
RAMSEY THEORY FOR HIGHLY CONNECTED MONOCHROMATIC
SUBGRAPHS

J. BERGFALK, M. HRUŠÁK, AND S. SHELAH

Abstract. An infinite graph is highly connected if the complement of any subgraph of
smaller size is connected. We consider weaker versions of Ramsey’s Theorem asserting
that in any coloring of the edges of a complete graph there exist large highly connected
subgraphs all of whose edges are colored by the same color.

1. Introduction

Ramsey’s celebrated theorem in its most basic infinite form is the following: for any
partition of the collection of pairs of natural numbers into finitely many sets, there exists
some infinite X ⊆ N whose pairs all fall in one of those sets. A pithier rendering is by way
of Erdős and Rado’s arrow notation:

(?) ℵ0 → (ℵ0)2
k for any finite k.

Here the outer cardinals ℵ0, 2, and k parametrize the sorts of partitions under consideration:
letting [µ]λ denote the size-λ subsets of µ, the partitions in question in the above relation
are all of the form c : [ℵ0]2 → k. The cardinal inside the parentheses records how large a
homogeneous set we seek with respect to any such partition, and the arrow tells us we can
always find one.

The following points are basic to the theory:

(1) The above relation “descends” to finite contexts (see [5] §1.5 for a direct deduction).
More precisely, for any finite k and m there is some n such that

n→ (m)2
k

This least such n is often denoted R(m; k).
(2) Extending the relation (?) to higher cardinals is less straightforward. More pre-

cisely:
(a) The relation ℵ1 → (ℵ1)2

k fails in a very strong sense, for any k ≥ 2 (see [19]).
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2 BERGFALK, HRUŠÁK, AND SHELAH

(b) More generally, for 2 ≤ κ < µ, the relation µ → (µ)2
κ characterizes any un-

countable cardinal µ as weakly compact, that is, as a cardinal whose existence
is a strictly stronger assumption than the ZFC axioms (see [9]).

(c) Item (1), on the other hand, does fully generalize: for any κ and µ there is
some least ν such that

ν → (µ)2
κ

This follows from Erdős and Rado’s theorem that (2λ)+ → (λ+)2
λ for any

infinite λ (see [4]).

Each of these facts will figure in the following. Recall lastly the more pictorial framing of
Ramsey’s relation in terms of edge-colorings of graphs:

ν → (µ)2
λ

if and only if every coloring of the edges of the complete graph on ν by λ many colors
contains some size-µ monochromatic subgraph which is complete. It is this framing we will
have generally in mind — only our interest will be in subgraphs which are large in some
finer sense than complete. Namely:

Definition 1. A graph G is κ-connected if it remains connected after the deletion of any
fewer than κ vertices.

Our question should at this point be clear. Where formality is necessary, we will denote
a graph G as an ordered pair (vertices, edges). The size of a graph is the cardinality of
its vertex-set. For cardinal numbers κ, λ, µ, ν, write

ν →κ-c (µ)2
λ

if every coloring of the edges of the complete graph on ν into λ many colors contains some
size-µ monochromatic subgraph which is κ-connected. More formally:

Definition 2. ν →κ-c (µ)2
λ if and only if for every c : [ν]2 → λ there exists a ξ < λ and

X ∈ [ν]µ such that the graph (X, c−1(ξ) ∩ [X]2) is κ-connected.

Question. For which cardinals does the relation ν →κ-c (µ)2
λ hold?

2. Main results

Note at the outset that κ-connectedness is a well-studied notion, not least for its evident
relevance to network design; it dates at least to Menger’s 1927 [14] (see also [12]; see
further [6], [1], [10], and [18] for interactions of the notion with vertex decompositions and
chromatic number). Observe as well that it articulates a number of graph theory’s most
basic concerns:

(1) A graph is 1-connected if and only if it is connected.
(2) A graph with at least three vertices is 2-connected if and only if each pair of its

vertices belongs to a cycle.
(3) The only µ-connected graph on any finite µ is the complete one.
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By this last point,

(?) when µ is finite, ν →µ-c (µ)2
λ is simply the Ramsey relation ν → (µ)2

λ.

