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THE COFINALITY OF THE SYMMETRIC GROUP AND
THE COFINALITY OF ULTRAPOWERS

HEIKE MILDENBERGER AND SAHARON SHELAH

ABSTRACT. We prove that mcf < cf(Sym(w))) and mef > cf(Sym(w)) =
b are both consistent relative to ZFC. This answers a question by Ba-
nakh, Repovs and Zdomskyy and a question from [13].

1. INTRODUCTION

We compare the cardinal mcf, the minimal cofinality of the ultrapower
(w, <) by a non-principal ultrafilter on w, and the cofinality of the symmetric
group on w, cf(Sym(w)). These two cardinal invariants are closely related:
Both are cofinalities and hence regular. In ZFC, both cardinals have value
in the interval [g,?], namely Blass and Mildenberger [4] showed mcf > g,
Brendle and Losada [7] showed cf(Sym(w)) > g, and Simon Thomas [22]
showed cf(Sym(w)) < 9. In their relations to b the two cardinals behave dif-
ferently: Obviously b < mcf, whereas Sharp and Thomas [17, Theorem 1.6]
showed that cf(Sym(w)) < b is consistent relative to ZFC. Before our re-
search, in all investigated forcing extensions we have had cf(Sym(w)) < mcf
and in the forcing extensions in which both cf(Sym(w)) > b and mcf > b,
the two cardinal characteristics c¢f(Sym(w)) and mcf coincide. The inequal-
ity cf(Sym(w)) < mcf is partially due to a mathematical reason: Banakh,
Repovs and Zdomskyy showed [1, Theorem 1.3]: If D is not nearly coherent
to a Q-point then cf(Sym(w)) < cf((w, <)¥/D). In particular if there is no
Q@-point then cf(Sym(w)) < mcf.

Here we show that indeed an extra assumption is necessary. Our first
forcing shows the relative consistency of 8y = mcf < Ng = cf (Sym(w)).

In our second forcing we show how to separate the two cardinals in the
second direction above b: Ny = b = cf (Sym(w)) < mcf is consistent. We use
versions of the oracle-c.c. in the N;-Ng-scenario.
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There are some known forcings establishing the relative consistency of
b < mcf: Three interesting forcings for Xy = b < mcf are given in [20, 21].
Since b < u [16] and since NCF is equivalent to u < mcf [12] the NCF-
models show the relative consistency of b < mcf. In [13] we showed that
also b™ < mcf is possible. In the second forcing extension of that work
we arranged b™ < mcf = cf(Sym(w)). In the other forcing extensions for
b < mcf the value of cf(Sym(w)) has not yet been computed or is possibly
not determined by the forcing or by NCF.

We recall the definitions: We denote by “w the set of functions from w
to w. For f,g € “w we write f <* g and say g eventually dominates f if
(3n)(Vk > n)(f(k) < g(k)). A set B C “w is called unbounded if there is no
g that dominates all members of B. The bounding number b is the minimal
cardinality of an unbounded set.

Definition 1.1. Let D be a non-principal ultrafilter over w. By ultrapower
we mean the usual modeltheoretic ultrapower: The structure (w,<)¥/D is
defined on the domain {[f]p : f € “w} where [flp ={g €“w : {n : f(n)=
g(n)} € D}. The order relation is [f]p <p [g]p iff {n : f(n) < g(n)} € D.
We write cf((w, <)¥/D) for the minimal size of a set that is cofinal in <p.
The minimal cofinality of an ultrapower of w, mcf, is defined as the

mef = min{cf((w, <)*/D) : D non-principal ultrafilter over w}.

We define the relation <p also on the space “w by letting f <p g iff
{n: f(n) <g(n)}eD.

Definition 1.2. The group of permutations of w is denoted by Sym(w). If
Sym(w) = U, Gi, & = cf(k) > Vo, (Gi : i < k) is strictly increasing,
and each G; is a proper subgroup of Sym(w), we call (G; : i < K) an
increasing decomposition. We call the minimal k such that an increasing
decomposition of length r exists the cofinality of the symmetric group, and
denote it cf(Sym(w)).

Definition 1.3. A subset G of [w]* is called groupwise dense if

(1) (VX € Q) (VY C* X)(Y infinite —Y €G), and

(2) for every partition of w into finite intervals 11 = {[m;, mi11) : @ € w}
there is an infinite set A such that | J{[m;, mit1) : i € A} € G.

The groupwise density number, g, is the smallest number of groupwise dense

families with empty intersection.

An ultrafilter U over w is called a Q-point, if given any strictly increasing
function f: w — w there is an X € U such that Vn, X N [f(n), f(n + 1))
has just one element. The existence of a @-point is independent of ZFC, see,
e.g., [8] for existence and [15] for non-existence. An ultrafilter D is nearly
coherent to an ultrafilter U if there is a finite-to-one function f: w — w
such that f(D) = f(U). Here f(D) = {E : f~'[E] € D}. Throughout we
write g[X] for the set {g(z) : z € X} and g7 [Y] = {z : g(x) € Y}. The
principle NCF says that any two non-principal ultrafilters over w are nearly
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coherent. Its consistency is established in [5, 6, 3]. A base for an ultrafilter
is a subset B of % such that (VY € )(3X € B)(X CY). The character
of an ultrafilter is the smallest size of a base. The ultrafilter characteristic
u is the smallest character of a non-principal ultrafilter.

In forcing the stronger condition is the larger one. For a forcing order P
and a formula ¢, we say P forces ¢ if the weakest condition in P forces ¢.

2. Con(b = cf(w¥/D) < cf(Sym(w)))
In this section we prove:

Theorem 2.1. The constellation X; = b = mcf < cf(Sym(w)) is consistent
relative to ZFC.

We essentially use oracle c.c. [19, Ch. 4], but we carry on a name for an
ultrafilter D and use an oracle sequence N with additional structure. We
establish a notion of forcing P such that for a P-generic filter G, D[G] will
be an ultrafilter witnessing mcf = R;. The construction of P is done via an
approximation forcing AP so that P = AP x Q.

We recall some oracle technique of [19, Chapter IV]. Let S be a stationary
subset of w;. We fix S throughout this section. A set 2 C P(S) is called a
filter over Sif 0 & 2, S € 2, 9 is closed under finite intersections and closed
under supersets. A filter Z over S is called normal if it contains all sets
of the form [o,w1) NS, @ < w1, and is closed under diagonal intersections.
We recall, given a sequence (D5 : § € S), its diagonal intersection is the
following set

NsesDs={y€S:ve () Ds}
seyns
For a filter 2 over w; and XY Cw; welet X =Y mod Z if (X NY)U
(N X)N(wi\NY)eZ,and X CY mod Zif X \Y =0 mod Z.

We recall the notion of a {g-sequence. A sequence P = (P5 : § € S) is

called a {g-sequence if Ps C P(0) is countable and for any X C Xy

{6 €S : XNJ e Ps} is a stationary subset of S.

It is well known that g and $g are equivalent (see [11, Ch. III}).
We fix a sufficiently large regular cardinal y, indeed y > (2%2)* suffices.
We fix a well-order <, on H(x).

Definition 2.2. We assume that S is stationary and $g.

(1) (See [19, IV, Def 1.1]) An S-oracle is a sequence M = (Ms : § € S)
such that

(a) Ms is countable and transitive and § +1 C Mg,

(b) is: (Ms, €,(<3)M5) <elem (H(X), €, <y) is elementary,

(¢) Ms =6 is countable,

(d) ford <eeS, MsC M.,

(e) for any A Cwy the set {6 €S : ANJ € Ms} is stationary in wi.
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(2) Let M be a countable elementary submodel of H(x). A real n € w¥
is called a Cohen real over M iff for any D € M that is dense in
C={p : Inp: n — w} (ordered by end-extension) there is an n such
that n [ n € D. Equivalently, for any meagre set F' C w* with F € M,
we haven & F.

