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Abstract. We prove that for λ = iω or just λ strong limit singular of cofi-

nality ℵ0, if there is a universal member in the class Klf
λ of locally finite groups

of cardinality λ, then there is a canonical one (parallel to special models for
elementary classes, which is the replacement of universal homogeneous ones

and saturated ones in cardinals λ = λ<λ).

For this we rely on the existence of enough indecomposable such groups.
We also more generally deal with the existence of universal members of in

general classes for such cardinals.
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Annotated Content

§0 Introduction, (label w), pg.3

§1 Indecomposability, pg.5

[We sayM ∈ Kk is θ-indecomposable when there is no strictly<k-increasing
sequence 〈Mi : i < θ〉 with union M . We quote the situation for Klf .]

§2 Universality, pg.7

[Let µ be strong limit of cofinality ℵ0. We characterize when there is a uni-
versal member of Klf

µ and assuming this, prove the existence of a substitute
for “special model in µ”; recall that this is the parallel of saturated models
for singular cardinals. This works for any suitable universal class or just
a.e.c.]

§3 Universal in iω, pg.11

[We give a natural example which fit our framework, so it has universal
model in cardinals µ as above.]
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§ 0. Introduction

§ 0(A). Review.

Our motivation is the class of locally finite groups so the reader may consider
only this case ignoring the general case; or consider universal classes (see 0.3). We
continue [She17a], see history there.
We wonder:

Question 0.1. 1) Is there a universal G ∈ Klf
λ , e.g. for λ = iω? Or just λ strong

limit of cofinality ℵ0 (which is not above a compact cardinal)?
2) May there be a universal G ∈ Klf

λ , when λ < λℵ0 , e.g. for λ = ℵ1 < 2ℵ0 , i.e.
consistently?

Concerning 0.1(1) recall that by Grossberg-Shelah [GS83], if λ is strong limit
of cofinality ℵ0 is above a compact cardinal κ, then there is G ∈ K lf

λ which is
universal.

Here we return to the universality problem for µ = iω or just strong limit of
cofinality ℵ0. We prove for Klf and similar classes that if there is a universal model
of cardinality µ, then there is something like a special model of cardinality µ, in
particular, universal and unique up to isomorphism. This relies on [Sheb], which
proves the existence and even density of so-called θ-indecomposable (i.e. θ is not a
possible cofinality) models in Klf of various cardinalities continuing Carson-Shelah
[CS] which deal with the class of groups.

Returning to Question 0.1(1), a possible avenue is to try to prove the existence
of universal members in µ when µ = Σn<ωµn each µn measurable < µ, i.e. maybe
for some reasonable classes this holds.

Context 0.2. K will be one of the following cases
Case 1: K = Klf , the class of locally finite groups, so the submodel relation is

just being a subgroup,
Case 2: K is a universal class, see below, the submodel is just a submodel,
Case 3 K is k = (Kk,≤k) an a.e.c. with |LSTk < µ , see [Shea]; we shall only

comment on it. In particular, in this context, in the definitions M ⊆ N should be
replaced by M ≤k N ..

Definition 0.3. 1) We shall say that K is a universal class when for some vocab-
ulary τ = τk:

(a) K is a class of τ -models
(b) a τ -model belongs to K iff every finitely generated sub-model belongs to it

3) Let Kµ be the class of M ∈ K of cardinality µ. We define K<µ,K≤µ
4) For cardinals λ ≤ µ let Kµ,λ be the class of pairs (N,M) such that N ∈ Kµ,M ∈
Kλ and M ⊆ N
5) Let (N1,M1) ≤µ,λ (N2,M2) mean that (N`,M`) ∈ Kµ,λ and for ` = 1, 2 and
M1 ⊆M2, N1 ⊆ N2.
6) For µ ≤ λ we define Kµ,<λ and ≤µ,<λ similarly.
7)A universal class K can be considered as the a.e.c. k = (K,⊆)

Notation 0.4. 1) Let M,N and also G,H,L denote members of K.
2) Let |M | be the universe = set of elements of M and ‖M‖ its cardinality.
2) Let a, b, c, d denote members of such M -s
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4 SAHARON SHELAH

Definition 0.5. 1) We say the pair (N,M) is an (χ, µ, κ)-amalgamation base (or
amalgamation pair, but may omit χ when χ = µ) when :

(a) (N,M) ∈ Kµ,κ

(b) if N ⊆ N` ∈ K≤χ for ` = 1, 2, then for some N3, f1, f2 we have M ⊆ N3 ∈
K and f`-embeds N` into N3 over M .