Hence for any finite λ and κ ≤ µ,

ν →κ-c (µ)2
λ

for some ν ≤ R(µ;λ). See [13] for much finer bounds on the least such ν.
For infinite µ, a µ-connected graph on µ is no longer necessarily complete; such graphs

nevertheless play a sufficiently critical role in the theory to merit a name and notation all
their own:

Definition 3. A graph G = (V,E) is highly connected if it remains connected after the
deletion of any fewer than |V | vertices. Write ν →hc (µ)2

λ if and only if ν →µ-c (µ)2
λ, i.e.,

if every coloring of the edges of the complete graph on ν into λ many colors contains some
size-µ monochromatic subgraph which is highly connected.

Observation 4.
[
ν → (µ)2

λ

]
⇒
[
ν →hc (µ)2

λ

]
⇒
[
ν →κ-c (µ)2

λ

]
for any κ ≤ µ.

In light of (∗) and the following proposition, we might view →hc as a more satisfactory
generalization of the positive Ramsey relations of (?) to the uncountably infinite:

Proposition 5. If µ is an infinite cardinal and k is a natural number then µ→hc (µ)2
k.

Proof. Given a coloring c : [µ]2 → k, let D be a uniform ultrafilter on µ and define f : µ→ k
by

f(α) = i if and only if Aα = {β ∈ µ : c({α, β}) = i} ∈ D,
and let i < n be such that the set B = {α ∈ µ : f(α) = i} is in D. The set B is
highly connected. This is because for any α, β in B, the set Aα ∩ Aβ ∩ B is in D and
hence has cardinality µ. Any γ in Aα ∩ Aβ ∩ B connects α and β via the edge-colorings
c({α, γ}) = c({β, γ}) = i. �

The situation is considerably more complicated for infinitely many colors. Henceforth
we will assume more set-theoretic background of the reader; we will focus as well on the
relation →hc. This relation is subtle and significant in its own right, and we will tend to
treat the finer relations →κ-c as secondary, as mainly grading its failure.

Perhaps the earliest result along these lines is Erdős and Kakutani’s theorem [3] that
the complete graph on an infinite cardinal µ can be partitioned into λ many trees if and
only if µ ≤ λ+. In consequence, the relation λ+ →hc (λ+)2

λ fails in the strongest possible
respect: λ+ 6→2-c (λ+)2

λ.

Observation 6. µ→1-c (µ)2
λ holds for any cardinal λ less than the cofinality of µ.

Observation 7. The Erdős-Kakutani coloring shows even that λ+ 6→hc (µ)2
λ for any µ ≥ 3.

Alternately, λ+ 6→hc (λ+)2
λ may be viewed as an instance of the following proposition,

inspired by the Sierpiński coloring of [17]:

Proposition 8. If µ ≤ 2λ then µ 6→hc (µ)2
λ.
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Proof. Let {ηα : α < µ} ⊆ 2λ be a collection of pairwise distinct functions. Given α 6= β <
µ let

4α,β = min{ξ < λ : ηα(ξ) 6= ηβ(ξ)}.
Then define c : [µ]2 → λ× 2 by

c({α, β}) = (4α,β, i) if and only if α < β and ηα(4α,β) = i.

Aiming for a contradiction assume that A ⊂ µ is highly connected in color (ξ, i). Let β ∈ A
be such that that ηβ(ξ) 6= i (there is such a β since A contains an edge). Let B = A ∩ β.
Then β has no adjacent edges in (A \B, c−1((ξ, i)) ∩ [A \B]2), a contradiction. �

By the following observation, Proposition 8 says even more.

Lemma 9. Let µ be the cofinality of ν. Then µ 6→hc (µ)2
λ implies that ν 6→hc (ν)2

λ.

Proof. Let c : [µ]2 → λ witness that µ 6→hc (µ)2
λ. Let ν be the disjoint union of µ many

sets να, each of strictly smaller cardinality than ν. A coloring d : [ν]2 → λ for which
d(ξ, η) = c(α, β) if ξ ∈ να and η ∈ νβ and α 6= β will witness that ν 6→hc (ν)2

λ. �

The core relation in Proposition 8 is 2λ 6→hc (2λ)2
λ. This is sharp, in the sense that the

relation (2λ)+ →hc (2λ)2
λ does hold:1

Proposition 10. If µ = µλ then µ+ →hc (µ)2
λ.

