ, that is, p�ξ 
P∗ξ“dom p(ξ) = dpξ” for some

finite dpξ ⊆ Ξξ.

(iii) For each Q̇ ∈ dom p(ξ), p(ξ, Q̇) is a nice P∗ξ-name of a real and 
P∗ξ
p(ξ, Q̇) ∈ Q̇.

(iv) p(ξ) = 〈p(ξ, Q̇)) : Q̇ ∈ dom p(ξ)〉 (in particular, p(ξ) is a P∗ξ-name).

(5) If π1 ≤ ξ < π then P∗ξ ⊆ P∗ξ+1.

(6) If γ ∈ (π1, π] is limit then P∗γ =
⋃
ξ<γ P∗ξ .

Denote P∗ := P∗π.

Note that tidy Sλs iterations are coherent in the sense that P∗η ∩Pξ = P∗ξ for any

π1 ≤ ξ ≤ η ≤ π. Conditions (5) and (6) were included to guarantee this.

Definition 5.4. Let P be a tidy Sλs iteration.

(1) For π1 ≤ ξ ≤ π define the refined history domain ξ+ = ξ ∪⋃ζ<ξ ζ × Ξζ .

(2) For p ∈ P∗ and a P∗-name τ we define the refined history H∗(p) ⊆ π+ and
H∗(τ) ⊆ π+ as follows. For π1 ≤ ξ ≤ π we define H∗ by recursion on ξ for
p ∈ P∗ξ and for a P∗ξ-name τ .

(i) For p ∈ P∗π1
, H∗(p) := H(p).

(ii) For ξ = ζ+1 and p ∈ P∗ζ+1, H∗(p) = H∗(p�ζ) when ζ /∈ supp p, otherwise:
• if ζ ∈ Σ then

H∗(p) := H∗(p�ζ) ∪ {ξ} ∪H∗(p(ζ));

• if ζ ∈ Π then

H∗(p) := H∗(p�ζ) ∪ {ξ} ∪ ({ξ} × dom(p(ζ))) ∪
⋃

Q̇∈dom(p(ζ)

(H∗(Q̇) ∪H∗(p(ζ, Q̇)).

(iii) When ξ > π1 is limit and p ∈ P∗ξ , then H∗(p) has already been defined

(because p ∈ Pζ for some ζ < ξ).
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(iv) For any P∗ξ-name τ define, by ∈-recursion,

H∗(τ) :=
⋃
{H∗(σ) ∪H∗(p) : (σ, p) ∈ τ}.

Tidy Sλs iterations have many features that ease its manipulation, in particular,
they have λ-small history.

Lemma 5.5. Let P be a tidy Sλs iteration with λ regular. Then, for any p ∈ P∗:
(a) |H∗(p)| < λ.
(b) H(p) = H∗(p) ∩ π.
(c) H(τ) = H∗(τ) ∩ π for any P∗π-name τ .

In particular, P has λ-small history.

Proof. We prove (a), (b) and (c) simultaneously for all p ∈ P∗ξ by recursion on

π1 ≤ ξ ≤ π. It is clear that (c) follows from (b).
In the case ξ = π1, H∗(p) = supp p = H(p), which is finite.
For the successor step ξ = ζ + 1, assume ζ ∈ supp p. If ζ ∈ Σ then p(ζ) is a nice

P∗ζ-name of a real, so it is determined by some countable A ⊆ P∗ζ . Hence

H∗(p) = H∗(p�ζ) ∪ {ζ} ∪
⋃
{H∗(r) : r ∈ A}

so, by induction hypothesis, |H∗(p)| < λ.

Now assume ζ ∈ Π. Since any Q̇ ∈ Ξζ is a nice P∗ζ-name for a real-number-poset
of size < λ, it is determined by some BQ̇ of size < λ. Hence

H∗(Q̇) =
⋃
s∈BQ̇

H∗(s), and |H∗(Q̇)| < λ,

the latter by induction hypothesis. On the other hand, for any Q̇ ∈ dom p(ζ),

p(ζ, Q̇) is a P∗ζ-name of a real, so it is determined by some countable AQ̇ ⊆ P∗ζ .
Hence

H∗(p(ζ, Q̇)) =
⋃
r∈AQ̇

H∗(r),

which have size <λ by induction hypothesis. As

H∗(p) = H∗(p�ζ) ∪ {ζ} ∪ ({ζ} × dom p(ζ)) ∪
⋃

Q̇∈dom p(ζ)

(H∗(Q̇) ∪H∗(p(ζ, Q̇))),

we get |H∗(p)| < λ. On the other hand, since p(ζ) = 〈p(ζ, Q̇) : Q̇ ∈ dom p(ζ)〉,
H(p(ζ)) =

⋃
Q̇∈dom p(ζ)

(H(Q̇) ∪H(p(ζ, Q̇))),

so we can deduce (b). The limit step is immediate. �

As promised, we show that any Suslin-λ-small iteration is isomorphic to a tidy
one.

Lemma 5.6. If λ is regular uncountable, then any Suslin-λ-small iteration is iso-
morphic to a tidy Sλs iteration.

Proof. By recursion on π1 ≤ ξ ≤ π we construct the tidy iteration up to Pξ, along
with its components, and the isomorphism iξ : P′ξ → Pξ. We also guarantee that iξ
extends iζ for any π1 ≤ ζ < ξ.

Case ξ = π1: Set P∗π1
= Pπ1

= P′π1
and let iπ1

be the identity function.
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Case ξ = ζ + 1 with ζ ∈ Σ: As iζ : P′ζ → Pζ is an isomorphism, we let P−ζ =

iζ [P′−ζ ], which is clearly a complete subforcing of Pζ , and evaluate Sζ accordingly.

Note that iζ can be extended to an isomorphism iζ+1 : P′ζ+1 → Pζ+1 in a natural
way.

We define P∗ζ+1 as the set of pairs (p, q̇) where p ∈ P∗ζ , q̇ is a P∗ζ nice name for a

real, and p 
 q̇ ∈ Sζ ∩ V P−ζ . This is dense according to Fact 4.10(a).

Case ξ = ζ + 1 with ζ ∈ Π: Fix a Q̇′ in Ξ′ζ . As i∗ζ(Q̇
′) is forced by Pζ to

have size <λ, according to Fact 4.10(b), there is an equivalent P∗ζ-nice name Q̇
determined by BQ̇ ⊆ P∗ζ of size <λ. Let Ξζ be the set of all these names, and

define Q̇ζ to be the self-indexed FS product of the Q̇ in Ξζ . We can obtain the
isomorphism iξ+1 in a natural way.

We define P∗ζ+1 to consist of the (p, q̇) as in Fact 4.14 (using D = P∗ζ).
Case ξ > π1 limit: As P is a FS iteration, we (have to) set Pξ =

⋃
ζ<ξ Pζ ; and

we set P∗ξ :=
⋃
ζ<ξ P∗ζ and iξ :=

⋃
ζ<ξ iζ . �

For later reference, note: Assume that we can extend some 2G-automorphism f
to Pζ , and that Q̇ ∈ Ξζ . Set supp(f) :=

⋃{Bδ : f�Bδ 6= idBδ}. Then

(5.7) supp(f) ∩H∗(Q̇) = ∅ implies f̂∗ξ (Q̇) = Q̇.

This follows from Lemmas 4.12(b) and 5.5(c).
In our applications, P−ξ has the following form.

