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MORE ON WEAK DIAMOND

SAHARON SHELAH

ABSTRACT. We deal with the combinatorial principle Weak Diamond,
showing that we always either a local version is not saturated or we can
increase the number of colours. Then we point out a model theoretic
consequence of Weak Diamond.

0. BASIC DEFINITIONS

In this section we present basic notations, definitions and results.

The paper was circulated (including the math arXive) and accepted to the
East-West Journal of Math around 2000, but due to some problems between
the editors has not appeared. Meanwhile Aspero, Larson and Moore [?] with
a related result has appeared.

Notation 0.1. (1) &, A, 0, u will denote cardinal numbers and «, £, d, ¢,

2
(3)
(4)

&, ¢, v will be used to denote ordinals.

) Sequences of ordinals are denoted by v, 1, p (with possible indexes).

The length of a sequence 7 is £g(n).

For a sequence n and ¢ < £g(n), n]¢ is the restriction of the sequence
n to £ (so Lg(nl¢) = ). If a sequence v is a proper initial segment
of a sequence 7 then we write v < 1 (and v < 7 has the obvious
meaning).

For a set A and an ordinal «, o4 stands for the function on A which
is constantly equal to «.

For a model M, |M| stands for the universe of the model.

The cardinality of a set X is denoted by ||X||. The cardinality of
the universe of a model M is denoted by ||M||.

Definition 0.2. Let A be a regular uncountable cardinal and 6 be a cardinal
number.

(1)

A (X, 0)—colouring is a function F' : DOM — 6, where DOM is

cither <A2 = (J @2 or |J ®(H())). In the first case we will write
a< a<A

DOM,, = 1792 in the second case we let DOM,, = 1T (7£())) (for

a < \).
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If X is understood we may omit it; if # = 2 then we may omit it
too (thus a colouring is a (A, 2)—colouring).
(2) For a (A, #)—colouring F' and a set S C A, we say that a function
n e 59 is an F-weak diamond sequence for S if for every f € DOM,
the set

{0 €85:0(0) =F(f19)}
is stationary.

(3) WDmld, is the collection of all sets S C A such that for some colour-
ing F' there is no F—weak diamond sequence for S.

Remark 0.3. In the definition of WDmId) (0.2(3)), the choice of DOM (see
0.2(1)) does not matter; see [She98, AP, §1], remember that ||H()\)| = 2<*.

Theorem 0.4 (Devlin Shelah [DS78]; see [She98, AP, §1] too).
Assume that 20 = 2 < 2) (e.g. X\ = put, 24 < 2)). Then for every
A—colouring F there exists an F—weak diamond sequence for \. Moreover,

WDmldy, is a normal ideal on A (and A ¢ WDmld) ).

Remark 0.5. One could wonder why the weak diamond (and WDmld)) is
interesting. Below we list some of the applications, limitations and related
problems.

(1) Weak diamond is really weaker than diamond, but provably (in ZFC)
it holds true for some cardinals A. Note that under GCH, $/,+ holds
true for each g > Ny, so the only interesting case then is A = Nj.

(2) Original interest in this combinatorial principle comes from White-
head groups:

if G is a strongly A—free Abelian group and T'(G) ¢
WDmIdy
then G is Whitehead.

(3) A related question was: can we have stationary subsets S1, 52 C w;
such that ¢g, but =$g,? (See [She77].)

(4) Weak diamond has been helpful particularly in problems where we
have some uniformity, e.g.:

()1 Assume 28 < 22", Let 1 € L+, be categorical in A, \7F.
Then (MODy, <Frag(¢)) has the amalgamation property in \.
(%)2 If G is an uncountable group then we can find subgroups G; of
G (for i < \) non-conjugate in pairs (see [She87b]).

(5) One may wonder if assuming A = p*, 2* > 2* (and e.g. p regular)

we may find a regular o < p such that

{6 <A:cf(6) =0} ¢ WDmldy(N).

Unfortunately, this is not the case (see [She85] even for p = Vy).
(6) We would like to prove

(a) WDmId), is not AT-saturated or

(b) a strengthening, e.g. weak diamond for more colours.
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We will get (a variant of ) a local version of the disjunction, where we
essentially fix F.. There are two reasons for interest in (a): under-
standing A\T-saturated normal ideals (e.g. we get more information
on the case CH + “D,, is Ny—saturated”; see also Zapletal Shelah
[SZ99]), and non A\T-saturation helps in “non-structure theorems”
(see [She83], [She01]). That is, having 2* < 2*" < 2¢"" and some
“bad” (i.e. “nonstructure”) properties for models in pu we get on't
models in g+ when WDmId+ is not AT T—saturated (and using the
local version does not hurt).

(7) Note that for S ¢ WDmId) we have a weak diamond sequence f €

59 such that the set of “successes” (=equalities) is stationary, but it
does not have to be in (WDmlIdy)". We would like to start and end
in the same place: being positive for the same ideal. Also, in (b)
above the set of places we guess was stationary, when we start with
S € (WDmldy)™*.

Note that it may well be that A € WDmId,, (if (30 < \)(2¢ = 2)
this holds), but some “local” versions may still hold. E.g. in the
Easton model, we have F—weak diamond sequences for all F' which
are reasonably definable (see [She98, AP, §1]; define

F(f)=1 < LIX, flF X, f)

for a fixed first order formula ¢, where X C X\ depends on F' only).
So the case WDmIdy = P(\) has some interest.

We would like to thank Andrzej Rostanowski for mathematical comments
and improving the presentation.

1. WHEN COLOURINGS ARE ALMOST CONSTANT

Definition 1.1. Let A be a regular uncountable cardinal.
(1) Let S C A and let F' be a (), §)—colouring. We say that a sequence
n € 50 is coded by F if there exists f € DOM), such that

We let

aceS & nla)=F(fI(1+a).

def

BF) % 1 €20 is coded by F).

(2) For a family A of subsets of A let idealy(.A) be the A—complete normal
ideal on A generated by A (i.e. it is the closure of A under unions of
< X elements, diagonal unions, containing singletons, and subsets).

[Note that idealy(A) does not have to be a proper ideal.|

(3) For a A—colouring F' (so § = 2) we define by induction on a:

ID, (F) =0, IDo(F) = {S C A: S is not stationary },
for a limit a
ID, (F) = | JIDg(F),  IDu(F) = idealy(| | IDs(F)),

B<a B<a
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and fora = +1

ID,(F) = {SC A\:foreach $* C S there is f € DOM, such that
{6 <X:0€ 8" < F(f16) =0} € IDg(F)};
ID,(F) = ideal,(ID, (F)).
Finally we let ID(F') = |JID,(F).