2) We say that the (N,M) is a universal (µ, λ)-amalgamation base when:

(a) (N,M) ∈ Kµ, λ
(b) if N ⊆ N ′ ∈ Kµ then N ′ can be embedded into N over M .

3) We define when (N,M) is a universal (µ,< λ)-amalgamation base similarly.
4) We may in part (1) omit χ when χ = µ, we then may in parts (1),(2) omit µ, κ
when (µ, λ) = (‖N‖, ‖M‖).
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§ 1. Indecomposability

In this section we deal with indecomposability, equivalently CF(M), see e.g.
[ST97]; we have Klf in mind but still is meaningful and of interest also for other
classes.

Definition 1.1. 1) We say M is θ-decomposable when : θ is regular and if 〈Mi :
i < θ〉 is ⊆-increasing with union M , then M = Mi for some i.
2) We say M is Θ-indecomposable when it is θ-indecomposable for every θ ∈ Θ.
We say M is Θorth-indecomposable when it is θ-indecomposable for every regular
θ /∈ Θ.
3) We say G is θ-indecomposable inside G+ when :

(a) θ = cf(θ);

(b) G ⊆ G+;

(c) if 〈Gi : i ≤ θ〉 is ⊆-increasing continuous and G ⊆ Gθ = G+ then for some
i < θ we have G ⊆ Gi.

4) For θ = cf(θ) ≤ λ ≤ µ we say K is (µ,< λ, θ)-indecomposable when for every
pair (N,M) ∈ Kµ,λ there is (N1,M1) ∈ Kµ,λ which is ≤µ,λ-above it and M1

is θ-indecomposable inside N1, For theta = cf(θ) < λ ≤ µ we define K being
(µ,< λ, θ-indecomposable similarly,
5) We say c : [λ]2 → S is θ-indecomposable when : if 〈ui : i < θ〉 is ⊆-increasing
with union λ then S = {c{α, β} : α 6= β ∈ ui} for some i < θ;
6) We may replace above the cardinal θ by a set or class Θ of regular cardinals.

A group G may be indecomposable as a group or as a semi-group; our default choice
is semi-group; but note that for locally finite groups the two are the same.

Theorem 1.2. 1) If λ ≥ ℵ1 and we let Θλ = {cf(λ)} except that Θλ = {cf(λ), ∂}
when (c)λ,∂ below holds, then (a),(b) holds, where:

(a) some c : [λ]2 → λ is θ-indecomposable for every θ = cf(θ) /∈ Θλ

(b) for every G1 ∈ Klf
≤λ there is an extension G2 ∈ Klf

λ which is Θorth
λ -

indecomposable

(c)λ,∂ for some µ, λ = µ+, µ > ∂ = cf(µ) and µ = sup{θ < µ : θ is a regular
Jonsson cardinal}.

2) If µ ≥ λ, θ = cf(θ) < λ, θ /∈ Θλ ∪ Θµ and K = K then K is (µ, λ, θ)-
indecomposable

Proof. 1) By [Sheb, Th.1.6=Lb24] .
2) Let (N,M) ∈ Kµ,λ be given. By induction of α ≤ θ we choose Hα, Lα, such

that:

(a) (Hα, Lα) ∈ Kµ,λ is increasing continuous with α
(b) (H0, L0) = (N,M)
(c) if α = β + 1 < θ then and Lβ is θ-indecomposable inside Lα

Why can we carry the induction? For α = 0 this is trivial; similarly for α a
limit ordinal. Lastly by clause (b) of part (1), for α = β + 1 ≤ α∗, recalling [Sheb,
1.4=Lb15]. . �1.2

Now comes the central definition
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6 SAHARON SHELAH

Definition 1.3. We say that K is µ-nice when :

(a) τk has cardinality < µ,
(b) for every M ∈ K<µ there is N ∈ Kµ extending M .
(c) K has the JEP (joint embedding property)
(d) K is (µ,< λ, cf(µ))-indecomposable
(e) K is (µ, cf(µ))-indecomposable.

Claim 1.4. Klf is µ -nice when µ > ℵ1

Proof. In Def 1.3 clauses (a),(b),(c) are clear and clause (d) holds by 1.2(2) and
1.5(2) below �1.4

We give below more then what is strictly needed.

