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Abstract. Assuming the generalized continuum hypothesis we construct ar-

bitrarily big indecomposable Banach spaces. i.e., such that whenever they are
decomposed as X ⊕ Y , then one of the closed subspaces X or Y must be fi-

nite dimensional. It requires alternative techniques compared to those which

were initiated by Gowers and Maurey or Argyros with the coauthors. This
is because hereditarily indecomposable Banach spaces always embed into `∞
and so their density and cardinality is bounded by the continuum and because

dual Banach spaces of densities bigger than continuum are decomposable by
a result due to Heinrich and Mankiewicz.

The obtained Banach spaces are of the form C(K) for some compact con-

nected Hausdorff space and have few operators in the sense that every linear
bounded operator T on C(K) for every f ∈ C(K) satisfies T (f) = gf + S(f)

where g ∈ C(K) and S is weakly compact or equivalently strictly singular.
In particular, the spaces carry the structure of a Banach algebra and in the

complex case even the structure of a C∗-algebra.

1. Introduction

The research in the classical period of the isomorphic theory of Banach spaces
led to questions of Lindenstrauss ([26]) and Johnson and Lindenstrauss ([18]), re-
spectively, which can be phrased as follows:

(A) Is it true that every infinite dimensional Banach space has a complemented
infinite dimensional and infinite codimensional subspace?

(B) Is it true that every infinite dimensional Banach space has a complemented
infinite dimensional subspace of density ≤ continuum?

Recall that a linear closed subspace Y of a Banach space X is complemented in
X if there is another closed linear subspace Z ⊆ X such that Y ∩ Z = {0} and
Y + Z = X. Y is complemented in X if and only if there is a bounded linear
projection from X onto Y ([37]).

The first, spectacular negative solution to question (A) (such spaces are called
indecomposable Banach spaces) was obtained by Gowers and Maurey in [14], where
they constructed an infinite dimensional separable Banach space which has even a
stronger property of being hereditarily indecomposable, i.e., each of its infinite di-
mensional closed subspaces is indecomposable. Being hereditary indecomposable
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is tightly related to having few operators in the sense that every operator on the
space is a strictly singular perturbation of a multiple of identity (see [11] for exact
description of the relation in both the real and the complex case). Every operator
on a hereditarily indecomposable Banach space may even be a compact pertur-
bation of a multiple of identity as recently proved by Argyros and Haydon ([1]).
Many constructions of indecomposable Banach spaces followed the paper of Gowers
and Maurey, however most of them, including nonseparable ones, were hereditarily
indecomposable, which as proved e.g., in [2] or [33], must embed in `∞ which limits
their density character or cardinality to the continuum. This led to the following
question of S. Argyros:

(C) Is there an upper bound for densities of indecomposable Banach spaces?

Assuming various additional properties of a Banach space the positive answer to
question (B) and so to question (C) has been obtained by many authors, for a survey
of this type of results see [33]. As many hereditarily indecomposable spaces are dual
Banach spaces (see [2]) most relevant for us is the result of Heinrich and Mankiewicz
[16], which says that dual Banach spaces of density bigger than continuum are
decomposable. Also several new upper bounds for densities of Banach spaces with
some rigidity concerning basic sequences were recently obtained by P. Dodos, J.
Lopez-Abad, S. Todorcevic ([7], [29], [28], [27]).

In the meantime a different kind of indecomposable Banach spaces was intro-
duced in [21] by the first named author, namely, spaces of continuous functions1

with few operators, or with few∗ operators in the sense of the following:

Definition 1.1. Let K be a compact Hausdorff space and let T : C(K) → C(K)
be a bounded linear operator on C(K).

(1) T is called a weak multiplier if T ∗ = gI + S where g : K → R is a Borel
bounded function and S is a weakly compact operator on C(K)∗,

(2) T is called a weak multiplication if T = gI + S where g ∈ C(K) and S is a
weakly compact operator on C(K),

(3) The Banach space C(K) has few operators (few∗ operators) if every linear
bounded operator on C(K) is a weak multiplication (weak multiplier),

(4) A point x ∈ K is called a butterfly point if and only if there are disjoint
open U, V ⊆ K such that U ∩ V = {x}.

We have the following:

Theorem 1.2 (2.5., 2.7., 2.8 [21], 13 [23]). Suppose that K is compact Hausdorff.

• If C(K) has few operators and K is connected, then C(K) is indecompos-
able,
• If C(K) has few∗ operators and K \ F is connected for any finite F ⊆ K,

then C(K) is indecomposable,
• If C(K) has few∗ operators and K has no butterfly points, then C(K) has

few operators.

