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On some variants of the club principle

Ashutosh Kumar* Saharon Shelahf

Abstract

We study some asymptotic variants of the club principle. Along the way, we con-
struct some forcings and use them to separate several of these principles.

1 Introduction

For a regular uncountable cardinal x and a stationary S C eLim(k), the club principle &g
says the following: There exists A = (As: § € S) where each A; is an unbounded subset of
d of order type cf(d) such that for every A € [k]", there exists some (equivalently, stationary
many) J € S such that As C A. We say that A is a &g witnessing sequence. If x = w; and
S = eLim(wy) is the set of all countable limit ordinals, we drop the S and write &.

In [?], it was shown that &' does not imply & where &' is the following statement: There
exists A = (A; : 0 € eLim(w;)) where each A; is an unbounded subset of § of order type
w such that for every A € [w ™, there exists ¢ such that As\ A is finite. For some other
variants of the club principle, see [?, 7, ?].

Definition 1.1. Fora € (0,1] and a stationary set S C eLim(w:), the principle *Z says
the following: There exists A = (As : 6 € S) such that
(a) each As = {as, :n < w} and as,’s are increasing cofinal in & and

(b) for every A € [wi]™, there exists § € S such that

lim inf |{/{i <n:ask € A}| >q
n n

If S = eLim(wy), we write &2 By M we mean &M
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It is clear that &' implies &'™ and for 0 < a < b < 1, &™=? implies =2, At the end
of Section 1, we show that under CH, all of these principles are equivalent to diamond.

Theorem 1.2. Assume CH. Then for every a € (0,1], &= implies {>.
The bulk of the work in this paper is to show the following.

Theorem 1.3.
(1) '™ A —~&' is consistent.
(2) For every a € (0,1], &= A (Vb > a)~&™=0 is consistent.
(3) For every a € (0,1], ~&i"=e A (Vb < a)&™=0 is consistent.
In Sections 2-5 we prove Theorem ?7?(1). In Section 6, we supply the necessary modi-

fications to get parts (2) and (3). The forcing used is quite flexible and can be useful for
separating many similar principles.

In Section 7, we introduce &***=¢ (defined analogously) and prove the following in ZFC.
Theorem 1.4. For every a,b € (0,1), &*P=% is equivalent to &*'P=°.

Finally, in Section 8, we prove that
Theorem 1.5. &'P=05 A ~&3P21 45 consistent.

On notation: eLim(k) denotes the set of all limit ordinals below k. cf(«) is the cofinality
of a. S§f = {a < k : cf(a) = cf(§)}. For k < w, w* is the kth ordinal power of w with
under ordinal exponentiation. For a,b sets of ordinals, then we write a < b to denote
(Va € a)(VB € b)(a < ). In forcing, we use the convention that a larger condition is the
stronger one - p > ¢ means p extends .

1.1 CH and &

Recall that ¢ says the following: There exists (As : 0 € eLim(w;)) where each A; C §
such that for every A € [w|™, {§ € eLim(w) : As = ANJ} is stationary. An equivalent
formulation (see [?]) is the following: There exists (As : 6 € ®Lim(w;)) where each Ay is a
countable family of subsets of d such that for every A € [wi]™, {§ € eLim(w;) : AN € As}
is stationary.

Proof of Theorem ??: Assume CH. Suppose a € (0,1] and &™=% holds as witnessed by
A= (As:0 € oLim(w)). Let As = {5, : n < wy} list A; in increasing order. Using CH,
fix (B; : i < w;) such that each B; C i and for every B € [w;]=™°, there are uncountably
many ¢ < w; for which B = B;.

For § € eLim(w;), define A as follows. A € Ay iff for some u C w the following hold.

(a) liminf, [uNn|/n > a.
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(b) For every m < n in u, By;,, = Ba;,, Nsm and A =, ¢, Bas...-

neu

We claim that each A; is finite. In fact, |As] < 1/a. To see this assume otherwise and
let {Ay : k < K} be pairwise distinct members of As where Ka > 1. Choose (uy : k < K)
witnessing A, € Ai. Choose N7 < N, such that the following hold.

(i) (AxNasny, : k < K) has pairwise distinct members

(ii) |ug N[Ny, Na)| > (Ny — Ny)/K for each k < K

By (ii), it follows that for some j < k < K, [Ny,No) Nu; Nuy # 0. But if n €
[N1, N2) Nuy Ny, then By = Aj Nasy, = Ag N as, which is impossible by (i).

To complete the proof it is enough to show the following.

Claim 1.6. For every X € [wi]™, for every club E C wy, there exists § € E such that
CnNnoe As.

Proof of Claim ??: Construct (o; : i < wy) such that «;’s are increasing and for every
i <wp, X Nsup,; a; = B,,. Choose 6 € E and u C w such that liminf, [u N n|/n > a and
{asn :n €u} CH{a; i <wi}. It follows that X Nd =, ¢, Bas, € As. O

new

2 Creatures

Fix a family {Sy : k¥ < w} of pairwise disjoint stationary subsets of w; consisting of limit
ordinals. We describe a ccc forcing which is somewhat intermediate between adding N,
Cohen reals and adding a Cohen subset of wy.

Definition 2.1. We say that (CR, %) is an Wy1-CP (creating pair) if the following hold.

(A) We call members of CR creatures. For each ¢ € CR,
(1) ¢ = (dom(c), pos(c), f).
(ii) dom(c) is a non empty subset of wy of order type < w*.

(iii) For every limit 6 < wy, if dom(c) N is unbounded in &, then for some k > 1,
§ € Sy and otp(dom(c) N 6) = € + w’ for some e < w* and 1 < j < k - In particular,
for every 6 € Sy, dom(c) N o is bounded below §.

(iv) pos(c) (possibilities for ¢) is a countable set of functions from dom(c) to {0,1}
and f. € pos(c).

(v) If dom(c) is finite, then pos(c) = {f.} - We call such ¢ finite creature.

(B) For every finite u C wy, and f :u — {0,1}, there exists ¢ € CR such that dom(c) = u
and f. = f.

