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Our aim was to try to generalize some theorems about the saturation of ultrapowers to reduced powers. Natu-
rally, we deal with saturation for types consisting of atomic formulas. We succeed to generalize “the theory of
dense linear order (or T with the strict order property) is maximal and so is any pair (T,∆) which is SOP3”,
(where ∆ consists of atomic or conjunction of atomic formulas). However, the theorem on ‘‘it is enough to deal
with symmetric pre-cuts” (so the p = t theorem) cannot be generalized in this case. Similarly the uniqueness
of the dual cofinality fails in this context.
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4 Saharon Shelah: Atomic saturation of reduced powers

Annotated Content

§0 Introduction, pg.5

§1 Axiomatizing [2, Ch.VI,2.6], pg. 10

[We phrase and prove a theorem which axiomatizes [2, Ch.VI,2.6]. The theorem there says that if D is a
regular ultrafilter on I and for every model M of the theory of dense linear orders (or T with the strict order
property), the model M I/D is λ+-saturated, then D is λ+-good and λ-regular.]

§2 Applying the axiomatized frame, pg.14

[The axiomatization in §1 can be phrased as a set of sentences, surprisingly moreover Horn ones (first order
if θr = ℵ0). Now in this case we can straightforwardly derive [3, Ch.VI,2.6]. However we can get more,
because the axiomatization being Horn, we can now deal also with the (λ+,atomic)-saturation of reduced
powers. We then deal with infinitary logics and comment on models of Bounded Peano Arithmetic.]

§3 Criterion for atomic saturation of reduced powers, pg.20

[For a complete first order T we characterize when a filterD on I is such thatM I/D is (λ,atomic)-saturated
for every model M of T .]

§4 The counterexample, pg.25

[We prove that for reduced powers, the parallel of t ≤ p in general fails. Also, similarly the uniqueness of the
dual cofinality. More specifically, for λ ≥ ℵ1, for some regular filter D on λ, the partial order (Q, <)λ/D
has no symmetric pre-cut of cofinality ≥ λ but has such an asymmetric pre-cut.]
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0 Introduction

0(A) Background, Questions and Answers

We know much on saturation of ultrapowers, see Keisler [4], [2, Ch.IV] and later mainly works of Malliaris
and the author, e.g. ([5], [6]). But we know considerably less on reduced powers. For transparency, let T denote
a first order complete countable theory with elimination of quantifiers and M will denote a model of T . For
D a regular filter on λ > ℵ0 we may ask: when is Mλ/D saturated? For D an ultrafilter, Keisler [7] proves
that this holds for every T iff D is λ+-good iff this holds for T = theory of Boolean algebras, such T is called
Eλ-maximal.

By [3, Ch.VI,2.6] the maximality holds for T = theory of dense linear orders or just any T with the strict
order property and by [8], any T with the 3-strong order property, SOP3 is Eλ-maximal.

What about reduced powers for λ-regular filter D on λ? By [9], Mλ/D is λ+-saturated for every T (of
cardinality ≤ λ) iff D is λ+-good and P(λ)/D is a λ+-saturated Boolean algebra. Parallel results hold when
we replace λ+-saturated by (λ+,Σ1+n(Lτ(T )))-saturated. We shall concentrate on (λ+,atomic)-saturated and
introduce the related partial order Erp

λ , see definitions below.
Concerning ultrapowers, lately Malliaris-Shelah [5] proved that a regular ultrafilter D on a cardinal λ is λ+-

good iff for any linear order M we have Mλ/D has no symmetric pre-cut with cofinality ≤ λ. This was proved
together with the theorem p = t and “for a f.o. complete countable T , being SOP2 suffices for /λ-maximality”. In
a later work [10], it is proved that at least for a relative /∗λ (see [8]) this is “iff” assuming a case of G.C.H., relying
also on works with Dzamonja [11], and with Usvyatsov [12]. Part of the proof is axiomatized by Malliaris-Shelah
[13].

Note also that [14] deals with saturation but only for ultrapowers by θ-complete ultrafilters for θ a compact
cardinal; and also with ω-ultra-limits.

Now what do we accomplish here?
First, in §1 we axiomatize the proof of [3, Ch.VI,2.6], i.e. we define when r = (M,∆) is a so called RSP and

for it prove that the relevant model Nr is (min{pr, tr},∆)-saturated. Second, in §2 we prove, of course, that [3,
Ch.VI,2.6] follows, but also we show that the axiomatization of RSP is by Horn sentences. Hence we can apply
it to reduced powers. So T is Erp

λ -maximal if T = Th(Q, <) and moreover for every T having the SOP3; lastly
we comment on models of Peano Arithemetic.

In §3 we try to sort out when for models of T we get the relevant atomic saturation.
Can we generalize also results [5] to reduced powers? The main result of §4 says that no. We also sort out the

parallel of goodness, excellence and morality for filters and atomic saturation for reduced powers. In a hopeful
continuation [15], we shall try to sort out the order Erp

λ , and in particular consider non-maximality and parallel
statements for infinitary logics (see [14]).

The reader can ignore Boolean ultrapowers (that is 0.12, 0.13, 0.14 for sections 1,2 and can in first reading
deal only with first order logic (so θ = ℵ0, and the assumptions concerning the completeness of filer disappear.
We thank the referee for many helpful comments

Note that by 2.10

Conclusion 0.1 If (T,∆) has the SOP3, then it is Erp
λ -maximal.

Question 0.2. Do we have: if D is (λ2, T )-good and regular then D is (λ1, T )-good when λ1 < λ2 (or more)?

0(B) Further Questions

Convention 0.3 1) Let T be a theory with elimination of quantifiers if not said otherwise. Let ModT be the
class of models of T .
2) The main case is for T a countable complete first order theory with elimination of quantifiers, moreover, with
every formula equivalent to an atomic one.
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6 Saharon Shelah: Atomic saturation of reduced powers

So it is natural to ask

Conjecture 0.4 The pair (T,∆) is Erp-maximal iff (T,∆) has the SOP3.

So which T (with elimination of quantifiers) are maximal under /rp
λ ? That is, when for every regular filter

D on λ,Mλ/D is (λ+, atomic)-saturated iff D is λ+-good? Is Tfeq maximal? (see [16], it is a proto-typical
non-sumple T , but see more in [17]) As we have not proved this even for ultrafilters, the reasonable hope is that
it will be easier to show non-maximality for /rp

λ . Also in light of [6] for simple theories we like to prove non-
maximality with no large cardinals. We may hope to use just NSOP2, but still it would not settle the problem
of characterizing the maximal ones as, e.g. SOP2 ≡ SOP3 is open for such T ; for pairs (T, ϕ(x̄, ȳ)) they are
different.

Note that for first order T , it makes sense to use µ+-saturated models and D is µ+-complete.
Also the “T stable” case should be resolved.

Conjecture 0.5 Mλ/D is (ℵλ0/D, atomic)-saturated when :

(a) T a theory as in 0.3

(b) T is stable without the fcp

(c) D is a regular filter on λ.

Remark 0.6 Maybe given a 1− ϕ-type p ⊆ {ϕ(x, ā) : ā ∈ m(M I/D)} of cardinality ≤ λ in M I/D, we try
just to find a dense set of A ∈ D+ such that in M I/(D +A) the 1− ϕ-type is realized. Then continue; opaque.

0(C) Preliminaries

Notation 0.7 1) T dnote a f.o. theory, usually complete.
2) Let τ denote a vocabulary, τT = τ(T ) dnote the vocabulary of the theory T
3) We use M,N to denote models, τM = τ(M) is the vocabulary of M and PM , FM denote the interpretation
of P, F respectively.
4) let L(τ) denote the f.o. language for the vocabulary τ .
5) We allow function symbol F ∈ τ to be interprated in a τ -model M as a partial function, but with domain PMF ,
with PF ∈ τ a predicate with the same arity.

Notation 0.8 1) Let B denote a Boolean algebra, comp(B) its completion, B+ = B\{0B},uf(B) the set
of ultrafilters on B,fil(B) the set of filters on B. For a ∈ B let aif(true) = aif(1) be a and let aif(false) = aif(0)

be 1B − a.
1A) Let B1 lB2 mean that B1 is a subalgebra os B2, and moreover a complete one, which means that every
maximal antichain of B1 is a maximal antichain of B2.
2) For a model M let τM = τ(M) be its vocabulary.
3) For a filter D on a set I let D+ = {B ⊆ I : I \B /∈ D}
Now about cuts (they are closed to but different than gaps, see [18]).

Definition 0.9 1) For a partial order T = (T ,≤T ), we say (C1, C2) is pre-cut when (but we may in this
paper omit the ‘‘pre”):

(a) C1 ∪ C2 is a subset of T linearly ordered by ≤T

(b) if a1 ∈ C1, a2 ∈ C2 then a1 ≤T a2

(c) for no c ∈ T do we have a1 ∈ C1 ⇒ a1 ≤T c and a2 ∈ C2 ⇒ c ≤T a2.

2) Above we say (C1, C2) is a (κ1, κ2)-pre-cut when in addition:
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(d) C1 has cofinality κ1

(e) C∗2 , the inverse of C2, has cofinality κ2

(f) so κ1, κ2 are regular cardinals or 0 or 1.

2A) Above we call κ1, κ2 the cofinalities of the pre-cut (C1, C2). We say that the pre-cut is symmetric when
κ1 = κ2 and then we may say κ1 is its cofinality, 3) We may replace C` by a sequence ā`, if not said otherwise

such that ā1 is ≤T -increasing and ā2 is ≤T -decreasing.
4) We say (C1, C2) is a (κ1, κ2)-linear-cut of T when it is a (κ1, κ2)-pre-cut and C1 ∪ C2 is downward closed,
so natural for T a tree.
5) We say (C1, C2) is a weak pre-cut when (b),(c) of part (1) holds.

Remark 0.10 1) If T is a (model theoretic) tree, κ2 > 0 and (C1, C2) is a (κ1, κ2)-pre-cut then it induces
one and only one (κ1, κ2)-linear-cut (C ′1, C

′
2), i.e. one satisfying C1 ⊆ C ′1, C2 ⊆ C ′2 such that C1∪C2 is cofinal

in C ′1 ∪ C ′2.
2) In 0.11 below, if L = L(τ) then θ = ℵ0, σ = 1 suffice, but not so in more general cases.

Definition 0.11 1) We say M is fully (λ, θ, σ, L)-saturated (may omit the fully); where L ⊆ L (τM ) and L
is a logic; we may write L if L = L (τM ), when :

• if Γ is a set of < λ formulas from L with parameters from M with < 1 + σ free variables, and Γ is
(< θ)-satisfiable in M , then Γ is realized in M .

2) We say “locally” when using one ϕ = ϕ(x̄, ȳ) ∈ L with `g(x̄) < 1 + σ, i.e. all members of Γ have the form1

ϕ(x̄, b̄).
3) Saying “locally/fully (λ,L )-saturated” the default values (i.e. we may omit) of σ is σ = θ, of (σ, θ) is
θ = ℵ0 ∧ σ = ℵ0 and of L is L (first order logic) and of L is L . Omitting λ means λ = ‖M‖.
4) If ϕ(x̄, ȳ) ∈ L (τM ) and ā ∈ `g(ȳ)M then ϕ(M, ā) := {b̄ ∈ `g(x̄)M : M |= ϕ[b̄, ā]}.
5) Let x̄[u] = 〈xs : s ∈ u〉.

In 0.12. 0.13, 0.14 we shall deal with complete Boolean algebras and ultrapowers, and then we define an order
between theories.

Definition 0.12 Assume we are given a Boolean algebra B usually complete and a model or a set M and D
a filter on comp(B), the completion of B.
1) LetMB be the set of partial functions f from B+ intoM such that for some maximal antichain 〈ai : i < i(∗)〉
of B,dom(f) includes {ai : i < i(∗)} and is included in2 {a ∈ B+ : (∃i)(a ≤ ai)} and f is a function into M
and f�{a ∈ dom(f) : a ≤ ai} is constant for each i.
1A) Naturally for f1, f2 ∈ MB we say f1, f2 are D-equivalent, or f1 = f2 mod D when for some b ∈ D we
have a1 ∈ dom(f1) ∧ a2 ∈ dom(f2) ∧ a1 ∩ a2 ∩ b > 0B ⇒ f1(a1) = f2(a2).
2) We define MB/D naturally, as well as TVM (ϕ(f0, . . . , fn−1)) ∈ comp(B) when ϕ(x0, . . . , xn−1) ∈
L(τM ) and f0, . . . , fn−1 ∈MB where

(a) TV stands for truth value

(b) TVM (ϕ(f0, . . . , fn−1)) = sup{a ∈ B+ : a ∩
⋂
`<n Dom(f`) : M |= (ϕ(f0(a), . . . , fn−1(a)))}

(c) M is defined by letteing, for ϕ an atomic formulas

MB/D |= ϕ[f0/D, . . . , fn−1/D] iff TVM (ϕ(f0, . . . , fn−1)) ∈ D.