(4) We say that F'is rich if DOM(F) = |J “H()), and for every func-
a<A
tion f € DOM, and @ < X and a set A C « there is f/ € DOM,

such that

(Vi < N(F(+1) = F(1+3) & F(fi(a+3) = F(fI{a+1)))

and (Vj < )(F(f'lj)=1 & j€A).
Definition 1.2. Let A\ be a regular uncountable cardinal and let F' be a
A—colouring.

(1) WDmlIdy(F) is the family of all sets S C A\ with the property that
for every S* C S there is f € DOM), such that the set
{6e€S:0e8" & F(fl5) =1}

is not stationary.
(2) BT (F) is the closure of

B(F)U{S C X: S is not stationary }

under unions of < A sets, complement and diagonal unions (here, in
B(F'), we identify a subset of A with its characteristic function).
(3) IDY(F) (S C A (3X € BH(F))(S C X & P(X) CBH(F))}.
(4) ID?(F) is the collection of all S C X such that for some X € B+ (F)
we have: S C X and there is a partition Xg, X7 of X such that
(o) P(Xy) ={YNXy:Y €BT(F)} for £ =0,1, and
(B) thereisno Y € BT (F), £ < 2 satisfying
Y\ X, €IDY(F) & Y ¢ IDYF).

Proposition 1.3. Assume A is a reqular uncountable cardinal and F' is a
A—colouring.
(1) If A is a family of subsets of A such that
(®4) ifSoC Sy andSleAcmdAE[)\]<)‘ then SpU A € A,
then idealy(A) is the collection of all diagonal unions EY/\ Ag¢ such

that A¢ € A for & < A.
(2) The condition (®p-(py) (see above) holds true for each a. Con-

sequently, if « = B+ 1 then ID4(F) = {V A; : (4; : i < \) C
i<
ID, (F)}, and if a is limit then IDo(F) = {V A; : (A; i < \) C
<A
U IDg(F)}.

[B<a
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(3) ID(F) and IDy(F) are A—complete normal ideals on \ extending
the ideal of non-stationary subsets of A (but they do not have to be
proper). For o < v we have IDy(F) C ID,(F) and hence ID(F) =
ID(F) for every large enough o < (2*)7.

(4) Suppose B = (By : £ < m), where By C Byy1 (for £ <m) and By, €
ID(F). Then B has an F-representation, which means that there
are a well founded tree T C %Y=\, sequences <Bf; neT, <L),
and (f,’;€ :n €T, k<ky,) such that k, < ¢, +1 and

() By =B, ¢y =m, BLC B C ), flede,
(b) (v € T\ max(T)) (i < N ~(i) € T),
(c) for each n € T \ max(T) there is o, < X such that for all
de\ oy
(@) 6 BL iff
(Fi<o)(de Bf;Am) or
F(fy18) =1 & =(3i <8)(3k)(0 € B ,)),
(d) for eachn € max(T), B, is a bounded subset of A\ with min(B,)) >
max({n(n) :n < Lg(n)})-

(5) If for some f* € A2 we have (Va < N)(F(f*la) = 0) then in part
(4) above we can demand that k, = £, + 1.

(6) If F is rich then in part (4) above we can add

(e) an=0 for n € T\ max(T) and B, =0 for n € max(T).

(7) ID(F) is the minimal normal filter on \ such that there is no S €

(ID(F))" satisfying

(VS* C 8)(3A € B(F))(S* & A € ID(F)).

Proof. (1)-(2) Should be clear.

(3) By induction on v < A and then by induction on o < v we show
that (Vy < A\)(Va < 7)(IDu(F) C ID,(F)). If v = 1 then this follows
immediately from definitions; similarly if v is limit. So suppose now that
v =79+ 1 and we proceed by induction on a < g. There are no problems
when o = 0 nor when « is limit. So suppose that « = 8+1 < (so 8 < 70)-
By the inductive hypothesis we know that IDg(F) C ID,,(F). Let A €
IDg+1(F). By (2) there are A¢ € IDg, (for £ < A) such that A = 5Y>\ Ag.

Now look at the definition of IDg,,(F): since IDg(F) C ID4,(F) we see
that A¢ € ID_ ., (F). Hence A € ID,. )

(4) By induction on a we show that if B = (By : £ < m), where By C By
(for £ < m) and B,, € ID,(F) then B has an F-representation.

Cask 1: a=0.

Thus the set B,, is not stationary and we may pick up a club E of \ disjoint
from By,. Let E = {a¢ : ( < A} be the increasing enumeration. Put T =
{OYULG) si < A}, ay =1, £y =Ly =m, Bf> = By and Bfi> = ByNagy1.
Now check.
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CASE 2: « is limit.

It follows from (2) that By = V By, for some By; € |J IDg(F). Let By,
i< B<a ’

be defined as follows:
ifi=(m+1)j+t £ <t<mthen By, =0,
ifi=(m+1)j+t, t<m,t</lthen Bz,i:Bg,i.

Then for each i,/ we may find (B%’E,fé’el,a%' neT;, < E%’l, 0 < €%2>
satisfying clauses (a)—(d) and such that <Bf>’z’k k< k) = (B : £ <m)

(by the inductive hypothesis). Put

r={0yutmmen}, .
by =m, =0, 5<i>é€n =y €<i>é€7 =l
By =B, Bly~=Bi, S~y =1
Q= Ws i)y = oy
Checking that <Bf,, 5/, an:n €T, £ <4y, t' <) is as required is straight-
forward.

CASE 3: a=p+1

By (2) above and the proof of Case 2 we may assume that B, € ID_ (F).
It follows from the definition of ID_ (F') that there are f; € A2 (for £ < m)
such that

B % {5 < \: 6 is limit and F(n|8) = 0« 6 € By} € ID4(F),

and hence B® ' |J B® ¢ IDg(F). Therefore B; ' B, N B® ¢ IDy(F).
<m

Now apply the inductive hypothesis for 3 and B* = (B} : £ <m) to get the

sequences (By*, fi*ineT* (< 6y, k < k) satisfying clauses (a)-(d) and

such that <Bf;* < £) = (B} : £ <m). Put

T={0yu{(@ i <A U{(0)™m:neT"},
bom =ty ky=mtl ko =k,
fg:fk7 f@)“n:f”7’

Qp =W, o)y = 0y

(5) If fg is not defined then choose f* as it. O

Remark 1.4. Note that it may happen that A\ € ID(F'). However, if n € A2
is a weak diamond sequence for F' then the set {v < A : () = 0} witnesses
A ¢ ID] (F). And conversely, if A ¢ ID] (F') and S* C X witnesses it, then
the function Og« U 1y, g+ is a weak diamond sequence for F'.