(3) We say that (M, N,n) is an S-oracle triple if
(a) M = (Mg : § €S) is an S-oracle,

(b) 1= (ns : 6 €5),
(c) ford € S, ns is Cohen over Mg,
(d) N=(N;s:d€S8),
(e) N5 = Ms[ns).
(4) Let M be an S-oracle sequence. For A C H(wy), we let

IjA)={aeS : Ana e M,}

and
@M = {X Cwp : (EIA - wl)(X D) IM(A))}

From now on until the end of the section let S C w; be stationary and
assume {g. For L-structures A, M, we write A < M if A is an elementary
substructure of M. Since for L-structures A,B, M with A,B < M and
A C B also A < B holds, we have that the structures on any oracle sequence
are <-increasing.

If f: A— B is a function and C C A, then we write fC for {f(c) : c €
C'}. We recall the following important properties of 2.

Lemma 2.3. ([19, IV, Claim 1.4]) The set {I;;(A) : A C w1} is closed
under finite intersections. The filter Py contains every end segment of wy,
is normal, and contains any club subset of S, and for every A C H(Xy),

IM(A) € Y-

Proof. We prove only the very last statement; the others are proved in [19,
IV, Claim 1.4]. By ¢g, |[H(wi)| = wi. Let f: H(wi) — w1 be the < -least
bijection. Let C = {6 € wy : § limit and (Vo < §)(f"M, C §)}. The
set acc(C) of accumulation points of C' is club in w;. Now we consider
A C H(wq). By definition, Iy (f”A) € 9. For any § € S Nacc(C) such
that f"AN¢d € My we have

Ms > (i ()" (f7And) = [ J (£ 1 #7M)"(f"Ana) = | ) Ana = And.
a<d a<d

Thus we have I;(A) D I;;(f"A) Nacc(C). By [10, Lemma 14.4], for any
club C’ in wy, any normal filter over S contains the set SN C’. Since acc(C)
is a club and Z;; is a normal filter, acc(C) € Zy; and thus I3 (A) € Zy;. O

We recall when a notion of forcing P has the M-c.c.



Paper Sh:1021, version 2019-02-21_10. See https://shelah.logic.at/papers/1021/ for possible updates.

COFINALITIES 5

Definition 2.4. ([19, Ch. IV, Def. 1.5]) Let M be an S-oracle sequence and
let P be a notion of forcing. We define when P satisfies the M-c.c. by cases:

(a) If |P| < Ng, always.
(b) If |P| = Xy and if for every injective m: P — w; the set
{6€8: (VAe MsnP0))(((m™1)" A is predense in (7~ 1)"5)
— (71" A is predense in P))}
is an element of Py;.

(c) P" Cic P means that P" is an incompatibility preserving suborder of P,
i.e., for any p,q € P, p <pr q iff p<p q and p Lpr q iff p Lpq.

(d) If |P| > Ry and for every Pt C P if [PT| <Xy then here are P such that
P"| =Xy and PT CP" Cie P and 7: P — wy as in (b).

Oracle sequences are not continuous. The requirement § € Mgy precludes
continuity.

Lemma 2.5. Assume S is stationary and {g.
(1) There is an oracle triple.
(2) Let (M, N,n) be an oracle triple. Then

I:={0€S :{(e;n) : €<} € Ms} € Dy;.

(3) If (M, N,#n) is an S-oracle triple then (N. : € € I) is an I-oracle, with
the exception that (N, €) is not necessarily an elementary substructure
of H(x).

Proof. (1) Let (P5s : 6 € S) be a {g-sequence. Again we fix the <,-least
bijection f: H(w1) — wi. We choose My, i5 by induction on §. Suppose that
M., iy, v < 0, have been chosen. Let Mg < (H(x), €, <y) be a countable
elementary substructure with (M., iy : v < 4),d, Ps € M§. Then §+1 C M.
We let M;s be the Mostowski collapse of M. The Mostowski collapse maps
Ps to itself. Moreover, since Py is countable, Py C Mg, and hence X N§ € Pj
implies XNJ € Mj;. By now, we have taken care of Def. 2.2.(2) (a). For being
definite, we let the Cohen forcing C be the set of finite partial functions from
w to 2, ordered by extension. By the Rasiowa-Sikorski theorem (e.g., [10,
Lemma 14.4]) there is a Cohen-generic filter G5 over M. Then the function
ns = U{p : p € Gs} € “2is a Cohen real over Ms. We let Ms[Gs] = Ns.

(2) The set A = {(e,m:) : ¢ € S} C H(w1). We fix a club C such for
e C, f"{(e,n:) : € <} C 4. By Lemma 2.3 we have I;;(A4) € Z;;. By
normality CN1;;(A) € Zy;. By the choice of C, CN Iy (A) C{d : {(g,7e) :
€ <0} € Ms} and thus the latter is in Zj;.

1n Theorem 2.8 below we will rework the proof of the omitting types theorem for the
particular types that shall be omitted and see that the requirement that (N.,€) fulfil
sufficiently much of ZFC and be transitive suffices for our application.
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(3) Since Zy; is a normal filter, by [10, Lemma 811], its elements are
stationary sets. Hence [ is stationary. For § < e, § € S, € € I, we have
Ns € M. C N.. Hence (N : € € I) is increasing. O

From now until the end of the section we fix an S-oracle triple (M, N, 7).
Note that for § € I, (Va < §)(Ma[na] € Ms).
Oracle triples allow for the application of the “Omitting Types Theorem”:

Lemma 2.6. (The Omitting Types Theorem, see [19, Ch. IV, Lemma 2.1])
Assume $g. Suppose the ;(x), i < wi, are I} formulas on reals with a real
parameter possibly. Suppose further that there is no solution to \;_,, ¥i()
in 'V and even if we add a Cohen real to V there will be none. Then there
is an S-oracle M’ such that for any forcing PP,

if P has the M'-c.c then in V¥ there is no solution to /\wz(x)

We let ¢(x,n;) say the following

x = (y,h) Ny € “2 and h € “w is increasing and

(v*n)(mi [ [h(n), h(n+1)) # y | [A(n), h(n + 1))).

By [2, Theorem Ch. 2], any meagre subset of 2¥ has a superset of the form
My = {2 €2 ¢ (v¥m)z | [a(n). hln + 1)) £y | [h(n). hin + 1))}

for some strictly increasing function h and some y € “2. The formula ¥ (z, n;)
says that 7; is in the meagre set M, ). So the type ¥ to be omitted is

(2.2) N\ ¢, ).

el

(2.1)

Actually, we will have a strong form of omission: There is a set Y is a
normal filter such that for each i € Y, z = (y,h) € M;[P],

(3n)ni T [h(n), h(n +1)) = n; T [h(n), h(n + 1)).
Since P € My and P C | J{M; : i < w}, thus {n; : ¢ € S} is not meagre
in VF,
We check that premise of the omitting types theorem is fulfilled in a very
local form.

Lemma 2.7. Let M be a countable transitive model that can be elementarily
embedded into H(x), and let n € V be a Cohen real over M. Then there is
no p € C such that p forces in Cohen forcing over V that n is not Cohen
over MIC].