1 In [14] we use a L ⊆ Lθ,θ, θ a compact cardinal and if σ > θ we use a slightly different version of the definition of local and of the
default value of σ was θ.

2 for the D` ∈ uf(B`) ultra-product, without loss of generality B is complete, then without loss of generality f�{ai : i < i(∗)} is
one to one. But in general we allow ai = 0B, those are redundant but natural in 0.12(3).
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8 Saharon Shelah: Atomic saturation of reduced powers

2A) Abusing notation, not only MB1 ⊆ MB2 but MB1/D1 ⊆ MB2/D2 when B1 l B2, D` ∈ fil(B`) for
` = 1, 2 and D1 = B1 ∩ D2. Also [f1, f2 ∈ MB1 ⇒ f1 = f2 mod D1 ↔ f1 = f2 mod D2]. So for
f ∈MB1 we identify f/D1 and f/D2.
3) For complete B, we say 〈an : n < ω〉 represents f ∈ NB when 〈an : n < ω〉 is a maximal antichain of B
(so an = 0B is allowed) and for some f ′ ∈ NB which is D-equivalent to f (see 0.12(1A)) we have f ′(an) = n.
4) We say 〈(an, kn) : n < ω〉 represents f ∈ NB when :

(a) the kn are natural numbers with no repetition

(b) 〈an : n < ω〉 is a maximal antichain

(c) f(an) = kn.

5) If I is a maximal antichain of B and M̄ = 〈Ma : a ∈ I 〉 is a sequence of τ -models, then we define M̄B be
the set of partial functions f from B+ to ∪{Ma : a ∈ I } such that for some maximal antichain 〈ai : i < i(∗)〉
of B refining I (i.e. (∀i < i(∗))(∃b ∈ I )(ai ≤B b)) we have:

(a) {ai : i < i(∗)} ⊆ dom(f) ⊆ {b ∈ B+ : b ≤B ai for some i < i(∗)}

(b) if a ∈ dom(f) and a ≤ ai then f(a) = f(ai)

(c) if ai ≤B b, b ∈ I then f(ai) ∈Mb.

6) For M̄,B,I as above and a filter D on B we define M̄B/D as in part (2) replacing MB there by M̄B here,
see part (7).
7) For M̄,B,I as above, ϕ = ϕ(x̄) = ϕ(x0, . . . , xn−1) ∈ L(τM ) and f̄ = 〈f` : ` < n〉 where f0, . . . , fn−1 ∈
M̄B, let TV(ϕ[f̄ ]) = TV(ϕ[f̄ ], M̄B) be sup{a ∈ B+: if ` < n then a ∈ dom(f`) and a ≤ b ∈ I then
Mb |= ϕ[f0(b), . . . , fn−1(b)]}.
8) We say B is (< σ)-distributive when it is θ-distributive for every θ < σ, where
8A) B is θ-distributive when : if for α < θ,Iα is a maximal antichain of B then there is a maximal antichain
of B refining every Iα(α < θ); this holds, e.g. when B = P(λ) or just there is a dense Y ⊆ B+ closed under
intersection of θ.

Definition 0.13 1) Let B be a complete Boolean algebra and D a filter on B. We say that D is (µ, θ)-regular
when for some (c̄, ū) we have:

(a) c̄ = 〈cα : α < α∗〉 is a maximal antichain of B

(b) ū = 〈uα : α < α∗〉 with uα ∈ [µ]<θ

(c) if i < µ then sup{cα : α satisfies i ∈ uα} ∈ D.

2) A filter D is called λ-regular when it is (λ,ℵ0)-regular; the filter D on a set I (that is the Boolean algebra
P(I)) is called regular when it is a filter on a set I and it is |I|-regular.

Claim 0.14 Assume B is a complete Boolean algebra which is (< λ)-distributive and D a filter on B and
θ = cf(θ) ≤ λ.
1) Assume D is a θ-complete ultrafilter. The parallel of Łoś theorem holds for Lθ,θ and if D is λ-complete even
for Lλ,θ which means: if M̄ = 〈Mb : b ∈ I 〉 is a sequence of τ -models, I is a maximal antichain of the
complete Boolean algebra B and ε < θ, ϕ = ϕ(x̄[ε]) ∈ Lλ,θ(τ) and fζ ∈ M̄B for ζ < ε then MB/D |=
“ϕ[〈fζ/D : ζ < ε〉]” iff TVM (ϕ[〈fζ/D : ζ < ε〉]) belongs to D.
2) If in addition D is (λ, θ)-regular and M,N are Lθ,θ-equivalent then MB/D,NB/D are Lλ+,θ-equivalent.

Copyright line will be provided by the publisher

Paper Sh:1064, version 2020-05-10. See https://shelah.logic.at/papers/1064/ for possible updates.



mlq header will be provided by the publisher 9

Definition 0.15 1) Assume ∆` is a of set atomic formulas in L(τ(T`)). Then we say (T1,∆1) Erp
λ,θ (T2,∆2)

when : if D is a (λ, θ)-regular filter on λ and M` is a λ+-saturated model of T` for ` = 1, 2 and Mλ
2 /D is

(λ+, θ,∆2)-saturated then Mλ
1 /D is (λ+, θ,∆1)-saturated.

2) For general ∆1,∆2 we define (T1,∆1) Erp
λ,θ (T2,∆2) as meaning (T+

1 ,∆
+
1 ) Erp

λ,θ (T+
2 ,∆

+
2 ) where (as

Morley [19] does):

• T+
` = T` ∪ {(∀x̄)(ϕ(x̄) ≡ Pϕ(x̄)) : ϕ(x̄) ∈ ∆`} with 〈P `ϕ : ϕ ∈ ∆`〉 new pairwise distinct predicates with

suitable number of places

• ∆+
` = {P `ϕ(x̄ϕ) : ϕ ∈ ∆`}.

3) In (2), T1 E
rp
λ,θ T2 means ∆` = the set of atomic Lθ,θ(τT`)-formulas.

Observation 0.16 Assume ∆ ⊆ L(τT ) is closed under ∃ and ∧. A model M of T is (µ+, µ+,∆)-saturated
iff it is (µ+, 1,∆)-saturated.

Question 0.17. 1) Under Erp characterize the minimal/maximal pairs (T,∆)
2) What about the parallel of E ∗∗ (see [16], [10])?
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10 Saharon Shelah: Atomic saturation of reduced powers

1 Axiomatizing [2, Ch.VI,2.6]

Note that while the notation t(T ) is obviously natural the notation p(T ) is really justified just by the results
here.

Definition 1.1 1) For a partial order T = (T ,≤T ) let pT = p(T ) be min{κ1 + κ2 : (κ1, κ2) ∈ CT } and
pθ(T ) = min{κ1 + κ2 : (κ1, κ2) ∈ CT ,θ}; where:
2)Cθ(T ) = {(κ1, κ2): the partial order T has a (κ1, κ2)-cut and κ1 ≥ θ, κ2 ≥ ℵ0}. If θ = ℵ0 then we may
omit θ, (yes, when θ > ℵ0 this is not symmetric).
3) For a partial order T let tT = t(T ) be the minimal κ ≥ ℵ0 such that there is a <T -increasing sequence of
length κ with no <T -upper bound.
4) Let p∗T = p∗(T ) be min{tT , pT }.
5) pθ−sym(T ) = min{κ : (κ, κ) ∈ Cθ(T )}. and if θ = ℵ0 we may write p∗sym(T ) 6) In Definition 1.2 below
let tr = tTr , pr = pθr(Tr).

Definition 1.2 1) For ι = 1, 2 (the difference is only in closed (i)), we say r or (M,∆) is a (θ, ι)-realization3

spectrum problem, in short (θ, ι)−RSP or (θ, ι)− 1-RSP when r consists of (if ι = 2 we may omit it, similarly
if θ = ℵ0; we may omit ∆ and write M when ∆ is the set of atomic formulas in L(τNM ), see below, so M below
= Mr, etc.):

(a) M a model

(b) for the relations T = T M ,≤T =≤MT of M (i.e. T ,≤T are predicates from τM ) we have T = (T ,≤T )
a partial order (so definable in M ) with root cM = rt(T ), so c ∈ τM is an individual constant and t ∈
T ⇒ rt(T ) ≤T t; as in other cases we may write Tr,≤r for T ,≤T ; we do not require T to be a tree;
but do require t ∈ T ⇒ t ≤T t

(c) a model N = Nr = NM with universe PM , τ(N) ⊆ τ(M) such that

• Q ∈ τN ⇒ QM = QN

• F ∈ τN ⇒ FN = FM , (we understand FM , FN to be partial functions),
so every ϕ ∈ L(τN ) can be interpreted as ϕ[∗] ∈ L(τM ), all variables varying on P (include quantifica-
tion); we may forget the [∗].

(d) the cardinal θ and ∆ ⊆ {ϕ : ϕ = ϕ(x, ȳ) ∈ Lθ,θ(τN )} which is closed under conjunctions meaning: if
ϕ`(x, ȳ`) ∈ ∆ for ` = 1, 2 then ϕ(x, ȳ′1, ȳ

′′
2 ) = ϕ1(x, ȳ′1) ∧ ϕ2(x̄, ȳ′′2 ) ∈ ∆

(e) RM ⊆ |N | ×T M so a two-place relation; and let RMt = {b : bRM t} for t ∈ T M

(f) |N | × {rtT } ⊆ RM , i.e. RMrt(T ) = |N |

(g) if s ≤T t then a ∈ N ∧ aRt⇒ aRs, i.e. RMs ⊇ RMt

(h) t ∈ T ⇒ RMt 6= ∅

(i) if s ∈ T , ϕ(x, ā) ∈ ∆(N) := {ϕ(x, ā)) : ϕ(x, ȳ) ∈ ∆ and ā ∈ `g(ȳ)N} and for some b ∈ RMs , N |=
ϕ[b, ā] then there is t ∈ T such that s ≤T t and RMt = {b ∈ RMs : N |= ϕ[b, ā]}

(i)+ if ι = 1 like clause (i) but4 moreover t = FMϕ,1(s, ā) where FMϕ,1 : Tr × `g(ȳ)(PM )→ Tr

(j) if t ∈ Tr and ϕ(x, ā) ∈ ∆(N) and ϕ(N, ā) 6= ∅ then

3 When P and τN (hence N ) are understood from the context we may omit them
4 We may not add a function, maybe it matters when we try to build r with Th(Mr) nice first order
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(α) s = FMϕ,2(t, ā) is such that RMs ∩ ϕ(N, ā) 6= ∅ and s ≤T t

(β) if s = FMϕ,2(t, ā), s1 ≤T t and RMs1 ∩ ϕ(N, ā) 6= ∅ then s1 ≤T s

(k) if θ > ℵ0 then in (T ,≤T ) any increasing chain of length < θ which has an upper bound has a ≤T -lub.

Remark 1.3 We may consider adding: SM a being successor, (but this is not Horn), i.e.:

(l) if ι = 1 we also have SM = {(a, b) : B is a ≤T -successor of a such that

(α) if a ≤ b ∧ a 6= b then for some c, S(a, c) ∧ c ≤ b

(β) if b ∈ T \{rtT } then for some unique a we have SM (a, b)

(γ) S(a, b)⇒ a ≤ b

(δ) S(a, b1) ∧ S(a, b2) ∧ b1 6= b2 ⇒ ¬(b1 ≤ b2)

(ε) in clause (j) we can add SM (s, t).

Remark 1.4 Presently, it may be that a ≤T b ≤T a but a 6= b. Not a disaster to forbid but no reason.

How does this axiomatize realizations of types?