Definition 1.5. For a A—colouring F' we define A\—colourings F¥ and F® as
follows.
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(1) A function g € 7(H())) is called F®-standard if there is a tuple
(T, f,a, A) (called a witness) such that

(i) T €Y=~ is a well founded tree (so () e T, v <ine€T =veT
and 7" has no w-branch);

ii) f <ff; :n €T, L <ky), where ff; € DOM(F) N7V (H(N));

iii) & = (ay : n € T), where a; < X;

iv) Az(Af;:neT, €§€n>,whereAf;gan;

v) g(B) = (TNYZB(fiIB :n € TNYZB, £ < ky),(ay : 1 €

Tﬂw>ﬁ>,<Af7 :n€TNY>B, £<4,)) for each 8 < 7.

(2) DOM(F®) = (J ®(H()\)) and for g € T(H(N)):
a<<A

(®)q if ¥ =0 then F®(g) =0,

(@) if v > 0 and g is not standard then F®(g) =0,

(®)y if ¥ > 0 and g is standard as witnessed by (T’ f, &, A) then
F%(g) = t%,g(O): where t%’g(n) € {0,1} (fornp e T, ¢ =0,1)
are defined by downward induction as follows.

If n € max(T) then t%g(n) =1iff y € A,,
if n € T\ max(T), v < o, then t%g(n) =1iff y € A,,
if n € T\ max(T), v > «, then

tp () =1 iff F(fy)=1 or (3i <9)(tp,n ) =1),
tho(n) =1 iff (i <9)(th, (7)) =1) or
F(fy) =1 & (Vi <7)(tp (i) =0).

(3) A function g € V(H())) is called F®-standard if there is a tuple
(T, f,?,a,A) (called a witness) such that

—~

(i) T C w>'y is a well founded tree;
(ii) f=(f,:n € T), where f,, € DOM(F)N7Y(H(\));
(iii) £ = (€, : n € T), where £, : 3{0, 1} — {0,1};
(iv) & = (ayy : m € T), where a; < X;
(v) A= (A, :neT), where A, C ay;
(Vi) g(B) = (TN¥Z B, (fy18:n € TN B), (L :n € TNYB), (o

neTNYB), (A, :neTNYP)) for each B < 7.
(4) DOM(F®) = |J “(H()\)) and for g € T(H(N)):
a<
(®)q if v =0 then F®(g) =0,
(®)p if v > 0 and g is not F®-standard then F®(g) =0,
(®)y if ¥ > 0 and g is F®-standard as witnessed by (T, f,/, a,
then F®(g) = try(()), where tpy(n) € {0,1} (for n € T) ar
defined by downward induction as follows.
If n € max(T) then tpy(n) =1iff v € A,,
if ne€ T\ max(T), 1 +v < oy, then tpy(n) =1iff v € A,,
if n € T\ max(T), 1+~ > o, then

trg(n) = 6 (F(fy), max{try(n(B)) : B <~} minftry(n(B)) : 6 <}).
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Proposition 1.6. Let F' be a A—colouring. Then F® is a A—colouring and
(a) if S € ID(F) then 05 U1y g € B(F?) and B(F) € B(F?),
(b) ID(F) C ID;(F®) = ID] (F®) = ID(F®),
Proof. (a) Check.
(b) ID(F) C ID;(F®).
Suppose that B € ID(F'). We are going to show that then B € ID] (F'®).
So suppose that B’ C B. We want to find g € DOM, (F?) such that the set

{6 < X\: 4 is limit and F(g]d) =0« § € B'}
is in IDo(F'®) (what just means that it is non-stationary). Since B € ID(F)
we have B’ € ID(F), so by 1.3(4) we may find <Bf,,f,’]“,04,7 :neT, <
ly, k < ky) such that the clauses (a)—(d) of 1.3(4) are satisfied with £y =0

B = B%. Define g as follows. For 8 < A let T =T N W>3 and

9(B) = (T, (ff:m €Ty, k < ky), (€ Tp), (BiNaw : € < tly,m € T)).

Now look at the demands in 1.5(2) — they are exactly what 1.3(4) guarantees
us. ([l

il

Definition 1.7. Let Fi, F5 be A—colourings (with DOM(F}) being either
A>9 or |J Y(H(N)), see 0.2(1)).
a<A
(1) We say that Fy < F if there is h : DOM(F};) — DOM(F3) such
that
(a) v = h(n) <h(v),

(b) h(n) = hn(ls h(n | «), for every n € 92, § a limit,
a<

(c) (Vn € DOM(F1))(0 < £g(n) = Lg(h(n)) = Fi(n) = Fa(h(n))).

(2) We say that Fy <* Fj if there is h : DOM(F;) — DOM(F) such
that the clauses (a)—(c) above hold but

(d) ifn € DOM,(F1) and lig}\ h(nla) haslength < A then Fi(nla) =

0 for every large enough .

Proposition 1.8. (1) <* and < are transitive relations on A\—colourings,
<FC <
(2) < is AT directed.