Proof. We show that for any Cohen name (h,y) € M and any Cohen con-
dition p that p I ¥ ((h,y),n). We think of

C={p:p=(p1.p2):n—{{m} x2", mew~{0}},ncw}.
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Any name (h,y) € M of an increasing function h and y: w — 2 such that
po € C forces (b,y) ¢ M is below pg equivalent to a Cohen-generic name
(h,y) that can be written in the following form:

plby b(=1) =0;
plen h(m) =Y pi(k);
k<m

pl- (Vi€ [h(m —1),h(m)))(y I [2(m — 1), h(m))(h(m — 1) + i) = pa(m)(i)).
Then given 7 and m € w and p > pg there is a ¢ >¢ p and an n > m that

forces
y I [(n—1),k(n)) =nT [A(n —1),h(n)).
! - 1), b(n)). 0

So ¢ forces (3%n)(y | [A(n — 1), h(n)) = n | [h(n

By Lemma 2.7, the omitting types theorem shows that there is an oracle
N for the preservation of 7;” s Coheness over M;. We review the proof of the
omitting types theorem for the preservation of Coheness in order to show
that N; = M|n;] is a strong enough oracle. 2

Theorem 2.8. Let M, N, S, I be as above. For each P! with the N-c.c.
there is a set Y € Dy such that for any i € Y, n; is Cohen over M;[PT].

Proof. We work with the type given in (2.2). We assume PT = w;. Then by
the oracle-c.c.

Y'={6€S : (VAe NsnP(5))(((A is predense in (4)
— ((A is predense in P)) }
is an element of Zj.

Let 7 be a Pf-name for a real. Since P! = w; has the c.c.c. we can assume
that 7 € H(w). Let p € PT. Let Y be the set of § € Y’ such that

(a) T € Ms,

(b) 7 =7Ne:d),

(C) PT nad gic ]P)T

Then Y € Z. Let G be Pi-generic over V. Then G N6 is PT N é-generic
over Nj. Since P' N § is equivalent to Cohen forcing, by Lemma 2.7, N5[G'N
8] E (1[G N 6], n5). Since PT N 4§ Cy PI, we have 7[G N 4] = 7[G]. By
absoluteness, N5[G] = —¢(7[G], ns)- O

For building up a name for an ultrafilter witnessing mcf = N; we introduce
some notions for handling names.

Definition 2.9. Let P be a ccc forcing.

2The sequence of the NN, is not an oracle literally, since its entries are not necessarily
elementary subsets of H(f). However, they are transitive models of a sufficiently large
fragment of ZFC. Theorem 2.8 shows that this is sufficient for our specific types. Hence-
forth we will also call N an oracle sequence.
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(1) A canonical P-name for a subset of w is a name of the form T = {{(n,p) :
p € An)}, where the A, C P are antichains.

(2) A canonical P-name for a subset of P(w) is a name of the form K =
{(r,q) : ¢ € A.,7 € X}, where X is a set of canonical P-names T for
subsets of w, for maps w as in (3), and for each T € X, the set A is a
countable antichain in P.

(8) Let m: P — wq be injective. We let #'P =P and define a partial order
(or a quasi order) on P' such that 7 is an isomorphism from (P, <p)
to (P, <p). Then we lift T to a map 7: VF — V¥ -names by letting

7(r) ={(7(o),x(p)) : {o.p) € T}

For canonical names 7, K as above, 7(7) € H(wy), 7(K) C H(wy). Thus
according to Lemma 2.3, I;;(7(K)) € ;. The names 7(K) and 7(7) are
canonical.

Definition 2.10. Let M be an S-oracle sequence and P’ C w.
(1) We let T be a canonical P'-name of a subset of w. We let for § € wy,

_(Mp) _ )T if T is a P’ N d-name, and T € Mj
undefined;  otherwise.

(2) For a canonical P'-name K = {(1,q) : q € A;,7 € X} for a subset of
P(w) and § < wy we define the Ms-part as follows:
K Ms:9) ={(7,q) : (1,9) € K,q € ' NJ,7 is a P’ N 5-name,
TEMs, A, CP'N6 A € Ms}.

Note that for a canonical P’-name we have K59 C M;. however, in
general K(Ms:9) is not an element of M;. By Lemma 2.3 we have though
{(6€8: (e, KM : ¢ < 8) € Ms} € Dy;.
Now we are ready to define the set K' of pairs that serve as conditions

in the first iterand of our final two-step forcing.

Definition 2.11. (1) For an S-oracle triple (M, N,#) as above we let K!
be the set of (P, D) with the following properties:

(a) P is a c.c.c. forcing with a nonstationary domain P C wy.
(b) D is a canonical P-name of a non-principal ultrafilter over w.

(c) Y(P,D) € 9y, where Y (P, D) is the set of 6 € S such that items
() to () hold:
(Oé) PNéde Ms.
(B) If ECPN6 and E € Ns and E is predense in PN then E is
predense in P (so we have that P has the N-oracle-c.c.).

(v) DWMs:%) e Ms and My = “DMs:9) is o canonical P N §-name of
an ultrafilter over w”.
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(6) Ns ElFpns “ns is Cohen-generic over Ms[Gpns]”.
() DWs:9) ¢ N5 is a canonical PN §-name of an ultrafilter over w
such that

Pl (Vf € Ms[Grrs] N“w)(f < povs.s) ns)-

(2) For an oracle triple (M, N,7) we let K? be the set of (P, D) € H(Ry)
such that there are a non-stationary ' C wy and a one-to-onen: P’ — P
and (P, D') € K', 7 is an isomorphism from P’ onto P with 7(D') = D.

Remark 2.12. Since we do not add new types that have to be omitted in the
course of the iteration, one fixed oracle N € V is sufficient.

We recall the the successor step and the direct limit step for oracle-c.c.

Lemma 2.13. (Lemma [19, 1V 3.2]) If Q has the M-c.c. and Q forces that
Q' has the (Ms[Q] : 0 € S)-c.c. then Q+ Q' has the M-c.c.

Lemma 2.14. Lemma [19, IV 3.10]: If (P, Qo : a < ) is a finite support
iteration such that has the M-c.c. and for a < f3 the forcing Py forces that
Qq has the (Ms[Py] : 6 € S)-c.c. then Pg has the M-c.c.

If 7: P’ — P is an isomorphism between forcing orders, we use it also for
its natural extension that maps P-names to P’-names.

Lemma 2.15. Let (M, N,7) be an S-oracle triple and let K be as above.
Assume

(a) (P,D) € H(Xg), P is a forcing notion, P € H(ws) and D € H(ws) is a
canonical P-name of an ultrafilter over w.
(b) P, is a notions of forcing whose domain is a non-stationary subset of
wiy for £ =1,2.
(¢c) mg is an isomorphism from P, onto P for £ =1,2.
(d) D) is a Py-name of a subset of P(w) such that m; maps D) onto D.
Then (B}, D}) € K" iff (P}, D}) € K*.
Proof. The map m = m, Lo 7 is an isomorphism from P} onto P, and its
lifting 7 maps D} to Dj. According to Lemma 2.3,
Z={6€S : w0 is aone-to-one mapping from P, N to P, NI
and 7 [ 6 € Ms}
belongs to Zy;. If § € Z then ¢§ € Y(P}, D)) iff 6 € Y (P, D)), since the

defining properties of the sets Y (I}, D)) are preserved by isomorphisms of
forcing orders. ([l

This shows that in Definition 2.11(2) the following is true: If the demand
holds for some pair (P’,7) then it holds for every such pair. The primed
partial orders in Lemma 2.15 shall ensure that the domain is a non-stationary
subset of wy. Canonical P’-names for reals and for filters over w are actual
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subsets of H(w1). According to Lemma 2.15, their properties are invariant
under bijections of wy. Since any property of the forcing is named modulo
Py the particular choice of the injections does not matter. For the actual
construction of forcing posets it is convenient to use non-stationary domains
for the P’ € K, since non-stationarity is preserved by countable unions and
by diagonal unions.