Claim 1.5. Assume K = Klf .
1) We have (A)⇒ (B) where:

(A) (a) λ ≥ ℵ1

(b) α∗ ≤ λ and λα ∈ [ℵ1, λ] for α < α∗
(c) λα ∈ Θ•µ[K] Θλ,Θλα for α < α∗ are as above
(d) G1 ∈ K≤λ
(e) G1,α ∈ K≤λα for α < α∗

(B) There are G2, Ḡ2 such that:
(a) G2 ∈ Kλ extends G1

(b) Ḡ2 = 〈G2,α : α < α∗〉
(c) G2,α ∈ Kλα extend G1,α

(d) G2 is Θorth
λ -indecomposable

(e) G2,α is Θorth
λα

-indecomposable for every α < α∗

2) If µ ≥ λ ≥ ℵ1 then ℵ0 ∈ λ ∩ Θorth
µ ∩ Θorth

λ except possibly when λ = ℵ1, µ =

χ+, cf(χ) = ℵ0 for some χ.

Proof. 1) For α < α∗ let c : [λα]2 → λα be Θorth
λα

-indecomposable.
Now by induction of α ≤ α∗ we choose Hα, Lα, but Lα is chosen together with

Hα+1 and not chosen for α = α∗, such that

(a) Hα ∈ Kλ is increasing continuous with α
(b) H0 = G1

(c) (Hα, Lβ) ∈ Kλ,λβ when α = β + 1 ≤ α∗
(d) G1,β ⊆ Lβ for β < α∗ and Lβ is Θorth

λβ
-indecomposable

Why can we carry the induction? For α = 0 this is trivial (note that Lα is
not chosen), similarly for α a limit ordinal. Lastly by clause (b) of part (1), for
α = β + 1 ≤ α∗, Def 1.1(4) gives the desired conclusion. Lastly let G2 ∈ Kλ

extend Hα∗ and satisfies the indecomposablity demand, and letting G2,α = Lα we
are done.
2) Easy. �1.5

Claim 1.6. 1 If µ is strong limit singular and N ∈ Kµ then the set IDCcf(µ)(N)
has cardinality ≤ µ, if fact even equal; where, for N ∈ Kµ,

(*) IDCcf(µ)(M) = {M : M ⊆ N has cardinality < µ and is cf(µ)−indecomposable
}.

Proof. Easy. �
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§ 2. Universality

For quite many classes, there are universal members in any (large enough) µ
which is strong limit of cofinality ℵ0, see [She17b] which include history. Below we
investigate “is there a universal member of Klf

µ for such µ”. We prove that if there

is a universal member, e.g. in Klf
µ , then there is a canonical one.

Theorem 2.1. Assume µ be strong limit of cofinality ℵ0 and K is µ-nice.
1) The following conditions are equivalent:

(A) there is a universal G ∈ Kµ

(B) if H ∈ Kλ is ℵ0-indecomposable for some λ < µ, then there is a sequence
Ḡ = 〈Gα : α < α∗ ≤ µ〉 such that:

(a) H ⊆ Gα ∈ Kµ

(b) if G ∈ Kµ extend H, then for some α,G is embeddable into Gα over
H.

(B)+ We can add in (B)

(c) if α1 < α2 < α∗, then there are no G, f1, f2 such that H ⊆ G ∈ K
and f` embeds Gα` into G over H for ` = 1, 2.

(d) (H,Gα) is an amalgamation pair (see Definition 0.5, moreover a uni-
versal amalgamation base (see 0.5(2))

2) We can add in part (1):

(C) there is G∗ such that:

(a) G∗ ∈ Kµ is universal in K<µ;

(b) E ℵ0G∗,<µ, see see 2.2 below, is an equivalence relation with ≤ µ equiva-
lence classes;

(c) G∗ is µ-special see below.
(d) If G ∈ Kµ is µ-special then G,G∗ are isomorphic, (that is uniqueness).

Before we prove 2.1,

Definition 2.2. For θ = cf(θ) < µ we define for M∗ ∈ Kµ:

(A) INDθ
M∗,<µ = {N : N ≤k M∗ has cardinality < µ and is θ-indecomposable}.