Proposition 1.9. (1) For every colouring Fy : |J *(H(N\)) — 2 there
a<A

s a colouring Fs : A>9 — 2 such that 1 < Fy <* .
(2) For every A—colouring Fy : A>9 5 2 there is a A—colouring Fy :
U “(H(N)) such that F» < Fy <* Fy.

a<

Proof. 1) Let Fy : |J ®(H(N\)) — 2. Let hy be a one-to-one function
a<A

from H(X) to A>9 say ho(n) = (€ = i < Lg(ho(n))). Define a function
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1) — AZ2 by
Eg(hl( ) = Lg(ho(n)) + 2,
h1(n)(2i) = ho(n)(i), hi(n)(2i+1) =0 fori <{lg(ho(n)), and
hi(n)(2Lg(ho(n))) = hi(n)(2€g(ho(n) +1)) = 1.
)

Next, by induction on £g(n), we define a function h* : |J ¥(H(\)) — A>9
a<A

RE(0) =10,  h (z) =h" () ha(z).
Finally we define a colouring F5 : A>9 49 by

Falv) = { RS

as follows:

O

Proposition 1.10. Assume that Y, F5 are A—colourings such that Fy < Fb,
or just F1 <* Fy. Then:

(1) For everyn € A2 there are v € 22 and a club E of A such that
(V6 € E)(F1(nld) = Fa(v]9)).
(2) IDL(F1) C ID(F3), ID, (F1) C ID, (F»); hence ID(Fy) C ID(F»)
and BT (F) C BT (F).
(3) For every colouring F' there is a colouring F' such that F < F’ and
ID?(F) C ID(F).
Proof. Straightforward. O

Conclusion 1.11. Assume that A is a regular uncountable cardinal and F :
A>9 4 9isa A—colouring. Let

FO: [ YHWN) — 2
a<A
be the colouring defined for F' in Definition 1.5(4). Then:

(a) F < F9,

(b) ID(F®) is a normal ideal on \.

(¢) B(F) C B(F?) and ID(F) C ID(F®) = WDmldy(F®).

(d) F® relates to itself as it relates to F, ie. if o < AT, (S, :
a < a*) is increasing continuous modulo ID(F®), So11 = Sq U Ay
mod ID(F®), A, € B(F®), , €2,

then for some f € A(H()\))
{a <A:F(fla) =1}/D;

is, in P(A)/Da, the least upper bound of the family {(Aqy \ Sa)/Di :
lo, = 1} (where D) stands for the club filter).
(e) The family B(F®) is closed under complements, unions and intersec-

tions of less than A sets, diagonal unions and diagonal intersections
and it includes bounded subsets of A. Moreover BT (F®) = B(F®).
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(f) If P(\)/ID(F®) is AT—saturated then
for every set X C X there are sets A, B € B(F®) such that
() AC X C B,
(B) for every Y € B(F?) one of the following occurs:
(i) thesets (X\A)NY, (X\A)\Y, (B\X)NY, (B\X)\Y
are! not in ID(F®),
(i) YN(B\A) eID(F?),
(iii) (B\ A)\Y € ID(F®).
In the situation as above we denote A = maxpe(X), B = minge (X)
(note that these sets are unique modulo ID(F'®)). Moreover
(g) if A C minpe(B) then minge(A) C minge(B) mod ID(F?).
(h) If X C A\, X ¢ ID(F®) then for some Y7,Y2 C X which are not in
ID(F®) we have

maxpe (Y1) = maxpe (Y2) =0  and  mings(Y;) = minge (Y2) ¢ ID(F®).
Proof. CLAUSES (A) AND (B): Should be clear.

CLAUSE (E): Note that as § = 2 we identify a sequence 7 € A2 with
{i <X:m(i) =1}

B(F?) is closed under complementation.
Suppose that A € B(F®). If A is bounded then let g, (T, f,/, &, A) be as
in 1.5(3) with 7 = {(} U{(i) : i < A}, Ay = ay \ 4, ayy > sup(A), ¢
constantly 1. Then (Vo < A\)(F®(g[(1 + a)) = 1 <:> a € A) oF odes
A\ A. So suppose that sup(A4) = A. Pick g such that

(Va < A)(F®(gl(1+a)) =1 & ac A).
By our assumption, for arbitrarily large 8 < A\ we have F®(g|3) = 1, so

9(B) is
(Ts, (f :n € Tp), () i € Tp), (€] :n € Tg), (af) 1 € Tg), (AD : € Tj))
and it is as in 1.5(3). If B1 < B2 then the two values necessarily cohere,
in particular T, = T, N W>(B;). Consequently there is (T, f, ¢, &, A) such
that T = |J Ts € ¥~ \is closed under initial segments and is well founded
B<A
(as T increase with  and cf(A\) > Xg). Thus we have proved
(M) if A C i )\ is unbounded and F® coded by ¢ then there is p =
(T, f,¢ ) Such that the clauses (i)—(vi) of 1.5(3) hold for v = A

and (5) =
Now define p’ like p (With the same T etc) except that Egl =1- fg and
p'_ 4P
Ay =4y
B(F®) contains all bounded subsets of ).
By the first part of the arguments above all co-bounded subsets of A are in
B(F®), so (by the above) their complements are there too.

Thence none of X \ 4, B\ A includes (modulo ID(F®)) a member of B(F®)\ ID(F®)
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B(F®) is closed under unions of length < \.
Let B= |J B; where a < X and B; € B(F®). Let w = {i < a : sup(B;) =
i<a
A} and for i € w let B; be represented by g; € /\(H()\)) which, by (X), comes
from p* = (7%, f*, 0", &", A"). We may assume that w = § < a. Let

T={0}u{@) i <X U{lym:neT, i<p},
Faym = Ty, ete
a is the first v > w such that v > a & (Vi € [8,a))(B; C ),
By =0 ifi>p,
A<> = Z-L<Ja B;nN ayy,
4y (10,11,12) = 1.
Checking is straightforward.
B(F®) is closed under diagonal unions.
Let B = VA B, where each B; € B(F®) is represented by g; € )‘(’H()\))
which, by (<®), comes from p' = (T% fi, 0, a% AY). Let T = {()} U {(i)™
neT;, i <A}, f<i)’\T] = ff?, ete, oy = w, B<> = BNw and fo(io,il,ig) =1].

CLAUSE (C): First note that B(F) C B(F?®) as B(F) C BF(F) C
BT (F®) = B(F?®) (the second inclusion by (a) and 1.10, the last equality
by (e)). Next note that

WDmldy (F®) C ID; (F®) C ID1(F®) C ID(F®).

Now by induction on « we are proving that ID,(F®) C WDmld,(F®). So
suppose that we have arrived to a stage .
If @« = 0 then we use the fact that every non-stationary subset of A is in
B(F2) (by (o))
If o is limit then, by the induction hypothesis, ID_, (F'®) C B(F?®) and hence
ID, C B(F?®) (as gB(F®) is closed under diagonal unions by (e); remember
1.3(3)).
So suppose that « = 3+ 1 and B € ID,(F®). Suppose B’ C B (so B’ €
ID, (F®)). There is B” € B(F) such that B"AB’ € IDg(F). By the first
part we know that B” € B(F®) and by the induction hypothesis B’AB” €
B(F?). Consequently B’ € B(F®).