The property in Def. 2.11(1)(c)(¢) ensures that D will be forced to be
an ultrafilter such that the weakest condition in the two-step forcing forces
cf(w®/D) = Ry, as witnessed by (15 : € §). Technically it is more conve-
nient to carry on the property the stronger propert (§) than just (¢). In the
case of an <*-increasing sequence (s : § < S) unboundedness is preserved
in limits of finite support iterations if each initial segments preserves it [2,
Ch. 6, §4]. So it might be possible to carry (¢) and the contrary of (4). We
have not investigated this issue.

Concerning the preservation of (), we will frequently use [2, Chapter 6
Section 4]:

Lemma 2.16. Let P, < P41 for n € w and let P be the direct limit of
(Pp : n€w). If Py I “ns is Cohen generic over Ms[Gp,]|” for all n, then
P I+ “ns is Cohen generic over Ms[Gp].”

Let unif(M) denote the smallest cardinality of a non-meagre set. The
following proposition gives the additional information that unif(M) = ¥y in
our forcing extensions, as witnessed by {ns : § € S}.

Proposition 2.17. If (P,D) € K? then P forces that {n; : 6 € S} is a
non-meagre subset of “2.

Proof. Let p € P force that {ns : 6 € S} is meagre. Let 7 be a name for
a meagre Fy-set. By the c.c.c., there is a 6 € Y/(PP, D) such that 7,p € Ms,
pePNG, 7isaPNdname, and pl- {ns : § € S} C 7. Then p lFp ns €
7. Since § € Y(P, D), clause (5) in the definition of Y (P, D) yields also
p IFpns ms € 7. This is a contradiction to item (1)(c)(d) of the definition of
Y (P, D). O

Proposition 2.17 has a sort of an inverse direction for the class of Suslin
forcings. A forcing Q C w* is called Suslin if Q is an analytic subset of w®
and the relations <g and Lg are analytic sets in w“ x w®. For Suslin proper
forcings, not making the ground model meager is equivalent to preserving
the genericity of a Cohen real over a countable model [9, 6.21, 6.22].

Now we introduce the approximation forcing (AP, <ap):

Definition 2.18. We let K? be as above.

(A) Let p = (Pp, Dp),qa = (Pq,Dq) € K?. We define p <ap q iff
(a) Pp <Py,
(b) IFpy Dp € Dg.
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(B) Fori= 1,2, we let forcing order of approzimations be AP* = (K', < ,p).
We let AP = AP?.

The following is the parallel of the basic claim on oracle c.c. forcing, [19,
Ch. IV, Claim 3.2]. The forcing P; does not mean iteration up to stage i.
The variable 7, ranging over w+1 or w1 +1 or wy, is just an index for P; being
a component of (P;, D;) € K2. P; is an N-oracle c.c. forcing and |P;| < 8.

Lemma 2.19. (A) The structure (K2, <ap) is a partial order of cardinality
[ H(R2)].
(B) K% # 0.

(C) If pn = (Pn,D,) € K? forn € w and p, <ap Pny1 then the set has
an upper bound p, = (Py, D) with P, = [J{P, : n € w}.

(D) (K2,<ap) is (w1 + 1)-strategically closed, that is, for every p € AP the
protagonist has a winning strategy in the following game O(p): A play
lasts w1 + 1 moves. During the play the player COM, the protagonist,
chooses for i < wy, pi = (P;,D;) € K?, and INC, the antagonist,
chooses q; € K2 such that
(a) Pi <ap di,

(b) (Vi <i)(a; <ap Pi),
(¢c) Po=p

The protagonist COM wins the game if they can always move. The hard
case s the choice of pu, -

Proof. (A) and (B) are obvious.
(C) Let pp, = (Pn,Dy) and let (p, : n € w) be <gp-increasing. We
choose (P, 7, P),, D) by induction on n with the following properties:
(1) P}, C wy is not stationary
(2) 7, : P, — P, is an isomorphism of partial orders,
(3) (7)'(Da) = D,
( ) 7Tn g 7Tn+17
(5) (I, D) € K.
Then we let P, = J,,c,, P, and the latter is not stationary. Moreover we
let 7, = U, e Tn-
We fix for n € w a reduction rps pr P, =P, and weset C ={06€S :
¢ limit of S and (Vn)rg, p (P, N (5) C 4} Of course C' is club in wy. We let

(2.3) Y =[P, DYNC.
kew
By [19, Ch. IV, Claim 3.2, the poset P/, has the N-oracle c.c, i.e., P!, satisfies
clause (c)(8) of Def. 2.11. By Lemma 2.16 the set Y is also a witness to
clause (c)(8) for P/, € K*.
We show that there is D/, such that (P/,, D/,) is an upper bound of (p, :
n < w) in <4p. Now we define an P/ -name D/, for an ultrafilter such that



Paper Sh:1021, version 2019-02-21_10. See https://shelah.logic.at/papers/1021/ for possible updates.

12 HEIKE MILDENBERGER AND SAHARON SHELAH
po = (P,,D,) € K' and Y C Y (P, D},). We let

B = D)
kew
Since PP}, is a complete suborder of P/, the D; are names for filters and
Op,, IF Dy ¢ D/E 41 the weakest element of P! forces that E’ is a P/ -name

for a filter.

We write next(Y,e) for the next element in Y after ¢, i.e., next(Y,e) =
min{d > ¢ : § € Y}. By induction on 6 € Y, we define a canonical P/, N J-
name D/ (0) € Ms such that

P06 DL (0) 2 DL : v €Y N6}
and ]_2;(5) is an ultrafilter in Ms,”

and
P, Nnext(Y,8) IF4(Vf € Ms[PL]) (15 =y mext(v;6) f)
and Q;(next(Y, 6)) N P(w)™ is an ultrafilter in N..”

The restriction of names was defined in Definition 2.10(2), and there is
the following connection for k£ < w

{6 €Y : Dy(8) = D} € Iy,

and thus also their intersection Y’ is in 2. For simplicity, we write just Y
for Y.

Assume that (D/ () : v € Y N J) has been defined. By the induction
hypothesis on (pg, k), the Pj-names for ultrafilters Dj are defined and
increasing in k. )

We first consider the limit steps in the induction. Let § € Y be a limit of
Y. First case: (D/,(y) : v <Y N4§) ¢ Ms. Then we let

Leas = D,,(6) = (HDL() - ve v na)
Second case: (D;,(y) : v € Y NJ) € Ms. We first show

Llkp s E'(6) == E'Ms g U{DNZJ(’)/) : v €Y N} is a filter base.”

We assume, for a contradiction, that there are a condition p € P, k €
w, and a v € Y NJ and there are names X, X', such that p forces that
X € DiMs and X' € E'Ms| v € Y N § such that X N X’ is empty. Then
p P FXe Dj 16. Let Gy be P)-generic over N5 with p [ P} € Gj. We
let Z[Gr] = {n : (3G € P,N3/Gr)(G > p[Gi] A IFn € X'[Gy] N X)}.
Since pg is a condition the name D/ () | ¢ is an ultrafilter compatible with

Dy (7). Therefore we have that p | P} IFp, “Z[Gy] is infinite.” Now we take

n € w, ¢ as in the definition of Z[Gy], so that ¢ IF n € X N X'. So we
have a contradiction. Hence for any v € Y N ¢, the weakest condition forces
that E' [ § U D/,() is a filter basis. Since the names D, (v) are forced to
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be increasing with v € Y N4, also their union, F’(§), is forced to be a filter
basis. Now we choose a name D/ (§) € Ms for an ultrafilter that extends
F'(5). N

Now we consider the successor steps of the induction. Let § be the suc-
cessor of v € Y, i.e., 6 = next(Y,7). Then N, € M. We extend D/ (7) to
D! (6) € Mjs so that D/,(8) is a P’ N §-name for an ultrafilter such that

lpns IF DL, (0) 2 F(6) = (E' [ 6) UD,,(7)
U{{n ew :ny(n) > f(n)} : f € M, aP,Ndname for a function}.