(B) F θ
M∗,<µ

= {f : for some θ-indecomposable N = Nf ∈ K<µ with universe

an ordinal, f is a ≤-embedding of N into M∗}.
(C) E θ

M∗,<µ
= {(f1, f2) : f1, f2 ∈ F θ

M∗,<µ
, Nf1 = Nf2 and there are embeddings

g1, g2 of M∗ into some extension M of M∗ such that g1 ◦ f1 = g2 ◦ f2}.
(D) M∗ is θ−E θ

M∗,<µ
-indecomposably homogeneous (or justM∗ is θ-indecomposably

homogeneous) when : if f1, f2 ∈ F θ
M∗,<µ

and (f1, f2) ∈ E θ
M∗,<µ

and A ⊆M∗
has cardinality < µ then there is (g1, g2) ∈ E θ

M∗,<µ
such that f1 ⊆ g1∧f2 ⊆

g2 and A ⊆ Rang(g1)∩Rang(g2); it follows that if cf(µ) = ℵ0 then for some
g ∈ aut(M∗) we have f2 = g ◦ f1.

(E) We say that M∗ ∈ Kµ is µ-special when it is θ-indecomposably homoge-
neous and every M ∈ K<µ is embeddable into it.
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Remark 2.3. We may consider in 2.1 also (A)0 ⇒ (A) where

(A)0 if λ < µ,H ⊆ G1 ∈ K<µ and |H| ≤ λ, then for some G2 we have G1 ⊆
G2 ∈ K<µ and (H,G2) is a (µ, µ, λ)-amalgamation base.

Proof. It suffices to prove the following implications:

(A)⇒ (B):

Let G∗ ∈ Kµ be universal and choose a sequence 〈G∗n : n < ω〉 such that
G∗ =

⋃
n
G∗n, G

∗
n ⊆ G∗n+1, |G∗n| < µ.

Let H be as in 2.1(B) and let G = {g : g embed H into G∗n for some n}. So
clearly |G | ≤

∑
n
|G∗n||H| ≤

∑
λ<µ

2λ = µ, (an over-kill).

Let 〈g∗α : α < α∗ ≤ µ〉 list G and let (Gα, gα) be such that (exist by renaming):

(∗)1 (a) H ⊆ Gα ∈ Kµ;

(b) gα is an isomorphism from Gα onto G∗ extending g∗α.

It suffices to prove that Ḡ = 〈Gα : α < α∗〉 is as required in (B). Now clause
(B)(a) holds by (∗)1(a) above. As for clause (B)(b), let G satisfy H ⊆ G ∈ K≤µ,

hence there is an embedding g of G into G∗. We know that g(H) ⊆ G =
⋃
n
Gn

hence 〈g(H) ∩ Gn : n < ω〉 is ⊆-increasing with union g(H); but g(H) by the
assumption on H is ℵ0-indecomposable, hence g(H) = g(H) ∩ G∗n ⊆ G∗n for some
n, so g�H ∈ G and so for some α we have g = g∗α. Hence g−1

α g is an embedding of
G into G∗ extending (gα�H)−1)(g�H) = (g∗α)(g∗α) = idH as promised.

(B)⇒ (B)+:

What about (B)+(c)? while Ḡ does not necessarily satisfy it, we can “correct
it”, e.g. we choose uα, vα and if α /∈ ∪{vβ : β < α} also G′α by induction on α < α∗
such that (the idea is that if β ∈ vα, Gβ is discarded being embeddable into some
G′α and G′α is the “corrected” member):

(∗)2
α (a) Gα ⊆ G′α ∈ Kµ if α /∈ ∪{vβ : β < α};

(b) uα ⊆ α and vα ⊆ α∗\α;

(c) if β < α then uβ = uα ∩ β and uα ∩ vβ = ∅;
(d) if α = β + 1 then β ∈ uα iff β /∈ ∪{vγ : γ < β};
(e) if α /∈ ∪{vγ : γ < α}, then :

•1 γ ∈ vα iff (γ > α and) Gγ is embeddable into G′α over H;

•2 if γ ∈ α∗\(α + 1)\ ∪ {vβ : β ≤ α} then Gγ is not embeddable
over H into any G′ satisfying G′α ⊆ G′ ∈ K;

(f) if α = β + 1 and β /∈ uα then vβ = ∅.

This suffices because if we let uα∗ = α∗\ ∪ {vγ : γ < α∗}, then 〈G′α : α ∈ uα∗〉 is as
required. Why can we carry the induction?