Together we have proved that ID(F®) = WDmlIdy(F®). The inclusion
ID(F) C ID(F?®) is easy. O

Proposition 1.12. Let A be a regular uncountable cardinal and F' be a
A—colouring.
(1) IfIDo(F) is A\t —saturated then for some 8 < AT we have ID45(F) =
ID(F).
(2) IDa(F) € WDmId,.
(3) If ID4(F) is At -saturated and A\ ¢ WDmld, then WDmld, =
ID1(F") for some A—colouring F".



Paper Sh:638, version 2020-01-12_3. See https://shelah.logic.at/papers/638/ for possible updates.

12 SAHARON SHELAH

(4) ID*(F) is a normal ideal, and ID*(F) C ID*(F) C WDmId.
(5) IDY(F®) = WDmId, (F®).

Proof. 1) It follows from 1.3(3) that ID,(F') increases with 7, so the
assertion should be clear.
2) By 1.11(c).
3) Assume that ID,(F) is AT-saturated and A ¢ WDmlId,. By in-
duction on 8 < AT we try to define colourings Fjg such that
(a) ID4(F) C ID(Fp),
(b) if B < 7 then ID(F3) C ID(F,),
(c) ID(Fp) # ID(Fp11).
So we let Fy = F. If § is limit then we use 1.9(2) to choose Fp so that
(Vy < B)(F, < Fp). Finally, if 8 = v+ 1 then we let F = (F,)® (so
ID(F,) C IDy(F}) = ID(F}) € WDmld,). If ID(F}) # WDmlId, then we
choose a set A € WDmld, \ ID(Fj3) and F} witnessing A € WDmldy. We
may assume that (Va € A\ A)(Vn € O‘2)(F/’§ (n) =0). Now take a colouring
Fg such that Fj, Fy < Fp.
After carrying out the construction choose Sg € ID(Fp41) \ ID(F3) (for
B < AT) and let Sg = S5\ 7ZBS%). Then (Sp : B < A1) is a sequence of

pairwise disjoint members of P(\) \ ID(Fp) C P(A) \ ID,(F), contradicting
our assumptions. ([l

For the rest of this section we will assume the following

Hypothesis 1.13. Assume that

(a) A is a regular uncountable cardinal,

(b) F is a A—colouring,

(c) A ¢ ID(F®), and

(d) ID(F®) is AT—saturated, that is there is no sequence (A4, : @ < A1)
such that for each o < 8 < AT

Ay ¢ ID(F®) and |4, N Agll < A

For each limit ordinal o € [\, A1) fix an enumeration (% : i < A) of a.

Construction 1.14. Fix a sequence n € A2 for a moment. We define a
sequence

(Salnl, Aa[n], Balnl, La[nl, maln], fa[n] : o < a*n])
as follows. By induction on a < AT we try to choose S [n] = Sa, Aa[n] = Aa,
Ba[n] = Bas Lan] = Lo, ma[n] = ma, faln] = fo such that
(8) SasAas Ba C A, layma € {0,1}, fo €22,
(b) Ay ¢ ID(F®), Ay N Sy =0,
(€) Sat1 = SaUA,;if @ < Xis limit then S, = |J Su; if @ € [\, A1) is
B<a

limit then So = {y < A: (i < ¥)(y € See)}, So =0,
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(d) B, € ID(F®),
(e) for every § € A\ (So U By)
n(d) = mqy = F(fald) =L,
(f) Ag = {56 )‘\Sa:F(far(s) = 1_£a}'

It follows from 1.13 that at some stage o* = o*[n] < AT we get stuck
(remember clause (b) above). Still, we may define then S, as in the clause

().
Proposition 1.15. Assume 1.13. Then:
(1) There ezists n € A2 such that
A\ Soepy[n] & ID(F®).
(2) If S € B(F®)\ID(F®) then we can demand S C Sqxy[n].

Proof. Assume not. Then for each n € A2 the set By ] f )\ \ Sq+[y is in
ID(F®). Now,

{0 € Ba-li)  nla) = 1} € ID(F®) C B(F?)
(see 1.6).

Claim 1.15.1. For each o, S, € B(F®).

Proof of the claim. We show it by induction on o. If & = 0 then S, =0 €
B(F?) (see 1.11(c)). If & < X is a limit ordinal then S, = |J Sz and by
B<a
the inductive hypothesis Sz € B(F'®), so by 1.11(e) we are done (as B(F®)
is closed under unions of < X elements). If o € [\, AT) is limit then we use
the fact that B(F®) is closed under diagonal unions. If & = 8+ 1 then
Ap € B(F) or A\ Ag € B(F) and hence we may conclude that Ag € B(F®)
(remember 1.11(e)). Since B(F®) is closed under unions of length < A we
are done. O

Claim 1.15.2. For each a, Y, & {B<X:n(B)=1}NS, € B(F®).

Proof of the claim. We prove it by induction on «. If @ = 0 then Y, = ()
and there is nothing to do. The case of limit « is handled like that in the
proof of 1.15.1. So suppose that « = 8 + 1. It suffices to show that the set
YaN(Sa\Sg) is in B(F), what means that Y,,NA, is there (remember clauses
(e) and (f)). Note that if § € Ay \ By then F(f,[0) =1—{4 # {4 and hence
n(d) # mq so n(6) =1 — mg. Consequently Y, N (Aq \ Ba) € {Aa \ Ba, 0}.
But P(B,) C B(F®) so together we are done. O

It follows from 1.15.1, 1.15.2 that
{8 :0(8) =1} N Saey[n] € B(F®).

But A\ Sy«py[n] € ID(F®), s0 P(A\ Saepy[0]) € B(F®) so we get a contra-
diction. g
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Conclusion 1.16. Assume 1.13. Let n € A2, Xo[n] = A\ Sasp[n]) N1 ({€})
(for £ = 0,1). Then one of the following occurs:

(A) A \ Sa*[n] [77] S ID(F®)7
(B) Xo[n], X1[n] ¢ ID(F®), and Xo[n] U X1[n] € B(F®), Xo[n]NX1[n] =
(), and for every f € )‘2,

either the sequence (F(f[6) : 6 € (A\Sqx[y[n])) is ID(F®)-almost constant
or both sequences (F(f[d) : d € Xo[n]) and (F(f[J) : 6 € X1[n]) are not
ID(F®)-almost constant.