Since v € Y, we can restrict the considerations to P/, N~y names f. Again we
show that the weakest condition forces that F'(§) has the finite intersection
property. Let gy € P/, N § be given. Let gy force that A; be a name of a
member of D) | § and qo IF A2 € D;,(6) and A3 = {n : ny(n) > f(n)}. Now
in My we define a (P}, N 6)-name 2123 as follows: if Gy, C P, , qo [ P, € Gy,
is P} -generic over Ms we let
A23[Gk} :{n : (Hd S Piu N 5/Gk)
(G2 @Gl A GIF (n € A2[Gi] Any(n) = fGp](n)))}-

Then ¢o | P}, IFp A1 N Ags[Gy] is infinite, since for [P}, is already an ap-
proximation and hence 7, is Cohen generic also over M, [P,] and hence
M,[P) = ny £p; f. We take ¢, n as in the definition of Ag3[Gy]. Since
qo | Py is Pz-genéric over My, we may assume that ¢ € P, ¢ [ P; > o and
gIF “n € A1 N Ay3.” Hence in My there is a name for an ultrafilter D/ (0)
containing F'(9), and we choose and fix the <,-least one and call it DL(&).
Since N, C Ms and N, € Ms, D.,(6) N P(w)™7 is an ultrafilter in Nw.~

Now the induction on § € Y is carried out. We choose a name D), such
that )

P, I D, =| J{DL(©5) : 6V}

We mirror the construction back to the class K?2: by letting D, = 7(D’).

(D) Let p € K2 be given. We write p; = (P;, D;), i < wi. The strategy
of the protagonist is to choose in addition to p; >4p q; for j < ¢, on the
side also p, = (P}, D)) € K! and 7;: P, — P; and §; € w; with the following
properties:
(a) (& : 7 <wi) is continuously increasing,
(b) (P, D)) € K\, P, ULP, : j < i} € & + L),

(
(

)

c)

d) for j <1, mj C m, (so the P, are C-increasing in wy),
)
)

7; is a isomorphism from P} onto P; mapping D/ onto D;.

e) for j <4, (P}, D)) <apr (P, D;) and (P, D;) <ap (Pi, D).

J =3
Ifk<j<i,peP,andqe ]P’;- N¢; and p and g are compatible in P},
then they are compatible with a witness in P; N &i- (Then the proof of
[19, Claim 3.2] for showing that also IP; has the N-c.c. works.)

(
(f
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(g) If i =37+ 1 < w is a successor ordinal, then COM chooses p; = q;.
(h) If i < wi is a limit ordinal and & = 4 and if there is j(x) < i such that

H = ﬂ{Y ]7~j je[())}€9N7

then player COM takes for p; the limit of a countable cofinal sequence
of q;’s in the manner described in (C). Thus

(2.4) H C Y (P}, D).

Now if pj, i < wi, are defined, in the w;-limit COM chooses I, as the
direct limit. Then Equation (2.4) implies that

Y(lel’Dc/ul) 2 Aiewly(Pg’ D;) N {Z : gl = i}’
and hence Y(P,, , D!, ) € Y. Hence
Ip I+ D, = U D} is an ultrafilter extending D}, i < ws.

1<wi
We mirror the primed objects via Uj <w, Tj back to K 2 and thus we get a

forcing P, = |J{P; : i <w} and a P,,-name D, for an ultrafilter over w.
The protagonist COM hence has won the play of the completeness game. [J

Definition 2.20. Let Gap be an AP-generic filter. In V|G p| we let
Q=|J{P: 3D) (P, D) € Gap}
and let E be a Q-name such that
QIFE=(J{D : (3P) (P, D) € Gap}.

We let Q be an AP-name for Q and we use the symbol E also for an
AP-name for E.

Lemma 2.21. (a) IF4p Q is a ccc forcing of cardinality R,
(b) IFap E is Q-name of a non-principal ultrafilter,
(c) if (P,D) € AP then (P,D) IFaplbg (ns : 6 € S) is a <p-increasing

sequence and cofinal in w*/E.

Proof. For (a), see [19, Ch. IV, Claim 1.6]. Now we prove (b). By the c.c.c.
and the construction with direct limits, for every AP * Q-name 7 for a real
there are a pair p = (P, D) € AP and a condition p € P, and a P-name real
7' for such that (p,p) lFap«g 7" = 7.

(c) We work with the approximation forcing AP!. Suppose for a contra-
diction that (P, D),p) IFapilbq (3f € “w)(f g (s : 6 € S)). Then there
is (P, D"),p') >ap1 (P,D),p) and there is a canonical P’-name h such that

(2.5) (P, D').p) Faping h>p (5 : 6 € S).

Since h is a name of a real in the c.c.c. forcing P, there are some for some
do < wi, h' € Mj, such that b’ is a P'Ndp-name such that (P, D), p’) IF4p1.g
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h = K. We fix such a &y, h/. Since (P’,D’) € K!, by Lemma 2.8 there
is § > dp such that N5 |= (Vh € Ms[Gprs])(h 2pria,,.,) M) We take
a condition ¢ € P’ N4J, ¢ >p p', forcing Yh € Ms|Gplh Zp ns. Thus
(P, D), ¢') > (P, D'),p') and this is a contradiction to Equation (2.5). O

Now we show that the union of the generic filter of the approximation
forcing, i.e., the Q as given in Lemma 2.21, fulfils I-4p.q cf(Sym(w)) = Na.
The conditions of the form ((P,, D.),p) with p € P, are dense in AP x Q.

A forcing destroying a given increasing cofinal chain of subgroups (G; :
i < wy) of Sym(w) is written down in [13]. Such a forcing adds one particular
real, a new permutation g that simultaneously conjugates certain f; € Gjy1\
G; for cofinally many ¢ < wj. Thus in the extension we have g € Sym(w) \
U{Gz < wl}.

In the rest of this section we construct a variant of such a forcing that
adds such a conjugator and at the same time has the N-oracle c.c. We first
show that we can work with convenient supports of permutations.

Lemma 2.22. Suppose that chain of subgroups (G; : i < wi) is an in-
creasing chain of subgroups of Sym(w) such that all permutations that move
only finitely many elements are elements of Go. Suppose that U C wq is
uncountable and there are

(GG S ff cieU) and g
with the following properties:
(1) fori<jeU,i<( <¢ <,
(2) forieU, fl e G and f?e G~ Gg, and
(3) forie U, (v°n)((go f)(n) = (f} o g)(n)).
Then g € Sym(w) ~ U{G; : i € w1}.

Proof. If g € G for some i € U, then by (3) also f?e G1, contradiction.
O

For carrying this out we use some notions describing permutation groups.
Definition 2.23. Let f: w — w. supp(f) ={n : f(n) #n}.
Observation 2.24. If f € Sym(w), then f[supp(f)] = supp(f).

For f € Sym(w), we say f has order 2 if f o f is the identity.
For arguing with given supports, we use:

Lemma 2.25. ([13, Lemma 3.3]) If (G; : i < w1) is an increasing sequence
of proper subgroups of Sym(w) with union Sym(w), and Go contains all
permutations with finite support, then for any W € [w]NO the sequence

(Gin{f € Sym(w) : supp(f) CW A f is of order 2} : i < w1)
is not eventually constant.