Definition 5.8. Let P be a tidy Sλs iteration. For any X ⊆ π+, define P∗�X :=
{p ∈ P∗π : H∗(p) ⊆ X}.

Note that generally P∗�X will not be a complete subforcing of P∗; but we will
only be interested in the case where it is, see Lemma 5.15.

Lemma 5.9. Let P be a tidy Sλs iteration with λ uncountable regular, and let
µ ≥ λ be regular and ℵ1-inaccessible12. If X ⊆ π+ and |X| < µ then |P∗�X| < µ.

Proof. By induction on ξ ∈ [π1, π] we show that, whenever X ⊆ ξ+ has size <µ,
|P∗�X| < µ. For ξ = π1, it is clear that |P∗�X| = max{|ω ×X|, 1} < µ.

For limit ξ > π1, P∗�X =
⋃
η∈c P∗�(X ∩ η+) where c is a cofinal subset of ξ of

size cof(ξ). If cof(ξ) < µ then |P∗�X| < µ because it is a union of <µ many sets
of size <µ; if cof(ξ) ≥ µ then X ⊆ η+ for some η < ξ, so |P∗�X| < µ by induction
hypothesis.

For the successor step ξ = ζ + 1, assume X ⊆ (ζ + 1)+ and X * ζ+ (the non-
trivial case). Put X0 := X ∩ ζ+. By induction hypothesis, |P∗�X0| < µ and, since
µ is ℵ1-inaccessible, there are at most |P∗�X0|ℵ0 < µ many nice P∗�X0-names of
reals.

Let p ∈ P∗�X. If ξ ∈ Σ then p(ξ) is a nice P∗�X0-name of a real; if ξ ∈ Π,
then p(ξ) is determined by a finite partial function from ({ξ}×Ξξ)∩X into the set
of nice P∗�X0-names of reals, and there are <µ-many such finite partial functions.
Hence, |P∗�X| < µ. �

Corollary 5.10. Let P be a tidy Sλs iteration with λ regular.

(a) P has λ-small history.
(b) Every p ∈ P∗ is an element of P∗�X from some X ⊆ π+ of size <λ.

12Recall that a cardinal µ is κ-inaccessible if θν < µ for any cardinals θ < µ and ν < κ.
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(c) For every P-name of a real there is an equivalent P∗�X-name for some X ⊆ π+

of size <λ.
(d) Assume that |π|ℵ0 = |π|, that λ ≤ |π|+, and that |Ξζ | ≤ |π| for each ζ ∈ Π.

Then |P∗| ≤ |π|.
Proof. (a) follows from Lemma 5.5(a),(b); (b) follows from Lemma 5.5(a) (using
X := H∗(p)); and (c) follows from (b) (use a nice P∗-name for a real).

For (d), set µ = |π|+ (the cardinal successor). Note that µ is <ℵ1-inaccessible
because |π|ℵ0 = |π|, and |π+| ≤ |π| × supζ∈Π{|Ξζ |} ≤ |π| < µ. Therefore |P∗| =

|P∗�π+| < µ by Lemma 5.9 (for X = π+). �

In our applications, P−ξ = P∗�Cξ with Cξ ⊆ ξ+ for all ξ ∈ Σ. We will now show
how to build symmetric Sλs-iterations:

Definition 5.11. Let P be a tidy Sλs iteration, and let h : π1 → π1 be a 2G-
automorphism.

(1) Let ξ ∈ Π. We say that Ξξ is closed, if, whenever h ∈ H∗ and ĥξ can be defined

(see Definition 4.11), Q̇ ∈ Ξξ implies ĥ∗ξ(Q̇) ∈ Ξξ (where H∗ is the group of

2G-automorphisms fixed in Definition 4.11(5)).
(2) We say that C ⊆ π+ is closed if, for any h ∈ H∗, it satisfies:

(i) For any δ < π0, Bδ ∩ C 6= ∅ implies Bδ ⊆ C.

(ii) For any ξ ∈ Π, whenever ĥξ can be defined, if (ξ, Q̇) ∈ C then (ξ, ĥ∗ξ(Q̇)) ∈
C and ξ ∈ C.

Lemma 5.12. Assume that P is a tidy Sλs iteration such that the following re-
quirements are satisfied:

(I) For any ξ ∈ Π, Ξξ is closed.
(II) For any ξ ∈ Σ, P−ξ = P∗�Cξ where Cξ ⊆ ξ+ is closed.

Then we get:

(a) P is symmetric (i.e., h-symmetric for all h ∈ H∗).

(b) ĥ[P∗�C] = P∗�C for all closed C ⊆ π+.

Of course we will have to also make sure that the assumption “P is a tidy Sλs-
iteration” is satisfied. The nontrivial points of these assumptions are:

(I-b) For ζ ∈ Π the FS product Qζ is ccc.

(In our case this will be trivial, as all factors Q̇ will be Knaster).
(II-b) For ζ ∈ Σ, P∗�Cζ is a complete subforcing of P∗.

We will see in Lemma 5.15 how to achieve this.

Proof. By induction on ξ ∈ [π1, π] we show that ĥξ can be defined for any h ∈ H∗
(towards (a)), and that (b) is valid for any closed C ⊆ ξ+.13

Case ξ = π1: It is clear that ĥπ1
can be defined; (b) is clear because h[Bδ] = Bδ

for any δ < π0 and h ∈ H∗.
Case ξ = ζ + 1 with ζ ∈ Σ: (a): Note that 
 ĥ∗ζ(Qζ) = ĥ∗ζ(SV

P∗�Cζ
ζ ) =

SV
ĥζ [P
∗�Cζ ]

ζ (as Sζ only uses parameters from the ground model), which is Q̇ζ by

induction hypothesis (as we assume that Cζ is closed). So we can extend ĥζ to

ĥζ+1.

13In this proof we only use that h ∈ H∗ implies h−1 ∈ H∗.
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(b): Note that ξ+ = ζ+∪{ζ}, so if C ⊆ ξ+ is closed (and not already a subset of
ζ+), then C = C ′∪{ζ} with C ′ closed, and (p, q̇) ∈ P∗�C means that p ∈ P∗�C ′ and

q̇ is a nice P∗�C ′-name for an element of Q̇ζ . Then ĥ∗ζ(q̇) is a nice ĥζ [P∗�C ′]-name

for an element of ĥ∗ζ(Q̇ζ), which is by induction hypothesis a nice P∗�C ′-name for

an element of Q̇ζ , i.e., ĥζ+1((p, q̇)) ∈ P∗�C. This shows that ĥξ[P∗�C] ⊆ P∗�C. As
this is also true for the inverse of h (because h−1 ∈ H∗), by Lemma 4.12(c) we get
equality.

Case ξ = ζ+1 with ζ ∈ Π: First note that, by induction hypothesis, ĥζ [P∗ζ ] =

P∗ζ because P∗ζ = P∗�ζ+ and ζ+ is closed.