Proof. Assume that the first possibility fails, so X\ Sq«[n] € ID(F®).

Assume Xo[n] € ID(F®). Take any fu-, € A2 and choose Loy € 10,1}
so that

{6 e\ Sa*[vﬂ ] : F(fa*[n} [0) =1— Ea*[n]} ¢ ID(F®)'
Putting mg«;) = 0 and B« = Xo[n] we get a contradiction with the
definition of a*[n]. Similarly one shows that X;[n] ¢ ID(F®)

Suppose now that f € A2 and the sequence (F'(f[6) : 0 € (A\ Saxpp[m])) is
not ID(F®)-almost constant but, say, the sequence (F(f[5) : § € Xo[n]) is
ID(F®)-almost constant (and let the constant value be £y[). Let mq«p, =
0, Byepy) = {6 € Xo[n] : F(f16) = 1 = £gepy}. Then Byepy € ID(F®) and
since necessarily

{6 € Xon] U Xa[n] : F(f18) =1 — Loy} ¢ ID(F?),

we immediately get a contradiction. Similarly in the symmetric case. (]

a*[n]

Remark 1.17. Note that if S € B(F®) \ ID(F®) then there is n € A2 such
that n~1[{0}] 2 A\ S and above X, X; C S and possibility (A) fails.

Proposition 1.18. Assume 1.13.
(1) We can find S* = S}, S§ and S} such that:
(a) S* € B(F®),
(b) S* =S5UST, SgnNST =0,
(c) if S* # X then ID*(F®)[P(\\ S*) = WDmlIdy(F®)[P(\\ S*),
A\ S* ¢ ID*(F®).
(d) if S* # 0 then S* ¢ ID(F®) and
{85 N F2(f)/ID(F®), 81 1 F2(f)/ID(F®)) : f € DOM, }
is an isomorphism from P(Sg)/ID(F®) onto P(S5)/ID(F®).
(2) Ifin 1.16, Sp C Sy=[y[n] mod ID(F) then we can add

(®) for some p € Xig for every f € A2 we have
{6 € X1 :F(f]0) = p(0)} #0 mod ID(F®).

Proof. 1) We try to choose by induction on o < A* sets Sas Sa,05Sa,1
such that

(a) Sa €A,
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(b) Sa = Sa,O U Sa,la Sa,(] N Sa,l = ®7
(c) if B < o and ¢ < 2 then

Sz C S, modID(F®) and Sg;C S,, mod ID(F?),

(d) the sets Sa.0, S, Witness that S € ID?(F®) (see 1.2(4)).

At some stage a < AT we have to be stuck (as ID(F®) is At—saturated) and
then (S, Sa,0,9q,1) can serve as (Sh, S§, ST).
2) By the choice of Sp, for some ¢ < 2 we have

P(X0) #{FO(F) N Xe s f € ™),
solet Y C X, be such that Y ¢ {F®(f)NX,: f € )‘}. Let p =0y Ulx,\y-
Since without loss of generality ¢/ = 1, we are done. O

Remark 1.19. (1) If X ¢ WDmId), ten S* £ \.
(2) Recall: IDY(F®) = ID(F®) = WDmlIdy(F®) is a normal ideal and
ID?(F®) is a normal ideal extending it.

2. WEAK DIAMOND FOR MORE COLOURS

In this section we deduce a weak diamond for, say, three colours, assum-
ing the weak diamond for two colours and assuming that a certain ideal is
saturated.

Proposition 2.1. Assume that A is a regular uncountable cardinal and p <
2N Let Fy : A>2 — {0,1} be A—colourings for i < . Then there is a
colouring F : A>9 {0,1} such that F; < F for every i < p.

Proof. CAsE 1. pu < 2llell for some a < .
Let p; € 2 for i < u be distinct. For n € A>9 let hi(n) = pi™n. Define F
by:
0 if lg(v) < a, or lg(v) > «
F(v)= but v [ a ¢ {p; :i < v},
Fi((v(a+e):e<lg(v)—a)) iflg(v)>aandv|a=p;.

It is easy to see that F': A>9 {0,1} and h; exemplifies that F; < F'.

CASE 2. pu=\.
Forne)‘>2,i<,uand”y<)\let
0 if v <1,
hi(n)(v) =4 1 if y =1,
n(y—(i+1)) otherwise.
Next, for v € A>9 define:

poy = { G

Now check.
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CASE 3. Otherwise, for each a < A choose F® : A>2 — {0,1} such that
(Vi < 2l (F; < F*) (exists by Case 1). Let F : A>g {0,1} be such
that (Vo < \)(F* < F) (exists by Case 2).

The proposition follows. U

Theorem 2.2. Assume that \ is a reqular uncountable cardinal. Let F' :
A>9 43 Fori<3letF;:2>2 — {0,1} be such that

Fz("?) _ { 1 Z'thr(U) =1,

0 otherwise,

and let F : 2>2 — {0,1} be such that (Vi < 3)(F; < F). Assume that
A\ & ID?(F®) (remember 1.10(3)), and ID(F®) is \T —saturated, i.e. there is
no sequence (Aq : o < A7) such that
(Va < B<AT)(An ¢ ID(F) & |[[Aa N Agll < N).

Then there is a weak diamond sequence for F'*, even for every S € B(F®)\
ID?(F®).
Proof. Let S} be as in 1.18. Since A ¢ ID?(F®) necessarily A\ S5 ¢ ID(F®).
Recall that ID?(F®) = ID(F) + Sp.

It follows from 1.15 and 1.16 that there are disjoint sets Xo, X7 C A (even
disjoint from S% from 1.18) such that Xo, X1 ¢ ID(F®), Xo U X; € B(F?)
and for every f € A2 we have one of the following:

(a) the sequence (F(fd): 8 € XoU X7) is ID(F®)-almost constant, or
(b) both sequences (F(f[d) : 0 € Xo) and (F(f[d) : § € X;) are not
ID(F®)-almost constant.

It follows from 1.18(2) that we may assume that there is 7 € X12 guch that
for every f € A2 the set

{0 € Xy : F(f10) =n(d)}
is stationary. Define a function p € A2 as follows:

| 14 n(e) ifae Xy,
pla) = { 0 otherwise.

Claim 2.2.1. p is a weak diamond sequence for F'* even on XoU X7.