Now we return to forcing.
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Lemma 2.26. IFgp.g “cf(Sym(w)) =Ry”.

Proof. Assume towards a contradiction:

@1 ((Px, D«), px) IFapvg “(Gi @ @ < wi) is an increasing sequence of proper
subgroups of Sym(w) with union Sym(w), and Gy contains all permuta-
tions with finite support”.

@®9 By Lemma 2.25, @1 implies: ((Ps, Dy),ps) IFapsg “if W € [w]Y° then
(Gin{f € Sym(w) : supp(f) € W A fis of order 2} : i < wy) is not
eventually constant”.

@3 We let (m, : n € ““w) be a sequence of natural numbers without
repetitions. For € “w we let W(n) = {my, : n € w}. Then for n # n’
and k = min{n : n(n) # n'(n)} we have W(n) N W(n') = {my, : n <

By induction on i < w; we choose p; = (P;, D;) € AP, m;, p, € AP,
& € wi, and (pg, ™, P}, &, C1i, ¢, iy f26, R;) such that
@3, (a) Po = Px,
(b) pi = ((Pi, Di),p«) € AP *Q and j <i — p; <ap pi.
(c) pi = ((P}, D), ps) € AP % Q satisfies
(o) Py {& i <wi} =0, the set of members of P, \ U{P’ : j <
i} € [& +1,w1), hence P; N & =P N¢; for any j > 4,

(B) mi: P, — wy is a one-to-one function mapping P, onto P; and
mapping D’ onto D,

(v) if j < i, then m; C m;,

() (& : @ < wi) has the properties (a) to (d) of the proof of Lemma
2.19 (D) with respect to the sequence (p},m; : i < wi).

(d) At double successor steps of limit ordinals we add a new Cohen
real: If i = wj+1 then P, = P} * (“~w, <), we let v; be a name for
(“Zw, <)-generic real. So v; is a Cohen real over Vi, Since VFi
is unbounded in VFi+1 there is a P;41-name for an ultrafilter D, 1.

(e) Ifi = j+ 2lthen we choose (P, ,,Dj, ) >ap (P, Dj) such that
(GeN Pw)’ : £ < w) and even (G NPWF : £ < w)isa
[P/-name.

(f) At triple successors to limit ordinals we fix witnessing functions with
the new Cohen v; as information in their support, i.e., if i = w-j+42
then (¢1i, (%, f1, f7) satisfies

(a) i<¢hi< (i,
(B) for £ = 1,2, p},, forces that f% € G\ G, le € Ga is a
PP} ;-name of a member of Sym(w) of ‘order 2 such that

Pl IF supp(ff) = wi = W({6) "wy).
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Here (¢)"v is the concatenation of the singleton (/) and v i.e.
((6)"v)(k)=¢if k=0, and = v(k — 1) else.

By Lemma 2.25, the desired names for countable ordinals ¢';, ¢?;
and names ]fli, ]f2,- exist.

(g) Now finally we explain the successors to limit ordinals. If i is a limit
ordinal, j < i, and H = ({Y(P,,D.) : € € [j,i)} # 0 € D, then
HnNC CY(P;,D,). For limit ordinals i < wy, we let & be as
follows

& = min{o € Y(P}, D)) : (%) < i)(6 > &) A (Vi1 €9)
(2'6) ((gljl’ €2j17]i1j17 [2]'1) € Ms A Nj1 € MsN
GGl Gl £, £ are P dnames) |

The set of relevant §’s is in P, hence it is not empty, and &; is
well-defined. If H € P, we let § =sup{&; +1 : j <i}.
(i) Now we define R} € M, R! C &; is a P, N¢;-name of a c.c.c. forcing
notion. A member of R} has the form (u,g) such that
(@) u C{w-j+1: w-j+1 €&} is finite, g a finite partial
permutation of order two, dom(g) C [J.., w?, such that € € u
implies range(g) C w!.
(8) The sets dom(g) and range(g) are sufficiently large in the fol-
lowing sense:
o if § #% ¢ € u then we fix n, such that v5 [ n # v, [ n
and then require that for k = 1,2 the set {m gy~ ¢ : £ <
n} C dom(g) Nrange(g),
e Ve € dom(p), if € is Cohen coordinate and p(e) € 2", £ < n,
k = 1,2, then my~p, € dom(g) Nrange(g).

1
€

(7) If € € u then dom(g) Nw? is closed under f! and range(g) Nw

is closed under f2.
(0) For (u1,q1), (u2,g2) € R} we let (u1,91) < (ug, g2) iff

(i) w1 C ug,

(i) g1 C g2,

(iii) (Ve € u1)(Vn € w2 N (dom(go) \ dom(g1))(g2(n) € wl A

f2(g2(n)) = g2(f2(n))).

We let P, = P; xR;.
Now we show that P;y; has the N-c.c. Claim: If i; < ¢ then
Ri Cic R. and if Dy € N;, is a predense subset of P N &y * Ry,
then Dy is predense in P, N §; * R.
We prove this claim: P¢, IF R} C;c R} follows from the definition of
the orders R.
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Assume that Dy € N;, is an open dense subset of }P’;l Né&, *R;,, and

p=(p1&,p&,)) € (P;nixR,). We have to find a condition in

q € Dy that is compatible with p. Assume that pN¢;, II—P/{v p(i1) =
1

(u,g) and u, g are pinned down in V, not names. After possibly

strengthening p and g we can assume that g is so strong that it
fulfils:

dom(g) 2{myp) 1k : B € supp(p), B successor ordinal ,
Beuk < Ip(B) APy =Ps_y*(““w,9)}

range(g) 2{(fé)(mp(5)) : B € supp(p), B successor ordinal , 8 € u,
k< Ip(B) APy =Ps_q * (““w,)}

After possibly further strengthening p we can assume that p [ &,
determines Cg for j = 1,2 and determines Nf% restricted to the set on
the right-hand side of the first eqution, and determines flli’ on the
right-hand side of the second equation for any 8 € u. We assume the
analogous strength of p’ for all triples (p/, (v, ¢')) appearing later in
the proof. We assume that dom(g) € w and that dom(g) is larger
than any W2nN Wg for € # ( € u and that range(g) is a superset of
WQDWS for ¢ # ¢ € u.

Now we choose pg = (p | &,,uNé&iy,9)) € Mg, We choose qg = (qo |
&irs (Ugo» 9g0)) = D0, g0 € DNE;, MM, . Then gy does not determine
more of the v, than pg does. Then we take g1 > q¢ such that

@ = (qo [ & U{(e,q1(e)) = € € ugy ™ iy}, (ugo, 9g0))

where for each ¢ € u &,

q1(e) IF W(0™ ) N (dom(gy,) \ dom(g)) = DA

W (17 ) N (range(gq,)  range(g)) = 0.

This special point (not in [19, Ch. VIJ,[18]) is that the v;, n; are
really Cohen: Defining relevant generic objects that have a Cohen
real as domain allows us to carry on the oracle-c.c. and thus to
preserve the Cohenness of the n;. This main trick is also used in the
next section. Now ¢ is compatible with p.
So the oracle-c.c. of P} x R; is proved. Hence by the omitting types
theorem, n; stays Cohen generic over M; also in the extension by
Pl,..
Together with P; we choose D! such that (P}, D!) € K. In the limit
steps this is done as in the proof of Lemma 2.19 (C).