The first constructions of an indecomposable Banach space as above (with few∗

operators in ZFC and with few operators under CH, both Ks separable) of density
continuum appeared in [21] and some improvements followed, among others, in [32]

1By C(K) we understand the Banach space of all real-valued continuous functions on a compact
Hausdorff space K with the supremum norm.
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(with few operators in ZFC for K nonseparable) and [35] (with few operators in
ZFC for K separable), for a survey see [23]. In [22] and [24] the first consistent
examples of Banach spaces giving the negative answer to question (B) and (A)
respectively were presented. They were Banach spaces of the form C(K) with few
operators, however the (forcing) method was limited to the density 2ω1 . Note that
by the classification of separable Banach spaces of the form C(K) due to Milutin,
Bessaga and Pe lczyński ([37]) indecomposable C(K)s must be nonseparable. On
the other hand it is consistently possible to obtain indecomposable C(K)s, with
few operators of densities strictly smaller than continuum ([10]). It should be also
added that the classes of strictly singular and weakly compact operators coincide
for C(K) spaces ([31]).

The main result of this paper is to give the negative answer to question (C) and
strengthen (compared to [22] and [24]) the negative answer to question (B) and
provide new examples relevant to question (A) by proving:

Theorem 1.3. Assume the generalized continuum hypothesis. For every cardinal
κ there is an indecomposable Banach space of density bigger than κ. In particular it
has no infinite dimensional complemented subspace of density smaller than κ. The
spaces are (real Banach algebras) of the form C(K) with few operators where K is
compact Hausdorff and connected.

Proof. Use Theorems 1.2, 2.5, and 5.3. �

The methods of the paper consist of a fusion of the techniques of constructing
spaces of continuous functions with few operators developed by the first named
author and other authors, in particular by I. Schlackow ([35]) and the techniques of
S. Shelah developed in [38] and [39] for constructing endo-rigid2 Boolean algebras,
i.e. Boolean algebras with no other endomorphisms than finite perturbations of the
identity on an ideal.

Both of these methods are related to rigidity of a compact K. For a compact K
we introduce the following notions:

(a) K is piecewise strongly rigid, if for every continuous φ : K → K there is a
partition U1 ∪ ...∪Uk = K of K into pairwise disjoint clopen sets U1, ..., Uk for
some k ∈ N such that φ � Ui is either constant or the identity,

(b) K is strongly rigid, if every continuous φ : K → K is either constant or the
identity,

(c) K satisfies the weak∗ rigidity condition, if for every φ : K → M(K) where
M(K) is space of Radon measures on K with the weak∗ topology (induced
from C(K)) the set {τ(x)|(K \ {x}) | x ∈ K} is relatively weakly compact in
the weak topology on M(K).

Assuming that K has no butterfly points condition (a) for the Stone space KA of a
Boolean algebra A is equivalent for the algebra A to be endo-rigid. Condition (c) is
equivalent for C(K) to have few∗ operators (Theorem 23 of [23]). For K connected
(c) implies (b) and (b) is equivalent to (a) (cf. [36]). However (c) and (a) are not
equivalent either in connected or totally disconnected situation. The classical space
satisfying (b) and not (c) is the Cook continuum ([6]) and arbitrarily big spaces
constructed by Trnkova ([40]). The former space is a metrizable continuum, so by

2Formally a Boolean algebra A is called endo-rigid if for every endomorphism h : A → A the
quotient algebra A/exker(h) is a finite Boolean algebra, where exker(h) = {a ∨ b ∈ A : a ∈
ker(h), b ∈ fix(h)}, fix(h) = {a ∈ A : h(b) = b for all b ≤ a}, ker(h) = {a ∈ A : h(a) = 0}.
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the Milutin theorem the corresponding C(K) has as many operators as C([0, 1])
and that is why it fails (c). A totally disconnected space satisfying (a) and not
(c) is the Stone space of a Boolean algebra A minimally generated in the sense
of Koppelberg ([19]) and endo-rigid. As proved by Borodulin-Nadzieja in [5], the
Banach space C(KA) is not Grothendieck, but C(K)s which have few∗ operators
must be Grothendieck (Theorem 2.4 [21]).

Both types of constructions of endo-rigid Boolean algebras and rigid Banach
spaces C(K) can be traced back to the the papers [30] of Monk and [15] of Haydon
respectively which surprisingly present practically the same constructions focusing
on these different topics.

So our construction needs a stronger property than the constructions from [38]
and [39]. The usual constructions of C(K) spaces with few or few∗ operators
([21], [32], [35], [3]) consisted of obtaining the above weak∗ topological rigidity
(c), and hence few∗ operators, by constructing K with asymmetric distribution of
separations, for example, in the sense that given a sequence {xn : n ∈ N} ⊆ E
for some dense E ⊆ K and a sequence (Un)n∈N of open subsets of K such that

xn 6∈ Un we have {xn : n ∈M} ∩ {xn : n ∈ N \M} 6= ∅ while
⋃
{Un : n ∈M} ∩⋃

{Un : n ∈ N \M} = ∅ for some infinite and coinfinite M ⊆ N (see [23] Theorems
24 and 25). It is clear that this method puts an upper bound of the density of
C(K) which is related to the number of all separable compact nonhomeomorphic
Hausdorff spaces. In this paper we formulate a new asymmetry condition depending
on additional parameters which incorporates the ideas of [38] and [39] in the context
of weak∗ rigidity and connected spaces:

Definition 1.4. Let κ be a cardinal, K be a compact Hausdorff space with a open
basis B and let dα : K → [0, 1] be continuous for every α < κ. Let d1,α = dα and
d−1,α = 1− dα. C(K) is said to have asymmetric distribution of separations in the
direction of D = (dα : α < κ) if and only if
Given

(i) (fn)n∈N ⊆ C(K) such that fn ·fm = 0 for all distinct n,m ∈ N, fn : K → [0, 1]
continuous and

(ii) a pairwise disjoint (Un)n∈N ⊆ B such that supp(fn)∩Um = ∅ for all n,m ∈ N,
(iii) νξn ∈ {−1, 1} for all n ∈ N and ξ ∈ κ,
(iv) {Uξn | n ∈ N, ξ ∈ κ } ⊆ B such that Uξn ⊆ Un for every n ∈ N and ξ ∈ κ;

There exist an increasing sequence (ηn)n∈N ⊆ κ and an infinite, coinfinite M ⊆ N
such that

(a) the supremum
∨
n∈M

(
fn · dηn,νηnn

)
exists in C(K),

(b)
⋃
n∈M Uηnn ∩

⋃
n∈N\M Uηnn 6= ∅.

Section 2 of the paper is devoted to proving the following theorem (recall that a
topological space has c.c.c. if it does not contain an uncountable family of pairwise
disjoint nonempty open sets):

Theorem 2.5. Suppose that K and D are as in Definition 1.4. If C(K) has asym-
metric distribution of separations in the direction of D and K is c.c.c., then C(K)
has few∗ operators.

This is done by modifying proofs of previously considered asymmetric conditions
and using some stronger extraction principles (Lemma 2.1, and Lemma 2.2) also
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proved in this section. Section 3 is devoted to the reformulation of the existing the-
ory concerning the inverse limit constructions ensuring asymmetric distribution of
separations in previously considered senses. While the conditions from Definition
1.4 can be rephrased in the Banach algebra language (although the final result,
Theorem 1.3 concerns only the Banach space structure), the proof techniques con-
cerning separations and the connectedness involve the topological arguments in K.
So the main object in Section 3 is the concrete representation ∇F of the Gelfand
space of the Banach algebra [F ] generated by subsets F ⊆ C(L) for some extremally
disconnected L.

In section 4 we introduce a concrete type of an inverse limit of compact spaces
construction which on the level of the space of continuous functions is called a
ladder family (Definition 4.1). The lemmas from Section 3 are used there to prove
that if F ⊆ C(K) is a ladder family, then C(∇F) is connected, has no butterfly
points and provides a fertile environment for both the existence of suprema and
nonseparated pairwise disjoint sequences of open sets in ∇F needed to obtain the
properties from Definition 1.4.

In Section 5 we use the combinatorial principle ♦(Eκω) which follows, by a result
of Gregory, from the generalized continuum hypothesis for any regular uncountable
cardinal κ to perform a particular construction of a ladder family. The character
of ♦(Eκω) as a prediction tool allows us to balance the amount of the suprema and
nonseparated pairwise disjoint sequences of open sets to obtain the conditions from
Definition 1.4. The main theorem of Section 5 completing the list of all ingredients
needed to obtain Theorem 1.3 is:

Theorem 5.3. Assume the generalized continuum hypothesis. Let κ be the succes-
sor of a cardinal of uncountable cofinality. There is a compact Hausdorff connected
c.c.c. space K of weight κ without a butterfly point such that C(K) has asymmetric
distribution of separations in the direction of some D ⊆ CI(K).

We do not know if the hypothesis of the generalized continuum hypothesis can
be removed from Theorem 1.3. In [39] Shelah’s black boxes were used to avoid
any additional set theoretic assumption in the construction of endo-rigid Boolean
algebras. The Banach space construction seems more demanding in this context.
The first and the third named authors would like to thank Gabriel Salazar for
discussions concerning Shelah’s black boxes.

The obtained spaces C(K) have other usual properties of C(K)s with few op-
erators proved in [21] such as having proper subspaces, in particular hyperplanes
not isomorphic to the entire space, not being isomorphic to C(L) for L totally
disconnected etc. One could point out one property not mentioned in the litera-
ture that the space CC(K) of complex valued functions of K is an indecomposable
complex Banach space which additionally carries the structure of a commutative
C∗-algebra3.