(C) For every § < wy, [{c € CR: dom(c) C 0}| < Ry.
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(D) 3 is a function with domain CR that satisfies the following.
(1) 3(c) is a countable set of finite tuples 0 = (), : k < n) where
(CL) 0 € CR,
(b) dom(c) =, dom(dy,),
(¢) dom(dy) < dom(Dy11) and
(d) whenever fi, € pos(d;) for k <n, U,., fr € pos(c).
(i) Cuts: If ¢ € CR and o € dom(c) then for some d = (0, : k < n) € X(c), there
exists k < mn such that min(dom(dy)) = a.
(111) (c) € X(c).
(iv) Transitivity: If (¢ : k <n) € E(c) and 0y : 1 < ng) € X(cx) for k < n, then
<Dk,l k< n,l < nk> € E(C)

(E) Finite joins: If {d; : k < n} C CR and dom(dy) < dom(dy41), then there erxists ¢ € CR
such that
(i) dom(c) = |J,.,, dom(dy),
(i) pos(¢) = {Uyp fi : (VE < n)(fx € pos(0x))},
(ii) fe = Ugen Jo, and
(iv) X(¢) = {Uicn fi + (¥i < n)(fi € S(2:))}-

Definition 2.2. Suppose (CR,X) is an Xy-CP. Define Q = Qcryx to be the forcing whose
conditions are p = {¢x : k < n} where ¢, € CR and dom(c;) < dom(cy1). We write dom(p)
for Ucep dom(c). For p,q € Q, define p < q iff for every ¢ € p, there exists 0 = (0, : k <
ny € X(c) such that {0y : k <n} Cq. DefineQ [ a={p € Q:dom(p) C a}. Let

f@ = U{f° : (Ip € Go)(d € p is a finite creature)}

Note that g fg : wi — {0,1}

Example: Let CR be the set of all finite creatures ¢ = (F,{f}, f) - So F' C wy is finite
and f: F — {0,1}. Let 3(c) be the set of all 0 such that the join of the members of d is
¢. Then forcing with Q = Qcgr» is same as adding ®8; Cohen reals. Note that this destroys
all old witnesses to &'™. We would later add more creatures to CR in such a way that
while some old &'™ witnessing sequences are preserved, all old &' witnessing sequences are
destroyed.

Recall that a forcing notion Q has N; as a precaliber if whenever {p; : i < w;} C Q, there
exists X € [w;|™ such that {p; : i € X} is centered - i.e., for every finite ' C X, there exists
p € Q such that (Vi € F)(p; < p).

Claim 2.3. Suppose (CR,X) is an N;1-CP. Let Q = Qcrx. Then Q has Ry as a precaliber.
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Proof of Claim ??: Suppose {p; : i < wi} € [Q]". Themap i — k(i) = sup(U,e,, dom(c)N
i) is regressive on Syp. Choose X; € [Sp]™ and k(x) < w; such that for every i € X,
k(i) = k(%) and for every i < j in X, dom(p;) Ndom(p;) C k(*). Using Definition ??(D)(ii),
by possibly extending each p;, we can assume that for every ¢ € p;, either dom(c) C k(%) or
inf(dom(c)) > k(x). Since {c¢ € CR : dom(c) C k(%)} is countable, we can find X € [X;]™
such that for every i € X, {c¢ € p; : dom(c) C k(x)} does not depend on i € X. Now for any
finite F' C X, |J,cp pi is a common extension of {p; : i € F'}. H

Claim 2.4. Suppose (CR, %) is an ¥;-CP. Let Q = Qcgryx. Let (p; i < wi) be a sequence of
conditions in Q such that for every i < j < wq, sup(dom(p;)) < sup(dom(p;)). Then there
exist X € [wi]™, (¢; : i € X), m < n < w such that for every i € X

(a) g € Q, ¢ > p; and dom(q;) = dom(p;),

(b) ¢ = {cix: k <n} and for every k < n —1, dom(c; ;) < dom(c; j+1),
(¢) for k <m, ¢ = ¢ does not depend on i € X.

(d) for every j < j' in X, dom(c;,—1) < dom(c;i ) and

(e) otp(dom(c;y)) does not depend on i € X.

Proof of Claim ??7: Just follow the argument in the proof of Claim 7?7 noting that
dom(p;)’s are unbounded in w;. O

3 Countable joins

In the course of club preservation arguments, we would like to be able to form new creatures
out of old ones in the following way. Suppose (g; : @ > 1) is a sequence of conditions in
Q = Qcr,» which forms a A-system of an appropriate kind - It satisfies clauses (b)-(e) in
Claim ??. We'd like to construct a new condition ¢ € Q such that ¢ IFg “lim, [{i < n :
¢ € Go}|/n=1and {i <w:q ¢ Gg} is infinite”. This will require us to add “countable
joins” of certain sequences of creatures to CR. This section introduces the countable join
construction.

Definition 3.1. For o < wy, we say that (CR,,%,) is a partial ¥,-CP at o if for some
N;-CP (CR, Y),

(1) CR, = CR| o= {c € CR:sup(dom(c)) < a} and
(2) B, =31 CR,

Definition 3.2. Suppose k, > 1, § € Si, and (CR,,%,) is a partial ¥;-CP at 6. Suppose
m<n<w,d €Sy fork,>1andd;, = (0,1 : k < n) satisfy the following for 1 <i < w.

(a) Di,k c CRp

(b) 0, ; =0, does not depend on i for j < m.

5
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(¢) dom(9; ) < dom(D; j11).
(d) dom(bm_l) < dom(bz-ﬂ,m).
(e) otp(dom(d; 1)) only depends on k.

(f) W =U{dom(0,1) : 1 <i <w,k < n} is unbounded in 6 and has order type & + w’* for
some e < wy and 1 < j, < k.

We say that (d; : i > 1) is a joinable candidate for (CR,,%,) at d.

For each N > 1 where N is a power of 2, we define new creatures ¢ = (dom(cy ), pos(cy), fer )
and ¥, (¢ ), as follows.

(1) dom(c}) = W and dom(cy) = J{dom(d;;) : N <i <w,m <k <n} for N> 2.

(2) fo =Ulfo, i1 <i<wk <n}and fo, = U{fo,, 1 N <i<wm <k <n} for
N > 2.

(8) 3,(ct) is the smallest family satisfying the following.

(i) (c) € Zu(c7).
(ii) Whenever j > 1 is a power of 2 and (0}, :i < j,m <k <n), (fix:i<jm<
k <n) and (g : k < m) satisfy (a)-(d) below, we have, under appropriate order

Haw b <m}ulJ{Fin i <jim <k <n}u{c} e ()

(a) 0;,, € CR, and dom(?; ;) = dom(0; ).

(b) i € [jr,72) + 3k € [m,n))@, # ix)}| < (2 — j1)/logy(j1) for every
2 < j1 < jo < j where 31,72 are powers of 2.

(¢) fix € B(0,)-
(d) g € B(0).
(4) For N > 2, ¥, (cy) is the smallest family satisfying the following.
(1) (cy) € Bulcy).

(ii) Whenever j > N is a power of 2 and (0;, : N < i < jym < k < n) and
(Fir: N <i<jm<k<n) satisfy (a)-(c) below, we have, under appropriate order

Ui <iom <k <n}U{c} € Sulch)

(a) 0;,, € CR, and dom(0; ;) = dom(0;y).

(b) {i € [j1,52) + 3k € [m,n)(0, # Vip)}il < (J2 — j1)/logy(j1) for every
N < j1 < jo < J where ji, jo are powers of 2.

(¢) fix € B(@}4)-
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(5) pos(en) = {Upex fox = {ox - b < K) € By(ci)}-

Let (CR,, %) be the partial X,-CP at 641 such that CR, = CR,J{c} : N > 1 is a power of 2}
with dom(cy,), pos(cy) and fo, as above, ¥ | CR, = ¥, and ¥ (¢yy) = L. (cy). We say that
(CR,, %) is the result of adding the countable join ¢, = ®;>10; of (; : 1> 1) to (X,, CR,).