Proof. Observe first that by assumption, the cofinality of µ is greater than λ.
Given a coloring c : [µ+]2 → λ, let {Mε : ε ≤ µ} be a continuous ⊆-chain of size-µ

elementary submodels of some large enough H(θ) such that

(1) µ+ 1 ∪ {c} ⊆M0,
(2) [Mε+1]λ ⊆Mε+1 for every ε < µ, and
(3) for every ε < µ, every formula ϕ ∈ Lλ+, λ+(∈) with parameters in Mε+1 that is

satisfiable in H(θ) is satisfiable in Mε+1.

For each ε ≤ µ let δε = Mε ∩ µ+ ∈ µ+. The key observation is the following:

Claim 11. For co-boundedly many ε < µ there is an i(ε) < λ such that c({α, δµ}) =
c({β, δµ}) = i(ε) for some α, β < δε and such that for every such α, β, the set

{γ ∈ [δε, δε+1) : c({α, γ}) = c({β, γ}) = c({γ, δµ}) = i = i(ε)}
is unbounded in δε+1.

Observe that we do not require the α, β of the claim to be distinct.

Proof. Adopt the convention that min∅ = 0 and let

ξ = sup {min {α : α < δµ and c(α, δµ) = i} : i ∈ λ}
and take η < µ with δη > ξ. Claim 11 will hold for all ε in the interval (η, µ). This we
argue by contradiction: assume the claim fails for some ε ∈ (η, µ); in other words, for each
i < λ assume that one of the following holds:

1(Compare the Erdős-Rado relation (2λ)+ → (λ+)2λ. It too is sharp, in the sense that 2λ 6→ (λ+)2λ, as
witnessed by the Sierpiński coloring.)
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(a) There exist αi, βi < ε such that c({αi, δµ}) = c({βi, δµ}) = i, yet the set

Γi = {γ ∈ [δε, δε+1) : c({αi, γ}) = c({βi, γ}) = c({γ, δµ}) = i}
is bounded in δε+1.

(b) For no α < δε does c(α, δµ) = i. In this case let Γi be ∅.

As [Mε+1]λ ⊆Mε+1, the cofinality of δε+1 is bigger than λ, hence some ζ < δε+1 bounds⋃
i<λ Γi. Denote the family of i satisfying (a) by I. Consider the conjunction ϕ of the

formula γ > ζ with the formulas c({αi, γ}) = c({βi, γ}) = i, where i ranges through I.
Then δµ witnesses that ϕ is satisfiable in H(θ), so by (3) some γ ∈ (ζ, δε+1) witnesses its
satisfaction in Mε+1. Let j = c({γ, δµ}). Then j ∈ I and γ ∈ Γj, which contradicts the
assumption that Γj is bounded by ζ. �

Let i < λ be such that the set W = {ε : i(ε) = i} has size µ, and let A =
⋃
{Aε : ε ∈ W},

where
Aε = {α ∈ [δε, δε+1) : c({α, δµ}) = i}.

A is then a subset of µ+ of size µ (in fact, Aε has size µ for every ε ∈ W ). We claim that
it is highly connected in the color i. To see this it suffices to prove that if α and β are
distinct elements of A then the set

{γ ∈ A : c({α, γ}) = c({β, γ}) = i}
has size µ. To see this, let ε1 and ε2 be elements of W such that α ∈ Aε1 and β ∈ Aε2 , and
let ε be an element of W \ (ε1 + 1 ∪ ε2 + 1). We wish to find a γ ∈ [δε, δε+1) such that

c({α, γ}) = c({β, γ}) = c({γ, δµ}) = i = i(ε).

Such a γ exists by Claim 11. �

A number of questions now come into focus. Most immediate among them is:

Question 12. For λ an infinite cardinal, what is the least cardinal µ for which it is
consistent with the ZFC axioms that µ→hc (µ)2

λ?

By Observation 4, µ →hc (µ)2
λ holds whenever µ is weakly compact, for any λ < µ. As

we have seen, though, →hc holds in many cases where the classical arrow fails; hence we
might reasonably hope for µ→hc (µ)2

λ on much smaller µ. Necessarily, 2λ must be smaller
than any such µ, by Proposition 8. Is this alone enough?

No. By the following, any instance of µ→hc (µ)2
λ will involve large cardinal assumptions.