3 To see this look at CC(K) as C(K) ⊕ C(K) with the multiplication by a complex scalar
defined as (α+ iβ)(f, g) = (αf −βg, βf +αg). A linear operator on CC(K) can be identified with

a 2× 2 matrix A of operators on C(K) such that T (f, g) = A(f, g). The C-linearity of T imposes

the condition iT (1, 0) = T (0, 1) which yields (by i(f, g) = (−g, f)):

T (f, g) =

[
T1 −T2
T2 T1

] [
f

g

]
for some operators T1, T2 on C(K). If C(K) has few operators, this reduces to a sum of a

matrix of weakly compact operators and an operator of multiplication by a complex function
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Making considerably less technical effort and following the ideas of this paper one
could construct a totally disconnected K of arbitrarily big size such that C(K) has
few operators. This would already provide Banach spaces of densities κ, for arbi-
trarily big κ without complemented infinite dimensional subspaces of densities less
than κ giving a strong negative answer to question (B). We opted for presenting just
the connected example. Our K has one additional peculiar property: while it has no
nontrivial convergent sequence (this would give rise to a complemented copy of c0)
for any pairwise disjoint sequence (Un)n∈N of nonempty open subsets of K there are

only countably many sets M ⊆ N such that {Un | n ∈M} ∩ {Un | n ∈ N \M} = ∅.
This follows from Lemma 4.5 and the construction.

The terminology and notation of the paper should be standard. In set theory
we follow [17], [25], in topology [8], in Boolean algebras [20], [12] in Banach spaces
[9], [37]. Important conventions include:

• CI(K) = {f ∈ C(K) | f : K → [0, 1]},
• (fn)n∈N are pairwise disjoint if fn · fm = 0 for all distinct n,m ∈ N,
• For f : X → Y and U ⊆ X the restriction f � U : U → Y satisfies

(f � U)(x) = f(x) for all x ∈ U ,
• GCH is the generalized continuum hypothesis i.e., the statement that 2κ is

the successor cardinal κ+ for every infinite cardinal κ.
• Eκω = {α ∈ κ | cf(α) = ω} denotes the set of ordinals smaller than κ of

cofinality ω.
• supp(f) denotes f−1[R \ {0}] for any real valued function f .

2. Few∗ operators from asymmetric distributions of separations

The purpose of this section is to prove Theorem 2.5. This amounts to applying
the theory initiated in [21] and later developed in [22], [24], [32], [35], [23] in the new
context of the sequence D = {dα : α < κ}. The first step is to prove a Rosenthal
lemma4 type extraction principle in the flavour of the approach from Chapter 4.3
of [35] (cf. Theorems 24 and 25 of [23]):

Lemma 2.1. Let K be a compact Hausdorff space, T : C(K) → C(K) a bounded
linear operator and let ε > 0. Let (fn)n∈N ⊆ CI(K) be pairwise disjoint and let
(Un)n∈N be a pairwise disjoint family of nonempty open subsets of K. Then there
are an infinite M ⊆ N and nonempty open sets Vn ⊆ Un for n ∈ N such that for
all m ∈M and for all sequences (gn)n∈N ⊆ CI(K) satisfying gn ≤ fn for n ∈ N we
have

sup
x∈Vm

∑
n∈M\{m}

|T (gn)(x)| < ε.

Proof. Let us introduce an auxiliary notation: for sets M ⊆ N ⊆ N and two
pairwise disjoint sequences (Vn)n∈M , (Un)n∈N of nonempty open subsets of K we
write (Vn)n∈M ≺ (Un)n∈N if Vn ⊆ Un for all n ∈M .

Mh(f + ig) = (h1 + ih2)(f + ig) = (h1f − h2g) + i(h2f + h1g) for some h1, h2 ∈ C(K). Hence as
in the real case every projection P on CC(K) is of the form hI + S for h ∈ CC(K) and S strictly
singular, and the condition P 2 = P yields that h2 = h as no multiplication can be strictly singular

for continuous functions on a K with no isolated points (K is connected). Hence h(x) = 0 or
h(x) = 1 for each x ∈ K and so h = 1 or h = 0 since K is connected. It follows that P = I + S of

P = S where S is finite dimensional since S is a projection as well, and so CC(K) is indecomposable

indeed.
4see Lemma 1.1 of [34].
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By recursion on k ∈ N construct

• n1 < ... < nk in N,
• (Vn1

, ..., Vnk) ≺ (U0
n1
, ..., Uk−1

nk
) ≺ (Un1

, ..., Unk),
• N = X0 ⊇ X1 ⊇ ... ⊇ Xk such that Xk is an infinite subset of N \ [1, nk],
• (Un)n∈N = (U0

n)n∈X0
� (U1

n)n∈X1
� · · · � (Ukn)n∈Xk .

such that

(∗) |T (gnk)(x)| ≤ ε

2k+1

holds for all 0 ≤ gnk ≤ fnk and for all x ∈ Ukn with n ∈ Xk. Moreover

(∗∗)
∑
n∈Xk

|T (gn)(x)| ≤ ε

2k

holds for all x ∈ Vnk and for all 0 < gn ≤ fn with n ∈ Xk.
As n0 is undefined, the above is vacuously true for k = 0. So, suppose we have

the above objects for k ≥ 0 and let us construct the corresponding objects for k+1.
Note that (∗) and (∗∗) are worded in such a way that given Xk we need to find
nk+1 ∈ Xk and an infinite Xk+1 ⊆ Xk \ [1, nk+1] such that (∗) and (∗∗) are satisfied
for k + 1 in place of k. That is, the previous (n1, ..., nk) and (Vn1

, ..., Vnk) play no
role when we pass to (∗) and (∗∗) for k + 1. First we will take care of (∗).