Note that (CR;, ) is indeed a partial X;-CP at § + 1 because ¥ satisfies transitivity,
cuts and finite joins.

Lemma 3.3. Let (CR,, %) be as in Definition 7?7, Let (CR,X) be an Ni-CP such that
CR, = {c € CR: dom(c) C 6} and X)) = ¥ | CR,. Let Q = Qcrzx, p = {¢f = ®i»10;} and
pi = {0ix : k <n}. Then

1

plhg lim L= P € Gl
Q j j

Proof of Lemma ??: It suffices to show that for every p; > p and j, > 29 there exists
P2 > pp such that

< 7,0 €G 8

{i<y P o o4 '
Jx log, j«

Since p; > p = {c}}, we can find ps > p; and jy > j, such that jy is a power of 2 and

P2 ”‘Q

U{ﬁkik<m}UU{¥i,kii<jo,mSk?<”}U{C§o}§P2

where (0, i < jo,m < k <n), (fix 1@ < jo,m <k <n)and (g : k < m) are as in
Definition ?7(3)(ii).

Choose N > 10 such that 2V < j, < 2¥+1. Then p, forces that

{i < j.: pi € Ggl 2l 97\ N+l _ 9N 1 1
>1-( Y - >1-( Y )
' = i Nj, = = 2NN

I 1<5<n I Sen

Since 21§j<N/2 1/(j2V77) < N/2N2 < 4/N (as N > 10) and ZN/2§j<N 1/(j2NV77) <
2/N, it follows that

< e 4 2 1
p2|FQ|{Z<J pGG@}|21_< ) 8

— 4 — 4+ =
Jx
[

Definition 3.4. (CR,X) is a thin ¥;-CP if (CR,X) is an R;-CP and there exist S and
(¢cs : 0 € S) such that the following hold.

(a) S C Ukzlsk‘
(b) ¢s € CR.
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(c¢) For every k, > 1 and § € SN Sk,, letting (CRp,X,) be the partial X,-CP at § satisfying
CR,=CR |0 ={ce CR:sup(dom(c)) < d} and ¥, = X | CR,, there exists a joinable
candidate (9; : i > 1) for (CR,,X,) at 0 such that

(i) ¢5 = @izlﬁi and

(i) CR, = {c € CR: dom(c) C 0} and X}, = X | CR, where (CR,, %) is the result
of adding ®;>10; to (CR,,%,).

(d) ¢ € CRiff ¢ is a finite join of {0 € CR: 0 is finite} U|J{X(c5) : 6 € S}.

Claim 3.5. Suppose (CR, %) is an Xy-CP as witnessed by S, (¢s : 6 € S). Suppose ¢ € CR,
ke > 1,6 € Sk,, dom(c) is an unbounded subset of 0. Then there exist ¢ = (¢, : k < k1) € X(c)
and d = (0 : k < ko) € X(c5) such that ¢, = O,.

Proof of Claim ??: Easily follows from Definition ?7. O]

4 Guided products

Definition 4.1. Suppose (Qq : a < wy) and (p; : § € S32) satisfy the following.

(1) Qo = Qcr, x, where (CR,,%,) is a thin R;-CP.

(ii) ps is a function whose domain is a countable unbounded subset of § and for every
a € dom(p;), p5(a) € Q.

For v < w,, define a forcing P, as follows.

(1) p € Py iff
(a) p is a function, dom(p) is a countable subset of ,
(b) for every a € dom(p), p(a) € Q, and
(c) for every 6 <~ with cf(0) = Ry, if dom(p) N ¢ is unbounded in &, then for some
n<0,pln0)=p;l1n0).

(2) Forp,q € P, define p < q iff dom(p) C dom(q) and for every o € dom(p), p(a) <gq,
q(a).

We say that P, is the countable support product of (Qq : o < wy) guided by (p5 : § € S32).
Note that for cf(y) = Ry, P, is completely determined by (Qq : av < y) and (pj : § <, cfd) =
Ng).

Claim 4.2. Let (Q, : o < wy), (p5 : 0 € S%2) and P, for v < wy be as in Definition 77.
Then the following hold.

(a) Py =Py x Q.

(b) P, satisfies ccc.
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Proof of Claim ??7: (a) is obvious from the definition of P,. (b) follows from Claim ??
below and the fact that each Q, has X; as a precaliber (Claim ?7?).

Claim 4.3. Suppose v < wy and (p; 1 i < wy) is a sequence of conditions in P.. Then there
exists X € [wi1|™ and a finite F C wy such that for every a € wy \ F, if there are i < j in X
such that o € dom(p;) N dom(p;), then (Vi € X)(a € dom(p;) and p;(a) does not depend on
ieX).

Proof of Claim ?7: By induction on v < ws. If v is a successor or v = wy, this is trivial.

Suppose cf(y) = Ry and let (p; : i < wy) be a sequence of conditions in P,. Let
(Yo : m < w) be increasing cofinal in . For each i < wy, choose n = n; < w such that
either p; € P, or p; [ (Vn,7) = P5 | (,7). Choose X € (w1 and n, < w, such that
(Vi € X)(n; = n,) and apply the inductive hypothesis to (p; [ 7., : 7 € X).

Next suppose cf(y) = w; and let (p; : ¢ < ws) be a sequence of conditions in P.,. Choose
(7; 11 < wq) continuously increasing and cofinal in v such that cf(v;) = Ry for every i < wy.
For each i < wy, choose j = j; < 7 such that either p; [ v; € P, or p; [ (75,7%) = 05, [ (05, 7)-
By Fodor’s lemma we can get S € [w;]™ and j, < w; such that (Vi € S)(j; = j.). Choose
X € [S]™ such that for every i < j in X, dom(p;) Ndom(p;) C v;,. Now apply the inductive
hypothesis to (p; [ v;, : ¢ € S). ]

Lemma 4.4. Let (Q, : a < wa), (p5 : 0 € S5.) and Py, be as in Definition 77. Then
VP ): —\&1.

Proof of Lemma ??: Towards a contradiction, suppose py € P,, (14015 ={dasn :n <w}:
§ € eLim(w;)) € V¥ are such that py I+ “(V§ € eLim(w;))({Gsn : n < w} is increasing
cofinal in &) and (A5 : § < w;) is a &' witnessing sequence”. Since P, satisfies ccc, we can
find v < wy such that py € P, and each &y, is a P,-name.

Let X = {o < wy fOQ7 = 1}. Then X € VP+ and VPt £ X € [w|™. So there
exist p; € Py, ¢ € Q,, 0 € eLim(w;) and n, < w such that p; > py and (p1,q) ke, (Vn >
n,) (s, € X). Note that we must have that dom(¢) N is unbounded in § otherwise we can
easily extend (p1, ¢) to get a contradiction. By possibly extending ¢, by Definition ?7(D)(ii),
we can assume that ¢ = {¢, : k < K, } where dom(c;) < dom(cx1) for every k < K, — 1 and
for some K < K,, dom(ck) is an unbounded subset of 9. Let S, and (¢, : 0 € S,) witness

that (CR,,%,) is a thin X;-CP. By Claim ??, we can further assume that c¢x = ¢, for some
(¢, :n < K') € X(cy5).