Definition 13. For regular uncountable µ, the principle �(µ) is the assertion that there
exists a sequence C = 〈Cα |α ∈ µ〉 such that

• Cα is a closed unbounded subset of α, for each α.
• Cβ ∩ α = Cα, for every limit point α of Cβ.
• No club C ⊆ µ satisfies C ∩ α = Cα at every limit point α of C.

If in addition the following holds, we will call C a λ-stationary �(µ)-sequence:

• The set {α ∈ µ : otp(Cα) = λ} is stationary in µ.

The following is immediate from [8] together with Lemma 7.2.2 of [20].
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Theorem 14. If λ < µ are infinite regular cardinals and µ is not Mahlo in the constructible
universe, then there exists a λ-stationary �(µ)-sequence.

Proposition 15. If there exists a λ-stationary �(µ)-sequence, then µ 6→hc (µ)2
λ.

Proof. The “bad” coloring c : [µ]2 → λ will be c(α, β) = ρλ(α, β), where ρλ is Todorcevic’s
local rho function, defined in reference to some λ-stationary �(µ)-sequence C. Readers are
referred to [20] §7.2 for further information. The decisive features of ρλ for our purposes
are the following: for all α < β < γ < µ,

ρλ(α, β) ≤max{ρλ(α, γ), ρλ(β, γ)}, and(1)

ρλ(α, γ) ≤max{ρλ(α, β), ρλ(β, γ)}(2)

In consequence, for all ξ < λ, the relation

α <λ
ξ β iff α < β and ρλ(α, β) ≤ ξ

is a tree-ordering on µ. By our assumptions about C and Lemma 7.2.9 of [20], none of the
orderings <λ

ξ contains a chain of length µ.
Now suppose towards contradiction that A ∈ [µ]µ is highly connected in the color ξ. By

the above, there exist α < β in A with α ≮λ
ξ β. By highly-connectedness, some color-ξ

path α = α0 to α1 to . . . to αj to αj+1 = β must connect α and β in A\α. It then follows
from successive applications of (1) and (2) above that

ρλ(α, β) ≤ max
i≤j

ρλ(αi, αi+1) = ξ

This implies that α <λ
ξ β, a contradiction. �

Corollary 16. It is consistent with the ZFC axioms — and even with ZFC+GCH — that
µ 6→hc (µ)2

λ for all infinite cardinals λ < µ.

Proof. By Proposition 15, the relation µ 6→hc (µ)2
λ holds for any infinite regular cardinals

λ < µ in a model of ZFC+(V=L)+“there exist no Mahlo cardinals.” It will hold then for
any singular µ by Lemma 9. Observe finally that if µ 6→hc (µ)2

λ failed for any singular λ,
it would fail as well for some smaller regular λ, contradicting our premise. �

We now show in the opposite direction that, assuming the existence of a weakly compact
cardinal above some µ > λ, it is consistent with the ZFC axioms that 2µ →hc (2µ)2

λ.
Instrumental in the argument is the following “two-dimensional delta system lemma” of

more general utility.

Definition 17. A family of sets A is a ∆-system if there exists a fixed r such that a∩b = r
for every distinct a and b in A. This r is called the root of the ∆-system.

Lemma 18. Let ν be weakly compact and let µ be less than ν. Then for any family
{uα,β : α < β < ν} ⊆ [ν]≤µ there exists a B ∈ [ν]ν such that:

(1) For each α ∈ B, the set {uα,β : β ∈ B \ (α + 1)} is a ∆-system, with root V +
α .

(2) For each β ∈ B, the set {uα,β : α ∈ B ∩ β} is a ∆-system, with root V −β .
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(3) The sets {V +
α : α ∈ B} and {V −α : α ∈ B} and {V −α ∪ V +

α : α ∈ B} each form
∆-systems.

(4) The elements of the set {uα,β \(V +
α ∪ V −β ) : α < β in B} are pairwise disjoint.

In what follows, the relation α < β will sometimes be left implicit; it is assumed to hold
in any expression conjoining α and β.

Proof. By the weak compactness of ν, we may begin by assuming all uα,β to be of the same
order-type.