For α = 0, α limit we have nothing to do because uα is determined by (∗)2
α(c)

and (∗)2
α(d). For α = β + 1, if β ∈

⋃
γ<β

vγ we have nothing to do, in the remaining

case we choose G′β,i ∈ Kµ by induction on i ∈ [α, α∗], increasing continuous with

i, G′β,α = Gα, G
′
β,i+1 make clause (e) true, i.e. if G′β,i has an extension into which

Gi is embeddable over H, then there is such an extension of cardinality µ and
choose G′β,i+1 as such an extension.
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Lastly, let G′α = G′α,α∗ and uα = uβ∪{α} and vα = {i : i ∈ α∗, i /∈ ∪{vγ : γ < β}
and Gi is embeddable into Gβ over H}.

So clause (B)+(c) holds; and clause (B)+(d) follows from (B)(b) + (B)+(c), so
we are done.

(B)+ ⇒ (A):

We prove below more: there is something like “special model”, i.e. part (2), now
(C)⇒ (A)

is trivial so we are left with the following.

(B)+ ⇒ (C):

Choose λ̄ = 〈λn : n < ω〉, λn ∈ {ℵα+2 : α ∈ Ord}∩µ\ |τ |+ such that 2λn < λn+1

and µ =
∑
n
λn and λn ∈ Θ•µ, see 1.3.(d).

Let Kspc
µ be the class of G such that:

(∗)3
Ḡ

(a) G ∈ Kµ

(b) if H ⊆ G, |H| < λ, then there is an ℵ0-indecomposable H ′ ∈ K<µ,
such that H ⊆ H ′ ⊆ G

(c) if H ⊆ G is ha0-indecomposable of cardinality < µ then the pair
(G,H) is an universal amalgamation base (see Definition 0.5(2));

(d) if H ⊆ G is ℵ0-indecomposable of cardinality < µ,H ⊆ H ′ ∈ K<µ, H
′

is ℵ0-indecomposable1, and G,H ′ are compatible over H (in K≤µ),

then H ′ is embeddable into G over H.

Now we can finish by proving (∗)4 + (∗)5 below.

(∗)4 if G ∈ K≤µ then for some Ḡ ∈ Kspc

λ̄
, G is embeddable into

⋃
n
Gn;

We break the proof to some stages, (∗)4,3. gives the desired conclusion of ((∗)4

(∗)4.1 if N1 ∈ Kµ then there is N2 such that
(a) N2 ∈ Kµ

(b) N1 ⊆ N2

(c) if H ∈ IDCcf(µ)(N1) then (N2, H) is a universal amalgamation base.

Why? by 1 it is enough to deal with one such H, which is O.K. by clause (d) of
Def 1.3]

(∗)4.2 like (∗)4.1 but in clause (c) is replaced by
(c)’ if H1 ∈ IDCcf(µ)(N1) and H1 ⊆ H2 ∈ K<µ (and, we may add, H2

is ℵ0-indecomposable) then either N2, H1 are incompatible over H1 in
K≤µ or H2 is embeddable into N2 over H1

[Why? Again it is enough to deal with one pair (H1, H2)] which is done by hand.]

(∗)4.3 If N1 ∈ K≤µ then there is N2 such that
(a) N2 ∈ Kµ

(b) N1 ⊆ N2

(c) if H ∈ IDCcf(µ)(N2) then (N2, H) is a universal amalgamation base
(d) if H1 ∈ IDCcf(µ)(N2) and H1 ⊆ H2 ∈ K<µ (and, we may add, H2

is ℵ0-indecomposable) then either N2, H1 are incompatible over H1 in
K≤µ or H2 is embeddable into N2 over H1

1The ℵ0-indecomposability is not always necessary, but we need it sometimes.
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[Why? We choose Lε ∈ Kµ by induction on ε < cf((µ), such that

(a) Lα ∈ Kµ

(n) 〈Lβ : β ≤ α〉 is increasing continuous
(c) G1 ⊆ L0

(d) if α = 2β + 1 then Lα relate to L2β as N2 relate to N1 is (∗)4.1

(e) if α = 2β + 2 then Lα relate to L2β+1 as N2 relate to N1 is (∗)4.2

There is no problem to carry the induction and then N2 = Lcf(µ) is as required
in (∗)4.3 hence in (∗)4.