Let m <n <wand 9; = (0,4 : k < n) for i > 1 be as in Definition ?? and ¢, 5 = ®;>10;.
Then as (¢, : n < K') € ¥(c,5), we can find N > 1 a power of 2 such that cx = ¢, = ¢} in
the notation of Definition ?7.

Choose p; € Py, p2 > p1, n(1) > n, and o > min(dom(cy)) such that ps IFp G5,0) = a.

We can assume that o € dom(cy) - Otherwise letting ¢, be a creature with domain {a}
and f,, (o) = 1, we have ¢ = qU {¢,} IFg, a ¢ X so that (ps,q') forces a contradiction.

9
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Choose i(x) > N and m <
power of 2 such that i(*

k(x) < n such that o € dom(0;(,)x). Let Ny > N be the largest
2 Ny and let j > i(x) be a power of 2. Choose a creature 0;,, , k(x)
do

( (0.k(x) and § € S(0! ix).k(x)) Such that for some finite ¢, € f,

)
such that dom(0},, ) =
) = It follows that, under appropriate order

dom(c,) = {a} and f;, («

{oin N <i<jom<k<n,(i,k) % (i(x), k() } UFU{c}} € Z(cx)

Let ¢ = (¢ \ {ex ) U{oip : N<i<ijm<k<n,(i,k) # (i(x),k(x))} UfU {c;} Then
(p2,q') > (p,q) and ¢' IFq, ¢ X - Contradiction. O

5 &lim and —|&1

We define a preparatory forcing R which generically adds (Q, : o < ws) and (pj : 6 €
Sk.) satisfying Definition ?7(i)-(ii) using countable approximations. This ensures that the
resulting guided product IP,,, preserves a &'™ witnessing sequence A which is also added by
R via countable approximations.

Deﬁnitign 5.1. Let R be a forcing whose conditions are r = (uy, 6y, (Qp0 : @ € u,), vy, (pjf’a :
a € v,), A,) where

(a) u, € [wo]=N, 6, < wy,

(b) Qo = U£<5 (QcR,.0,500 | &) for some thin R,-CP (CR,.o, Xr.o) as witnessed by (Sy.q; (¢ra6
d € Spa)) - Soonly S; oM and (¢ras: 60 € S,4N0,) are relevant,

(¢) v, CuneLim(wy) and for every a € v,., u, N« is unbounded in c,

(d) pr is a function with domain an unbounded subset of u,Na and for each § € dom(py ),
Pra(§) € Qra and

(e) A, = (A, v € eLim(w) NJ,) where each A,., is an unbounded subset of v of order
type w.

Forr,s € R, define r < s iff the following hold.
(/l/) u"" g uS) 67" S 68‘

(i1) For every a € Uy, Spo N0 = Ssa N0y and ¢, o5 = €505 for every 6 € S, No,. It follows
that Q, o C Qs and for every p € Qs 4, if dom(p) is bounded below 6,, then p € Q, 4.

(11i) v, C vs and for every o € vy, pk, = Pr.,.

(iv) A, = A, | (eLim(w;)N4,).

Claim 5.2. R is countably closed and hence it preserves stationary subsets of wi. Under
CH, it satisfies Rg-c.c. and therefore preserves all cofinalities.

10
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Proof of Claim ??: It is clear that R is countably closed. Next let {r; : i < wy} C R.
Using CH, we can find X, € [wy]™? such that (u,, : i € Xj) forms a A-system with root u,.
By possibly extending each r;, we can assume that wu,, \ u, # 0 for every i € X,. Choose
X € [X]* such that the following hold.

(i) For every 4,j € X with i < j, sup(u,) < min(u,, \ u.) < sup(uy, \ u.) < inf(u,, \ ).
(i) (v, 13 € X) forms a A-system with root v, C u, .
(ili) d,, = 0, does not depend on i € X.

)
)
) 6
(iv) For every a € uy, Q;, o = Q, does not depend on i € X.
(v) For every a € v,, py. , = pj, does not depend on i € X.

) A

(vi = A, does not depend on i € X.

For clauses (iv), (v) and (vi), we use CH. It is clear that any two conditions in {r; : i € X'}
have a common extension. ]

From now on we assume CH. The next claim is easily verified.

Claim 5.3. Fach of the following sets is dense in R.

(a) {r e R:a €u,} fora <ws.
(b) {r e R:0, >3} ford < w.
(c) {reR:5€v} ford e Sy

Let Gg be R-generic over V. Work in V; = V[Gg]. For a < ws, define Q, = [J{Q; :
r € Ggr,a € u,}. Note that for every a < wo, Sy = U{Sra Ndr : 7 € Gr,a € u,}
is a stationary subset of |J,o, Sk and Vi = “(Va < w2)(Qs = Qcr,x, for some thin
N;-CP (CRy,%,))”. For § € Sye, let p5 = pr,; for some r € Gg with § € v,. Let
A= (A5 :6 € oLim(wy)) = U{A, : r € Gr}. Let {as, : n < w} list A; in increasing
order.

Let P, € Vi be the countable support product of (Q, : o < wy) guided by (pj : § € S§2).
Note that, since R is countably closed, the set of conditions (r,p) € R x P, satisfying the
following is dense in R x P, .

(a) pis an actual object.
(
(c) (Vo € dom(p))(p(a) € Qpa).

)

b) dom(p) C w,.
)

(d) For every a < wy of cofinality Ny, if dom(p) N« is unbounded in «, then « € v,..

11
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So we can assume that our conditions in R x P, have this form.

Theorem 5.4. Vl]P“Q = &l A !

Proof of Theorem ??: That VF“Q = —! follows from Lemma ??. We'll show that A
witnesses ™ in V, “2. Suppose (74, p) FReP, A € [w]™. We'll construct (r,p) > (74, p)
and 0 < w; such that

[{k <n:dspe A}
n

1

(T, p) H_]R*]P’WQ hm

Choose ((7,pi, i) : @ < wy) such that the following hold.

(1) (rispi) = (res ps)-

(ii) For all i < j < wy, ry <g 7y, sup(u,,) < sup(u,;) and 1 < 6,, < 4,.,.
(ili) For every i < wi, sup(lJ,.; dom(p;)) < sup(dom(p;)).
)

(iv) For every i < w; i € u; and for every o < sup(u,,), there exists j € (i,w;) such that
Q€ Uy, So Ui<w1 Up, = iy € [wr,wq) and cf(ay) = V.

(v) For every § < a, with cf(d) = No, there exists ¢ < w; such that 6 € v,,. Hence
Uicw, v = {0 < a2 cf(9) = Ro}.
(Vi) (7i:i <wi) is a strictly increasing sequence in wj.
(vii) (ri,pi) -y € A

Claim 5.5. There exist F C wsy finite and X € [w]™ such that for every a € wo \ F, if
a € dom(p;) N dom(p;) for some i < j in X, then (Vi € X)(a € dom(p;) and p;(a) does not
depend on i € X).