Define the coloring d : [ν]4 → H(µ+) as follows: for any increasing a = {α0, α1, α2, α3}
let

Ua = a ∪
⋃

j<k<4

uαj ,αk .

and let

d(a) = 〈otp(Ua), 〈ξi : i < 4〉, 〈vj,k : j < k < 4〉〉,
so that if h is the unique order-isomorphism between Ua and otp(Ua), then

• h(αi) = ξi for every i < 4, and
• h[uαj ,αk ] = vj,k for every j < k < 4.

By the weak compactness of ν, there exists a d-monochromatic A ∈ [ν]ν . We argue most
of the lemma for this set A, thinning to a B ∈ [A]ν only later if necessary.

Consider α < β < γ < δ < ε in A. Since d(α, β, γ, ε) = d(α, β, δ, ε) = d(α, γ, δ, ε),

(†) ξ ∈ uα,β ∩ uα,γ ⇔ ξ ∈ uα,β ∩ uα,δ ⇔ ξ ∈ uα,γ ∩ uα,δ
As ε was arbitrary, this implies item (1) of the lemma. We might usefully note more: a ξ
as in (†) must sit at the same relative height in each uα,β, for β ∈ A \(α+ 1)). Pigeonhole
arguments together with (†) then ensure that any lesser elements of uα,β also fall in the
root V +

α of the ∆-system {uα,β : β ∈ A \ (α+1)}. In other words, V +
α is an initial segment

of each such uα,β.
Item (2) of the lemma is similar. (Pigeonhole arguments are not available in this case,

hence the root V −β is not so easily characterized.)

To see that {V +
α : α ∈ A} forms a ∆-system with root r+, observe that

ξ ∈ V +
β ∩ V

+
γ ⇒ ξ ∈ uβ,ε ∩ uγ,ε for any ε ∈ A \(γ + 1)

⇒ ξ ∈ V −ε
⇒ ξ ∈ uα,ε for any α ∈ A ∩ ε.

As ε is arbitrary, this implies that ξ is in V +
α . As α is arbitrary, this completes the

argument.
The argument that {V −α : α ∈ A} forms a ∆-system with root r− is essentially identical

(but may require the omission of the first two elements of A).
Finally, note that otp(V +

α ), otp(V +
β ), otp(V −γ ), otp(V −δ ) are all legible from d(α, β, γ, δ).

In consequence:
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(i) V +
β ∩V −γ is of the same order-type for all β < γ in A. Hence this intersection must be

equal to r+∩ r−. Thin A if necessary to a B ∈ [A]ν such that V +
β \r+∩V −γ \r− = ∅

for all β ≥ γ in B. Then {V +
α ∪ V −α : α ∈ B} forms a ∆-system with root

r = r− ∪ r+.
(ii) The family {uα,β \(V +

α ∪ V −β ) : α < β in B} is pairwise disjoint. For by the

homogeneity of B, any ξ in (uβ,γ\V +
β ∪ V −γ )∩ (uα,δ\V +

α ∪ V −δ ) is necessarily also in

(uβ,γ\V +
β ∪V −γ )∩ (uα,ε\V +

α ∪V −ε ) for any ε 6= δ in B. But this implies that ξ ∈ V +
α ,

a contradiction. Similarly for any other configuration of α, β, γ, and δ.

These establish items (3) and (4) of the lemma. �

Remark 19. Two further features of the above system will be useful below:

• V +
α are all of the same order-type, for α ∈ B. Similarly for V −α .

• As each α in B sits at the same distinguished relative location in Vα := V −α ∪ V +
α

we have |{otp(Vα) : α ∈ B}| = 1 as well.

Theorem 20. Let ν be a weakly compact cardinal, and let λ < µ = µ<µ < ν be given.
Then there is a cardinal-preserving forcing P such that

P “ 2µ = ν and ν →hc (ν)2
λ”.

Proof. Let P be the forcing for adding ν many µ-Cohen subsets of ν, i.e.,

P = {p : p is a partial function from ν to 2 of size less than µ}

reverse-ordered by extension. By assumption, P has the µ+-c.c; it is evidently µ-closed as
well, and consequently preserves cardinals. By standard arguments, P “2µ = ν”.