Claim/Definition 1.5 Let ι = {1, 2}, θ is ℵ0 or just a regular cardinal.
1) For any model N and ∆ ⊆ {ϕ : ϕ = ϕ(x, ȳ) ∈ Lθ,θ(τT )} closed under conjunctions of < θ, the canonical
(θ, ι)− RSP, r = rθN,∆ defined below is indeed a θ − RSP.
2) r = rθN,∆ (if θ = ℵ0 we may omit it) is defined by:

(a) ∆r = ∆, Nr = N and θr = θ

(b) Tr = {〈ϕε(x, āε) : ε < ζ〉 : ζ < θ and for every ε < ζ we have ϕε(x, āε) ∈ ∆(N) and N |=
(∃x)(

∧
ε<ζ

ϕε(x, āε))}

(c) ≤r= being the initial segment relation on Tr

(d) M = Mr is the model with universe Tr ∪ |N |; without loss of generality Tr ∩ |N | = ∅, with the relations
and functions of N,Tr,≤r and

• PM = |N |

• cM = 〈〉 ∈ Tr

• RM = {(b, t) : a ∈ N, t = 〈ϕt,ε(x, āt,ε) : ε < ζt〉 ∈ T and N |= ϕt,`(b, āt,ε) for every ε < ζt}

• FMϕ,2 as in Definition 1.2(j)

• if ι = 1 then FMϕ,1 is as in Definition 1.2(i)+.

Remark 1.6 If we adopt 1.3 it is natural to add:

(e) for ι = 1, SM = {(ϕ̄1, ϕ̄2) : ϕ̄2 = ϕ1ˆ〈ϕ(x, ā)〉 ∈ Tr for some ϕ(x, ā) ∈ ∆(N)}.

P r o o f. Obvious. �1.5

Main Claim 1.7 1) Assume r is an RSP. If κ = min{tr, pr} then the model N is (κ, 1,∆r)-saturated, i.e.

⊕ if p(x) ⊆ ∆r(Nr) is finitely satisfiable in Nr (= is a type in Nr) of cardinality < κ then p is realized in Nr.
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12 Saharon Shelah: Atomic saturation of reduced powers

2) If θ > ℵ0 and r is a θ-RSP, then Nr is (κ, 1,∆r)-saturated where κ = min{tr, pr} recalling 1.1(6), i.e.
pr = pTr,θ.
3) If θ > ℵ0, r is a θ-RSP satisfying (k)+ below then Nr is (tr, 1,∆r)-saturated when :

(k)+ in (T ,≤T ) any increasing chain which has an upper bound, has a ≤T -lub.

P r o o f. This is an abstract version of [3, Ch.VI,2.6] = [2, Ch.VI,2.6]; recall that [3, Ch.VI,2.7] translates trees
to linear orders.
1) Let N = Nr,∆ = ∆r, etc.

Let p be a (∆, 1)-type in N of cardinality < κ. Without loss of enerality p is infinite and closed under
conjunctions.

So let

(∗)1 α∗ < κ, p = {ϕα(x, āα) : α < α∗} ⊆ ∆(N), p is finitely satisfiable in N .

We shall try to choose tα by induction on α ≤ α∗ such that

(∗)2 (a) tα ∈ T and β < α⇒ tβ ≤T tα

(b) if β < α∗ then there is b ∈ RMtα such that N |= ϕβ [b, āβ ]

(c) if β < α then b ∈ RMtα ⇒ N |= ϕβ [b, āα].

If we succeed, this is enough because if t = tα∗ is well defined then RMt 6= ∅ by Definition 1.2(h) and any
b ∈ RMt realizes the type by (∗)2(c) and Definition 1.2(h). Why can we carry the definition?

Case 1: α = 0
Let tα = rtT , hence RMtα = |N | by Definition 1.2(f). Now clause (a) of (∗)2 holds as tα ∈ Tr and there is no

β < α. Also clause (b) of (∗)2 holds because p is a type and RMrt(T ) = |Nr| by Definition 1.2(h).
Lastly, clause (c) of (∗)2 holds trivially.

Case 2: α = β + 1
If ι = 1 let t = FMϕβ ,1(tβ , āβ) and see clause (i)+ of Definition 1.2. If ι = 2 use clause (i) of the definition

recalling p is closed under conjunctions.

Case 3: α a limit ordinal
As tTr ≥ κ > α∗ by the claim’s assumption (on tTr , see Definition 1.1(2)) necessarily there is s ∈ T such

that β < α⇒ tα ≤T s. We now try to choose si by induction on i ≤ α∗ such that

(∗)2.1 (a) si ∈ T

(b) β < α⇒ tβ ≤T si

(c) j < i⇒ si ≤T sj

(d) if i = j + 1 then RMsi is not disjoint to ϕj(N, āj).

If we succeed, then sα∗ satisfies all the demands on tα (e.g. (∗)2(b) holds by Definition 1.2(g) and (∗)2.1(d)),
so we have just to carry the induction for α. Now if i = 0 clearly s0 = s it as required. If i = j + 1 let
si = FMϕ,2(sj , āj), by Definition 1.2(j) it is as required. For i a limit ordinal use κ ≤ pT hence to carry the
induction on i so finish case 3.

So we succeed to carry the induction on α hence (as said after (∗)2) get the desired conclusion.
2) Similar, except concerning case 3. Note that without loss of generality θ > ℵ0 by part (1).

Case 3A: α is a limit ordinal of cofinality ≥ θ
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As in the proof of part (1).

Case 3B: α is a limit ordinal of cofinality < θ
Again there is an upper bound s of {tβ : β < α}. Now by clause (k) of Definition 1.2, without loss of

generality s is a <T -lub of {tβ : β < α}. So easily for every i < α∗, F
N
ϕi,2(s, āi) is ≥ tβ for β < α hence is

equal to s, so sα := s is as required.
3) Similarly. �1.7

Discussion 1.8 1) What about “(λ+, n,∆)-saturation”? We can repeat the same analysis or we can change
the models to code n-tuples. More generally, replacing ϕ(x̄[ε], ȳ) by ϕ(〈Fζ(x) : ζ < ε〉, ȳ), using Fζ ∈ τM
(though not necessarily Fζ ∈ τNr ), so we can allow infinite ε.
2) Hence the same is true for (λ+,ℵ0,∆)-saturation, e.g. λ+-saturated by an assumption.
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14 Saharon Shelah: Atomic saturation of reduced powers

2 Applying the axiomatized frame

Consider a filter D on a set I and cardinals λ ≥ µ. We may ask for a model M of cardinality ≥ µ, whether
M I/D is (λ+, atomic)-saturated, varying M .

We here apply §1 to show that: when D is an ultrafilter, the model (ω>µ, /) is the hardest, this is 2.1, We then
(in 2.2) show that §1 has axiomatization as Horn theory. Hence we can prove results like 2.1 below for filters D
(not just for ultrafilters),

Conclusion 2.1 1) If D is an ultrafilter on a set I,N a model, µ = ‖N‖ + ‖τN‖ and (ω>µ, /)I/D is
(λ+,atomic)-saturated then N I/D is λ+-saturated.
2) Instead of “(ω>µ,E)I/D is (λ+, 1, atomic)-saturated” we can demand “JI/D is (λ+, 1,atomic)-saturated”
where J is the linear order with set of elements {−1, 1} × ω>µ ordered by (ι1, η1) < (ι2, η2) iff ι1 < ι2 or
ι1 = −1 = ι2 ∧ η1 <lex η2 or ι1 = −1 = ι2 ∧ η2 <lex η1.

P r o o f. 1) Let N1 = N . As D is an ultrafilter without loss of generality Th(N1) has elimination of quanti-
fiers and even every formula is equivalent to an atomic formula. Let ∆ = L(τN ), by 1.5 r1 := rN1,∆ is an RSP.
Let N2 = N I

1 /D and let M1 = Mr1 ,M2 = M I
1 /D and let r2 be the RSP(M2 , ∆). Clearly r2 is an RSP as the

demands in 1.2 are first order (see more in 2.2).
Now

(∗)1 Tr1
∼= (ω>µ, /).

[Why? See 1.5(2).]

(∗)2 Tr2 = (Tr1)I/D is (λ+,atomic)-saturated.

[Why? By an assumption.]

(∗)3 t(Tr1), p(Tr2) ≥ λ+.

[Why? Follows by (∗)2.]
Hence by 1.7, N2 is (λ+, 1, 1,∆)-saturated which means N2 = (N1)I/D is λ+-saturated.

2) Easy (or see [3, Ch.VI,2.7] or see [20]). �2.1

To apply the criterion of the Main Claim 1.7 to reduced products we need:

Claim 2.2 If ∆ is the set of conjunctions of atomic formulas (no negation!) in L(τ0) and τ = {T ,≤T

, R, P, c} ∪ {Fϕ,` : ϕ ∈ ∆ and ` = 2 or ` = 1 if relevant} ∪ τ0 (disjoint union, recall c is rtT ), then there is a
set T of Horn sentences from L(τ) such that for every τ -model M

• (M,∆) is a RSP (i.e. 2-RSP) iff M |= T .

P r o o f. Consider Definition 1.2. For each clause we consider the sentences expressing the demands there.

Clause (a): Obvious

Clause (b): Clearly the following are Horn:

• x ≤T y → T (x), x ≤T y → T (y)

• x ≤T y ∧ y ≤T z → x ≤T z,

• T (rtT ) and T (s)→ rtT ≤ s

• T (x)→ x ≤T x.
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Note that (T ,≤T ) being a tree is not a Horn sentence but is not required.

Clause (c):

• Q(x0, . . . , xn(Q)−1) → P (x`) when Q is an n(Q)-place predicate from τ(N) and ` < n(Q); clearly it is
Horn

• for any n-place function symbol F ∈ τ0 the sentence: P (x0)∧ . . .∧P (xn−1)→ P (F (x0, . . . , xn−1)) and
y = F (x0, . . . , xn−1)→ P (x`).

Clause (d): nothing to prove - see the present claim assumption on ∆.
Recall that for F ∈ τN , F stand for a partial function symbol with domain PF .

Clause (e): yRs→ T (s), yRs→ P (y) are Horn.

Clause (f): P (x)→ xR(rtT ) is Horn.

Clause (g): s ≤T t ∧ xRt→ xRs is Horn.

Clause (h): (∀t)(∃x)(T (t)→ xRt) is Horn.

Clause (i): Let ϕ(x, ȳ) ∈ ∆.
First assume ι = 1. Note the following are Horn: for any ϕ(x, ȳ) ∈ ∆

• T (s) ∧ xRs ∧ ϕ(x, ȳ) ∧
∧

`<`g(ȳ)

P (y`) ∧ t = Fϕ,1(s, ȳ)→ T (t) ∧ s ≤T t

• T (s) ∧ xRs ∧ ϕ(x, ȳ) ∧
∧

`<`g(ȳ)

P (y`) ∧ t = Fϕ,1(s, ȳ)→ xRt

• T (s) ∧ x′Rs ∧ x′RFϕ,1(s, ȳ)→ ϕ(x′, ȳ).

This suffices. The proof when ι = 2 is similar.

Clause (j): Similarly but we give details.
Let ϕ = ϕ(x, ȳ) ∈ ∆, so the following are Horn:

• ϕ(x1, ȳ) ∧ P (x1) ∧
∧

`<`g(ȳ)

P (y`) ∧ s = Fϕ,2(t, ȳ)→ s ≤T t

• ϕ(x1, ȳ) ∧ P (x1) ∧
∧

`<`g(ȳ)

P (y`) ∧ s = Fϕ,2(t, ȳ)→ (∃x)(xRs ∧ ϕ(x, ȳ))

• P (x) ∧
∧

`<`g(ȳ)

P (y`) ∧ s = Fϕ,2(t, ȳ) ∧ z ≤T t ∧ xRz ∧ ϕ(x, ȳ)→ z ≤T s.

Clause (k): As θ = ℵ0 this is empty.
This suffices. �2.2

Claim 2.3 Also for θ > ℵ0 (see 1.2(2)) Claim 2.2 holds but some of the formulas are in Lθ,θ.

P r o o f. Clause (k): When θ > ℵ0.
Should be clear because for each limit ordinal δ < κ, the sentencesψδ = (∀x0, . . . , xα, . . . , xδ)(∃y)(∀z)

(
(
∧

α<β<δ

xα ≤T

xB ≤T y ≤T xδ) ∧ (
∧

α<β<δ

xα ≤T xβ ≤T z ≤T y ≤T xδ → y = z)
)

is a Horn sentence and it expresses

“any ≤T -increasing chain of length δ has a ≤-lub”. �2.3
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16 Saharon Shelah: Atomic saturation of reduced powers

Conclusion 2.4 1) Assume

(a) D be a filter on I

(b) N a model, λ = ‖N‖+ |τN |,∆ the set of atomic formulas (in L(τN ))

(c) T = (T ,≤T ) := (ω>λ,E)I/D

(d) κ = p∗T = min{tT , pθ(T1)} see Definition 1.1(6).