Proof of Claim ??: For o < e, let Q) = J{Q}, 0 : ¢ < w1, € u,, }. Then Q) is a thin
N;-CP. For § < a, with cf(d) = Ny, let pj = p;, 5 where i < w; and § € v,,. Let P,, be the
countable support product of (Q, : o < ) guided by (p} : § < ay, cf(d) = V) so that each
p; € P,, . Now apply Claim ?7. O]

By shrinking X and F, we can assume that for every i € X, F C dom(p;). Let
W = (\,ex(dom(p;) \ F) and Y; = dom(p;) \ (FFUW). Then (Y; : i € X) is a sequence
of pairwise disjoint non empty countable sets. By shrinking X, we can also assume that for
every ¢ < j in X, sup(Y;) < min(Y;) and otp(dom(p;)) does not depend on i € X.

By Claim ??, we can find X; € [X]™ such that for every a € F exactly one of the
following holds.

(A) For every i € Xi, p;(a) = g, does not depend on 1.

12
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(B) There are m = mq,, n=n,, m <n <w and (g, : © € X;) such that for every i € X7,
(i) Gia € Qr, 0 dom(gia) = dom(pi(a)) and 7; IFg pi(@) <q, Gia;
(i) ¢io = {Vi0k : k < n} and for every k < n — 1, dom(; ox) < dom(d; 0 k+1),
(ili) for every k < m, 0; 4 = 04 does not depend on i € Xy,
(iv) for every j < j' in X, dom(4n—1) < dom(d; 4.m) and
(v) otp(9;0k) = baxr does not depend on i € X; and 1 < k, < w is such that

Ga,k < whe,
Let Fy be the set of a € F for which case (A) holds and Fy, = F'\ Fy.

By reindexing, we can assume that X; = w;. Let k, = max({k, + 2 : a € F}). Put
Y =U,.,, Yi- Choose a club £ C w; such that for every 6 € E, the following hold.

(a) For every i < 0, there exists j < ¢ such that sup(u,, NY) < sup(Y;).
(b) sup({6,, i < 6}) = 6.

(c) For every o € F, sup({dom(g;(c)) : i < 6}) = 6.

(@) sup({ i < 6}) = 5.

Fix 6 € Si, N E and let (i(n) : n < w) be increasing cofinal in §. Let a, = sup({Yiw)
n < w}). We can assume that o, ¢ FUW - Just pick a sufficiently large 6 € Sy, N E. Define
r € R as follows.

(a) ur = U, tryy U{ont, 6, =6+ 1.

(b) For a € u,, choose Q,.4, (CR, 4,2, 4) and (Sya, (€06 : 0 € Spa)) as follows.

(i) If o € u, \ (F1 U{a,}), choose a thin N;-CP (CR,,, X, ,) with witnessing pair
(Sras (€ras @ 0 € Spq)) such that for every n < w, Syo N Oim) = Sn(n),oz N () and
Cra,6 = cri(n),a,é for every NS Sr,a N 61(71) So Un<w Qri(n),a - @ra = QCRT,Q,ERQ r J.

(ii) If a = o, choose Q,.4, (CR,4,%,4) and (Sy.qa, (/a5 : 0 € Spq)) arbitrarily.

(ili) If o € F}, choose a thin R®;-CP (CR, ,, X, o) with witnessing pair (S, 4, (€6 :
d € S,.q)) such that for every n < w, Sy, oNd;n) = SriimyaV0i(n)s Cra,8 = Cry(y) 0,6 fOT EVETY
§ € SraNbin), 0 € Sra and ¢ 05 = Bp>1(im)ak 1 K < Na) Where (0im).ak : k < ng) is
from clause (B)(ii) above. Put Qo = Qcr, .5, | 0.

(C) Up = Un<w vri(n) U {Oé*}'

(d) For @ € vy, Pro = Pry, 0 and pf,, = Upew Pitn) [ Yigm)- So dom(p,.) is an
unbounded subset of u, N .

(e) A, = Un<w flri(n) U {6, {Vigm) : n < w})}.

Next define p as follows.

13
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(i) dom(p) = FUW Ul

n<w

(ii) If a € Fp, then p(a) = g, where g, is from clause (B) above.

(iv) If @ € W, then p(a) = pj(n) () which does not depend on n < w.

)
) )=
(iii) If o € Fy, then p(a) = {¢; 06}
) )=
(v) For every n < w, p [ Yitn) = pitn) | Y-
It is clear that (r.,ps) <g.p,, (r,p). By Lemma ?7,

[{k <n: (rig, pigr)) € Graro,

(7, p) Frap,, liyrln - =1
Hence
k< i(k) € A
(r,p) |FIMDW2 lim 1 SN J =1
n n
Since A, 5 = {%(n) :n < w}, the result follows. O

6 On *infza

Definition 6.1. For a € (0, 1], the principle &>~ says the following. There exists A =
(As = 0 € eLim(wy)) such that each As = {as, : n < w} where as,,’s are increasing cofinal
in § and for every A € [w|™ and b < a, there exists some § such that

|{k<n:a§’k€Asz

lim inf
n n
Theorem 6.2. Let 0 < a < 1 and suppose for every b < a, &™=* holds. Then &™>~
holds.

We need two lemmas.

Lemma 6.3. Suppose Jomf>a holds. Then there exists a partition (S; : i < wq) of S into
stationary sets such that for every i < wy, &mf>a holds.

Proof of Lemma ??: Fix a witness A = (A5 : 6 € S) for &mba where each A5 = {as,,
n < w} and as,’s are increasing cofinal in §. Note that if a € (0.5, 1], this is easy - Choose
(X; i <wp) where X;’s are pairwise disjoint unbounded subsets of w; and let

H{k <n:as € X;}
n

S; ={6 € S:liminf > a}

Since a > 0.5, S;’s are pairwise disjoint and for every Y € [X;]™, there are stationary
many 0 € S; such that

lim inf Hk <n:as, €Y} >
n n

14
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Fix i < wy and let {ag : & < wy} list X; iri increasing order. Choose a club ¥ C w; such
that for every 0 € E, sup;_sa¢ = 6. Define C'= (Cs : § € S;) as follows. If § € ENS;, put

Cs = {€ : ae € As}, otherwise choose C; arbitrarily. It is clear that C' witnesses glf>“

In the general case, S;’s may not be pairwise disjoint but for any F' € [w;]¥, where
Ka > 1, we have ;. S; = 0. For Y Cwy, let S(Y') be the set of 6 € S such that

lim inf |{]€ <n:ask € Y}l >
n n

Claim 6.4. There exists (Y; : i € W) such that W € [w|™, each Y; € [X,]™ and for every
i€ W and Z € [Y;]™, S(Z )\ Ujewni S(Y;) is stationary.