(a): Since Q̇ζ is a P∗ζ-name for the self-indexed FS product of the (evaluated)

set Ξζ = {Q̇ : Q̇ ∈ Ξζ}, ĥ∗ζ(Q̇ζ) is the P∗ζ-name for the self-indexed FS product

of the (evaluated) set ĥ∗ζ [Ξζ ] = {ĥ∗ζ(Q̇) : Q̇ ∈ Ξζ}. But as the ground model set

of names {ĥ∗(Q̇) : Q̇ ∈ Ξζ} is identical to the ground model set of names Ξζ ,
their evaluations are identical as well (because Ξξ is closed under inverses, and by

Lemma 4.12(c)). In other words, ĥ∗ζ(Q̇ζ) = Q̇ζ , and ĥζ can be extended to Pξ.
(b): Assume that C ⊆ ξ+ = ζ+ ∪{ζ}∪ (ζ×Ξζ) is closed, and that (p, q̇) ∈ P∗�C

(but to avoid the trivial case, not in P∗ζ). This means that p ∈ P∗�C ′ for C ′ = C∩ζ+,

and it determines dom(q̇) = {Q̇1, . . . , Q̇n}, such that all (ζ, Q̇i) are in C (and each

q̇(Q̇i) is a nice P∗�C ′-name). Then ĥζ(p) ∈ P∗�C ′ by induction hypothesis, and it

determines dom(ĥ∗ζ(q̇)) = {ĥ∗ζ(Q̇1), . . . , ĥ∗ζ(Q̇n)} (and each ĥ∗ζ(q̇)(Q̇i) is a P∗�C ′-nice

name). Accordingly ĥξ((p, q̇)) ∈ P∗�C as required.

We conclude that ĥξ[P∗�C] ⊆ P∗�C, but equality holds because the same is true
for h−1.

Case ξ limit: By induction hypothesis, ĥζ is defined for all ζ < ξ, so ĥξ is defined
(as its union). On the other hand, if C ⊆ ξ+ is closed then C =

⋃
ζ<ξ C ∩ ζ+ where

each C ∩ ζ+ is closed, so ĥξ[P∗�C] = P∗�C by induction hypothesis. �

We address some few facts about closed sets.

Lemma 5.13. Let P be a symmetric tidy Sλs iteration. Then:

(a) The union of closed sets is closed.
(b) If A ⊆ π+ has size <µ, with µ ≥ max{λ,ℵ2} uncountable regular, then the

closure A of A (the smallest closed set containing A) has size <µ.

Proof. Property (a) is straightforward. We show by induction on ξ ∈ [π1, π] that
(b) holds for any A ⊆ ξ+.

Case ξ = π1: A =
⋃{Bδ : Bδ ∩A 6= ∅}. So |A| = ℵ1 × |A| < µ.

Case ξ = ζ + 1 with ζ ∈ Σ: If A ⊆ ξ+ has size <µ, then A ⊆ (A ∩ ζ+) ∪ {ζ}
has size <µ.

Case ξ = ζ+1 with ζ ∈ Π: For h ∈ H∗, set supp(h) =
⋃{Bδ : h�Bδ 6= idBδ}.

Let A∗ be the closure of ⋃
{H∗(Q̇) ∩ π1 : (ζ, Q̇) ∈ A}.

H∗(Q̇) has size <λ ≤ µ by Lemma 5.5(c), and therefore also the set A∗ has size
<µ.

It is clear that A ⊆ (A ∩ ζ+) ∪ {ζ} ∪X for

X := {(ζ, ĥ∗(Q̇)) : (ζ, Q̇) ∈ A, h ∈ H∗}.
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Since H∗ is a group, {ζ} ∪X is closed. We claim that we get the same set X if we
replace H∗ with

H′ := {g ∈ H∗ : supp(g) ⊆ A∗}.
As H′ has size <µ (recall that | supp(g)| ≤ ℵ1 for any g ∈ H∗), we get |A| < µ, as
required.

Note that for f ∈ H∗ and (ζ, Q̇) ∈ A, by (5.7) supp(f) ∩ A∗ = ∅ implies

f̂∗ζ (Q̇) = Q̇. And for h ∈ H∗, there is a g ∈ H′ such that f := g−1 ◦ h satisfies

supp(f) ∩ A∗ = ∅. (Basically, g�A∗ = h�A∗ and g�(π1 r A∗) is the identity.) So

f̂∗(Q̇) = Q̇, which implies

ĝ∗(Q̇) = ĝ∗(f̂∗(Q̇)) = ĥ∗(Q̇),

as required.
Case ξ limit: If cof(ξ) ≥ µ, then A ⊆ ζ+ for some ζ < ξ, so |A| < µ by

induction hypothesis. Otherwise, A =
⋃
ζ∈I A ∩ ζ+ for some witness I of cof(ξ), so

again |A| < µ. �

Lemma 5.14. To satisfy assumption (I) of Lemma 5.12 for ξ ∈ Π, the following
is sufficient, while assuming (I) and (II) for ζ < ξ:

(I’) For some formula ϕ(x, y) using only parameters from the ground model and

some κξ ≤ λ, Ξξ is the set of all nice P∗ξ-names Q̇ for <κξ-sized forcings

consisting of reals such that 
P−ξ
ϕ(Q̇, ξ).

Proof. By the assumption and Lemma 5.12, Pξ is symmetric and h∗ξ [P∗ξ ] = P∗ξ for

any h ∈ H∗ (because P∗ξ = P∗�ξ+).

Let Q̇ be such a nice P∗ξ-name. Then ĥ∗ξ(Q̇) is also a nice P∗ξ-name, and 
P∗ξ
ϕ(ĥ∗ξ(Q̇), ξ) as ϕ only uses ground model parameters (i.e., standard names). �

As mentioned, we need closed C ⊆ π+ that define complete subforcings. For this
we use the following result:

Lemma 5.15. Let P be as in Lemma 5.12, and let µ > λ be regular and ℵ1-
inaccessible.

(a) For A ⊆ π+ of size <µ there is some closed C ⊇ A of size <µ, such that
P∗�C l P∗.

(b) The closed sets C ∈ [π+]<µ that satisfy P∗�C l P∗ form a λ-club.

Proof. (a) Using Corollary 5.10(b) we can fix a function f : (P∗π)2 → [π+]<λ such
that if p and q are compatible then there is some r ≤ p, q in P∗�f(p, q). Also, we can
fix a function g : (P∗π)≤ω → [π+]<λ such that, whenever p̄ = 〈pn : n < w〉 (w ≤ ω)
is a non-empty antichain but not maximal in Pπ, then there is some q ∈ P∗�g(p̄)
with q ⊥ pn for any n < w. By recursion on α < λ, define

A′α := A ∪A<α ∪
⋃

p,q∈P∗�A<α

f(p, q) ∪
⋃

p̄∈(P∗�A<α)≤ω

g(p̄)

where A<α :=
⋃
ξ<αAξ; and let Aα := A′α be the closure (see Lemma 5.13). So

|Aα| < µ′, and we can set C :=
⋃
α<λAα, which is as desired because any countable

sequence in P∗�C is a countable sequence in P∗�Aα for some α < λ.
(b) Let 〈Bi : i ∈ λ〉 be an increasing sequence of closed subsets of π+ such that

P∗�Bi is a complete subforcing of P∗. Set B :=
⋃
i∈λBi. According to 5.13(a)
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B is closed. Assume that A ⊆ P∗�B is a maximal antichain. Any p, q ∈ A are
incompatible in P∗�Bi for some i, and therefore in P∗. Due to ccc, A is countable,
and by Corollary 5.10(b) there is an i < λ such that A ⊆ P∗�Bi. Therefore A is
maximal in P∗. �

Corollary 5.16. With the same hypothesis of Lemma 5.15, if P ⊆ P∗π has size <µ,
then there is some P− l P∗π of size <µ such that P ⊆ P−.