Then the reduced power N I/D is (κ, 1,∆)-saturated.
2) Assume5

(a) D is a θ-complete filter on I, θ = cf(θ) > ℵ0

(b) N is (θ,∆)-saturated, ∆ a set of atomic formulas

(c) T1 := (θ>λ,E)I/D

(d) κ = min{tT1 , pθ(T1)}

Then N I/D is (κ, θ, 1,∆)-saturated.
3) We can above replace N I/D by NB/D where D is a filter on the complete Boolean algebra B which has
(< θ)-distributivity when θ > ℵ0.

P r o o f. 1) Let θ = ℵ0 and r0 = (M0,∆) be rθN,∆ from 1.5, so θr0 = θ.
By Claim 1.5, M0 is an RSP hence by Claim 2.2 also M = M I

0 /D is an RSP. Now apply the Main Claim
1.7(1).
2) Similarly using 1.7(2).
3) Similarly. �2.4

Remark 2.5 1) No harm in assuming ∆ = {Q(ȳ) : Q a predicate}. Note that allowing bigger ∆ is problem-
atic except in trivial cases (ϕ and ¬ϕ are equivalent to Horn formulas), see proof of clauses (i),(j) of Definition
1.2.
2) Using 2.4(1) above, if D is an ultrafilter, not surprisingly we get [2, Ch.VI,2.6], i.e. the theory of dense
linear orders is E-maximal (well, using the translation from dense linear orders to trees in 2.1(2) equivalently [2,
Ch.VI,2.7]). The new point here is that 2.4 does this also for reduced powers, i.e. for D a filter.
3) So a natural question is: can we replace the strict property by SOP2? We shall show that for reduced power
we have also non-peculiar cuts, see §4.
4) Why is the reduced power of a tree not necessarily a tree? Let M be the tree (ω>ω, /). Let η1 / η2 / η3 ∈ ω>ω
and let A1, A2 ∈ D+ be disjoint and define f` : I → ω>ω for ` = 1, 2, 3 by:

• f3(s) = η3 for s ∈ I

• f2(s) is η2 if s ∈ A2 and η0 otherwise

• f1(s) is η2 if s ∈ A1 and η0 otherwise.

Clearly if N = M I/D then in N we have:

• f1/D / f3/D

5 Note that κ here may be bigger than in part (1)
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• f2/D / f3/D

• ¬(f1/D / f2/D)

• ¬(f2/D / f1/D)

• ¬(f1/D = f2/D).

Conclusion 2.6 N I/D is (κ, 1,∆1)-saturated and κ ≥ θ when :

(∗) (a) D is a θ-complete filter on I

(b) ∆ ⊆ {ϕ : ϕ(x, ȳ) ∈ Lθ,θ(τN ) is atomic (hence ∈ L(τN ))}

(c) ∆1 = c`<θ(∆) = the closure of ∆ under conjunction of < θ formulas

(d) N is (θ,∆)-saturated, i.e. if p(x) ⊆ ∆(N) = {ϕ(x, ā) : ϕ(x, ȳ) ∈ ∆, ā ∈ lg(ȳ)M} has cardinality
< θ and is finitely satisfiable in N then p is realized in N

(e) κ = min{pT , tθ(T )} where T = (θ>λ,E)I/D and λ = θ>(‖N‖+ |∆|).

P r o o f. Let r = rθN,∆1
recalling Definition 1.5 and M0 = Mr.

Now apply 1.7(2) noting that:

(∗)1 N1 = N I
0 /D satisfies: every set of < θ formulas from ∆(N) which is finitely satisfiable in N1 is realized

in N1.

[Why? Let 〈ϕα(x, fα,0/D, . . . , fα,n(α)−1/D) : α < α∗〉 be finitely satisfiable in N1 and α∗ < θ, α < α∗ ⇒
ϕα ∈ ∆. For every finite u ⊆ α∗ we have N1 |= (∃x)(

∧
α∈u

ϕα(x, fα,0/D, . . . , fα,n(α)−1/D)
)

hence the set

Iu := {s ∈ I : N1 |= (∃x)
∧
α∈u

ϕα(x, fα,0(s), . . . , fα,n(α)−1(s))}

belongs to D. But D is θ-complete, hence I∗ = ∩{Iu : u ⊆ α∗ is finite} belongs to D. Now for each s ∈ I∗,
the set ps := {ϕα(x, fα,0(s), . . . , fα,n(α)−1(s)) : α < α∗} is finitely satisfiable in N , hence is realized by some
as ∈ N . Let g ∈ IN be such that s ∈ I∗ ⇒ g(s) = as; clearly g/D realizes p, so we are done.]

Similarly

(∗)2 in T = (θ>λ,E)I/D we have

(a) every increasing sequence of length < θ has an upper bound

(b) any increasing sequence of length < θ with an upper bound has a lub

(c) there is no infinite decreasing sequence so (κ1, κ2) ∈ C (T )⇒ κ2 = 1.

[Why? For clause (a) note that (∀x0, . . . , xα, . . .)α<δ(∃y)(
∧

α<β<δ

xα ≤T xβ →
∧
α<δ

xα ≤T y) is a Horn

sentence. For clause (b) see 2.3, i.e. proof of clause (k) in 2.3.]

(∗)3 M1 = M I
r /D is a θ − RSP.

[Why? See above recalling 2.2, 2.3.]
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18 Saharon Shelah: Atomic saturation of reduced powers

(∗)4 if θ ≥ ℵ1 then r satisfies (k)+ from 1.7(3).

[Why? Easily as D is a ℵ1-complete ultrafilter.]
So we are done by 1.7(3). �2.6

It is natural to wonder

Question 2.7. Assume λ ≥ θ = cf(θ) > ℵ0.
1) Is there a θ-complete (λ, θ)-regular ultrafilter D on λ such that λ < t((θ>θ,E)λ/D)?
2) Similarly for filters.
3) Use ≤T =E or <T = /?
4) If λ = λ<θ, D a fine normal ultrafilter on I = [λ]<θ, we get λ ≤ t(θ>θ,E)/D.

Remark 2.8 Now [6, §5] answers 2.7(1) positively for θ a supercompact cardinal.

Conclusion 2.9 Let B be a complete Boolean algebra and D a filter on B.
1) For every modelN , letting λ = ‖N‖+|τN |, we haveNB/D is (µ+,atomic)-saturated if µ+ ≤ min{p((ω>λ,E
)B/D)), t((ω>λ,E)B/D)}.
2) Assume B is (< θ)-distributive

(e.g. for some dense Y ⊆ B+, for every decreasing sequence6 in B of elements from Y of length < θ has
a positive lower bound), and D is a θ-complete filter on B. If N is (µ+, atomic)-saturated then NB/D is
t((θ>λ,E)B/D)-atomic saturated.

P r o o f. As, e.g. in 2.6 above or 2.13 below. �2.9

Conclusion 2.10 Assume (T, ϕ(x̄, ȳ)) has SOP3.
Then, recalling 0.15, T is Erp

λ -maximal for every λ and even (T, {ϕ(x̄, ȳ)}) is.

P r o o f. Should be clear. �2.10

∗ ∗ ∗

On the connection to Peano arithmetic and to Pabion [21], see Malliaris-Shelah [10]. We repeat some results of
[18] in the present context; but first recalling:

Definition 2.11 1) PA, Peano arithmetic, is the f.o. theory consisting of:

(a) the obvious axioms on 0, 1, x < y, x+ y, xy

(b) all the cases of the induction scheme, i.e. for every f.o. ϕ:

“if {x : ϕ(x, ȳ)} is not empty then is has a first member”,

2) BPA, the bounded Peano arithmetic, is defined similalry, but in clause (b), the formulas ϕ is bounded, i.e. all
the quantifications inside it are of the form (∀x < y) or (∃x < y).

Definition 2.12 1)N |= BPA is boundedly κ-saturated up to (c1, c2) where c1, c2 ∈ N when : if p(x)∪{x <
c1} is a type in N (= finitely satisfiable) of cardinality < κ consisting of bounded formulas but with parameters
≤ c2, then p(x) ∪ {x < c1} is realized in N .
2) If above c1 = c = c2 we may write c instead of (c1, c2). We say N is strongly boundedly κ-saturated up to c
when it holds for (c, c2), c2 =∞, i.e. we do not bound the parameters.
3) Omitting “up to c” in part (3) means for every c ∈ N .

Conclusion 2.13 Assume N be a model of BPA.
1) Assume a∗ ∈ N is non-standard and the power in the N -sense ca∗ exists for every c ∈ N .

For any uncountable cardinal κ the following conditions are equivalent:

6 can weaken the demand
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(a) N is boundedly κ-saturated up to c for any c ∈ N

(b) if (C1, C2) is a cut of N of cofinality (κ1, κ2) and κ1, κ2 are infinite (so C1, C2 6= 0) then κ1 + κ2 ≥ κ.

(c) like clause (b) but κ1 = κ2, that is restricting ourselves to symmetirc cuts.

2) We can weaken the assumption of part (1) by fixing c, as well as N, a∗. That is, assume N |= “n < a∗ and
cn = c(a∗)

n

exist” for every standard n from N . For every uncountable cardinal κ the following are equivalent:

(a)′ N is boundedly κ-saturated up to cn for each n

(b)′ if (C1, C2) is a cut of N of cofinality (κ1, κ2) with κ1, κ1 infinite such that cn ∈ C2 for some n then
κ1 + κ2 ≥ κ

(c)’ like clause (b)’ but κ1 = κ2.

3) Moreover we can add in part (2):

(c) N is strongly boundedly κ-saturated up to c.

P r o o f. 1) By (2).
2) (a)′ ⇒ (b)′

Trivial.
(b)′ ⇒ (a)′;

Without loss of enerality c is not standard (in N ) and n = 0. Let N+ = (N, c, a∗) and τ+ = τ(N+) =
τ(N) ∪ {c, a∗} and ∆ = {ϕ(x, ȳ) ∧ x < c ∧

∧̀
y` < c : ϕ(x, ȳ) ∈ L(τN ) is a bounded formula}. We define

r naturally - the tree of sequences of length < a∗ of members of ∆(N≤c) possibly non-standard but of length
< a∗. Now apply 1.7.
(b)′ ⇒ (c)′;

Obvious.
(c)′ ⇒ (b)′;

By [5].
3) We just repeat the proof of 1.7 or see 2.16 below. �2.13

Question 2.14. Is a∗ necessary in 2.13(1)? We conjecture that yes.

A partial answer:
Fact 2.15 IfN is a model of PA, then N is κ-saturated iff cf(|N |, <N ) ≥ κ andN is boundedly κ-saturated.
Claim 2.16 If (A) then (B) where:

(A) (a) rα is an RSP for α < δ

(b) ∆rα = ∆ is a set of quantifier free formulas

(c) Trα = Tr0 and Nrα is increasing with α

(d) Q ∈ τ(Nrα) and QNrα = QNr0

(e) if ϕ(x, ȳ) ∈ ∆rα and b̄ ∈ `g(ȳ)(Nrα) then ϕ(Nrα , b̄) ⊆ QNrα

(f) κ = min{pα(Tr0), t(Tr0)}

(B) the model ∪{Nrα : α < δ} is (κ, 1,∆)-saturated.

P r o o f. As in 1.7. �2.16
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20 Saharon Shelah: Atomic saturation of reduced powers

3 Criterion for atomic saturation of reduced powers

Malliaris-Shelah [5] have dealt with such problems for ultrafilters (on sets). The main case here is θ = ℵ0.

Definition 3.1 Assume D is a filter on the complete Boolean algebra B, T an Lθ,θ(τT )-theory, ∆ ⊆ L(τT )
and µ ≥ |∆|. We say D is a (µ, θ, ε!,∆, T )-moral filter on B (writing ε instead ε! means for every ε′ < 1 + ε; if
B = P(λ) we may say good instead of moral): when for everyD−(µ, θ, ε!,∆, T )-problem there is aD−(µ, θ)
-solution where:

(a) ā is a D − (µ, θ, ε!,∆, T )-(moral)-problem when :

(α) ā = 〈au : u ∈ [µ]<θ〉

(β) au ∈ D (hence ∈ B+)

(γ) ā is ⊆-decreasing, that is u ⊆ v ∈ [µ]<θ ⇒ av ≤ au and a∅ = 1B

(δ) for some sequence 〈ϕα(x̄[ε], ȳα) : α < µ〉 of formulas from ∆ for every a ∈ B+ and u ⊆ µ of
cardinality < θ we can find M |= T and b̄α ∈ `g(ȳα)M for α ∈ u such that:

• for every v ⊆ u we have
a ≤ av ⇒M |= “(∃x̄[ε])

∧
α∈v

ϕα(x̄[ε], b̄α)”

and a ≤ 1− av ⇒M |= “¬(∃x̄[ε])
∧
α∈v

ϕα(x̄[ε], b̄α)”

(b) b̄ is a D − (µ, θ)-(moral)-solution of the D − (µ, θ, ε!,∆, T )-(moral)-problem ā when

(α) b̄ = 〈bu : u ∈ [µ]<θ〉

(β) bu ∈ D and b∅ = 1B

(γ) bu ≤ au

(δ) b̄ is multiplicative, i.e. b̄u = ∩{b{α} : α ∈ u} and b∅ = 1B.