Proof of the claim. Let f € A2, If {a € Xo: F"(fla) = 0} ¢ ID(F) then
we are done (remember 1.3(3)). Otherwise, we have

{a € Xo: Foy(f | a) =1} € ID(F).
For ¢ < 3 let f; € 22 be such that the set {a < A : Fy(fla) = F(fila)}
contains a club of A\ (exists by 1.10); we first use fy. Then

{a € Xo: F(folo) =1} € ID(F®),
and hence, by the choice of the sets Xg, X7,

{a€ X1 : F(fola) =1} € ID(F®).
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Consequently,

{a€ Xy : F'(fla) =0} = {a € X1 : Fy(fla) =1} € ID(F®).
Now we use the choice of 7. We know that the set

YV ={6 € Xy :F(f116) =n(d)}
is stationary. Hence for some k € {0, 1} the set
Vi ={0€ X1: F(f116) =k =n(d)}

is stationary, but {§ € X1 : F(f1[6) = F1(f[9)} contains a club. Hence

Vi ={6 € X1: F(f116) =k =n(5) and F(f1]15) = F1(fd)}
is stationary. Finally note that if £ = 1 then

€Y, = F(fl0)=n0)=F(fl5)=1 = F*(fl5)=1

The claim and the theorem are proved. ([

O
Theorem 2.3. Suppose F' is a (\,0)—colouring, 6 < X and F; (fori <0)

are given by ' '
Fz(f):{ L if F(f) =1,

0 otherwise.

Let F: A>2 — 2 be such that (Vi < 0)(F; < F) and let F® be as in 1.5 for
F. Suppose that ID(F®) is A —saturated, and Sps # A (i.e. A ¢ ID*(F®)).
Furthermore, assume that

(®) there are sets Y; C A\ Shg fori < 6 such that
(a) (Vi <0)(Y; ¢ ID(F®)),
(b) the sets Y; are pairwise disjoint or at least
(Vi < j<0)(YinY; € ID(F®)),
(¢) N mings (Y;) ¢ ID(F?®), see 1.11(h).
i<
Then
(¥) there is a weak diamond sequence 1 € Ag for F', i.e.

(Vf e )‘2)({5 < A:F™(f16) =n(6)} is stationary );
moreover
(VF € A2)({5 < X: FU(F16) = n(6)} ¢ ID(F?)).
Proof. We may assume that the sets (Y; : i < 6) are pairwise disjoint (oth-
erwise we use Y/ =Y;\ J Y;). Let n € A9 be such that (Vi < 0)(nY; =1).
J<i

Note that if

{6 €Y;: F*(f15) =i} € ID(F®)
then we also have

{6 < X: F™(f0) =i} € B(F®)
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(use F; < F < F®). Consequently, in this case, we have
{6 € minge (Y;) : F™(f10) =i} € ID(F®).
If this occurs for every ¢ < 6 then
{6 € [(minpe (Yi) : (Fi < 0)(F(f16) =)} € ID(F®),
<6
but for each §, for some i < 6 we have F(f[0) = i, a contradiction. O
Proposition 2.4. Under the assumptions of 2.2 (so the ideal ID(F'®) is AT~

saturated), if X C X\ Ste, X ¢ ID(F®) then there is a partition (Xo, X1)
of X (so XoUX; =X, XoNX; =0) such that

X0, X1 ¢ ID(F®), and mings(Xo) = minge (X1) = mings (X).

Proof. Let

Ape o {Z CX\: Z¢ID(F?®) and there is a partition (Zy, Z1) of Z

such that minge (Z1) = minpe (Z2) mod ID(F®)}.
Note that, by 1.11(h),
(%) (VY € ID(F®)")(3Z € Aps)(Z CY).
Let X C A\, X ¢ ID(F®) and let (Z, : a < *) be a maximal sequence such
that for each a@ < a™:

Zo € Apo, ZoC X, and (VB < a)(ZaNZseID(F?)).
Necessarily a* < AT, so without loss of generality a* < A\, min(Z,) > « and
ZaNZg=0for a < B <a* Let (Z2, ZL) be a partition of Z, witnessing
Za S AF®. Put

2% |20 aad zE |z

a<la* a<a*

Then ZoNZy =0, ZyU Z; C X. Note that |J Z, is equal to the diagonal

a<a*

union and, by (x) above, X \ |J Z, € ID(F?®). Consequently we may
ala*
assume ZoU Z; = |J Zo = X. Next, since

a<a*

minge (Zy) 2 minF®(Z2) D Zg U Zé = Z,,

we get
minpe (Zg) 2 U Zo=X = Zy U Zy,
a<a*
and similarly one shows that minge (Z1) 2 X. Now we use 1.11(h) to finish
the proof. O

Proposition 2.5. Under the assumptions of 2.3:
(1) If 2° < X then there is a sequence (Y; : i < 0) as required in 2.3(D).
(2) Similarly if 6 < Xg.
(3) In both cases, if S ¢ ID(F®) then we can demand (Vi < 0)(Y; C S).
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Proof. 1) By induction on a < 6 we choose sets X,, C A for n € 2 such
that:
(i) Xy ¢ IDF?),
(i) if o is limit then X, = () Xy,
<o
(ili) if o = f+1, n € B2 and X, € ID(F®) then X, ~) = Xy Xp~1) = 0;
ifa=p+1, UEBQandX ¢ ID(F?®) then (X, ~qy, X;~1))
is a partition of X, such that mings (X, ~qy) = minpge (X,~ <1>) =
min e (X5,).
It follows from 2.4 that we can carry out the construction.
Clearly (X, :n € 02> is a partition of X, so (as 2% < X and ID(F?) is
A—complete) we can find a sequence 1 € 99 such that X, ¢ ID(F®). Then
(Vo < 0)(Xyja ¢ ID(F))

(as each of these sets includes X,,). Moreover, for each av < # and for £ = 0, 1
we have

minge (Xyja—~) 2 Xyja 2 Xy

Put Yo = Xjja~1-n(a))- Then (Y, : a < 0) is a sequence of pairwise disjoint
sets (as Xy1a~0) N Xyja—~1y = 0) and for every a < 0

Yo ¢ ID(F®)  and minpe(Ya) 2 X0 2 X,

Hence () minps(Y,) ¢ ID(F®). Let Z, = Y, Nminpe(X,). Note that
a<f

mings (Z,) = minge (X)) (the “<” is clear; if mings (Z,) < mings (X))

then minpe (X)) \minge (Z,) contradicts the definition of minpe (Y, )). Thus

the sequence (Z, : a < 0) is as required. Moreover

minge (Z UmlnF® Zg).
B

2) Let X C A\, X ¢ ID(F®). By induction on n we choose sets X/, X/
such that X], N X} =0, X, UX] D X, and

minge (X)) = minge (X)) = minge (X).