Suppose that there is no nk+1, Xk+1 and Uk+1
n for n ∈ Xk+1 such that (∗) holds,

that is, for all n′ ∈ Xk, all infinite X ⊆ Xk \ [1, n′], and all (U ′n)n∈X ≺ (Ukn)n∈Xk
there exist a number n′′ ∈ X, and 0 ≤ gn′,n′′ ≤ fn′ , and an element xn′′ ∈ U ′n′′

such that

(∗ ∗ ∗) |T (gn′,n′′)(xn′′)| > ε

2k+2
.

We will derive contradiction from this hypothesis. Let l ∈ N be such that lε
2k+2 >

‖T‖. Applying the above recursively on i ≤ 2l we can construct (note that the
index k + 1 below is fixed and indicates only that we are in the (k + 1)-th stage of
the recursive construction):

• an increasing (nik+1)i≤2l ⊆ Xk with n1
k+1 > nk,

• an infinite Xi
k+1 such that Xi+1

k+1 ⊆ Xi
k+1 ⊆ Xk \ [1, nik+1],

• nonempty open W i
ns for n ∈ Xi

k+1 such that

(W i+1
n )n∈Xi+1

k+1
≺ (W i

n)n∈Xik+1
≺ (Ukn)n∈Xk

• 0 ≤ gnik+1,n
≤ fnik+1

for n ∈ Xi
k+1 such that

|T (gnik+1,n
)(x)| > ε

2k+2

for all x ∈W i
n, and all n ∈ Xi

k+1.

To move from i to i + 1 we set ni+1
k+1 = minXi

k+1 and use repeatedly the above

hypothesis for each j ∈ N with n′ = ni+1
k+1, X = Xi

k+1 ∩ [n′′j−1,∞), and (U ′n)n∈X =

(W i
n)n∈X to obtain n′′j ∈ X, gn′,n′′

j
≤ fn′ , and xn′′

j
∈ U ′n′′

j
. Then Xi+1

k+1 = (n′′j )j∈N

and we use the continuity of |T (gn′,n′′
j
)| to conclude that if it is bigger than ε

2k+2 at

point xn′′
j
, then it is bigger than ε

2k+2 at some neighbourhood W i
n′′
j

of that point.
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Arriving at i = 2l we set m = minX2l
k+1, pick x0 ∈ W 2l

m and fix a finite set
F ⊆ [1, 2l] of cardinality not less than l such that all numbers T (gnik+1,m

)(x0) have

the same sign for i ∈ F . Then we have

|T (
∑
i∈F

gnik+1,m
)(x0)| > lε

2k+2
≥ ||T ||.

This is a contradiction since the norm of
∑
i∈F gnik+1,m

is less than or equal to one.

Hence our hypothesis was false, that is, there is nk+1 ∈ Xk and an infinite
X ′k+1 ⊆ Xk \ [1, nk+1] such that for some nonempty Uk+1

n ⊆ Ukn with n ∈ X ′k+1

the condition (∗ ∗ ∗) holds. That is (∗) holds for k + 1 in place of k.
Now we will choose a nonempty Vnk+1

⊆ Uknk+1
and an infinite Xk+1 ⊆ X ′k+1

such that (∗∗) holds for k + 1 instead of k. Let

s = sup
x∈Uknk+1

{
∑

n∈X′
k+1

|T (gn)(x)| | 0 ≤ gn ≤ fn}.

Note that s ≤ 2‖T‖ as for the supremum we can consider finite sums of numbers
with constant sign, which by the linearity of T are reduced to values of the operator
T on vectors of norm less than or equal to one. Choose x0 ∈ Uknk+1

such that

s− sup{
∑

n∈X′
k+1

|T (gn)(x0)| | 0 ≤ gn ≤ fn)} < ε

2k+3
,

and then a finite F ⊆ X ′k+1 and 0 ≤ gn ≤ fn for n ∈ F such that

s−
∑
n∈F
|T (gn)(x0)| < ε

2k+2
.

Now, note that by the continuity of the functions T (gn) for n ∈ F at x0 there is
a nonempty neighbourhood of x0 of the form Vnk+1

for Vnk+1
⊆ Uknk+1

where the

above inequality holds. Put Xk+1 = X ′k+1 \F and note that by the choice of s and
F we have (∗∗) with k + 1 in the place of k.