Remark 3.2 1) The θ here means “a type is (< θ)-satisfiable”.
2) The use of “ε!” is to conform with Definition 0.11.

Recall (from 0.11)

Definition 3.3 1) Let τ be a vocabulary and ∆ ⊆ {ϕ ∈ L(τ) : ϕ = ϕ(x̄, ȳ)} but ϕ(x̄, ȳ) ∈ ∆ means we can
add to x̄ dummy variables. Let λ > θ (dull otherwise).

A τ -model M is (λ, θ, ε!,∆)-saturated when : if p ⊆ {ϕ(x̄[ε], ā) : ϕ(x̄[ε], ȳ) ∈ ∆, ā ∈ `g(ȳ)M} has cardinal-
ity < λ and is (< θ) satisfiable in M then p is realized in M .

Claim 3.4 1) For a (µ, θ)-regular θ-complete ultrafilter D on a set I and θ-saturated or just (θ,ℵ0, ε!,∆)-
saturated model M , a cardinal µ and ∆ = Lθ,θ(τM ), the following conditions are equivalent:

(a) D is (µ, θ, ε!,∆, T )-moral ultrafilter on the Boolean algebra P(I)

(b) if M ∈ ModT then M I/D is (µ, θ, ε!,∆)-saturated.

2) Similarly for D a ultrafilter on a (< θ)-distributive (see 0.12(8)) complete Boolean algebra B.

P r o o f. Similar to 3.5, it actually follows from it because as D is an ultrafilter, we can start with M |= T ,
expand it to M+ by adding a predicate to any definable relation and apply 3.5 to T+ = Th(M+). �3.4
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Claim 3.5 1) If (A) then (B)⇔ (C) where:

(A) (a) B = P(I)

(b) D is a θ-complete (µ, θ)-regular filter on B

(c) θ > ε or just µ+ > ε

(d) T is an Lθ,θ(τ)-theory

(e) ∆ is a set of conjunctions of < θ atomic formulas from Lθ,θ(τ)

(B) D is a (µ, θ, ε!,∆, T )-moral filter on B

(C) if Ms is a model of T for s ∈ I then
∏
s∈I

Ms/D is (µ+, θ, ε!,∆)-saturated.

2) If (A)′ then (B)′ ⇔ (C)′ where

(A)′ (a) B is a (< θ)-distributive (see 0.12(8)) complete Boolean algebra

(b)− (e) as above (on regularity see Definition 0.13)

(d)+ T is a complete Lθ,θ(τ)-theory

(B)′ as (B) above

(C)′ (a) if M is a model of T then MB/D is (µ+, θ, ε!,∆)-saturated

(b) if I is a maximal antichain of B and M̄ = 〈Mb : b ∈ I 〉 is a

sequence of τ -models then M̄B/D is (µ+, θ, ε!,∆)-saturated.

P r o o f. 1) Proving (B)⇒ (C): Let N =
∏
s∈I

Ms/D let x̄ = x̄[ε], ϕα = ϕα(x̄, ȳα) and assume that p(x̄) =

{ϕα(x̄, b̄α) : α < α∗} is (< θ)-satisfiable in N and |α∗| ≤ µ, so without loss of generality α∗ = µ; without loss
of generality let ϕα = ϕα(x̄, ȳ[ξα]) so b̄α ∈ ξα(

∏
s∈I

Ms).

Let b̄α = 〈fα,ξ/D : ξ < ξα〉 where fα,ξ ∈
∏
s∈I

Ms and for s ∈ I let b̄α,s = 〈fα,ξ(s) : ξ < ξα〉; now for

u ∈ [µ]<θ we let

(∗)0 au := {s ∈ I : Ms |= (∃x̄)
∧
α∈u

ϕ(x̄, b̄α,s)}.

Now

(∗)1 ā = 〈au : u ∈ [µ]<θ〉 is a D − (µ, θ, ε!,∆, T )-problem.

[Why? We should check Definition 3.1, clause (a): now (a)(α) is trivial; also au ⊆ I holds by the choice of aα.
Toward clause (a)(β) fix a set u ∈ [µ]<θ; some c̄ ∈ εN realizes the type pu(x̄[ε]) = {ϕα(x̄, b̄α) : α ∈ u} in
N because p(x̄) is (< θ)-satisfiable in N , see Definition 3.3, so let c̄ = 〈gζ/D : ζ < ε〉 for some gζ ∈

∏
s∈I

Ms

for ζ < ε and let c̄s = 〈gζ(s) : ζ < ε〉 ∈ ε(Ms). So a′{α} = {s ∈ I : M |= ϕα[c̄s, b̄s]} belong to D because
N |= ϕα[c̄, b̄α] by the definition ofN if ϕα is atomic, but recallingD is θ-complete also for our ϕα, remembering
clause (A)(e) of 3.5(1). As D is θ-complete clearly, a′u = ∩{a′{α} : α ∈ u} belongs to D and by our choices,
a′u ≤B au, hence au ∈ D so subclause (a)(β) of Def 3.1 holds indeed.

By the choice of au, ā is ⊆-decreasing so subclause (a)(γ) of Def 3.1 holds.
Lastly, subclause (a)(δ) of Def 3.1 holds by the definition of au’s recalling p(x̄) is (< θ)-satisfiable (and

∅ /∈ D).]
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22 Saharon Shelah: Atomic saturation of reduced powers

(∗)2 there is b̄, a D − (µ, θ)-solution of a in B.

[Why? Because we are presently assuming clause (B) of 3.5 which says that D is (µ, θ, ε!,∆, T )-good, see
Definition 3.1.]

(∗)3 without loss of generality s ∈ I ⇒ {α < µ : s ∈ b{α}} has cardinality < θ.

[Why? As D is (µ, θ)-regular.]
Next for s ∈ I let us = {α < µ : s ∈ b{α}} but b̄ is multiplicative (see 3.1(b)(δ)) so bus = ∩{b{α} : α ∈

us} = ∩{bα: the ordinal α satisfies s ∈ b{α}} hence s ∈ bus hence (see 3.1(b) recalling that |uα| < θ by (∗)2)
we have s ∈ aus hence (by the choice of aus ) there is ās ∈ ε(Ms) realizing {ϕ(x̄[ε], 〈fα,εζ (s) : ζ < ε〉) : α ∈
us}.

Let ās = 〈as,ζ : ζ < ε〉. Now for ζ < ε = `g(x̄) let gζ ∈
∏
s∈I

Ms be defined by gζ(s) = as,ζ ∈ Ms and let

ā = 〈gζ/D : ζ < ε〉 noting gζ/D ∈
∏
s∈I

Ms/D = N . Hence for every α < µ, {s ∈ I : Ms |= ϕα(〈gζ(s) : ζ <

ε〉, b̄α,s)} ⊇ b{α} ∈ D so N |= ϕ[ā, b̄α].
Hence ā realizes p(x̄) in N as promised.

Proving (C)⇒ (B):
To prove clause (B), let ā be a D− (µ, θ, ε!,∆, T )-problem and let ϕ̄ = 〈ϕα(x̄[ε], ȳα) : α < µ〉 be a sequence

of formulas from ∆ as in clause (a)(δ) of Definition 3.1.
As D is (λ, θ)-regular, we can choose w̄ = 〈ws : s ∈ I〉 a sequence of subsets of µ each of cardinality < θ

such that α < µ ⇒ {s ∈ I : α ∈ ws} ∈ D. For u ∈ [µ]<θ let cu = {s ∈ I : u ⊆ ws}, so clearly cu ∈ D and
〈cu : u ∈ [λ]<θ〉 is multiplicative.

For each s ∈ I applying Definition 3.1(a)(δ) to a = {s} and u = ws we can find a model Ms of T and
b̄s,α ∈ `g(ȳ`)(Ms) for α ∈ ws satisying • there.

Now choose b̄s,α also for s ∈ I, α ∈ µ\ws, as any sequence of members of Ms of length `g(ȳα). Now for
every α < µ and j < `g(ȳα) we define gα,j ∈

∏
s∈I

Ms by gα,j(s) = (b̄s,α)j .

Hence gα,ζ/D ∈
∏
s∈I

Ms/D = N and b̄α = 〈gα,ζ/D : ζ < `g(ȳα)〉 ∈ `g(ȳα)N and consider the set

p = {ϕα(x̄, b̄α) : α < µ}. Is p a (< θ)-satisfiable type in N? We shall prove that Yes, so let u ∈ [µ]<θ, then
recall cu = {s ∈ I : u ⊆ Ws} ∈ D and s ∈ cu ∩ au ⇒ {ϕα(x̄[ε], b̄s,α) : α ∈ u} is realized in Ms, [why? by
the choice of 〈 ¯bs,α : α ∈ ws〉.]

So let the type {ϕα(x̄[ε], b̄s,α) : α ∈ ws} be realized ās = 〈as,ζ : ζ < ε〉; for s ∈ I and let fα,ζ ∈
∏
s∈I

Ms be

fα,ζ(s) = as,j . Easily 〈fα,j/D : ζ < ε〉 realizes {ϕα(x̄[ε]) : α ∈ u} because au ∩ cu ∈ D. Hence p(x̄[ε]) is
(< θ)-satisfiable indeed.

Next, we apply clause (C) we are assuming hence p(x̄[ε]) is realized in N . So let ā = 〈aζ : ζ < ε〉 ∈ εN
realize p and let aζ = hζ/D where hζ ∈

∏
s∈I

Ms and lastly let

bu = {s ∈ I : Ms |= ϕα[〈hζ(s) : ζ < ε〉, b̄s,α] for every α ∈ u and s ∈ cu}.

Now check that 〈bu : u ∈ [λ]<θ〉 is as required, recalling 〈cu : u ∈ [λ]<θ〉 is multiplicative. So the desired
conclusion of 3.1(B) holds indeed so we are done proving (C)⇒ (B).
2) Similarly; e.g. for clause (a) let p(x̄) be as there but

• fα,ξ ∈MB is supported by the maximal antichain 〈cα,ξ,i : i < i(α, ξ)〉

(∗)0 au = sup{c: we haveα ∈ u∧ξ < ξα ⇒ (∃d)(d ∈ dom(fα,ξ)∧c ≤ d) andM |= (∃x̄[ε])
∧
α∈u

ϕ(x̄[ε], 〈fα,ξ(c) :

ξ < ξα〉)}
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(∗)1 ā = 〈au : u ∈ [µ]<θ〉 is a D − (µ, θ, ε!,∆, T )-problem.

[Why? As there.]

(∗)2 let b̄ be a D − (µ, θ)-solution.

[Why does b̄ exist? By (B)′ recalling Definition 3.1.]
Also the rest is as above. �3.5

Remark 3.6 If S ⊆ [µ]<θ is cofinal, u ∈ [µ]<θ ⇒ |P(u) ∩S | < θ1 we may consistently replace [µ]<θ by
S and 2θ1 by θ1.

Definition 3.7 1) A filter D on a complete Boolean algebra B is (µ, θ)-excellent when : if ā = 〈au : u ∈
[µ]<θ〉 is a sequence of members of B, (yes! not necessarily fromD) then we can find b̄ which is a multiplicative
refinement of ā for D, meaning:

(a) b̄ = 〈bu : u ∈ [µ]<θ〉

(b) bu ≤ au and bu = au mod D

(c) if au1 ∩ au2 = au1∩u2 mod D then bu1 ∩ bu2 = bu1∩u2 .

2) For a Boolean algebra B and filter D on B we say ā is a D− (µ, θ)-problem (or a D− (µ, θ)-moral problem)
when clauses (a)(α), (β), (γ) of Definition 3.1 holds. 3) A filter D on a complete Boolean algebra B is (µ, θ)-

good when every D − (µ, θ)-problem has a D − (µ, θ)-solution
Claim 3.8 1) Assuming (∗) below, the filter D on I (i.e. on the Boolean algebra P(I)) is (µ, θ, ε!,∆, T )-

moral iff the filter D1 on B1 is (µ, θ, ε!,∆, T )-moral where:

(a) B1 is a complete Boolean algebra

(b) j is a homomorphism from P(I) onto B1

(c) D0 = {A ⊆ I : j(A) = 1B1} is a (µ, θ)-excellent filter on I ,

(d) D1 is a filter on B1

(e) D = {A ⊆ I : j(A) ∈ D1}. is a filter on I

2) We can replace P(I) by a complete Boolean algebra B2.