Proof. Apply Lemma 5.15 to A :=
⋃
p∈P H

∗(p). �

We now summarize what we already know about the construction that we are
going to perform in the next section:

Corollary 5.17. Let λ be regular uncountable and assume λ ≤ |π|, |π|<λ = |π|,
and that πr π1 is partitioned into Σ and Π. We inductively construct a (tidy) Sλs
iteration P as follows:

(Σ) As step ζ ∈ Σ, we pick a (definition of a) Suslin-ccc forcing Sζ , some
κζ > λ, and some Cζ in the λ-club set [ζ+]<κζ of Lemma 5.15(b), and set

Qζ = SV
P∗�Cζ

. (So P−ζ = P∗�Cζ .)

(Π) Fix a formula ϕ(x, y) with parameters in the ground model. At step ζ ∈ Π,

pick some regular uncountable κζ ≤ λ and let Q̇ζ be (a suitable name for)
the FS product of all Knaster real-number-posets of size <κζ satisfying
ϕ(x, ζ).

Then (inductively) Pξ is a well defined ccc forcing for π1 ≤ ξ ≤ π, and

(a) LCUsp(Pξ, µ) holds for any regular λ ≤ µ ≤ π0.
(b) Pξ forces that the continuum has size |π|.

Proof. Each Q̇ζ is forced to be ccc (by either absoluteness or the Knaster assump-
tion), so we get a valid iteration (and we assume that we choose the names for the
iterands such that we get a tidy Sλs-iteration).

LCU follows from Lemmas 5.14 and 5.12(a), and Theorem 4.19.
For the size of the continuum, we use Corollary 5.10(d) to show by induction

that |P∗ξ | ≤ |π|: Assume this already is the case for ζ ∈ Π, then Ξζ consists of nice

P∗ζ-names for <λ-sized real-number-forcings, and there are only |P∗ζ |<λ ≤ |π| many
such nice names. �

6. The forcing construction for the left hand side

In this section, we prove the first step of the main theorem: Theorem 6.11,
which gives the independence results for the left hand side. After the work we have
done in the previous sections, this is basically a simple variant of the construction
in [GKS19].

6.A. Preliminaries.

Notation 6.1. Denote

(bi, di) :=


(add(N ), cof(N )) if i = 1,
(cov(N ),non(N )) if i = 2,
(b, d) if i = 3,
(non(M), cov(M)) if i = 4,
(s, r) if i = sp.
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As in [GKS19, GKMS20], for i ∈ {1, 2, 3, 4, sp} consider Blass-uniform relational
systems RLCU

i and RCOB
i such that, following in Example 3.1, RLCU

sp = RCOB
sp = Rsp

and ZFC proves14

b(RCOB
i ) ≤ bi ≤ b(RLCU

i ) and d(RLCU
i ) ≤ di ≤ d(RCOB

i ).

We abbreviate COBRCOB
i

by COBi, and LCURLCU
i

by LCUi.

For completeness, we review the posets we use in our construction.

Definition 6.2. Define the following forcing notions (where the forcing in item (i)
is designed to increase bi):

(1) Amoeba forcing A is the poset whose conditions are subtrees T ⊆ 2<ω without
maximal nodes such that [T ], the set of branches of T , has measure < 1

2 (with
respect to the Lebesgue measure of 2ω). The order is ⊇.

(2) Random forcing B is the poset whose conditions are subtrees T ⊆ 2<ω without
maximal nodes such that [T ] has positive measure. The order is ⊆.

(3) Hechler forcing is D := ω<ω × ωω ordered by (t, y) ≤ (s, x) iff s ⊆ t, x ≤ y
(pointwise) and t(i) ≥ x(i) for all i ∈ |t|r |s|.

(4) Eventually different forcing is

E := ω<ω ×
⋃
n<ω

(
[ω]≤n

)ω
ordered by (t, ψ) ≤ (s, ϕ) iff s ⊆ t, ∀i < ω(ϕ(i) ⊆ ψ(i)) and t(i) /∈ ϕ(i) for all
i ∈ |t|r |s|.

(sp) Let F be a base of a (free) filter on ω. Mathias-Prikry forcing on F is MF :=
{(s, x) ∈ [ω]<ℵ0 × F : max(s) < min(x)} (here max(∅) := −1) ordered by
(t, y) ≤ (s, x) if s ⊆ t, y ⊆ x and tr s ⊆ x.

For each of the posets above it is easy to construct a 1-1 function from the poset
into ωω. So, until the end of this section, the posets above are seen as subsets of
ωω. Moreover, the posets (1)–(4) are Suslin ccc, and they are homeomorphic to a
Borel subset of ωω (and the order is Borel as well).

In the proof of Theorem 6.6 we deal with special restrictions of the posets (1)–(4)
under sets of reals of the following form.

Definition 6.3. Let λ ≥ ℵ1 be a cardinal. Say that E ⊆ ωω is λ-elementary if
E = ωω ∩N for some regular χ ≥ (2ℵ0)+ and some N � Hχ of size <λ, where Hχ
denotes the collection of hereditarily <λ-size sets.

We look at posets of the form S∩E where S is a poset as in (1)–(4) and E ⊆ ωω
is λ-elementary. Note that, whenever χ ≥ (2ℵ0)+, N � Hχ and E = ωω ∩ N , we
have S ∩ E = SN . Therefore:

Fact 6.4. Let E ⊆ ωω be elementary. Then:

(1) The poset A ∩ E adds a (code of a) Borel measure zero set that contains all
Borel null sets with Borel code in E.

(2) The generic real added by B ∩ E evades all Borel null sets with Borel code in
E.

(3) The generic real added by D ∩ E dominates all the functions in E.

14In more detail, RLCU
i = RCOB

i except when i = 2. If we follow [BCM20] we can also consider

RLCU
2 = RCOB

2 .
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(4) The generic real added by E ∩ E is eventually different from all the functions
in E.

We now show how to modify the forcing construction in [GKMS, §4 & §5] to
include LCUsp and COBsp, by performing a construction according to the previous
section, in particular to Corollary 5.17. We will assume the following:

Assumption 6.5. k0 ∈ [2, ω]; λm ≤ λ1 ≤ λ2 ≤ λ3 < λ4 are uncountable regular
cardinals, λ5 ≥ λ4 is a cardinal, λ3 = χ+, λm ≤ λsp ≤ λ3 regular, such that

χ<χ = χ ≥ ℵ1, λ<λ4
5 = λ5, and λi is ℵ1-inaccessible whenever λi > λsp and

1 ≤ i ≤ 4.

Our intention is to show the following:

Goal 6.6. There is a ccc poset P of size λ5 such that, for any i ∈ {1, 2, 3, 4, sp},
(a) LCUi(P, θ) holds for any regular λi ≤ θ ≤ λ5.
(b) There is some directed Si with cp(Si) = λi and |Si| = λ5 such that COBi(P, Si)

holds.
(c) P forces p = s = λsp and c = λ5.
(d) P forces mk = ℵ1 for any k ∈ [1, k0), and mk = λm for any k ∈ [k0, ω].15

The way to achieve this is parallel to [GKS19, §1]: As first step we give the
“basic construction” in Lemma 6.8, using “simple bookkeeping” (which is described
by parameters C̄ = 〈Cα〉α∈Σ in the ground model). This gives us everything apart
from LCU3 (i.e., we do not claim that b remains small). This first step contains
the only new aspect of the construction: As we use a variant of the construction
according to the previous section, we get LCUsp.