Let ċ be a P-name such that P “ċ : [ν]2 → λ”. For every α < β < ν let Aα,β :=
{pα,β,ξ : ξ < µ} be a maximal antichain in P with corresponding {iα,β,ξ : ξ < µ} such that
pα,β,ξ  “ċ({α, β}) = iα,β,ξ”. Let

uα,β = {α, β} ∪
⋃
ξ<µ

dom(pα,β,ξ).

Let {γα,β,η : η < εα,β} enumerate uα,β in increasing order. Define a relation E on [ν]2 by
declaring {α1, β1} E {α2, β2} if and only if

(1) εα1,β1 = εα2,β2 ,
(2) α1 = γα1,β1,η if and only if α2 = γα2,β2,η,
(3) β1 = γα1,β1,η if and only if β2 = γα2,β2,η,
(4) {η : γα1,β1,η ∈ dom(pα1,β1,ξ)} = {η : γα2,β2,η ∈ dom(pα2,β2,ξ)} for every ξ < µ,
(5) pα1,β1,ξ(γα1,β1,η) = pα2,β2,ξ(γα2,β2,η) for every η as in (4) and ξ < µ, and
(6) iα1,β1,ξ = iα2,β2,ξ for every ξ < µ.

Clearly E is an equivalence relation on [ν]2 with 2µ < ν many equivalence classes. As ν
is weakly compact, there exists an A ∈ [ν]ν such that {uα,β : {α, β} ∈ [A]2} all falls in
a single class. Further thin A to a B ⊆ A as in Lemma 18. Write r for the root of the
∆-system {Vβ : β ∈ B}.
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Observe that in this context the key terms of Lemma 18 take on more particular mean-
ings: V +

α , for example, records exactly those coordinates at which some p ∈ Aα,β and
q ∈ Aα,γ may disagree. The argument now proceeds in two steps; the uniformities of the
family B are important to each. In the first step, we extend any q ∈ P to an s deciding
the elements of some ċ-homogeneous X ∈ [ν]λ. In the second step, genericity below q
propagates that homogeneity to highly connect a cofinal Y ⊆ ν in the forcing extension.

Therefore fix q ∈ P and a W ⊆ B of order-type λ+ + 1 such that

dom(q) ∩
⋃
{uα,β : {α, β} ∈ [W ]2} ⊆ r.

We will recursively define “colors” iη ∈ λ and a sequence 〈εη : η ≤ λ+〉 ⊆ W and conditions
qη below q so that for all η < λ+,

(1) ξ < η implies that qξ ≥ qη,
(2) qη  “ċ({εξ, ελ+}) = iξ” for all ξ ≤ η,
(3) qη  “ċ({εξ, εζ}) = iξ” for all ξ < ζ ≤ η, and
(4) qη = q ∪

[⋃
ξ≤η pεξ,ελ+

]
∪
[⋃

ξ<ζ≤η pεξ,εζ
]
, where each pεξ,εζ is a member of the

antichain Aεξ,εζ .
To begin the construction, let ε0 and ελ+ be the first and last elements of W , respectively,
and let q0 be the union of q with any compatible element of Aε0,ελ+ . Suppose now that
for each η < δ coordinates εη and conditions qη have been selected which together satisfy
(1)-(4). As δ < λ+, by Lemma 18 there exists an εδ ∈ W such that uεηεδ\V +

εη is disjoint

from
⋃
η<δ qη for each η < δ. There also exists for each such η a pεη ,ελ+ ∈ Aεη ,ελ+ so

that
⋃
η<δ pεη ,ελ+ ⊆

⋃
η<δ qη. Let p′εη ,εδ denote their induced respective “copies” under the

order-isomorphisms πη : uεη ,ελ+→ uεη ,εδ . By arrangement,

q′δ :=
[ ⋃
η<δ

qη
]
∪
[ ⋃
η<δ

p′εη ,εδ
]

is a function. Let qδ be the union of q′δ with any compatible element of Aεδ,ελ+ . The
condition qδ is as desired; in this fashion the construction proceeds.

For some i ∈ λ the set {η : iη = i} is unbounded in λ+. Let X ′ collect its first λ elements.
Let η̄ = supX ′ and let s = qη̄ and let X = {εη : η ∈ X ′}. Clearly s  “ċ′′[X]2 = {i}”.
This completes the first of the steps described above.