P r o o f. The “if” direction:
We assume D1 is (µ, θ, ε!,∆, T )-moral and should prove it for D. So let Ā = 〈Au : u ∈ [µ]<θ〉 be a

D − (µ, θ, ε!,∆, T )-problem and we should find a D − (µ, θ)-solution B̄ of it.
Clearly au := j(Au) ∈ B+ and ā = 〈au : u ∈ [µ]<θ〉 = 〈j(Au) : u ∈ [µ]<θ〉 is a D1 − (µ, θ, ε!,∆, T )-

problem.
Hence by our present assumption (D1 is (µ, θ, ε!,∆, T )-moral) there is a D1 − (µ, θ)-solution b̄ of ā, let

b̄ = 〈bu : u ∈ [µ]<θ〉 so in particular u ∈ [µ]<θ ⇒ bu ∈ D1. For u ∈ [µ]<θ choose B1
u ⊆ I such that

j(B1
u) = bu, possible because j is a homomorphism from P(I) onto B1. So B̄1 = 〈B1

u : u ∈ [µ]<θ〉 is a
multiplicative modulo D0, i.e. 〈B1

u/D0 : u ∈ [µ]<θ〉 is a multiplicative sequence of members of P(I)/D0.
Let B2

u = B1
u ∩Au, let

• B1
u ⊆ Au mod D0.
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24 Saharon Shelah: Atomic saturation of reduced powers

[Note that we have written B1
u and not B2

u. So why this statement holds? As j(B1
u) = bu ≤ au = j(Au).]

• B2
u ⊆ B1

u and B2
u ⊆ Au mod D0

• B2
u ∈ D

• 〈B2
u : u ∈ [µ]<θ〉 is multiplicative modulo D0 (see 3.7).

By Definition 3.7(1) applied to 〈B2
u : u ∈ [µ]<θ〉 recalling clause (c) of the assumption of the claim, we can find

B̄ = 〈Bu : u ∈ [µ]<θ〉 which is a multiplicative refinement of B̄2 and is multiplicative, and Bu ∈ D because
Bn = B2

n modulo D0 ⊆ D and B2
u ∈ D.

So we are done for the “if” direction.

The “only if” direction:
So we are assuming D is a (µ, θ, ε!,∆, T )-good filter on I and we have to prove D1 is (µ, θ, ε!,∆, T )-moral.
So let ā be a D1 − (µ, θ, ε!,∆, T )-moral problem (on B1), we have to find a solution. For u ∈ [µ]<θ

choose A1
u ⊆ I such that j(A1

u) = au, so A1
u ∈ D (by clause (e)) and u ⊆ v ∈ [µ]<θ → A1

u ⊆ A1
v modulo

D0. Now by 3.7, i.e. clause (b) of the assumption of the claim there is Ā2 = 〈A2
u : u ∈ [µ]<θ〉 such that

A2
u ⊆ A1

u, A
2
u = A1

u mod D0 hence A2
u ∈ D and Ā2 is ⊆-decreasing [Why? Because Ā1 is ⊆-decreasing

modulo D0 as ā is decreasing hence Ā2 is ⊆-decreasing.]
As D is (µ, θ, ε!,∆, T )-good filter on I there is a D-multiplicative refinement 〈B2

u : u ∈ [u]<θ〉 of 〈A2
u : u ∈

[µ]<θ〉. Let bu = j(B2
u), now 〈bu : u ∈ [µ]<θ〉 is as required.

2) Similarly. �3.8

Claim 3.9 Let D be a filter on I .
1) D is (µ, θ)-excellent implies D is (µ, θ)-good, see 3.7(3).
2) D is (µ, θ)-good implies D is (µ, θ, ε,∆, T )-moral.

P r o o f. 1) So let ā = 〈au : u ∈ [µ]<θ〉 be a D-problem and we should find a D− (µ, θ)-solution b̄ below ā.
As D is (µ, θ)-excellent we apply this to ā and b̄ as in 3.7(2). Easily it is as required.
2) Just read the definitions: there are fewer problems. �3.9

Remark 3.10 We may wonder, e.g. in 3.5(1): can we remove the regularity demand on the filter D from
clause (A) to clause (B)? The answer is yes for most T ’s.

Claim 3.11 The filter D is (µ, θ)-regular when :

(A) (a) B = P(I)

(b) D is a θ-complete ultrafilter on B

(c) θ > ε, is natural but not actually required

(d) T is a complete Lθ,θ(τ)-theory, e.g. T = ThLθ,θ (M),M a θ-saturated

model (note that T = T
[θ]
0 where T0 = ThLℵ0,ℵ0 (M),

i.e. T is determined by T0 and θ)

(B) T has a model M and p = {ϕα(x̄[ε], b̄α) : α < µ}, ϕα(x̄[ε], ȳα) ∈ Lθ,θ, b̄α ∈ `g(ȳα)M such that: for every
q ⊆ p

• q is realized in M iff |q| < θ

(C) if Ms is a model of T for s ∈ I then
∏
s
Ms/D is (µ+, θ, ε!,∆)- saturated.

P r o o f. Should be clear. �3.11
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4 A counterexample

In §2 we generalize [2, Ch.VI,2.6] to filters, using the class of relevant RSP’s r being closed under reduced
powers (being a Horn class, see 2.2). Can we generalize the result of Malliaris-Shelah [5]? Here we give a
counter-example.

For this we have to find

(∗)1 D a filter of λ such that the partial order N1 = (Q, <)λ/D satisfies p∗(N1) = κ1 + κ2 < µ+ ≤
p∗sym(N1), κ1 6= κ2, (κ1, κ2) ∈ C (N1), so in fact N1 has no (θ1, θ2)-cut when θ1 = cf(θ1) = θ2 ≤ µ

and when θ` ≥ µ+ ∧ θ3−` ∈ {0, 1}

(∗)2 preferably: λ = µ

(∗)3 or at least for some dense linear order M0 there is a complete Boolean algebra B and a filter D on B such
that N0 = MB

0 /D is as above.

We presently deal with the (main) case θ = ℵ0 and carry this out. It seems reasonable that we can prove, e.g.
Tceq 6rp Tord but we have not arrived to it; see [17] on Tceq and [16] on the closely related Tfeq. Later we hope
to say more. Clearly we can control the set of non-symmetric pre-cuts.

Convention 4.1 Tord is the first order theory of (Q,≤), see 4.4(1)(d)
Definition 4.2 Let κ be a regular cardinal.

1) Let Kba
κ be the class of m such that:

(a) m = (B, D) = (Bm, Dm)

(b) B is a complete Boolean algebra satisfying the κ-c.c.

(c) D is a filter on B.

2) Let ≤ba
κ be the following two-place relation on Kba

κ : m ≤ba
κ n iff

(a) m,n ∈ Kba
κ

(b) Bm lBn

(c) Dm = Dn ∩Bm.

3) Let Sba
κ be the class of ≤ba

κ -increasing continuous sequences m̄ which means:

(a) m̄ = 〈mα : α < `g(m̄)〉

(b) mα ∈ Kba
κ

(c) if α < β < `g(m̄) then mα ≤ba
κ mβ

(d) if β < `g(m̄) is a limit ordinal then:

(α) Bmβ
is the completion of ∪{Bmα

: α < β}

(β) Dmβ
is generated (as a filter) by ∪{Dmα

: α < β}.

4) If κ = ℵ1 we may write K1
ba,≤1

ba, S
1
ba, and if κ =∞ we may write K2

ba,≤2
ba, S

2
ba or Kba

∞ ,≤ba
∞ , S

ba
∞ ,

5) We say m is of cardinality λ when Bm is of cardinality λ.
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26 Saharon Shelah: Atomic saturation of reduced powers

Claim 4.3 1) For every λ there is m ∈ Kba
κ of cardinality λ<κ.

2) ≤ba
κ is a partial order on Kba

κ .
3) If m̄ = 〈mα : α < δ〉 is a ≤ba

κ -increasing continuous sequence, then for some mδ , the sequence m̄ˆ〈mδ〉 is
≤ba
κ -increasing continuous.

P r o o f. 1) E.g. Bm is the completion of a free Boolean algebra generated by λ<κ elements.
2) Easy.
3) If cf(δ) ≥ κ, then Bmδ

=
⋃
α<δ

Bmα
, if cf(δ) < κ it is the (pendantically a) completion of the union. Dmδ

is

the filter generated by ∪{Dmα : α < δ}. Classically κ-c.c. is preserved. �4.3

Definition 4.4 Let m ∈ K2
ba and κ1, κ2 are (infinite) regular cardinals.

1) We say ā is a Tord − (κ1, κ2)-moral problem in m when :

(a) m ∈ K2
ba, (actually already assumed).

(b) I = I(κ1, κ2) is the linear order I1 + I2 where

• I1 = I1(κ1) = ({1} × κ1),

• I2 = I2(κ2) = ({2} × κ∗2)

(c) ā = 〈as,t : s <I(κ1,κ2) t〉 is a sequence of members of Dm

(d) if u ⊆ I is finite, t : u × u → {0, 1} and ∩{aif(t(s,t))
s,t : s, t ∈ u} > 0m then there is a function

f : u→ {0, . . . , |u| − 1} such that:

• if s, t ∈ u then t(s, t) = 1 iff f(s) ≤ f(t)

(e) hence s1 <I s2 <I s2 ⇒ as1,s2 ∩ as2,s3 ≤ as1,s3 and we stipulate as,s = 1Bm ,at,s = as,t when s <I t.

2) We say b̄ is a solution of ā in m where ā is as above when :

(a) b̄ = 〈bs : s ∈ I〉

(b) bs ∈ Dm

(c) if s1 ∈ I1, s2 ∈ I2 then bs1 ∩ bs2 ≤ as1,s2 .

Definition 4.5 1) For ι = 1, 2 let Sι be the class of tuples s = (I,D0, j,B, D1, D) such that:

(a) j is a homomorphism from P(I) onto the complete Boolean algebra B

(b) D1 is a filter on B

(c) D0 = {A ⊆ I : j(A) = 1B} (or see §3)

(d) D = {A ⊆ I : j(A) ∈ D1}.

(e) the pair (B, D) belongs to Kι
ba

2) For s ∈ S let ms = (Bs, Ds).
3) We say s ∈ S is (µ, θ)-excellent (if θ = ℵ0 may omit) when D0 is an excellent filter on I , see Definition
3.7(2).
4) We say s ∈ S is (µ, θ)-regular (if θ = ℵ0 we may omit θ) when D0 is a (µ, θ)-regular filter.
5) Let Sιµ,θ be the class of (µ, θ)-excellent (µ, θ)-regular s ∈ Sι; we may omit θ if θ = ℵ0.
6) Let Sµ,θ,κ be the class of s ∈ S2

µ,θ such that Bs satisfies the κ-c.c.
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Claim 4.6 1) Assume m = (B, D) ∈ Kba and κ1, κ2 are infinite and regular cardinals. Then for some
M ∈ ModTord

,MB/D has a (κ1, κ2)-pre-cut iff some Tord − (κ1, κ2)-moral problem in m has no solution.
2) Let µ ≥ ℵ0 = θ. If s ∈ Sµ,θ so is µ-excellent and µ-regular and κ1, κ2 ≥ ℵ0 are regular and κ1 + κ2 ≤ µ
then the following conditions are equivalent:

(a) for some linear order M,M I(s)/Ds has a (κ1, κ2)-pre-cut

(b) for every infinite linear order, M I(s)/Ds has a (κ1, κ2)-pre-cut

(c) not every Tord − (κ1, κ2)-moral problem in ms has a solution.

P r o o f. As in inthe proof of 3.5(1), relying on Def 4.4 instead of Def 3.1; ; recalling

� if M ι
s for s ∈ I, ι ∈ {1, 2} are τ -models, |τ | ≤ µ,D a µ-regular filter on I and M1

s ,M
2
s are elementarily

equivalent, then N1 =
∏
s∈I

M1
s /D,N2 =

∏
s∈I

M2
s /D are Lµ+,µ+ -equivalent (and more, see Kennedy-Shelah

[22], [23] and Kennedy-Shelah-Vaananen [24] on the subject).