Proof of Claim ??: Let F be the set of Y = (Y; : i € W) where W € [w;]™ and each
Y; € [X;]M. For Y = (Y; :i € W) € F, let n(Y) be the least n such that for every F € [W]",
Nicr S(Y;) is non-stationary - So 2 < n(Y) < K. Let N = min{n(Y) : Y € F} and fix
Y = (Y, :ie W) with n(Y) = N. It suffices to show that for every i, € W, there exists
j € W such that j > i, and for every Z € [V}, S(Z2) \ |U{S(Y}) : i <y, i € W} is station-
ary. Towards a contradiction, suppose this falls for some i, € W. Let W' = W \ (i, + 1).
For each j € W', choose Z; € [V;]** such that S(Z;) \ U{S(Y;) : i < iy, € W} is non-
stationary. Let Z = (Z; : j € W’). Then n(Z) > N, so we can find F € [W']¥~! and
such that (), S(Z;) is stationary. It follows that there exists i € W such that i < i, and
Njer S(Z )ﬁS (Y;) is stationary. Hence (;cpy g,y S(Y;) is also stationary: Contradiction. [

Let (Y; :i € W) be as in Claim ??. Fori € W, let T; = S(Yi) \ U, ey S(Y;). Then each
T; is stationary and for every Z € [Y;]™1, there are stationary many § € T; such that

i inf Hk <n:as, € Z} >
n n

We can now proceed as before to get a &mf * witnessing sequence from (A; : 0 € T;).
This completes the proof of Lemma ?77. O

Lemma 6.5. Suppose &mf>a holds and S = S1 U Sy. Then one of &mba &isngfza holds.

Proof of Lemma ??: Fix a witness A = (A;: 6 € S) for &mf>“ where each A5 = {as,,
n < w} and ag,’s are increasing cofinal in §. Suppose Jomf>a fails and choose A € [w;|™

such that for every § € S;

k : A
lim inf [{k<n Yok € } <a
n n

Since A is g‘fza witnessing sequence, it follows that for every B € [A]™, there are

stationary many § € S, such that

lim inf {k <n:asy € B} >
n n
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> .
Now we can construct a &g‘ =a witnessing sequence as above. O

Proof of Theorem ??: Let (a, : n < w) be an increasing sequence with lim, a,, = a. For
each n, using Lemma 77, choose a sequence (S,; : i < w;) of pairwise disjoint stationary
sets such that Joglfa" holds. For m < n < w, define W,,,,, = {i < wy : J.‘Snizi“" holds}.

First suppose that for some m < w, there are infinitely many n > m such that W, ,, is in-

finite. Let (n(k) : k < w) list such n’s in increasing order. Inductively choose i(k) € W, ne)
such that i(k)’s are pairwise distinct and &?Da"(’c) holds. Since (Sp, k) : k < w) consists of

pairwise disjoint sets, the result follows.

So we can assume that there is no such m. Inductively choose a strictly increasing se-
quence <m(k) . k < w) such that for every n > m(k + 1), Wiy, is finite. Let W =

U{Wm(]) . j < k < w} and choose i > sup(W). Put T, = Spkyi \ Ujck Smay,s and
T, = = Si(k),i \T k- Then T}’s are pairwise disjoint, Sy, = T U T, and by our choice of i,
&;lg>am(k) does not hold. Hence, by Lemma ??, Jo;f >a"’““) must hold and we are done. [

Proof of Theorem ?7(2): Fix 0 < a < 1. We indicate the essential changes in the proof of
Theorem ??(1) to get a model of &™=% A (Vb € (a, 1])~&™=b. Define a modified countable
join as follows. In Definition ??, replace Clause (3)(ii)(b) by (b,) and Clause (4)(ii)(b) by
(bsx) below.

(by) [{i € [2,51) : (Fk € [m,n)) (0] # i)} < 511 — a) for every 2 < jy < j.
(bee) i € [N, 1)« 3k € [m,n)) (0}, # 0ik)} < (1 — N)(1 —a) for every N < jy <.
Note that this gives rise to a transitive 3, there. Lemma ?7? gets modified to the following.

Lemma 6.6. Let (CR,, %)) be as in Definition 27 with (b,) in place of Clause (3)(ii)(b)
and (b..) in place of Clause (4)(ii)(b). Let (CR,X) be an Ny-CP such that CR, = {c € CR:
dom(c) C 0} and ¥, =X | CR;,. Let Q = Qcry, p = {¢} = @i>10:} and p; = {0k : k < n}.
Then

{i <j:pi€Gol S
i >
Next, Lemma ?? gets replaced by the following.

p kg lim inf
j

Lemma 6.7. For every b € (a, 1], VP | ~&nizt,

Proof of Lemma ??: Fix V' € (a,1]. Towards a contradiction, suppose py € P, (A5 =
{Gsn:n <w}:d € oLim(w)) € VP2 are such that py IF “(V6 € oLzm(wl))({d(gn n < w}
is increasing cofinal in 6) and (As : 0 < w;) is a ™=V witnessing sequence”. Since P,
satisfies ccc, we can find v < wy such that py € P, and each &y, is a P,-name. Fix b € (a, V).

Let X = {o < wy ﬁ@w = 1}. Then X € VP and VPt £ X € [w|™. So there
exist p; € P, ¢ € Q,, 6 € eLim(w;) and ny < w such that p; > py and (p1,q) ke, (Vj >
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no)(|{i < j: &s; € X}| > jb). We must have that dom(g) N § is unbounded in § otherwise
we can easily extend (p1,q) to get a contradiction. By possibly extending ¢, by Definition
??7(D)(ii), we can assume that ¢ = {¢; : & < K,} where sup(dom(cy)) < inf(dom(cjy1)) for
every k < K, — 1 and for some K < K,, dom(cg) is an unbounded subset of 6. Let S, and
(cy5: 0 € S,) witness that (CR,,X,) is a thin X;-CP. By Claim ??, we can further assume
that ¢ = ¢, for some (¢}, : n < K') € E(cy).

Let m <n <w and d; = (9,4 : k < n) for i > 1 be as in Definition ?? and ¢, 5 = ®;>10;.
Then as (¢}, : n < K') € 3(c,5), we can find N > 1 a power of 2 such that cx = ¢}, = ¢}, in
the notation of Definition 77.

Choose py € P, p» > p1, n, > ng a power of 2 and «,,, > min(dom(cy)) such that
p2 ke, Q5n, = an,. Put ¢ = (a + 0)/2. Let n, > n, be a power of 2 such that
Ny /Nuxe < (b —¢)/(1 —¢). Choose p3 > py and (v, : n € [n4, n.)) such that for ev-
ery n € [N, M), P3 IFp G5n = . Let ' = {a, ¢ dom(q) : n € [n.n.u)}. Let
¢ = qUU,cr{0a} where dom(d,) = {a} and fy, () = 0. If F' is empty, put ¢’ = ¢.

Now it is possible to choose g € ¥(cj) such that letting ¢ = (¢ \ {c}}) U g forces
{n € [ne,ne) on & X} > (1—c)(n. —n,) - We leave the details of this to the reader. This
means that (ps,q”) forces that [{i < ny, : as; € X}| < ny + (g — ny) < bny, which is a
contradiction. O]

Now the remainder of the proof is exactly the same except for the fact that at the end
of the proof of &™Z¢ we use Lemma ?? in place of Lemma ?7. O

Proof of Theorem ?7(3): Let (ay : k > 1) be an increasing sequence with limit a. Proceed

{ax
as in the proof of Theorem ?7(2) with the following modification for countable joins. In
Definition ?7, replace Clause (3)(ii)(b) by (b*) and Clause (4)(ii)(b) by (b**) below.