(∗)5 (a) if G1, G2 ∈ Kspc
µ then G1, G2 are isomorphic;

(b) if G1, G2 ∈ Kspc
µ , H ∈ K is ℵ0-indecomposable and f` embeds H into

G`, for ` = 1, 2, and this diagram can be completed, (i.e. there are
G ∈ Kµ and embedding g` : G` → G∗ such that g1 ◦ f1 = g2 ◦ f2) then
there is h such that:

(α) h is an isomorphism from G1 onto G2;

(β) h ◦ f1 = f2;

Why? Let F = F [G1, G2] be the set of f such that:

(a) f is an isomorphism from G1,f ∈ IDCcf(µ) onto G2.f ∈ IDCcf(µ)(G2)
(b) G1, G2 are f -compatible in Kµ which means that there is G ∈ Kµ and

embeddings g` of G` into G for ` = 1, 2 such that g2 ◦ f = g1�G1,f .

First F is non-empty (the function f with domain {eG1
} and range {eG2

} will
do.) Second use the hence and forth argument]

�2.1

Remark 2.4. 1) Can we prove for strong limit singular µ of uncountable cofinality
κ a parallel result? Well we have to consider the following game:

(x) a play last θ moved
(x) in the ε move, first Player I choose Mε and then player II choose Nε
(x) Mε ∈ K<µ

(x) 〈Mζ : ζ ≤ ε〉 is increasing continuous
(x) Mε ⊆ Nε ⊆Mε+1

(x) in the end of the play, th eplayer II wins ifffor every limite ordinal ε < θ is
an amalgamtion base inside K<µ

Now if player II does not lose then we can imitate the proof above; but does not
seem exciting.
2) The proof works for any a.e.c. k with LSTk < µ. But We may wonder can we
weaken the demand on k. Actually we can: there is no need of smoothness (that
is: if 〈Mα : α ≤ δ〉 is ≤k-increasing then ∪{Mα : α < δ} ≤Mδ. Moreover while we
need the existence of an upper bound for any ≤k-increasing sequence, its being the
union can be demanded only for the cofinality cf(µ). Again, do not look exciting.
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§ 3. Universal in iω

In §(3B) we have characterized when there are special models in K of cardinality,
e.g. iω. We try to analyze a related combinatorial problem. Our intention is to
first investigate kfnq (the class structures consisting of a set and a directed family
of equivalence relations on it, each with a finite bound on the size of equivalence
classes). So kfnq is similar to K but seems easier to analyze. We consider some
partial orders on k = kfnq.

First, under the substructure order, ≤1=⊆, this class fails amalgamation. Sec-
ond, another order, ≤2 demanding TV for countably many points, finitely many
equivalence relations, we have amalgamation. Third, we add: if M ≤3 N then
M ≤1 N and the union of (Pn, Ed)d∈Q(M) is the disjoint union of models iso-

morphic to (PM , Ed)d∈Q(M), the equivalence relation is EM,N . This is intended
to connect to locally finite groups. So we may instead look at {f ∈ Sym(N): if
a ∈ N\M and a/EM,N � M then f�(a/EM,N ) = id(a/EM,N ); no need of repre-
sentations.

The model in iω will be
⋃
n
Mn, ‖Mn‖ = in+1, gotten by smooth directed

unions of members of cardinality iω by In ⊆ PMn+1 is a set of representatives
for EMn,Mn+1

.

Definition 3.1. Let K = Kfnq be the class of structures M such that (the vocab-
ulary is defined implicitly and is τK, i.e. depends just on K):

(a) PM , QM is a partition of M,PM non-empty;

(b) EM ⊆ PM × PM ×QM (is a three-place relation) and we write aEMc b for
(a, b, c) ∈ EM ;

(c) for c ∈ QM , EMc is an equivalence relation on PM with sup{|a/EMc | : a ∈
PM} finite (see more later);

(d) QMn,k ⊆ (QM )n for n, k ≥ 1

(e) if c̄ = 〈c` : ` < n〉 ∈ n(QM ) we let EMc̄ be the closure of
⋃̀
E` to an

equivalence relation;

(f) n(QM ) =
⋃
k≥1

QMn,k;

(g) if c̄ ∈ QMn,k then k ≥ |a/EMc̄ | for every a ∈ PM .

Definition 3.2. We define some partial order on K.
1) ≤1=≤1

K=≤1
fnq is being a sub-model.

2) ≤3=≤3
K=≤3

fnq is the following: M ≤3 N iff:

(a) M,N ∈ K

(b) M ⊆ N
(c) if A ⊆ N is countable and A ∩QN is finite, then there is an embedding of

N�A into M over A ∩M or just a one-to-one homomorphism.