�4.6

Observation 4.7 Assume m ∈ K2
ba and ā is a Tord − (κ1, κ1)-moral problem for m so (see 4.5(5)) I` =

I`(κ`) for ` = 1, 2.
1) If I ′1 ⊆ I1 is cofinal in I1 and I ′2 ⊆ I2 is co-initial in I2 then ā has a solution in m iff ā′ = ā�(I ′1 + I ′2) =

〈as,t : s <I t and s, t ∈ I ′1 + I ′2〉 has a solution in m.
1A) Also, above, if b̄ is a solution of ā in m, then b̄�(I ′1 + I ′2) is a solution of ā′.
1B) Also above, if b̄′ is a solution of ā′, then b̄ is a solution of ā when :

(a) if s ∈ I1 and t ∈ I ′1 is minimal such that s ≤I t then bs = b′t ∩ as,t if s <I t and bs = b′t if s = t

(b) like (a) replacing I1, I ′1, s <I t,as,t by I2, I ′2, t ≤I s,at,s.

2) If b̄ is a solution of ā in m and b′s ∈ D ∧ b′s ≤ bs for s ∈ I1 + I2 then 〈b′s : s ∈ I〉 is a solution of ā for m.

P r o o f. 1) Easy using the proofs of 3.5, 4.6 or using (1A),(1B).
1A), 1B), 2) Check. �4.7

A key point in the inductive construction is:.
Claim 4.8 There is no solution to ā in mδ when :

(a) m̄ = 〈mα : α ≤ δ〉 ∈ S2
ba

(b) ā is a Tord − (κ1, κ2)-moral problem in m0

(c) if α < δ then ā has no solution in mα

(d) cf(δ) 6= κ1 or cf(δ) 6= κ2.

P r o o f. Let mγ = (Bγ , Dγ) for γ ≤ δ; by symmetry without loss of generality cf(δ) 6= κ1 and toward
contradiction assume b̄ = 〈bs : s ∈ I1 + I2〉 is a solution of ā in mδ .

Hence bs ∈ D. Now Dδ is not necessarily equal to
⋃
γ<δ

Dδ but recalling 4.2(3)(d)(β) and 〈Dγ : γ < δ〉 being

increasing, clearly every member of Dδ is above some member of
⋃
γ<δ

Dγ .

So by Observation 4.7(2) without loss of generality s ∈ I1 + I2 ⇒ bs ∈
⋃
γ<δ

Dγ ⊆
⋃
γ<δ

Bγ .

As cf(δ) 6= κ1, for some γ < δ we have κ1 = sup{α < κ1 : b(1,α) ∈ Bγ}, i.e. {s ∈ I1 : bs ∈ Bγ} is
co-final in I1. So by 4.7(1) without loss of generality
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(a) s ∈ I1 ⇒ bs ∈ Bγ .

As Dγ = Dδ ∩Bγ by 4.2(2)(c) clearly

(b) s ∈ I1 ⇒ bs ∈ Dγ .

For t ∈ I2 let b′t = min{b ∈ Bγ : Bδ |= bt ≤ b}, well defined because Bγ is complete.
Now

(c) b′t ∈ Dγ for t ∈ I2.

[Why? Clearly bt ∈ Bδ as b̄ is a solution of ā in mδ and bt ≤ b′t,b
′
t ∈ Bγ by its choice. Also b′t ∈ Dδ

because bt ≤ b′t ∧ bt ∈ Dδ and Dδ is a filter on Bδ and lastly b′t ∈ Dγ as Dγ = Dδ ∩Bγ .]

(d) if s ∈ I1, t ∈ I2 then bs ∩ b′t ≤ as,t.

[Why? Note Bδ |= “bs ∩bt ≤ as,t” because b̄ is a solution of a in Bδ hence bt ≤ as,t ∪ (1−bs) and the later
∈ Bγ . So by the choice of b′t,b

′
t ≤ as,t ∪ (1− bs) hence bs ∩ b′t ≤ as,t.]

(e) 〈bs : s ∈ I1〉ˆ〈b′t : t ∈ I2〉 solves ā in Bγ .

[Why? By (a) + (b) + (c) + (d).]
But this contradicts an assumption. �4.8

Definition 4.9 Assume m ∈ K2
ba and ā is a (κ1, κ2)-moral problem in m. We say n is a simple ā-solving

extension of m when :

(a) Bn is the completion of Bo
n where

(b) Bo
n is the Boolean algebra generated by Bm∪{ys : s ∈ I(κ1, κ2)} freely except the equations which holds

in Bm and Γā = {ys1 ∩ ys2 ≤ as1,s2 : s1 ∈ I1(κ1) and s2 ∈ I2(κ2)}

(c) Dn is the filter on Bn generated by Dm ∪ {ys : s ∈ I(κ1, κ2)}.

Claim 4.10 Assume ā is a Tord − (κ1, κ2)-moral problem in m ∈ Kba
κ and7 κ = cf(κ) > κ1 + κ2.

1) There is n ∈ Kba
κ which is a simple ā-solving extension of m, unique up to isomorphism over Bm.

2) Above m ≤ba
κ n (so n ∈ Kba

κ ).
3) If ā∗ is a Tord − (θ1, θ2)-moral problem of m with no solution in m and θ1 /∈ {κ1, κ2} or θ2 /∈ {κ1, κ2} then
ā∗ has no solution in n.

P r o o f. 1) As above let I` = I`(κ`) for ` = 1, 2 and I = I1 + I2.
First

(∗)1 the set of equations Γā is finitely satisfiable in Bm.

Why? We shall prove two stronger statements (each implying (∗)1).

(∗)1.1 if t1 ∈ I1 then we can find 〈b′s : s ∈ I〉 ∈ IB such that:

(a) b′s ∈ Dm ⊆ Bm if (s ≤I1 t1) ∨ (s ∈ I2)

(b) if s1 ∈ I1, s2 ∈ I2 then b′s1 ∩ b′s2 ≤ as1,s2 .

7 It seems that min{κ1, κ2} < κ suffice; the only difference in the proof is in proving (∗)5.

Copyright line will be provided by the publisher

Paper Sh:1064, version 2020-05-10. See https://shelah.logic.at/papers/1064/ for possible updates.



mlq header will be provided by the publisher 29

[Why? Let b′s be:

• as,t1 if s ≤I t1 (so s ∈ I1)

• at1,s if s ∈ I2

• 0B if t1 <I s ∈ I1.

Now clause (a) is obvious (recalling at1,t1 = 1Bm and as for clause (b), let s1 ∈ I1, s2 ∈ I2, now if t1 ≤I s1 ∈ I1
then b′s1 ∩b

′
s2 = 0Bm ∩b′s2 = 0Bm ≤ as1,s2 and if s1 <I t1 then b′s1 ∩b

′
s2 = as1,t1 ∩at1,s2 which is≤ as1,s2

by 4.4(1)(d),(e).]

(∗)1.2 if t2 ∈ I2 then we can find 〈b′s : s ∈ I〉 ∈ IB such that

(a) b′s ∈ Dm ⊆ Bm if s ∈ I1 or t2 ≤I2 s

(b) if s1 ∈ I2, s2 ∈ I2 then b′s1 ∩ b′s2 ≤ as1,s2 .

[Why? Similarly.]
Now (∗)1 is easy: if Γ′ ⊆ Γā is finite let t∗ ∈ I1 be such that: if t ∈ I1 and yt appears in Γ′ then t ≤I t∗.

Choose 〈b′s : s ∈ I〉 as in (∗)1.1 for t∗ and let h be the function ys 7→ b′s for s ∈ I . Now think, so (∗)1 holds
indeed.

Clearly it follows by (∗)1 that

(∗)2 (a) there is a Boolean algebra Bo
n extending Bm as described in

clause (b) of Definition 4.9

(b) there is a Boolean algebra Bn as described in (a) of Definition 4.9:

the completion of B0
n

(c) Dn is chosen as the filter on Bn generated by Dm ∪ {ys : s ∈ I}
satisfies Dm = Dn ∩Bm, in particular 0Bm /∈ Dn

(d) Bn satisfies the κ-c.c.

(e) Dn is generated (as a filter) by Dn ∩Bo
n

[Why? Clauses (a),(b) follows by (∗)1 and for clauses (c),(d) see (∗)4 and (∗)5 in the proof of (2), respectively;
in particular 0Bm /∈ Dn.]

Together we have n = (Bn, Dn) ∈ K2
ba, as for m ≤ba n, see part (2).

2) Now (by part (1) we have Bm ⊆ Bn, but we shall show that moreover)

(∗)3 Bm lBn.

[Why? If not, then some d ∈ B+
n is disjoint to b for a dense subset of b ∈ B+

m Let d = σ(ys0 , . . . , ysn−1
, c̄)

where σ is a Boolean term, s0 <I . . . <I sn−1 and c̄ is from Bm. We may replace d by any d′ ∈ B+
n satisfying

d′ ≤B d. Hence without loss of generality d = ∩{yif(η(`))
s` : ` < n} ∩ c > 0n where c ∈ Bm, η(`) ∈ {0, 1} for

` < n; also without loss of generality for every `, k < nwe have s` ∈ I1∧sk ∈ I2 ⇒ (c ≤ as`,sk)∨(c∩as`,sk =
0Bn).

We now define a function h from {ys : s ∈ I} into Bm as follows: h(ys) is:

•1 c if s = s` ∧ η(`) = 1

Copyright line will be provided by the publisher

Paper Sh:1064, version 2020-05-10. See https://shelah.logic.at/papers/1064/ for possible updates.



30 Saharon Shelah: Atomic saturation of reduced powers

•2 0Bm if otherwise.

Now

•3 if t1 ∈ I1, t2 ∈ I2 then Bm |= “h(yt1) ∩ h(yt2) ≤ at1,t2”.

[Why? If h(t1) = 0Bm ∨ h(t2) = 0Bm this is obvious, otherwise for some `(1) < `(2) < n we have
t1 = s`(1), t2 = s`(2) and η(`(1)) = 1 = η(`(2)). So it suffice to prove c = c ∩ c ≤ at1,t2 but otherwise by the
choice of c, c∩at1,t2 = 0, hence recalling 4.9(b) we have Bn |= “ys1 ∩ys2 ∩ c = 0” contradiction to our current
assumption Bn |= “d > 0”; so •3 holds indeed.]

By the choice of Γā and of Bn recalling Bm is complete, by the choice of h and •3 there is a projection ĥ from
Bn onto Bm extending h, so clearly ĥ(d) = c and this implies c1 ∈ Bm∧0 < c1 ≤ c⇒ Bn |= “c1∩d ≥ 0Bn”
contradicting the choice of d. So indeed (∗)3 holds.]

(∗)4 Dm = Dn ∩Bm.

[Why? Otherwise there are c1 ∈ Dm, c2 ∈ Bm\Dm and s0 <I . . . <I sn−1 such that Bn |= “
⋂
`<n

ys` ∩ c1 ≤

c2”. As at1,t2 ∈ Dm for t1 <I t2, without loss of generality c1 ≤ as`,sk for ` < k < n, s` ∈ I1, sk ∈ I2.
Now letting c = c1 − c2 we continue as in the proof of (∗)3 defining h, ĥ and apply the projection ĥ to

“
⋂
`<n

ys` ∩ c1 ≤ c2”.]

(∗)5 Bn satisfies the κ-c.c..

[Why? If not, then there are pairwise disjoint, positive di ∈ Bn for i < κ. So as in the proof of (∗)3, without
loss of generality di = ∩{yif(η(i,`))

s(i,`) : ` < n(i)} ∩ ci where ci ∈ Bm, η(i, `) ∈ {0, 1} and s(i, 0) <I s(i, 1) <I
. . . <I s(i, n(i)− 1). Let m(i) ≤ n(i) be such that for every ` < n(i) we have s` ∈ I1 iff ` < m(i).

Again as there, without loss of generality for every ` < m(i) ≤ k < n(i) we have (as(i,`),s(i,k) ≤ ci) ∨
(as(i,`),s(i,k) ∩ ci = 0) so η(i, `) = 1 = η(i, k) ∧ ` < m(i) ≤ k < n(i)⇒ ci ≤ as(i,`),s(i,k).

As κ = cf(κ) > κ1 + κ2 by an assumption of 4.10 without loss of generality n(i) = n,m(i) = mη(i, `) =
η(`) and s(i, `) = s` for i < κ, ` < n and as Bm satisfies the κ-c.c. we can find i < j < κ such that
Bm |= “0 < ci ∩ cj” and let c = ci ∩ cj so we can continue as before.]