The next steps are just as in [GKS19, §1.3 & §1.4]. In Lemma 6.10 we remark:
Assuming 2χ ≥ λ5 (in addition to Assumption 6.5), we can choose the bookkeeping
parameters C̄ in such a way that the resulting forcing satisfies LCU3 and thus all
of Goal 6.6.

And finally we show Theorem 6.11: without the assumption 2χ ≥ λ5 (while
assuming 6.5) we can also get all of Goal 6.6. Why do we need to supress the
assumption 2χ ≥ λ5 from Lemma 6.10? Because we can then additionally control
the right-hand side characteristics in Section 7, using the method of elementary
submodels from [GKMS20].

In the following proof, we deal with the case 2 ≤ k0 < ω and λm > ℵ1. In
Section 6.D we mention the necessary changes for the remaining cases.

6.B. The basic forcing construction. To each 1 ≤ i ≤ 4 associate a Suslin ccc
poset as follows: S1 = A, S2 = B, S3 = D, and S4 = E.

Set λ := λsp. Let i∗ be the minimal i such that λi > λ. Note that 1 ≤ i∗ ≤ 4.
Set I1 := {i∗, . . . , 4} and I0 := {m,p} ∪ {1, 2, 3, 4}r I1.

Set π0 := λ5 (so π1 = ω1 · λ5), and π := π1 + λ5 + λ5. Partition the final
λ5-interval of π, i.e. πr (π1 +λ5), into sets Πi (i ∈ I0) and Σi (i ∈ I1), each of size
λ5.

We construct a tidy Sλ-s iteration, using Σ := {π1 +α : α < λ5} ∪
⋃
i∈I1 Σi and

Π :=
⋃
i∈I0 Πi. We will satisfy the requirements of Corollary 5.17, so in particular

inductively we will have |P∗ξ | = λ5 (and so Pξ 
 c = λ5) for all ξ.

15Note that λm = ℵ1 is allowed.

Paper Sh:1199, version 2020-07-27. See https://shelah.logic.at/papers/1199/ for possible updates.



PRESERVATION OF SPLITTING FAMILIES 31

(I1) At stage ζ ∈ [π1, π1 + λ5) (in particular, ζ ∈ Σ), we just add Cohen reals.
More formally, to fit our framework, we set Sζ = C = ω<ω (Cohen forcing).
Let Cζ := ∅, which is closed and satisfies that P−ζ := P∗ζ�Cζ (i.e., the set

containing only the empty condition) is a complete subforcing of P∗ζ . And

SV
P−
ζ

ζ is Cohen forcing in the ground model, which is Cohen forcing in any
extension by absoluteness.

(I2) Assume ζ ∈ Πi (for some i ∈ I0).
(i) When i = m, let Ξζ be the family of all nice P∗ζ-names of real-number-

posets of size <λm that are forced (by P∗ζ) to be k0-Knaster.

(ii) When i = p, let Ξζ be the family of all nice P∗ζ-names of real-posets of
size <λ that are forced to be σ-centered.

(iii) When i ∈ {1, 2, 3} ∩ I0, we consider Ξξ as the family of nice P∗ζ-names of
all smaller-than-λi versions of Si in the P∗ζ-extension, i.e., the forcings of
the form

Q = Si ∩ E where E is λi-elementary

as in Definition 6.3. Note that Si, and therefore also every variant Si∩E,
is linked and therefore Knaster.

(I3) If ζ ∈ Σi (for some i ∈ I1, so λi > λ), we pick (by suitable book-keeping) a
Cζ ⊆ ζ+ as in Lemma 5.15(b). I.e., |Cζ | < λi, P−ζ := P∗�Cζ l P∗ζ , and we set

Sζ := SV
P−
ζ

i . (Here, suitable bookkeeping just means: For every K ∈ [π+]<λi

there is some index ζ such that Cζ ⊇ K.)

We can now show that the construction does what we want, apart from keeping
b small.

First let us note that sometimes it is more convenient to view P as a FS ccc
iteration, where we first add the λ5-many GB forcings (of size ℵ1), then the λ5-
many Cohen reals, and then the rest of the iteration, where we interpret each FS
product Qζ for ζ ∈ Πi as a FS iteration with index set λ5 = |Ξi|. So all in all we
can represent P as a FS iteration
(6.7)

〈P ′α, Q̇′α〉α∈δ′ of length δ′ = λ5 + λ5 + Σζ∈πr(λ5+λ5)δ
′
ζ , with δ′ζ :=

{
λ5 if ζ ∈ Πi,

1 otherwise.

For each α < λ5 + λ5, |Q̇′α| ≤ ℵ1, and for each α ≥ λ5 + λ5 in δ′, we say that Q̇′α
“is of type i” for i ∈ {m,p, 1, 2, 3, 4}, if either Q̇′α = Q̇ζ for the respective ζ ∈ Σi,

or if Q̇′α is a factor Q̇ of Q̇ζ for the respective ζ ∈ Πi. Note that P ′λ5
= Pπ1 .

Lemma 6.8. The construction above satisfies Goal 6.6, apart from possibly LCU3.

Proof. c = λ5, as we use a construction following Corollary 5.17.

Item (a) for i = sp, i.e., LCUsp: This also follows from Corollary 5.17, and
implies 
P s ≤ λ.

p = s = λ: To see p ≥ λ it is enough to show (in fact, equivalent, by Bell’s
theorem [Bel81]): For every σ-centered poset Q′ of size <λ (and contained in ωω),
and any collection D of size <λ of dense subsets of Q′, there is a Q′-generic set
over D. Any such Q′ and D are forced to be already in the Pα-extension for some
α < π. Pick some ζ ∈ Πp larger than α. Then a name Q̇ for Q′ is used as factor of

Pζ , i.e., in Pζ+1 there is a Q̇-generic object (over D).
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ZFC shows p ≤ s, and as s ≤ λ we get equality.

Item (a) for i ∈ {1,2,4}, i.e., LCUi: This is exactly as in [GKS19, §1.2]. For

this argument we interpret P as the iteration 〈P ′α, Q̇′α〉α∈δ′ of (6.7). However, we
work in the Pπ1

-extension (i.e., the P ′λ5
-extension). So we investigate the forcing

which first adds λ5 many Cohens, and then a FS iteration of the iterands Q′α.
As in [GKS19, §1.2], we now argue that each such Q′α is (RLCU

i , λi)-good. So let
us quickly check the cases (they are all summarized in [GKS19, Lemma 1.6], and
use results from [JS90], [Kam89], [Bre91]). To get (RLCU

1 , λ1)-good:

• If Q′α is of type m or type 1, then Q′α has size <λ1 and thus is (RLCU
i , λ1)-

good (for any i ∈ {1, 2, 3, 4}).
• If Q′α is of type p, 3 or 4, then Q′α is σ-centered, and therefore (RLCU

1 ,ℵ1)-
good.
• If Q′α is of type 2, then it is a subalgebra of the measure algebra, and thus

(RLCU
1 ,ℵ1)-good.

For (RLCU
2 , λ2)-good the argument is even simpler: All Q′α have size <λ2 or are

σ-centered; and for (RLCU
4 , λ4)-good the argument is trivial, as all Q′α have size

<λ4.
So this argument shows that, in the intermediate model V Pπ1 , the rest P ′ of the

forcing satisfies LCUi(P
′, λi), witnessed by the Cohen reals {ηα : α ∈ [π1, π1 +λi)}.