This completes the recursive construction. Note that nk+1 ∈ Xk for each k ∈ N.
To verify the statement of the lemma let M = (nk)k∈N and choose a sequence
(gn)n∈M ⊆ CI(K) with gn ≤ fn for all n ∈ M and m = nk ∈ M and x ∈ Vnk .
Then ∑

n∈M\{m}

|T (gn)(x)| ≤
∑

1≤i<k

|T (gi)(x)|+
∑
n∈Xk

|T (gn)(x)|

as M \ {n1, . . . , nk} ⊆ Xk. The first sum is not bigger than∑
1≤i<k

ε

2i+1
=
ε

2
(1− 2−k+1) ≤ ε/2

by applying (∗) since nk ∈ Xi for each i < k and Vnk ≤ U ink . On the other hand
the second sum is not bigger than ε/2 by applying directly (∗∗). Hence we obtain
the statement of the lemma. �

Another extraction principle which we will need is the following:

Lemma 2.2. Suppose that Vn’s for n ∈ N are pairwise disjoint open sets in a
compact space K and xn ∈ K \ Vn are distinct. Suppose that ε > 0 and µn for
n ∈ N is a Radon measure on K such that |µn|(Vn) > ε for all n ∈ N. Then there
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are: an infinite M ⊆ N, open V ′n ⊆ Vn and a δ > 0 such that for all n ∈ M we
have that |µn|(V ′n) > δ and ⋃

n∈M
V ′n ∩ {xn : n ∈M} = ∅.

Proof. By going to a subset we may assume that {xn : n ∈ N} forms a discrete
subspace of K. By the regularity of the measures and by going to subsets of Vns we
may assume that (Vn)n∈N is pairwise disjoint and xn 6∈ Vn for each n ∈ N. Consider
a coloring c : [N]2 → {0, 1, 2} defined for distinct n,m ∈ N by c({n,m}) = 0 if
xn ∈ V m and n < m, c({n,m}) = 1 if the previous condition does not hold and
xm ∈ V n and n < m, and c({n,m}) = 2 if {xn, xm} ∩ (V n ∪ V m) = ∅. Apply the
Ramsey theorem for c obtaining an infinite subset of N which is homogenous for c.
However, a three element 0-homogenous set or 1-homogenous set would contradict
the pairwise disjointness of V ns, so we have an infinite 2-homogenous set. Hence,
by going to a subset we may assume that xn 6∈ V m for any two n,m ∈ N. Let Un
be an open neighbourhood of xn such that Un ∩ Vm = ∅ for all m ≤ n in N. We
will consider two cases.

Case 1. There is δ > 0 and a point x ∈ K such that for each open neighbourhood
W of x the set {n ∈ N : |µn|(Vn ∩W ) > δ} is infinite.
As Vn’s are pairwise disjoint and by the regularity of the measures by going from
Vn to its subset we may assume that x 6∈ V n for every n ∈ N. Further removing at
most one index we may assume that x 6∈ {xn : n ∈ N}

Now recursively define a decreasing sequence (Wk)k∈N of open neighbourhoods
of x and a strictly increasing sequence (nk)k∈N ⊆ N such that the following two
conditions hold:

(1) |µnk |
(
Vnk ∩ (Wk \W k+1)

)
> δ

(2) xnk 6∈Wk+1.

This is possible by the hypothesis of Case 1. Put V ′nk = Vnk ∩ (Wk \W k+1). It
follows that ⋃

k∈N
V ′nk \

⋃
k∈N

V ′nk ⊆
⋂
k∈N

W k,

which is disjoint from {xnk : k ∈ N} by (2). Since {xnk : k ∈ N} is disjoint form⋃
n∈N V n by the argument before Case 1, we conclude the proof of the Lemma in

this case for M = {nk : k ∈ N}.

Case 2. Case 1 does not hold.
Since the hypothesis of Case 1 fails, for every n ∈ N and for every δ′ > 0 there is
an m(n, δ′) ∈ N and an open neighbourhood W (n, δ′) of xn such that

(1) |µk|(Vk ∩W (n, δ′)) < δ′

for all k > m(n, δ′). Thus, one can choose recursively a strictly increasing sequence
of integers (kn)n∈N such that kn > m(kj ,

ε
2j+2 ) for all j < n. Consider

V ′kn = Vkn −
⋃
{W (kj ,

ε

2j+2
) : j < n}.

By (1) we have |µkn |(Vkn ∩W (kj ,
ε

2j+2 )) < ε
2j+2 for j < n and so

(2) |µkn |(V ′kn) > ε/2 = δ.

Paper Sh:1086, version 2017-11-04 10. See https://shelah.logic.at/papers/1086/ for possible updates.



10 PIOTR KOSZMIDER, SAHARON SHELAH, AND MICHA L ŚWIȨTEK

Now, note that W (kj ,
ε

2j+2 ) is disjoint from V ′kn for n > j and hence W (kj ,
ε

2j+2 )∩
Ukj is an open neighbourhood of xkj witnessing the fact that xkj 6∈

⋃
n∈N V

′
kn

(Recall that Uns are open neighbourhoods of xns such that Un ∩ Vm = ∅ for all
m ≤ n in N). So this proves the lemma for M = {nk : k ∈ N} and δ = ε/2.