So together by (∗)3, (∗)4, (∗)5 we have m ≤ba
κ n ∈ Kba

κ as promised.
3) Let I∗ = I(θ1, θ2), I∗1 = I1(θ1), I∗2 = I2(θ2) and recall ā∗ = 〈a∗s,t : s <I∗ t〉 is a Tord − (θ1, θ2)-moral
problem in m. Toward a contradiction assume that the sequence b̄ = 〈bt : t ∈ I∗〉 solve the problem ā∗ in n
so bt ∈ Dn and let bt = σt(ys(t,0) . . . , ys(t,n(t)−1), ct,0, . . . , ct,m(t)−1) with ct,k ∈ Bm, s(t, `) ∈ I and without
loss of generality s(t, `) <I s(t, `+ 1) for ` < n(t)− 1 so s(t, k) ∈ I for k < n(t).

The reader may wonder: we have to prove that there is no solution in Bn , not just in Bo
n , so how can we use

finitary terms? The point is that though Bn is the completion of Bo
n, the filter Dn is generated (as a filter) by

Bo
n ∩Dn.
By symmetry without loss of generality

(∗)6 θ1 /∈ {κ1, κ2}.

Recalling 4.7, we can replace bt by any b′t ≤ bt which is from Dn, so as
∧̀
ys(t,`) ∈ Dn, without loss of

generality ` < n(t)⇒ bt ≤ ys(t,`), so without loss of generality

(∗)7 bt = ∩{ys(t,`) : ` < n(t)} ∩ ct for some ct ∈ Dm recalling Dm = Dm ∩Bm.

By the ∆-system lemma (recalling 4.7(1)) without loss of generality
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⊕ if θ1 > ℵ0 then

(a) t ∈ I∗1 ⇒ n(t) = n(∗)

(b) if t ∈ I∗1 then s(t, `) ∈ I∗1 ⇔ ` < `(∗)

(c)
〈
〈s(t, `) : ` < n(∗)〉 : t ∈ I∗1

〉
is an indiscernible sequence in

the linear order I = I(κ1, κ2), for quantifier free formulas.

But we shall not use ⊕. As θ1 6= κ1, κ2, by 4.7(1),(1A) it follows that without loss of generalityfor some s◦1, s
◦
2

we have:

(∗)8 s◦1 ∈ I1, s◦2 ∈ I2 and s(t, `) /∈ [s◦1, s
◦
2]I for every t ∈ I∗1 , ` < n(t).

Again by 4.7(2) without loss of generality

(∗)9 if t ∈ I∗2 then bt ≤ ys◦1 ∩ ys◦2 .

We now define a function h from {ys : s ∈ I} into Bn, (yes! not Bm) by:

(∗)10 h(ys) is:

• as,s◦1 ∩ as◦1 ,s◦2 if s <I s◦1

• as◦1 ,s ∩ ys ∩ as,s◦2 if s ∈ I, s◦1 ≤I s ≤I s◦2
• as◦1 ,s◦2 ∩ as◦2 ,s if s◦2 <I s.

Note

(∗)11 h(ys) ∈ Dn for s ∈ I .

[Why? Because as,t ∈ Dn for S ∈ I1, t ∈ I)2 and ys ∈ Dn for s ∈ I .]

(∗)12 h(ys1) ∩ h(ys2) ≤ as1,s2 for s1 ∈ I1, s2 ∈ I2.

[Why? If s1, s2 ∈ [s◦1, s
◦
2]I this holds by the definition of Bn, i.e. as h(ys1) ≤ ys1 , h(ys2) ≤ ys2 and Bn |=

“ys1 ∩ ys2 ≤ as1,s2”.
If s1 <I∗ s

◦
1 ∧ s◦2 <I∗ s2 then (∗)11 says: as1,s◦1 ∩ as◦1 ,s◦2 ∩ as◦2 ,s2 ≤ as1,s2 which obviously holds (as ā is a

Tord − (κ1, κ2)-problem in m).
If s1 <I∗ s

◦
1 ∧ s2 ∈ [s◦1, s

◦
2]I∗ then this means: (as1,s◦1 ∩ as◦1 ,s◦2 ) ∩ (as◦1 ,s2 ∩ ys2 ∩ as,s◦2 ) ≤ as1,s2 ; but as we

have as1,s◦1 ∩ as◦1 ,s2 ≤ as1,s2 this holds.
If s1 ∈ [s◦1, s

◦
2]I∗ and s◦2 <I∗ s2 this means (as◦1 ,s1 ∩ ys1 ∩ as1,s2) ∩ (as◦1 ,s◦2 ∩ as◦2 ,s) ≤ as1,s2 which holds

for similar reasons. So (∗)12 holds indeed.]
By the choice of B◦n and Bn there is a homomorphism ĥ from Bn into Bn, extending idBm and extending

h. Now easily ĥ(bt) ∈ D for t ∈ I∗ because bt = ∩{ys(t,`) : ` < n(t)} ∩ ct, ct ∈ Dm hence ĥ(ct) = ct ∈ Dm

and by (∗)10 we have ĥ(ys(`,t)) ∈ Dm.
Now 〈ĥ(bt) : t ∈ I∗〉 still form a solution of ā∗ and by (∗)7 + (∗)8 + (∗)10 we have t ∈ I∗1 ⇒ h(bt) ∈ Bm

hence without loss of generality :

(∗)13 t ∈ I∗1 ⇒ bt ∈ Bm.
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Now define b′t for t ∈ I∗ by: b′t is:

• bt if t ∈ I∗1

• ct if t ∈ I∗2 .

It suffices to prove that 〈b′t : t ∈ I∗〉 solves ā∗ in m. Clearly t ∈ I∗ ⇒ b′t ∈ Dm, so let t1 ∈ I∗1 , t2 ∈ I∗2 .
We have to prove that b′t1 ∩ b′t2 ≤ at1,t2 but we know only that bt1 ∩ bt2 ≤ at1,t2 which means at1,t2 ≥
b′t1 ∩ (

⋂
`<n(t2)

ys(t2,`) ∩ ct2) = (b′t1 ∩ b′t2) ∩
⋂
{ys(t2,`) : ` < n(t2)}.

Let ht2 be a projection from Bn onto Bm such that ht2(ys(t2,`)) = ct if ` < n(t) and ht2(ys) = 0Bm if
s ∈ I\{s(t2, `) : ` < n(t2)}, as earlier it exists and applying it we get the desired inequality. �4.10

Theorem 4.11 For any λ and regular θ1, θ2 ≤ λ such that θ1 + θ2 > ℵ0 there is a regular filter D on λ such
that:

(a) for every dense linear order M , in Mλ/D there is a (θ1, θ2)-pre-cut but no (κ1, κ2)-pre-cut when κ1, κ2

are regular ≤ λ and {θ1, θ2} * {κ1, κ2}

(b) if M is (ω>2, /)λ/D then t(M) ≥ λ+.

Remark 4.12 1) Why do we need θ1 + θ2 > ℵ0? To prove (∗)1.
2) In fact, this demand is necessary, see 4.14 below.

P r o o f. We prove clause (a), which is the main result, clause (b) holds by 4.15. Let κ = λ+.

(∗)1 there are m0,a such that:

(a) m0 ∈ Kba
κ

(b) a is a Tord − (θ1, θ2)-moral problem in m0 not solved in it.

[Why? By [2, Ch.VI,§3] there is an ultrafilter D on λ such that in (Q <)λ/D there is a (θ1, θ2)-cut. Define m
by Bm = P(λ), Dm = D, now check. E.g. as κ = λ+ , easily the Boolean algebra Bm satisfies the κ-c.c.;
alternatively let Bn be generated by {as,t : s ∈ I1, t ∈ I2} freely; and let Dn be the ultrafilter on Bn generated
by {as,t : s ∈ I1, t ∈ I2}. Now check.]

Let 〈Wα : α < 2λ〉 be a partition of 2λ to sets each of cardinality 2λ such that Wα ∩ α = ∅.

(∗)2 we can choose mα and 〈āγ : γ ∈Wα〉 by induction on α ≤ 2λ such that:

(a) mα ∈ Kba
κ has cardinality ≤ 2λ

(b) 〈mβ : β ≤ α〉 ∈ Sba
κ

(c) m0 is as in (∗)1

(d) 〈āγ : γ ∈ Wα〉 be such that āγ is a Tord − (κγ,1, κγ,2) problem in mα and κγ,1, κγ,2 are regular ≤ λ
and {θ1, θ2} * {κγ,1, κγ,2} and any such ā appears in the sequence

(e) if α = γ + 1 then necessarily γ ∈Wβ for some β ≤ α and in mα there is a solution for āγ

(f) in mα there is no solution to ā∗.

[Why can we carry the induction?
Now for α = 0 use (∗)1, for α limit use 4.8 and for α successor use 4.10.]
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(∗)3 letting m = m2λ we have Bm = ∪{Bmα
: α < 2λ} and Dm = ∪{Dmα

: α < 2λ}.

[Why? Because 〈mα : α ≤ 2λ〉 ∈ Sba
κ and cf(2λ) ≥ κ.]

(∗)4 there is a regular excellent filter D0 on λ and homomorphism j from P(λ) onto Bm.

[Why? See [25].]

(∗)5 let D = j−1(Dm).

So D is a filter on λ, and by 3.8 for θ = ℵ0 (or Malliaris-Shelah [25]) we are done. �4.11

Conclusion 4.13 If λ ≥ ℵ2 the results of Malliaris-Shelah [5] cannot be generalized to reduced powers
(atomic types, of course),that is (clause (A) is in contrast to [5, Th.10.25(b)⇒ (d)]; clause (B) is in contrast to
[5, Th.10.1], and clause (C) is in contrast to [5, Th.3.1])

(A) If λ ≥ ℵ1 then for some regular filter D on λ we have: in ultrapowers of infinite linear orders we have a
pre-cut with small cofnalities, but no symmetric pre-cut, that is:

(a) in the ultrapower (Q, <)λ/D there is a (ℵ1,ℵ0)-pre-cut

(b) in this ultrapower, there is no symmetric pre-cut of cofinality σ for σ ≤ λ

(B) treetops: we can add above above that in (ω>ω, /)λ/D every increasing sequence of length ≤ λ has an
upper bound;

(C) if λ ≤ ℵ2 then we can add in part (A), there are two pre-cuts with the same small left cofinality but different
small right cofinalities, e.g. ℵ1 from the left and ℵ2,ℵ0 from the right

P r o o f. For clause (A) we apply clause (a) of 4.11 choosing the pair (θ1, θ2) as (ℵ1,ℵ0).
For clause (B) apply clause (b) of 4.11.
For clause (C) we repeat the proof of 4.11 but starting (with κ = λ+ as there) and choose as there m0 ∈ Kκ of

cardinality ≤ 2λ such that some (ℵ1,ℵ0)-moral problem and (ℵ1,ℵ2)-moral problem in m0 are not solve. Then
continue as there. �4.13

Observation 4.14 If m ∈ Kba
κ then any Tord − (ℵ0,ℵ0)-problem ā in m has a solution.

P r o o f. Let b(1,n) = b(2,n) = bn := ∩{a(1,`),(2,k) : `, k ≤ n}, clearly s ∈ I(ℵ0,ℵ0) ⇒ bs ∈ D and
(s, t) ∈ I(1,ℵ0)× I(2,ℵ0)⇒ bs ∩ bt ≤ as,t. �4.14

Claim 4.15 In MB
∗ /D, any increasing sequence of length < κ+ has an upper bound when (A) or (B) holds,

where:

(A) (a) M∗ = (ω>µ,E)

(b) B is a complete Boolean algebra which is (< θ)-distributive

(c) D is a (µ, θ)-regular, θ-complete filter on B

(d) (Q, <)B/D has no (σ, σ)-pre-cut for any regular σ ≤ κ

(e) m = (B, D)

(B) (a)− (c) as above

(d) every Ttr − (σ, σ)-moral problem in m has a Ttr − (σ, σ)-moral

solution in m where:
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(α) ā is a Ttr-moral problem when:

• ā = 〈aα,β : α < β < σ〉

• aα,β ∈ D

• if u ⊆ σ is finite and c ∈ B+ then for some η̄ = 〈ηα : α ∈ u〉
we have ηα ∈ |u|>|u| for α ∈ u and c ≤ aα,β ⇒ ηα E ηβ
and c ∩ aα,β = 0B ⇒ ¬(ηα E ηβ) for α < β from u

(β) b̄ = 〈bα : α < σ〉 is a Ttr − (σσ)-solution of ā when bα ∈ D and
bα ∩ bβ ≤ aα,β for α < β < σ.

P r o o f. If clause (A), as in [3, Ch.VI,2.7] or [5].
If clause (B), as above. �4.15
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