@4 Once the induction is performed, we define p,, = (Pw,, Dy, ) and p, €
K'and 7 = Ui<w1 m; which maps pijl onto p,, as follows:

(a) P, = U{P;N& *R; : i <wi},



Paper Sh:1021, version 2019-02-21_10. See https://shelah.logic.at/papers/1021/ for possible updates.

COFINALITIES 19
(¢) ™= U<y, mi is a isomorphism from P, onto P,, mapping Dy, to
Dy,
(d) Ajcw, Pi <Puwy € K2, N\icy, PL <P, € K.
This finishes the construction of a stronger member in in AP-forcing.
@5 Let
9= : I3, (u9)) € Gp, }

S

=Jlu : 3p39(p, (u.9) € G, }
We show:
((BLy, DL)ps) Fapag [U =N A g & (J{Gi i <wn)
Proof: By the construction of P, we have
(Vi<jeSNO)(fieM;A fiisaP, Njname).

The forcing P, adds a g: U.cpwe = U.cpy we that conjugates for
ieU, fle Gcil and f? € GC? ~ Gcil. If i € U then dom(ff) = w! =
Wi~ and g conjugates fl-1 and f? up to a finite mistake, by @3 ; item
(1)(6)(iii). So go f}og = f? up to finitely many arguments. But g is in
some subgroup G;. So for ¢! >i>j, i€ X, f? € GC}’ contradiction.
O

End of proof of Theorem 2.1:
We assume that S C w; is stationary and V = <>§. We extend V with
the forcing poset AP % Q. By Lemma 2.21, mcf = N; in the extension, and

by Lemma 2.26, cf(Sym(w)) = Na.

3. ON Con(b = cf(Sym(w)) < mcf)

Now we show that b = cf(Sym(w)) < mef is consistent relative to ZFC. In
[14] we established that it is consistent relative to ZFC that X; = b =g <
Ng = mcf. Brendle and Losada showed that g < cf(Sym(w)) in ZFC, see [7].
So the following theorem gives another consistency proof for Ny = b =g <
Ny = mcf.

Theorem 3.1. It is consistent relative to ZFC that b = cf(Sym(w)) < Ng =
mcf.

For the proof we will again work with oracle c.c.-forcing. Let D C [w]¥
be a filter over w. Then we write DT for the D-positive sets, i.e., X € DT
iff X NY is infinite for any Y € D.

Lemma 3.2. Let k > Ng be a cardinal in V. The (A), implies (B).
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(A), For every filter D C [w]¥ over w such that P(w)/D has the c.c.c. (that
is: for every A;, i < wi, such that A; € D% there are i # j such that
A;iNA; € DY) for every reqular ki < K, for every sequence (f; : i < Ky)
of functions f; € “w there is g € “w such that for unboundedly many
1< Ry, g <p fl

(B), After forcing with the forcing Q for adding Xy random reals (in a count-
able support iteration or with the measure algebra over 2“1) in the ex-
tension V@ for every non-principal ultrafilter D on w, cf(*w/D) > &,
and bV =bV°.

Proof. Assume (A), and that gy € Q forces “D is an ultrafilter over w and
(fa @ a < Ky) is increasing modulo D and k. < k”. So kK, is regular and
uncountable in V@ and hence regular and uncountable in V. We shall show
that there is g« > qo,

(@) g F3f € (“w) N\ fa<p
a<ry
and thus we will have established (B).
Since Q is “w-bounding, we can take g, € V for a € s, such that gg IFg
Céfa S* ga” .
We let

E={AePw)Y :(3BqeQq>qnrqlrAeD}
and we let §
D' ={AcPw) :qlFAcD}.

Then we have E, D’ € V and the following holds:

(1) D’ is a filter over w.

(2) EC (D). Let Ac E,say ql- A€ D, q> qp and let B € D'. Then
qglFAe DABED,soql-‘AN B is infinite.” Since A,B€V, ANB
is infinite. Since this holds for every B € D', item (2) is proved.

(3) (D) C E. Suppose that X ¢ E. Then Vq € Q, ¢ > qo implies that
qglF X € D, soq IF X ¢ D. Since D is a name of an ultrafilter
golF X € D. So X¢ € D' and X & (D')*.

(4) So together: (D')* = E.

(5) qo forces that D' is a c.c.c. filter. Proof: Let ¢ IFg Ay € (D)™ = E for
o € wi, via g4 > qo. Since Q is c.c.c there are a # 8 such that ¢, £ g¢3.
Then there is r € Q, r IF A, € D, Ag € D, and hence r I- A, N Ag € D
since D is forced to be a filter. So A, N Ag € D'*.

Let g be as in the condition (A),, applied to D' and (g, : a < k), so
for some cofinal set © C k4, we have for a € u C ks, 79 <pr go. Hence
for o € u, go I {n : g(n) < go(n)} € D and there is Go > qo, ¢o IF {n :
g(n) < ga(n)} & D. Thus g, IF {n : g(n) > go(n)} € D and the choice
of go implies g I {n : g(n) > fa(n)} € D. Since Q has the c.c.c., we
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have cf(k4) > w. Therefore k,-many of the g, are in the generic filter. So
for any Q-generic filter G with go € G we have f4[G] <p|g] ¢ for cofinally
many « € u. Hence a condition ¢, > qg forces this. Since the sequence
(fa @ a < Ky) is <p-increasing, we get g, I “(Vo < k4)(fa <p g).” Thus
Equation () and the first statement of (B), are proved.

%ince the forcing adding X; random reals is “w-bounding, we have bY =
bV, O

In the extension V@ of Lemma 3.2 we have cf(Sym(w)) = ®; by [17,
Theorem 1.6]. So if we succeed to establish the condition (A), of the lemma
together with b = Ny for some k > Ny, we are done. We fix a stationary
S C wy and take k = Ny and we work again with oracle-c.c. forcings in order
to establish the consistency of (A)y, and b = N;.

Lemma 3.3. We assume that in 'V, the set S is stationary in w1 and the two
diamond principles $s and $ysay,:cf(s)=x,} hold. Then there is an oracle
c.c. forcing notion P such that in VE we have (A)y, of the previous lemma,
and b = w1.

Proof. We fix in V a <*-increasing sequence (g5 : 0 < wi) that is <*-
unbounded. We fix an oracle M = (M. : ¢ € S) such that the M-c.c.
ensures that the type As_, = >* gs is omitted. Indeed, (g5 : 0 € w1) €
M{ < H(x) and My being the Mostowski collapse of M|, suffices for this. In
addition we fix a $yqon, : cf(a)=x, }-sequence (Ty, @ a € wa, cf(a) = Vy) € M.
In the following «, o’ will range over wo, 1, 7, €, (, £ over wy, and the letters
B, v, 0 will denote particular functions with values in wsy, wy, wi. We fix
a bijection b: 2<“ — w, a bijection ¢: 2¥ NV — wy and another bijection
ba: Ny — (P(H(w1)))?. By ¢s and Qfa<iy :cf(a)=x;} Such bijections exist.
A finite support iteration (Pn,Qg : f < wa,a < wa) is constructed by
induction on o < wy with the following properties:
(1) |Po| < g for a < wo
(2) P, has the M-c.c.