For the second step, let sε = s � Vε for each ε ∈ X. Let V [G] be a forcing extension of
V by a P-generic filter G; therein define the family

Y =
⋃
ε∈X

Yε

where

Yε = {α ∈ B : there exists a p ∈ G with dom(p) ⊆ Vα such that

the order-isomorphism π : Vα → Vε sends p to sε}.
Lastly, let q′ = q ∪ (s � r).

Claim 21. q′  “(Ẏ , ċ−1(i) ∩ [Ẏ ]2) is a highly connected graph of size ν”.
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As q was arbitrary, this claim will establish the proposition.

Proof of Claim 21. Observe first that for each α ∈ ν and ε ∈ X the set

Dε
α := {p : p  “Ẏε 6⊆ α”}

is dense below q′. Hence q′ forces that each Yε is unbounded in ν.
Suppose now that q′′ ≤ q′ forces that α and β are in Y . Without loss of generality, q′′

decides the witnesses to this fact as well, i.e., there exist some pα, pβ ⊆ q and ε(α), ε(β) ∈ X
such that the order-isomorphism π : Vα → Vε(α) sends pα to sε(α), and similarly for β. We’ll
show that for any γ ∈ ν there exists a δ > γ and q′′′ ≤ q′′ such that

(‡) q′′′  “ċ(α, δ) = ċ(β, δ) = i”

This will establish the claim. To that end, take ε ∈ X\(max{ε(α), ε(β)}+ 1). By Lemma
18 there exists a δ ∈ B\(γ + 1) such that uα,δ\Vα and uβ,δ\Vβ are disjoint from dom(q′′).
Extend q′′ by “copying” s � (uε(α),ε∪uε(β),ε) via the order-isomorphism to uα,δ∪uβ,δ. Denote
this extension by q′′′. Our assumptions on α and β ensure that q′′′ is in fact a condition,
and our assumptions on E translate the relation s  “ċ(ε(α), ε) = ċ(ε(β), ε) = i” to (‡),
as desired. �

�

Corollary 22. Assuming the existence of a weakly compact cardinal, it is consistent with
the ZFC axioms that 2ℵ1 →hc (2ℵ1)2

ℵ0.

3. Main questions

We turn in conclusion to the most immediate instance of Question 12:

Question 23. What is the least cardinal µ for which it is consistent with the ZFC axioms
that µ→hc (µ)2

ℵ0?

Corollary 22 may be viewed as approximating to any of several possibilities. For example:
the µ = 2ℵ1 of Corollary 22 falls, in the forcing extension of Proposition 20, well below any
weakly compact ν, but it remains a regular limit cardinal. Therefore we may ask:

Question 24. Must the least cardinal µ for which it is consistent with the ZFC axioms
that µ→hc (µ)2

ℵ0 be weakly inaccessible?

By Lemma 9, such a µ is necessarily regular; hence Question 24 amounts to asking if
such a µ may be a successor cardinal. If indeed it may be, then Corollary 22 might be
viewed instead as approximating to the following alternative to Question 24:

Question 25. Assuming whatever large cardinals may be necessary, is it consistent with
the ZFC axioms that ℵ2 →hc (ℵ2)2

ℵ0?

Reasoning from [7] and [11] shows that if µ is the successor of a regular cardinal and
λ < µ, then the consistency strength of “there exists no λ-stationary �(µ) sequence” is
exactly a Mahlo cardinal. By Proposition 15, this gives a lower bound on the assumptions
necessary to any affirmative answer to Question 25. Again by Proposition 15, answers to
any of the above questions entail further questions of consistency strength; most generally:
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Question 26. What is the consistency strength of the existence of an uncountable cardinal
µ such that µ→hc (µ)2

ℵ0?

By Proposition 8, positive relations µ →hc (µ)2
λ will involve cardinal arithmetic as-

sumptions as well. An affirmative answer to Question 25, for example, would imply the
continuum hypothesis. It is unclear if weaker relations would also. More particularly, the
continuum hypothesis implies that ℵ2 →hc (ℵ1)2

ℵ0 , by Proposition 10. Is the reverse true?
In other words:

Question 27. Is the continuum hypothesis equivalent to the assertion that ℵ2 →hc (ℵ1)2
ℵ0?

A question of a similar flavor is the following:

Question 28. Does ℵ2 →ℵ1-c (ℵ2)2
ℵ0?
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