3) ≤2=≤2
K=≤2

fnq is defined like ≤3 but in clause (c), A is finite.
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Claim 3.3. 1) K is a universal class, so (K,⊆) is an a.e.c.
2) ≤3

K,≤2
K,≤1

K are partial orders on K.
3) (K,≤2

K) is an a.e.c.
4) (K,≤2

K) has disjoint amalgamation.

Proof. 1),2),3) Easy.
4) By 3.4 below. �3.3

Claim 3.4. If M0 ≤1
K M1,M0 ≤3

K M2 and M1 ∩M2 = M0, then M = M1 +M2,
the disjoint sum of M1,M2 belongs to K and extends M` for ` = 0, 1, 2 and even
M1 ≤3

fnq M and M0 ≤2
K M1 ⇒M2 ≤2

K M when :

(∗) M = M1 +M2 means M is defined by:

(a) |M | = |M1| ∪ |M2|;
(b) PM = PM1 ∪ PM2 ;

(c) Q = QM1 ∪QM2 ;

(d) we define EM by defining EMc for c ∈ QM by cases:

(α) if c ∈ QM0 then EMc is the closure of EM1

` ∪ EM2

` to an equiva-
lence relation;

(β) if c ∈ QM`\QM0 and ` ∈ {1, 2} then EMc is defined by
• aEMc b iff a = b ∈ PM3−`\M0 or aEM`

c b so a, b ∈ PM` ;

(e) QMn,k = QM1

n,k ∪Q
M2

n,k ∪ {c̄ : c̄ ∈ n(QM )\(n(QM1)) ∪ n(QM2)}.

Proof. Clearly M is a well defined structure, extends M0,M1,M2 and satisfies
clauses (a),(b),(c) of Definition 3.1. There are two points to be checked: a ∈
PM , c̄ ∈ QMn,k ⇒ |a/EMc̄ | ≤ k and n(QM ) =

⋃
k≥1

QMn,k

(∗)1 if a ∈ PM and c̄ ∈ QMn,k then |a/EMc̄ | ≤ k.

Why? If c̄ ∈ QMn,k\(Q
M1

n,k ∪ Q
M2

n,k) this holds by the definition, so assume c̄ ∈ QMι

n,k.
If this fails, then there is a finite set A ⊆ M such that c̄ ⊆ A, a ∈ A and letting
N = M�A we have |a/ENc̄ | > k. By M0 ≤1

K M1,M0 ≤3
K M2 (really M0 ≤2

K

M2 suffice) there is a one-to-one homomorphism f from A ∩ M2 into M0. Let
B′ = (A ∪M1) ∪ f(A ∩M2) and N ′ = M�B and let g = f ∪ idA∩M1 . So g is a

homomorphism from N onto N ′ and g(a)/EN
′

g(c̄) has > k members, which implies

g′(a)/EM1

g′(c̄) has > k members. Also g(c̄) ∈ QM1

n,k. (Why? If ι = 1 trivially, if ι = 2

by the choice of f , contradiction to M ∈ K.)]

(∗)2 if c̄ ∈ n(QM ) then c̄ ∈
⋃
k

QMn,k.

Why? If c̄ ∈M1 or c̄ ⊆M2, this is obvious by the definition of M , so assume that
they fail. By the definition of theQMn,k’s we have to prove that sup{a/EMc̄ : a ∈ PM}
is infinite. Toward contradiction assume this fails for each k ≥ 1 there is ak ∈ PM
such that ak/E

M
c̄ has ≥ k elements hence there is a finite Ak ⊆ M such that

ak/E
M�Ak
c̄ has ≥ k elements. Let A =

⋃
k≥1

Ak, so Ak is a countable subset of M

and we continue as in the proof of (∗)1.
Additional points (not really used) are proved like (∗)2:
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(∗)3 M1 ≤3
K M ;

(∗)4 M0 ≤2
K M1 ⇒M2 ≤2

K M ;

(∗)5 M1 +M0
M2 is equal to M2 +M0

M1.

�3.4

Claim 3.5. If λ = λ<µ and M ∈ K has cardinality ≤ λ then there is N such that:

(a) N ∈ Kλ extend M ;

(b) if N0 ≤3
K N1 and N0 has cardinality < µ and f0 embeds N0 into N , then

there is an embedding f1 of N1 into N extending f0.
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