For n = 0 we use 2.4 for X to get X, X{. For n+ 1 we use 2.4 for X/ to
get X/ 1, X 1.
Finally we let Y,, = X/ (note that minpe(Y,) = minge (X)). O

Conclusion 2.6. Assume that

(A) A is a regular uncountable cardinal,

(B) F is a (), 0)—colouring such that A ¢ ID(F) and ID(F) is A*t—
saturated,

(C) 29 < Xor 6 =Xy,

(D) Bu < A)(2* = 2<% < 2Y) or at least A ¢ WDmlIdy or at least
A ¢ ID*(F).
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Then there is a weak diamond sequence for F'. Moreover, there is n € Ag
such that for each f € DOM,(F) we have

{6 <A F(f16) =n(d)} ¢ ID(F).
3. AN APPLICATION OF WEAK DIAMOND

In this section we present an application of Weak Diamond in model
theory. For more on model-theoretic investigations of this kind we refer the
reader to [She01] and earlier work [She87a], and to an excellent survey my
Makowsky, [Mak85].

Definition 3.1. Let £ be a collection of models.

(1) For a cardinal A, 8 stands for the collection of all members of & of
size A.
(2) We say that a partial order <g on K) is A-nice if
(o) <g is a suborder of C and it is closed under isomorphisms of
models (i.e. if M,N € R\, M <g N and f: N — N’ € &) is
an isomorphism then f[M] <g N’),
(B) (8a,<g) is A—closed (i.e. any <g-increasing sequence of length
< )\ of elements of K) has a <g—upper bound in K)) and
() if M = (M, : a < )\) is an <g-increasing sequence of elements
of &) then |J M, is the <g—upper bound to M (so |J M, €
a<A a<A
£y).

(3) Let N € Ry, A C|N|. We say that the pair (A, N) has the amalga-
mation property in Ky if for every N1, No € K) such that N <g Ny,
N <4 Ny there are N* € R\ and <g—embeddings fi, fo of N1, No
into N*, respectively, such that f;[A = fa]A. (In words: N, Ny can
be amalgamated over (A, N).)

(4) We say that (R, <g) has the amalgamation property for X if for every
My, M1, My € R) such that My <g My, My <z M, there are M € K)
and <g—embeddings fi, fo of M7, Ms into M, respectively, such that

My <g M and fi[My= fo[My=idpy,-.

Theorem 3.2. Assume that A is a reqular uncountable cardinal for which
the weak diamond holds (i.e. A ¢ WDmldy ). Suppose that & is a class of
models, R is categorical in X (i.e. all models from Ky are isomorphic), it
s closed under isomorphisms of models, and <g is a A\—nice partial order
on Ry and M € R\. Let A = (A, : a < \) be an increasing continuous
sequence of subsets of |M| such that

Vo< N(|4all <A)  and | ] Ao =M.
a<
Then the set

S]é[ def {a < \: (Ay, M) does not have the amalgamation prope?“ty}
s in WDmlId).
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Proof. Assume that Sj@ ¢ WDmId,.
We may assume that |[M| = A. By induction on ¢ < A we choose pairs

(By, Ny) and sequences (C7 : j < A) for n € '2 such that

(a) [|Byll <A, Ny € R, By  [Ny| € A,

(b) (C} :j < A) is increasing continuous, jL<j/\ CJ = Ny, IC7] < A,

(c) if v < n then N, <g N,y and B, C By,

(d) if j1,jo < i then C' C By,

(e) if the pair (B, N,) does not have the amalgamation property in £y
then N, ~y, N;~1) witness it (i.e. they cannot be amalgamated over
BW)? .

(f) if 4 is limit and n € *2 then B, = |J By, U Nyij € Ny
j<i j<i

There are no problems with carrying out the construction (remember that

<4 is a nice partial order), we can fix a partition (D; : i < A) of A into A

sets each of cardinality )\, and demand that the universe of N, is included

in {D; : j <14 {€g(n)). Finally, for n € A2 we let B, = U By} and
1<

Ny, = U Nyji- Clearly, by 3.1(2y), we have N, € 8 and B,, C |N,)| for each

i<

n e A2, Moreover,

|Ny| = U [ Noijl = U UCZ.”U = U U angrjl < U By = By,

J<A F<AI<A J*<AJ1,52<g* Jr<A

and thus B, = |N,|. Since R is categorical in A, for each n € A2 there is an

onto

— M.

Fix n € A2 for a moment.
Let B,y = {0 < X: f[By5] = As = 6}. Clearly, E,, is a club of A\. Note that
it 6 € E), then:

®) deSy =

isomorphism f;, : Ny,

(As, M) does not have the amalgamation property
(Byys, Nyy) fails the amalgamation property
(Byys, Nyps) fails the amalgamation property
Nyrs—~0ys Nyprs—~q)y cannot be amalgamated

over (Bys, Nyjs)
for each v € A2 such that nfé (1 —n(d)) <v
we have f,[By15 # fn[Bps-

We define a colouring

R

4

F:lJ*HW) —{0,1}

a<A
by letting, for f € DOM,, a < A,

F(f)=1 iff (3ne?2)(n(a) =0& (Vi <a)(f(i) = (i), f;(0))).
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We have assumed SJ‘\‘} ¢ WDmld), so there is p € A2 such that for each
f € DOM,, the set

Sy ={0 € Sir: p(d) = F([10)}
is stationary. Let f € DOM, be defined by f(i) = (p(i), f, ' (¢)) (for i < X).
Note that
ifaeE, p(a) =0
then p is a witness to F/(fla) =1 and hence o ¢ Sy.
Since Sy is stationary and E|, is a club of A we may pick 6 € Sy N E,. Then

p(0) = 1 and hence F(f[§) = 1, so let ns € A2 be a witness for it. It
follows from the definition of F' that then n5(d) = 0, and ns[é = pld, and
fn;l [0 = f;l [6. Hence fy, [Bpsis = fo[Bpls, so both have range As = 0 (and
§ € Eyy N E,N Si). But now we get a contradiction with (X). O
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