This implies by definition of LCU that in the ground model LCUi(P, λi) holds,
witnessed by the same Cohen reals.

Item (b) for i ∈ I1, i.e., COBi: This is also basically the same as in [GKS19,
§1.2], where this time we argue from the ground model V , not the intermediate
model V Pπ1 . We define the partial order Si to have domain Σi, ordered by ζ1 ≤Si ζ2
iff Cζ1 ⊆ Cζ2 .

Note that Cζ is in [π+]<λi , |π+| = λ5, and our book-keeping ensures that Si is
<λi-directed. Corollary 5.10(c) together with the fact that λ ≤ λi shows that our
bookkeeping will catch every real in the P-extension. Therefore Si, and the generics
added at stages in Si, witness the COB property.

Item (b) for i ∈ I0 ∩{1,2,3}: This is very similar: Let Si be the set of pairs

(ζ, Ė) such that ζ ∈ Πi and Ė is a nice P∗ζ-name of a λi-elementary subset of ωω.

We order Si as follows: (ξ1, Ė1) ≤i (ξ2, Ė2) iff ξ1 ≤ ξ2 and the empty condition

forces that Ė1 ⊆ Ė2.
For (ζ, Ė) ∈ Si, Si ∩ Ė forms part of the FS product Q̇ζ , so Pζ+1 adds a Si ∩ Ė-

generic object ẏζ,Ė as in Fact 6.4. We show that Si and {ẏζ,Ė : (ζ, Ė) ∈ Si} witness
COBi.

Let ṙ be a P∗-name of a real, then ṙ is a P∗ξ0-name of a real for some ξ0 < π,

and there is some Ė0 such that (ξ0, Ė0) ∈ Si and 
Pξ0 ṙ ∈ Ė0. Hence, whenever

(ξ, Ė) ∈ Si is above (ξ0, Ė0), 
P ṙ ∈ Ė so ẏξ,Ė is generic over ṙ.

And for any <λi-sequence 〈Ej : j ∈ J〉 of nice names for λi-elementary sets Ej
we can find a nice name for a λi-elementary set E ⊇ ⋃j∈J Ej . This shows that Si
is <λi-directed.

Item (b) for i = sp, i.e., COBsp: This is basically the same: Among the
σ-centered forcings that we use as factors in step ζ of type p, there are Mathias-
Prikry forcings MḞ on (free) filter bases of size <λ. In more detail: Assume Ḟ is
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a P∗ζ-name for a filter base of size <λ, so set Q̇ := MḞ . Then Q̇ is σ-centered and

adds a real which is not split by any set in Ḟ .
So let Ssp be the set of pairs (ζ, Ḟ ) such that ζ ∈ Πp and Ḟ is a nice P∗ζ-name of

a filter base of size <λ. Set (ξ1, Ḟ1) ≤p (ξ2, Ḟ2) iff ξ1 ≤ ξ2 and the empty condition

forces that Ḟ1 ⊆ Ḟ2 ∪ Ḟ d2 , where F d := {ω r x : x ∈ F}. For (ξ, Ḟ ) ∈ Sp, let
ẏξ,Ḟ be the Pξ+1-name of the generic real added by MḞ . It follows that Sp and

{ẏξ,Ḟ : (ξ, Ḟ ) ∈ Si} witness COBsp.

Item (d) is exactly the same as in [GKMS, Lemma 4.8]. �

To guarantee b ≤ λ3, we have to make sure that the large iterands (i.e., the forc-
ings of size ≥ λ3) do not destroy LCU3 (small forcings are, as usual, harmless). In
our construction, the only large forcings are the partial eventually different forcings
at steps ζ ∈ Σ4. For these forcings, we introduce in [GKS19] (based on [GMS16])
ultrafilter-limits and use them to preserve LCU3. The same argument works here.

Remark 6.9. Note that in the proof of Lemma 6.8 we do not require the hypotheses
χ = χ<χ and λ3 = χ+ from Assumption 6.5. These will be used to guarantee LCU3

in the following subsection.
If in Assumption 6.5 we consider λ3 = λ4 (instead of λ3 < λ4), then the same

proof of Lemma 6.8 guarantees Goal 6.6 in full (i.e., including LCU3). When λsp =
λ4, in the forcing construction above we have Σ = [π1, π1 + λ5).

6.C. Dealing with b.

Lemma 6.10. In addition to Assumption 6.5 we suppose that 2χ ≥ λ5. Then we
can choose Cζ for all ζ ∈ Σ4 such that LCU3(P, κ) holds for all regular κ ∈ [λ3, λ5].
Moreover, in the inductive construction, for each ζ ∈ Σ4 there is a λ-club of [ζ+]<λ4

such that we can choose Cζ from this club set.

Proof. This is analogous to [GKS19, §1.3], in particular to Lemma/Construction
1.30. We will only remark on the required changes. Again we interpret P as in (6.7).

We work from the ground model, not in the intermediate Pπ1
-extension. Accord-

ingly, we have to incorporate the initial segment of the iteration Pπ1
= P ′λ5

into the
argument. This is no problem, as we just have to deal with another type of small
forcing, the Q̇′α for α < λ5, which all have size ℵ1.

Of course, E′ := EV
P∗ζ�Cζ

is closed under conjunctions of conditions, i.e., satis-
fies the assumptions of [GKS19, Fact 1.25]. And instead of “ground model code
sequences” we use “nice P∗ζ�Cζ-names”.

The crucial part of the old proof is [GKS19, Lemma 1.30(d)]. There, we use the
notation wα ⊆ α, and Qα are those E-conditions that can be calculated in a Borel
way from the generics with indices in wα, i.e., Qα = E∩ V P∗�wα ; and we show that
the set of “suitable” wα is an ω1-club in [α]<λ4 , where “suitable” means: If we have
a ground-model-sequence of (nice) Qα-names, then the Dε

α-limit (a well-defined
condition in eventually different forcing) is also element of Qα (for all ε ∈ χ).

The same argument gives us the following for our new framework: We can per-
form the construction of Lemma 6.8 and, at all indices ζ of type 4, the set of
“suitable” Cζ ∈ [ζ+]<λ4 is a λ-club, where suitable now means the following (recall
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that we have Q̇ζ = EP∗ζ�Cζ ): For any sequence of nice P∗ζ�Cζ-names for elements of

E,16 the Dε
α-limit of this sequence is forced to be in Q̇ζ as well.

Here, we only get a λ-club and not an ω1-club, as only for increasing unions of
length λ we have ⋃

i∈λ

(
P∗ζ�Ci

)
= P∗ζ�

(⋃
i∈λ

Ci

)
.

Also, we now have to choose Cζ not only in this λ-club, but in the intersection with
the λ-club of Lemma 5.15(b) (so that we get a closed Cζ such that P∗ζ�Cζ l P∗ζ as

required for our construction.)
The same argument as in the old proof (Lemma 1.31 there) then shows: When-

ever all Cζ as chosen “suitably” (for all ζ of type 4), we get LCU3. �

Theorem 6.11. Assumption 6.5 is enough to find a P as required for Goal 6.6.