(b) i € [2,51) : Gk € [m,n))
(b*) [{i € [N, 1) : (3k € [m,n)

(0;7,~C #0,1)}H < j1(1 — ay,) for every 2 < j; < j.
)( ;k # 0} < (1 — N)(1 —ay,) for every N < j; <.

The rest of the proof is similar to that of Theorem ?77(2). We leave the details to the
reader. [

7 On &P

Definition 7.1. For a € (0,1] and S C eLim(w,) stationary, the principle &5P7% says the
following: There exists A = (As : § € S) such that

(a) each As ={asn :n <w} and as,’s are increasing cofinal in 6 and
(b) for every A € [wi]™, there exists § € S such that

k<mn: A
lim sup [{k <n:as, € A}l >
n n
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As usual, if S = eLim(w), we just write &*P=2.
The following remark describes the situation in the Cohen and the random reals models.

Remark 7.2. (1) Suppose V |= & and let P be the forcing for adding Ro Cohen reals.
Then VF = &=L A (Va > 0)~&™= Moreover, the following fails in V¥: There ewists
A= (A5 : 6 € oLim(w;)) where each As = {5, : n < w} and as,,’s are increasing cofinal
in § such that for every A € [wi]™ and & > 0, there exists some & such that

lim inf [{k <n:ask € A} > e
n n

(2) Suppose V |= & and let P be the forcing for adding Ny random reals. Then VY = (Va >
0)—~&=% Moreover, the following holds in VF: There exists A = (As : 6 € eLim(w;))
where each As = {as, : n < w} and as,’s are increasing cofinal in § such that for every
A € [wi]™, there exists € > 0 and & such that for every sufficiently large n,

|{k<n:a5,k€A}|Z€
n

We now prove Theorem ?? - For all a,b € (0,1), &5*~* is equivalent to &Zupzb. For this,

it is clearly enough to show the following.
Lemma 7.3. Let a € (0,1) and a <b < +y/a. Then &S‘Sur)za implies &Ssupzb.

Proof of Lemma ?7?: Let A= (A;:0 € S) witness &3P~". We can assume that A is not
a &Z‘mzb witnessing sequence. Choose A € [w;|¥ such that for every § € S, for every large
enough a < 9
|A NAsN a|
|A5 N Oz|
Let S’ be the set of § € S such that
. |A NAsN Oé|
limsup ——— >
ass |AsNal
Then S’ is stationary. For § € §', define Bs = As N A.

Claim 7.4. For every B € [A]® there are stationary many § € S’ such that

y |BN BsNal _—
msup ——— =2
a—0d |B(5 ﬂa!

Proof of Claim ??: Suppose not. Choose B € [A]* and W C S’ non stationary such
that for every § € S’ \ W, for every large enough a < §, we have
‘B N Bs N a|
’Bg N Oz|
Since B C A, we can choose 6§ € S"\ W such that

<b
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li ‘BﬂAgﬂO&‘
imsup ————
a—>6p |AsNa|  —
Now for every large enough o < ¢, we have
|BN BsNal |[ANAsNal e
|B§ﬂ0&| ‘AgﬂOz‘

Since BN Bs = BN As and BsNa = AN As N a, we get

BﬂAgﬂOz

<b<a
As N

which is impossible.

Let {a; : i < wi} list A in increasing order. Let E' C w; be a club such that for
every i € I, sup,;a; = i. Define C = (Cs : 6 € S) as follows. If § € ENS’, then

Cs ={j <0 :a; € Bs}. Otherwise, choose Cj to be an arbitrary unbounded subset of § of

order type w. It is easy to check that C' witnesses &yP=". O

8 _I*supzl and *Sup>1—

Definition 8.1. The principle &°>1~ says the following: There exists A = (As : 0 €
e Lim(wy)) such that

(a) each As = {as, :n < w} and as,’s are increasing cofinal in 6 and
(b) for every A € [wi]™ and & > 0, there exists some 0 such that

E<n: A
lim sup it n:as € A}l >1
n n

— &

To prove Theorem ?7?, it is enough to show that
Theorem 8.2. —&*"P=1 A &P>1= 45 consistent.

Definition 8.3. Suppose A = (As : § € eLim(w,)) satisfies: For every 6, As = {asy :
n < w} where ags,,’s are increasing and cofinal in 0. Define Q = Q4 as follows: p € Q iff
p = (fp, up, Ep) where

(i) f, is a finite partial function from wy to {0,1},
(11) u, is a finite subset of ®Lim(w) and
(11i) €, = (eps : 0 € u,) where each e, is a positive rational < 1.
For p,q € Q define p < q iff

(a) f» € fo
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(b) up C ug,
(¢) &, =¢&, | u, and

(d) for every § € wy, letting W = {n < w : as, € dom(f,)\ dom(f,)}, for every N < w
either W N[0, N) =0 or

Hne WnNIO,N): f(asn) =1}
W N[0,N)|

<1- Ep,s

Claim 8.4. Let A and Q = Q4. be as in Definition 77. Then Q has Ry as a precaliber.

Proof of Claim ??: Suppose {p; = (fi,u;,&;) : i < wi} € Q. By thinning down we can
assume the following.

(a) (dom(f;) :i < wy) is a A-system with root R and f; [ R does not depend on 1.
(b) (u; : 1 < wi) is a A-system with root u, and &; | u, does not depend on i.
(c) For every i < j <wj and § € u;, dom(f;) N As C R.

Let E C wy be a club such that for every ¢ € E, for every j < i, dom(f;) Uu; C i.
Choose S C E stationary such that for every i € S, dom(f;) Ni = R, u; Ni = u, and
U{AsNi: 6 € u;,0 > i} = F where F does not depend on i € S. Note that for every infinite
X C Sandie S, ifi > sup(X), then for all but finitely many j € X, dom(f;)NA; C R. Let
X €[S be such that for every increasing sequence {(a, : n < w) in X, sup,, a,, ¢ X. Define
c:[X]* = {0,1} by ¢({i,7}) = 1iff i < j and A; Ndom(f;) C R. By Erdos-Dushnik-Miller,
either there exists Y € [X]™ such that ¢[[Y]?] = {1} or there exists Y’ C X such that
otp(Y') = w+ 1 and ¢[[Y']?] = {0}. Since the latter is impossible, we can find Y € [X]™
such that c[[Y]?] = {1}. Hence

(d) For every i # jin Y and 0 € u;, dom(f;) N As C R.
It follows that {p; : i € Y'} is centered. O
Let fg = UL/, : p € Gg}. Then kg fo :wi — {0,1}. Let Xg = {a < w; : fo(a) = 1}
Then kg Xq € [wi].
Claim 8.5. )O(Q witnesses that A is not o &= witnessing sequence in V.
Proof: Easy. O]

Claim 8.6. Suppose V |= &**>'~ holds and let C = (Cs : § € eLim(wy)) be a witness where
Cs = {Bsn:n < w} and Bs,, s are increasing cofinal in 6. Then VO = &*>1= holds with C
as witness.