�

Now recall Definition 1.1 and the following characterization of weak multipliers:

Theorem 2.3 ([21] Definition 2.1., Theorem 2.2. ). Let K be a compact Hausdorff
space and let T : C(K) → C(K) be a bounded linear operator. The following
conditions are equivalent:

(1) T is a weak multiplier,
(2) for every pairwise disjoint sequence (fn)n∈N ⊆ CI(X) and every sequence

(xn)n∈N ⊆ K such that fn(xn) = 0 for all n ∈ N we have

lim
n→∞

T (fn)(xn) = 0.

Lemma 2.4. Let K be a compact Hausdorff space and let T : C(K) → C(K) be
a bounded linear operator. If T is not a weak multiplier, then there exist ε > 0,
a pairwise disjoint sequence (fn)n∈N ⊆ CI(K) and a pairwise disjoint sequence
(Un)n∈N of nonempty open subsets of K such that

supp(fn) ∩ Um = ∅ for all n,m ∈ N

and

|T (fn)| � Un > ε for all n ∈ N.

Proof. By Theorem 2.3(2) there is a pairwise disjoint sequence (gn)n∈N ⊆ CI(K)
and a sequence (xn)n∈N ⊆ K such that gn(xn) = 0 for all n ∈ N, and |T (gn)(xn)| >
ε′ for some ε′ > 0. Let Vn = supp(gn) and µn = T ∗(δxn). Note that the hypothesis
of Lemma 2.2 is satisfied for ε′ instead of ε, so we may find appropriate δ > 0, and
infinite M ⊆ N and V ′n ⊆ Vn for each n ∈ N. Let U ′n be open neighbourhoods of xn
for n ∈M such that

⋃
n∈M V ′n ∩U ′n = ∅. Since {xn : n ∈ N} may be assumed to be

discrete by going to a subsequence, we may assume that U ′ns are pairwise disjoint.
Now choose fn ∈ CI(K) such that supp(fn) ⊆ V ′n and that |

∫
fndµn| > δ/2; this

can be done since |µn(V ′n)| > δ. It follows that |T (fn)(xn)| > δ/2 for each n ∈ N.
Now find Un ⊆ U ′n such that |T (fn) � Un| > δ/2. By re-enumerating M and putting
ε = δ/2 we obtain the statement from the lemma. �

Theorem 2.5. Suppose that K and D are as in Definition 1.4. If C(K) has
asymmetric distribution of separations in the direction of D and K is c.c.c., then
C(K) has few∗ operators.

Proof. Arguing by contradiction, we suppose that C(K) does not have few∗ opera-
tors. By Definition 1.1 there is a bounded linear operator T : C(K)→ C(K) which
is not a weak multiplier. Let κ and B be as in Definition 1.4. Then by Lemma 2.4
there are

• a pairwise disjoint sequence (fn)n∈N in CI(K),
• a pairwise disjoint sequence (Un)n∈N in B such that

supp(fn) ∩ Um = ∅, for all n,m ∈ N,

• ε > 0
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and for each n ∈ N we have

|T (fn)| � Un > 2ε.

Now by applying Lemma 2.1 for ε/3 we may assume that for any m ∈ N and for
any sequence (gn)n∈N ⊆ CI(K) such that gn ≤ fn for all n ∈ N we have

(∗) sup
x∈Um

∑
n∈M\{m}

|T (gn)(x)| < ε/3.

To make use of the asymmetric distribution of separations in the direction of D
we need to construct the following:

• {(νξn)n∈N | ξ ∈ κ} ⊆ {±1},
• { (Uξn)n∈N | ξ ∈ κ } ⊆ B satisfying Uξn ⊆ Un for every n ∈ N and every
ξ ∈ κ.

We will construct the above objects in such a way that for all n ∈ N and all ξ ∈ κ
we have |T (fndνξn,ξ)| � U

ξ
n > ε. This is achieved in the following way. Fix ξ ∈ κ,

n ∈ N, and xn ∈ Un. Since fn = fnd1,ξ + fnd−1,ξ, we have either

|T (fnd1,ξ)(xn)| > ε or |T (fnd−1,ξ)(xn)| > ε.

We choose νξn ∈ {±1}, the one for which the above holds and define Uξn ∈ B to be
an open neighborhood of xn included in Un such that

(∗∗) |T (fndνξn,ξ)| � U
ξ
n > ε.

This completes the construction of {(νξn)n∈N | ξ ∈ κ} and {(Uξn)n∈N | ξ ∈ κ}.
Let us fix an almost disjoint family {Nα | α < ω1} of infinite subsets of N. We

will be considering the sets:

• Fα = (fn)n∈Nα ,
• Uα = (Un)n∈Nα .
• Nα = {(νξn)n∈Nα | ξ ∈ κ},
• Uα = {(Uξn)n∈Nα | ξ ∈ κ}.