Proof. Let R be the poset of partial functions r : χ × λ5 → {0, 1} with domain of
size <χ (ordered by extension). As we assume χ<χ = χ, this poset is χ+-cc, and
obviously <χ-closed, so it does not change any cofinalities. As in the old proof,
at each step ζ of type 4 in the inductive construction of P, we can go into the R-
extension of the ground model, use Lemma 6.10 to get a suitable C0

ζ (above some

initial set given by the usual book-keeping), find in V some C̃0
ζ such that C0

ζ is

forced to be a subset. Now we iterate this λ many times (not just ω1 as in the old
proof), taking unions at limits, and use the fact that the “suitable” parameters Cζ
are closed under λ-unions (they form a λ-club in [ζ+]<λ4).

This way we get a sequence of parameters Cζ in the ground model, such that if
we define in the R-extension a forcing P′ using these parameters we get LCU3(P′, κ);
a simple absoluteness argument [GKS19, Lemma 1.33] then shows that these pa-
rameters will already define in V a forcing P with LCU3(P, κ).

Note: We do not interpret Ξζ (for ζ ∈ Π) in the R-extension, but use it with the
same meaning it has in V . So P′ may not be symmetric in the R-extension, but
this is not important here: We are only interested in LCU3(P′, κ) in this argument,
and we do not claim that P′ in the R-extension satisfies the other properties we
have already shown for P. And for LCU3(P′, κ), any iterand that has size <λ3 is
unproblematic. �

Remark 6.12. It is not necessary to restrict λ3 to a successor cardinal in Assump-
tion 6.5. To allow regular λ3 in general, we forget about χ in Assumption 6.5 and
just assume that λ<λ3

3 = λ3 > ℵ1. In this way, Lemma 6.10 is valid by assuming
2λ3 ≥ λ5 instead, and Theorem 6.11 is true when replacing χ by λ3 in the proof
(i.e., R gets modified and it forces 2λ3 ≥ λ5). No further changes in the proofs
(even in those from [GKS19]) are needed to justify this.

On the other hand, can we allow λ3 = ℵ1 in Assumption 6.5? (So all cardinals
except λ4 and λ5 are ℵ1.) Although we can make the construction in this case,
now the forcings GBδ have size λ3 = ℵ1, so they could destroy LCU3(P,ℵ1). An
alternative to deal with this problem is to perform a similar iteration with π0 = 0
(so π1 = 0, that is, no initial FS product of GB is used) and guarantee LCUR∗(P, κ)
for any regular κ ∈ [ℵ1, λ5] with the methods of this subsection (i.e. the methods
from [GKS19, §1.3 & §1.4]) adapted to R∗, where R∗ is the Blass-uniform relational

16Note: as |Cζ | < λ4, and λ4 is ℵ1-inaccessible, there are <λ4 many such sequences,

cf. Lemma 5.5 (and 5.9).
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system from [KW96] (see also [Mej13, Example 2.19]) such that b(R∗) = max{b, s}
and d(R∗) = min{d, r}.
6.D. The other constellations for the Knaster numbers. So far we have
assumed that λm > ℵ1 and that k0 < ω. We now remark on how to prove the other
cases:

Case λm = ℵ1. We only change I0 := {p} ∪ {i ∈ [1, 4] : λi ≤ λ} (so (I2)(i) is
excluded in the construction). Check details in [GKMS, Lemma 4.8]. Note that
here the value of k0 is irrelevant.

Case k0 = ω and λm > ℵ1. Force with Pcal,λm
∗P where Pcal,λm

is the precaliber
ℵ1 poset from [GKMS, §5] and P is the forcing resulting from the construction
above (in the Pcal,λm

-extension).17

6.E. The alternative order of the left side. The construction of [KST19, §2]
for the alternative order of the left side of Cichoń’s diagram can also be adapted
in the situation of the previous theorems. This is just interchanging the order of
the values of b and cov(N ), that is, instead of forcing cov(N ) = λ2 ≤ b = λ3, we
force b = λ3 < cov(N ) = λ2. See also [Mej19b] for the weakening of the hypothesis
GCH:

Theorem 6.13. Theorem 6.11 (and Goal 6.6) is still valid when, in Assump-
tion 6.5, we replace λ1 ≤ λ2 ≤ λ3 < λ4 by λ1 ≤ λ3 < λ2 < λ4.18

Remark 6.12 also applies in this situation.

7. 15 values

In this section, we review some tools from [GKMS20, GKMS] and show how
they are used to control the cardinal characteristics other than s. We describe the
forcing constructions but we omit the details in the proofs, since these are exactly
as in the cited references.

We use the notions of m-like cardinal characteristic and h-like characteristic
from [GKMS, §3]. We do not need to recall their definition, but we only need some
of their properties and to know that the cardinals mk (1 ≤ k ≤ ω) are m-like, h and
g are h-like, and p and t are of both types.

Lemma 7.1 ([GKMS, Cor. 3.5]). Let κ be an uncountable regular cardinal, λ a
cardinal, x a cardinal characteristic, and let P be a κ-cc poset that forces x = λ (so
λ is a cardinal in the P extension). If M � Hχ (with χ a large enough regular
cardinal) is <κ closed and contains (as elements) P, κ, λ and the parameters of the
definition of x, then P ∩M is a complete subposet of P and:

(i) If x is m-like and λ ≥ κ, then P ∩M 
 x ≥ κ.
(ii) If x is m-like and λ < κ, then P ∩M 
 x = λ.

(iii) If x is h-like, then P ∩M 
 x ≤ |λ ∩M |.
Lemma 7.2 ([GKMS, Lemma 6.3]). Assume:

(1) κ ≤ ν are uncountable regular cardinals, P is a κ-cc poset.
(2) µ = µ<κ ≥ ν and P forces c > µ.

17For i = m, recall that “ω-Knaster” abbreviates “precaliber ℵ1”.
18As in [KST19, §2], the relational system RLCU

2 corresponding to this result is not the same as

the one for Theorem 6.11. Although this is a relational system of the reals, it is not Blass-uniform.
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(3) For some relational systems of the reals R1
i (i ∈ I1) and some regular λ1

i ≤ µ:
P forces LCUR1

i
(λ1
i )

(4) For some relational systems of the reals R2
i (i ∈ I2), and some directed order

S2
i with b(S2

i ) = λ2
i ≤ µ and |S2

i | ≤ ϑ2
i ≤ µ: P forces COBR2

i
(S2
i ).

(5) For some m-like characteristics yj (j ∈ J) and λj < κ: 
P yj = λj.
(6) For some m-like characteristics y′k (k ∈ K): 
P y′k ≥ κ.
(7) |I1 ∪ I2 ∪ J ∪K| ≤ µ.

Then there is a complete subforcing P∗ of P of size µ forcing:

(a) yj = λj, y′k ≥ κ, LCUR1
i
(λ1
i ) and COBR2

i′
(λ2
i′ , ϑ

2
i′) for all i ∈ I1, i′ ∈ I2, j ∈ J

and k ∈ K;
(b) c = µ and g ≤ ν.

We are now ready to prove the main result of this paper. We use Notation 6.1
and the following assumption for all the results in this section.

Assumption 7.3.

(1) µm ≤ µp ≤ µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µ8 are uncountable regular.

(2) µ9 ≥ µ8 is a cardinal such that µ<µ0

9 = µ9.
(3) 0 ≤ i0 ≤ 2, µsp ∈ [µi0 , µi0+1] and µr ∈ [µ8−i0 , µ9−i0 ] are regular.

(4) There are eleven regular cardinals θ0 > · · · > θ10 > µ9 such that θ<θii = θi for

any i < 11, θi is ℵ1-inaccessible for i ∈ {1, 3, 5, 7}, θ3 = χ+
3 and χ3 = χ<χ3

3 .19

Note that, under GCH, assumption (4) is irrelevant, and µ<µ0

9 = µ9 is equivalent
to cof(µ9) ≥ µ0.