For an odd stage o € wo we force via Qo = C, and we conceive Cohen
forcing C in the form

{p : pis a partial function from 2<“ to 2, |p| < w}

and fix for n € 22 NV sets Aoy = {b((p(n [ 0),...,p(n [ n—1))) : n €
w,p € G} C w in the extension by C, where b is the bijection from above.
Note that for n # 7', Aay N Ay is finite. We write Af, . = A, c-1(-). Then
|Payi1] < Ny,

For even o < wy we define Q,, as follows: If cf(a) < wq, we let Q, be the
trivial forcing, i.e. Q, = {0}. Now let @ > 0. We assume that P, C w;.
Then every canonical Py-name (D, (f; : ¢ < wy)) for a subset of P(w) and
an wy-sequence of reals is a subset of H(w;). We say that 7' C « codesthe
canonical name (D, (f; : i <w1)) if 55T = (D, (fi : i <w1)).
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If cf () = wy and T, is a canonical P,-name of a pair (D, (me D <w))
such
P, IF “D contains the cofinite sets and P(w)/D is c.c.c.”

then we first fix in the ground model an increasing sequence (8(«, i) : i <
w1) that converges to « such that each f(«, i) is an odd member of ws.

Next we define by induction on ¢ < w countable ordinals as follows:
Y(a,0) = min{e < wy : fao € V8]

(3.1) . : P o :
V(o 1) =min{e <wi @ fa; € VA A (V) <id)(e > (o))}

Later it will be important that the vy(a, ), i < wy, are pairwise different.

Then for each i < w; we choose with the maximum principle a name
d(a,4) € wy such that

(3.2) Po 1= AGar(ai) sy € D-

We do not write the tildes under the names of the . For the existence of
such 6(c, i) we use the following claim.
Claim: For any ¢ < w; there are coboundedly many e such that

Pa I Ao (@i . € D-

Proof: Assume for a contradiction that ¢ < wj is a counterexample to the
claim. Then there are unboundedly many € € w; such that there is p. € P,
such that p. - Agq y(asi)),e) € D*. Since P, has the c.c.c. there is a P,-
generic G that that contains Ny many p. as above. Call this uncountable set
of e’s X. However for ¢ # &' € X, Py, IF Ag(a y(a,i)),e N AB(ay(ai)),e 18 finite.
This contradicts the fact that Py IF P(w)/D is c.c.c., and thus the claim is
proved.

We use only one §(a,i) and its value in w; is not important. However,

for the v(«a, 1), the pairwise inequality B(c,v(a, 7)) # B(a,v(a, j)) for i # j
is important, so that there are no conflicts between the various instances of
condition (6) below.

Once the (y(a,i),d(a,i) : i < w;) is chosen, we define in V¥ the forcing
Q. as follows: p € Q, iff

(1) = (up, hy),
(2) wup Cwi is finite,
(3) hp€“w.
Qo Ep<qif
(4) up C ug and

(5) hp < hg and
(6) if £ € up and
m e (w~\ A,B(a;y(a,{)),é(a,{)) N (dom(hq) N dom(hp))
then fq ¢(m) < hg(m).
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We show that by induction on o < wo that P, has the M-c.c. and
IPo| <Ny for a < wy. Since we take direct limits, the limit steps are covered
by [19, Ch. IV, 3.2]. The start of the induction is trivial. Now we look at
the successor steps Poy1 = Py, * Qa-

Odd a: Q, is the Cohen forcing. Any countable forcing has the M[P,]-c.c.
Putting this together with the induction hypothesis, P has the M-c.c.

Even «: Since P, has the c.c.c., there is a set of representatives of P,-
names of members of QQ, of size at most N;. Hence we can assume that
|Pati1| < Ry. To simplify notation, we assume that P, C w; and we assume
Py IF Qo Ne = {(u,p) € Qq : u C e}. We fix a witness Y (P,) € Zy; for
the M-c.c. of Py, i.e., for every € € Y (P,) for every I € M. that is a dense
subset of P, Ne, I is dense in P,.

We intersect Y (P,) with the club C' C w; of countable limit ordinals
that are closed under the functions y(«, ) and d(«, -) that are defined as in
equations (3.1), (3.2). Since P, is c.c.c. such a club can be found in the
ground model although d(a, ) is a name.

Next we prove that Y (P,) N C witnesses that P, has the M-c.c. Let
e €Y(P,)NC, D e M. be an open and dense subset of (P, Ne) x (QNe).
Let p € Py41. We have to show that there is ¢ € D that is compatible with

p

We write p = (p [ @, (Up(a); Pp(a))) and we assume that p [  determines
the finite sets u,(,) and hpq) so that they to elements of [wq]<“ and “~w

and that it also determines v(a, &) and 6(a, §) for any & € ).

The search for ¢ proceeds in four steps:

First step: We apply the induction hypothesis. We let D' = D N P,.
D' € M. is dense and open in P,Ne. Since P, has the M-c.c. and ¢ € Y (P,)
there is ¢ € D' N M. that is compatible with p | . We fix a witness r’ € P,
for compatibility.

Second step: We choose (', upq)) > p(a) to take a record of ' on its
finitely many Cohen coordinates by taking n € w so large such that

(Vm) (V€ € up(a)) (VB = B(a,7(a, §)) € supp(r'))

(3.3) /
(" IF (m & Ag(an(ag)sg)) = m <n).

Such an n exists since 1’ pins down only a finite part of the name AB(a(8,6)).6(csé)
for any £ € up(q) with B(a,v(a,§)) € dom(r’). Now we let dom(h’) = n
and on n ~\ dom(hya)) we fix some h/(k) > fo¢(k) for all & € upq). We let
q = (M, up(a))-

Third step: We go again into D N M.. With the maximum principle we
choose g(a) € M, such that ¢' IF g(a) >q, (up@) Ne ) Ag(a) € DalP4]
and let ¢ = (¢, g(«)). Then q¢ = (¢, q(a)) € M. N D.



Paper Sh:1021, version 2019-02-21_10. See https://shelah.logic.at/papers/1021/ for possible updates.

24 HEIKE MILDENBERGER AND SAHARON SHELAH

Fourth step: We show that p and ¢ are compatible. For any £ € u,) N\ €
we choose g1 (8(a, 7(0 €))) = (B, ¥(a €))) such that

(3 4) Q1(6(a’7(a7£))) ”_Qﬁ(a,'y(a,{)) (Vn € dom(hq@) ~ dom(h/)))
(n € Ag(ay(a)d@g))

We let
r=(a UL (8o, 70 ) ar(Blas 1(@.€))) = € € Uy N b,

(tp(a) U tg(a)s hq@)) :
The condition r is well defined, since for any § € w, \ €, the condition
a1 (B(a,v(a, §)) € P, can be chosen to be compatible with ¢'(3(c,v(a, §)),
by the choice of n as in Equation (3.3).
We show that » > p,q. First r a > p | a,q¢ and ¢ = ¢ | . We show

r [ o lbp, (Up(a) Utig(a) hga)) 2Qa (Ug(a) hg(a)s (Up(a), h')-
The first is trivial. For the latter, let £ € u,(,). First case: £ € Ms. We chose

(after Equation (3.3)) the function hq(a)(k:) such that it dominates fq ¢(k)

on any coordinate k not in dom(hyq)) such that 7' IF & € Agiay(a,e)).6(ae)-

Thus r [ « forces the relevant instances of clause (6) of r(«) > p(«).
Second case: § € uy) \ €. Since clause (6) speaks only about m €

W N AB(ay(a,6),8(as) Equation (3.4) implies 7 [ o lFp,, r(a) = q(a). O

Remark: We work with the assumption (5w, :cf(s)=x,}. Alternatively,
we could force as in the previous section by approximations of size N; in
a first step and thereafter force with the generic filter of the first forcing.
The diamond {5y, :cf(5)=x,} hands downs at stage a a possible Py-name
for objects D, (g; : i < Np) as in property (A)y, of Lemma 3.2 and thus
allows to construct a finite support iteration up to stage ws instead of using
an approximation forcing in a first forcing step. So our P in this proof
corresponds in the sense of the outline of the forcing construction to the
generic Q of the approximation forcing from the previous section.
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