Proof of Claim ??: Suppose p kg A € [wy]™ and £ > 0. Choose ((pi, i) 1 i < wy) such
that 7;’s are increasing and for each i < wy, p < p; IFg 15 € A. Arguing as in the proof of
Claim 7?7, we can assume the following.
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(a) (dom(f;) : i < wy) is a A-system with root R, f; [ R = f, and |dom(f;) \ R| = n, do
not depend on 1.

(b) If i < j, then R < dom(f;)\ R < dom(f;)\ R.

(¢) (u; : i < wq) is a A-system with root uy, & [ u, = €, does not depend on i and ¢ < j
implies u; \ w, < uj \ .

(c) For every ¢ # j and ¢ € u;, dom(f;) N As; C R.

Put X = {v;:i <w}. Let E Cw; be a club such that for every i € E and j <1, 7; <1
and u, Udom(f;) C i. Choose § € E such that

: X
H{k <n:Bsr e X} >1—e/10

lim sup
n n

Let ¢ = (fi,us U{0},28,U{(0,¢/5)}). It suffices to show that for any ¢; > ¢ and Ny < w,
there exist r > ¢, and Ny > N, such that

r ik

< Ny : Bsn A
QH” 2 Bsn € }|21—5

Ny
So fix g1 > ¢ and Ny < w. For each n < w, define

oo P i B =1

Let W/ =dom(f,,)\ R and W,, = W/ N As. Choose N; > Ny such that for every n > Ny,
if ' € ug, \ {0}, then W) N Ay = ¢. We need a lemma.

Lemma 8.7. Suppose 0 < a1 < as < 1 and 1 < K < w. Then for all sufficiently large
N < w, the following holds. For every (Wy, : k < N) where each Wy, is an interval in w such
that [Wy| < K, Wy, < Wiy and J,_,, Wi = [0, M), there exists F C N such that

(i) |F| > Nay and
(ii) For every m < M, |[0,m) N Uyep Wil < may

Proof of Lemma ??7: First assume that |Wy| = K for every k < N - So M = NK. Let
my < N be least such that Km; > M(1 — as). Then F = [m;, N) is as required. For
the general case, for each K’ < K, put Sx» = {k < N : |[W;| = K’} and find a suitable
Fygr C Sgr for (Wi, k € Sir). Then F = | J{Fx : 1 < K’ < K} is as required. O

Choose Ny > Nj such that (1 — N;/Ny)(1 —¢/2) > 1 —¢ and [{k € [Ny, N2) : Bsi €
X} > (1 —¢/4)(Ny — Ny). Using Lemma ??, choose F' C [Ny, N3) such that the following
hold.

(a) [F| = (Na = Ni)(1 —e/4).
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(b) r = (f,u,,&,) extends each condition in {q1,7, : n € F'} where
(1) ur = g UUpep Urs
(ii) dom(f;) = dom(fy,) UU,cp Wi UU{W, :n € [Ny, No) \ F'},
(iii) fy, C fo,
(iv) fr T U{W, : n € [Ny, Ng) \ F} =0,
(v) for every n € F, f,. | W = f, and

(

vi) & = &4 UlU,ep Ern-

Note that r I [{k < Ny : G5 € A}| > (No— Ny)(1—¢/2). By our choice of Ny, it follows
that

Ny : Bsn A
"l [ <No:Ban € AN Sy |
Ny

Let 7 > 1 and suppose {(P¢, Q¢, A¢) : € < 1) satisfies the following.
(1) ((Pe,Q¢) : € <m) is a finite support iteration with limit [P,

(2) Ae € VP and Ibp, “A¢ = (Ags : 6 € oLim(wr)), Aes = {aesn - 1 < w} where agsp’s
are increasing cofinal in §”.

(3) V¥ = Qe = Qyg,.
Note that IP, is ccc.

Claim 8.8. Suppose V |= &"P>1~ holds and let C = (Cs : § € eLim(w,)) be a witness where
Cs ={Bsn:n <w} and Bs,, s are increasing cofinal in §. Then VEr = &'P=1~ via the same
witness.

Proof of Claim ??: By induction on 7. If 7 is a successor or cf(n) > Xy, this follows from

Claim ?7?.

Suppose cf(n) = Rg. Let (n(n) : n < w) be increasing cofinal in - Suppose p IFp, X e
[wi]¥. Choose n, < w such that p € Py, For each n < w, let X,={a<uw :(3pe
Gpn(n))(p g, @ € X)} - So X, € VFam and IFp, X, C X. Then for some n € [n,,w),

p ke, X € [wi]". Now apply the inductive hypothesw

Next suppose cf(n) = Ny, e > 0 and p IFp, X € [wi]M. Choose ((pi,7i) : i < wi) such
that the following hold.

(a) ~;’s are increasing.
(b) pi € Py, pi > pand p; IFp, 7; € X.

(¢) (dom(p;) : 7 < wy) is a A-system with root W.
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Choose 6 < n such that W C 6. Since Py is ccc, we can find ¢ € Py such that ¢ > p
and ¢ lFp, “{i < wy :p; [ 0 € Gp,} is uncountable”. Let Y = {vi:i<wi Ap; | 8€Gp,}.
Then Y € VF and ¢ IFp, Y € [w1]™. By the inductive hypothesis, we can find r € Py and
) € eLim(w;) such that r > ¢ and

{k<n:BspeY}
n

r IFp, lim sup >1—¢/2

Since (dom(p;) \ 0 : i < wq) is a sequence of pairwise disjoint sets, it also follows that

k<n: X
7 |Fp, limsup it n: B € X} >1
n n

— &

[l
Proof of Theorem ??: Starting with a model of 2% = Ry and P>~ construct ((P¢, Q¢, A¢) :
& < wy) such that the following hold.

(1) ((Pe, Q¢) : € < wy) is a finite support iteration with limit P,,,.

(2) Ae € VP and Ibp, “A¢ = (Ags : 0 € oLim(wr)), Aes = {@esn - 1 < w} where agsy’s
are increasing cofinal in §”.

(3) VP = Q¢ = Qj,.

(4) For every n < wy and A € VFn satisfying Ibp, “A = (A; : § € eLim(w;)) where each
As is an unbounded subset of ¢ of order type w”, there exists £ € [n,ws) such that

o, A= Ag.
To see why clause (4) can be satisfied, use 2™ = Ry and the fact that for each 7 < ws,
IP,, is a ccc forcing with a dense subset of size N;. O

We conclude with some questions.
Question 8.9. (1) Is &*=05 A ~&*P>1= consistent? What if CH holds?

(2) Assume CH. Does &*"P=%5 imply &*'P=1? Does &P~ imply &sP=1?

(3) Fora € (0,1), is &= A ~&P=1 consistent?
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