The Main Theorem for Figure 3(A) is proved in two steps through the following
two results.

Theorem 7.4. Under Assumption 7.3, for any k0 ∈ [2, ω] there is a ccc poset P1

such that, for any i ∈ {1, 2, 3, 4, sp},
(a) LCUi(P1, θ) holds for θ ∈ {µi, µ9−i}, where µsp := µs and µ9−sp := µr.
(b) There is some directed Si with cp(Si) = µi and cof(Si) = µ9−i such that

COBi(P1, Si) holds.
(c) P1 forces p = g = µ0 and c = µ9.
(d) P1 forces mk = ℵ1 for any k ∈ [1, k0), and mk = µm for any k ∈ [k0, ω].

Proof. We deal with the case i0 = 1, that is, µ1 ≤ µsp ≤ µ2 (any other case is
similar). We rewrite the sequence

µ1 ≤ µsp ≤ µ2 ≤ µ3 ≤ µ4 ≤ µ5 ≤ µ6 ≤ µr ≤ µ7 ≤ µ8 ≤ µ9 as

ϑ10 ≤ ϑ8 ≤ ϑ6 ≤ ϑ4 ≤ ϑ2 ≤ ϑ1 ≤ ϑ3 ≤ ϑ5 ≤ ϑ7 ≤ ϑ9 ≤ ϑ11,

and let 〈θj : j < 11〉 be cardinals as in Assumption 7.3(4) ordered by

ϑ11 < θ10 < θ9 < · · · < θ0

as shown in Figure 8.
Let P0 be the ccc poset obtained by application of Theorem 6.11 to λm = µm,

λ1 = θ9, λsp = θ7, λ2 = θ5, λ3 = θ3, λ4 = θ1 and λ5 = θ0. In particular, this forces

19We could further weaken the assumption depending on the value i0. E.g., in case i0 = 1,

θi is required ℵ1-inaccessible only for i ∈ {1, 3, 5}. Also, it is enough that θ<θ10 = θ0 (here, θ0
could be singular), and θ3 is not needed successor according to Remark 6.12. For more pedantic
weakenings, see [GKMS20, Rem. 3.5].
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=θ1
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θ2

OO

add(N )
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θ8
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cov(M)=ϑ1
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oo ℵ1

oo

Figure 8. The cardinals ϑn and θn are increasing along the ar-
rows. The upper diagram shows the situation forced by P0, and
the lower diagram shows the one forced by P1. (s can be anywhere
between p and b.)

the top diagram of Figure 8 and item (d). We show how to construct a complete
subforcing of P0 that satisfies the statement of the theorem, in particular, it forces
the bottom diagram of Figure 8.

For 1 ≤ n ≤ 10 and α < ϑn define Mn,α fulfilling:

• Mn,α � Hχ (for a fixed large enough regular χ) and it contains (as elements)
the sequences of θ’s and ϑ’s, P0 and the directed sets associated with the
COB properties forced by P0.
• The sequences 〈Mm,ξ : ξ < ϑm〉 for 1 ≤ m < n and 〈Mn,ξ : ξ < α〉 belong

to Mn,α.
• Mn,α is <θn closed of size θn.

Set Mn :=
⋃
α<ϑn

Mn,α and M+ :=
⋂10
n=1Mn. Exactly as in the proof of [GKMS20,

Thm. 3.1] one can show that M+ � Hχ, M+ is <ϑ10-closed, and P′ := P0 ∩M+ is
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a ccc poset that forces (a), (b) and c = θ10. Even more, P′ forces (d) and p ≥ ϑ10

by Lemma 7.1.
The desired poset is a complete subposet P1 of P′ of size ϑ11 obtained by direct

application of Lemma 7.2 (to κ = ν = µ0 and µ = ϑ11). �

Theorem 7.5. Under Assumption 7.3, for any k0 ∈ [2, ω] there is a cofinality
preserving poset P such that, for any i ∈ {1, 2, 3, 4, sp}, it satisfies (a), (b) and (d),
and P forces p = µp, h = g = µ0 and c = µ9.

Proof. Let Q := µ
<µp
p ordered by end extension, and let P1 be the poset constructed

in Theorem 7.4. Exactly as in the proof of [GKMS, Thm. 7.4], P := P1 × Q is as
required. �

In the same way, we can prove the Main Theorem corresponding to Figure 3(B).
In this case, we initial forcing P0 is obtained from Theorem 6.13.

Theorem 7.6. Both Theorems 7.4 and 7.5 are valid when Assumption 7.3 is mod-
ified in the following way:

(i) We replace the order of the regular cardinals in (1) by

µm ≤ µp ≤ µ0 ≤ µ1 ≤ µ3 ≤ µ2 ≤ µ4 ≤ µ5 ≤ µ7 ≤ µ6 ≤ µ8.

(ii) In (3), we consider i0 ∈ {0, 1}, but µsp ∈ [µ1, µ3] and µr ∈ [µ6, µ8] when
i0 = 1.

(iii) In (4), instead of θ3 = χ+
3 and χ<χ3

3 = χ3, assume θ5 = χ+
5 and χ<χ5

5 = χ5.

8. Discussions

One obvious question is:

Question 1. How to separate additional cardinals from Figure 2?

Another one:

Question 2. How to get other orderings, where non(M) > cov(M)?

This is not possible with FS ccc iterations, as any such iteration whose length
has uncountable cofinality δ forces non(M) ≤ δ ≤ cov(M), so alternative meth-
ods are required. A creature forcing method based on the notion of decisive-
ness [KS09, KS12] has been developed in [FGKS17] to separate five characteristics
in Cichón’s diagram, but this method is restricted to ωω-bounding forcings, i.e.,
results in d = ω1. An unbounded decisive creature construction might be promis-
ing. Alternatively, Brendle proposed a method of shattered iterations 20, which also
may be a way to solve this problem.

Question 3. Are our main results (specifically, Theorems 6.11, 6.13, 7.4, 7.5
and 7.6) valid for k0 = 1? I.e., can we force m > ℵ1?

For k0 ≥ 2 there was no problem to include, in our iterations, FS products of
k0-Knaster posets since they are still k0-Knaster (hence ccc), but we cannot just
use FS products of ccc posets because they do not produce ccc posets in general.
In particular, we do not know how to modify Theorem 6.11 to force m > ℵ1.

Question 4. Is it consistent with ZFC that b < s < non(M) < cov(M)?

20J. Brendle, personal communication
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In this paper s ≤ b; and forcing s > b is much more difficult, since Mathias-
Prikry posets may add dominating reals. Shelah [She84] proved the consistency of
b = ℵ1 < s = c = ℵ2 by a countable support iteration of proper posets. Much later,
Brendle and Fischer [BF11] constructed an FS iteration via a matrix iteration to
force ℵ1 < b = κ < s = c = λ for arbitrarily chosen regular κ < λ. However, in this
latter model, non(M) = cov(M) = c. It is not clear how to adapt Brendle’s and
Fischer’s methods to our methods and produce a poset for the previous question.
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Math. 190 (2019), no. 1, 113–143, arXiv:1708.03691.

[GMS16] Martin Goldstern, Diego Alejandro Mej́ıa, and Saharon Shelah, The left side of Ci-
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