We use the hypothesis that C(K) has asymmetric distribution of separations in
the direction of D for Fα, Uα, Nα, and Uα for each α < ω1 obtaining increasing
sequences (ηαn)n∈N ⊆ κ and infinite sets Mα ⊆ Nα such that

(1)
∨
n∈Mα

fndνη
α
n
n ,ηαn

exists in C(K),

(2)
⋃
{Uη

α
n
n | n ∈Mα} ∩

⋃
{Uη

α
n
n | n ∈ Nα \Mα} 6= ∅.

Let us define gαn = fndνη
α
n
n ,ηαn

for all n ∈ N, α < ω1. If for some α < ω1 we had

• for all n ∈Mα, x ∈ Uη
α
n
n : |T (

∨
n∈Mα

gαn)(x)| ≥ 2ε/3 and

• for all n ∈ Nα \Mα, x ∈ Uη
α
n
n : |T (

∨
n∈Mα

gαn)(x)| ≤ ε/3
then, we would separate the sets in (2) contradicting the condition (2). Therefore
the conjunction of the above statements are false for each α < ω1. By going to an
uncountable subset of ω1 we may assume that there is δ > 0 and n0 ∈ N such that

for each α < ω1 we have some ∅ 6= Vα ⊆ U
ηαn0
n0 ⊆ Un0 such that either

(3) n0 ∈Mα and for all x ∈ Vα we have |T (
∨
n∈Mα

gαn)(x)| < 2ε/3− δ or

(4) n0 ∈ Nα \Mα and for all x ∈ Vα we have |T (
∨
n∈Mα

gαn)(x)| > ε/3 + δ.

This gives for each α < ω1 the following statement:

• n0 ∈ N \M ′α and for all x ∈ Vα we have |T (
∨
n∈M ′

α
gαn)(x)| > ε/3 + δ,
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where M ′α = Mα if (4) holds and M ′α = Mα \ {n0} if (3) holds. In the latter
case the above condition follows from (3) and (∗∗). Now consider m ∈ N such
that mδ/2 > ‖T‖. Using the c.c.c. of the space K we may find (see Lemma 3.1)
α1 < ... < αm < ω1 such that

Vα1
∩ Vα2

∩ · · · ∩ Vαm 6= ∅.

So let x0 be a point in Vα1 ∩ Vα2 ∩ · · · ∩ Vαm 6= ∅.
Now take k ∈ N such that for each 1 ≤ i < j ≤ m we have

(M ′αi \ k) ∩ (M ′αj \ k) = ∅.

By (∗) for each 1 ≤ i ≤ m we have that∑
n∈M ′

αi
∩k

|T (gαin )(x0)| < ε/3

and so for each 1 ≤ i ≤ m we have

|T
( ∨
n∈M ′

αi
\k

gαin

)
(x0)| > δ.

For m/2 indices 1 ≤ i ≤ m, say from a set F ⊆ {1, ...,m} all the reals

T
( ∨
n∈M ′

αi
\k

gαin

)
(x0)

have the same sign, and so

‖T
(∑
i∈F

∨
n∈M ′

αi
\k

gαin

)
‖ ≥ |T

(∑
i∈F

∨
n∈M ′

αi
\k

gαin

)
(x0)| =

∑
i∈F
|T
( ∨
n∈M ′

αi
\k

gαin

)
(x0)| > mδ/2.

However

‖
∑
i∈F

∨
n∈M ′

αi
\k

gαin ‖ ≤ 1

as (M ′αi \ k)s are pairwise disjoint. This is impossible since ‖T‖ < mδ/2. This
completes the proof. �

3. Controlling separations and the connectedness

The purpose of this section is to generalize the methods developed in [21, 22, 24,
35] necessary for controlling the constructions of C(K) spaces with few operators.
To be able to adopt the ideas coming from the constructions of endo-rigid Boolean
algebras we need to operate in the language of Banach algebras of functions, on the
other hand the above mentioned methods concerning separations and the connect-
edness involve the topological arguments in K. So in this section we work at the
same time with a family F of functions in C(L) for some extremally disconnected
L, the Banach algebra [F ] generated by it and a concrete representation ∇F of the
Gelfand space of the Banach algebra [F ].
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3.1. Boolean algebras, their Stone spaces and continuous functions on the
Stone spaces. Recall that a topological space is called c.c.c. if it does not contain
an uncountable collection of pairwise disjoint open sets. We have the following:

Lemma 3.1. Suppose K is a compact Hausdorff space and that κ is a cardinal.
Then

• {0, 1}κ×N is c.c.c.
• If K is c.c.c, m ∈ N and {Vξ : ξ < ω1} is a collection of nonempty open

subsets of K, then there are distinct ξ1, ..., ξm such that Vξ1 ∩ ...∩ Vξm 6= ∅.

Proof. The first condition follows from the Hewitt-Marczewski-Pondiczery Theorem
(Theorem 2.3.17. of [8]). For the second condition prove it by induction on m ∈ N.
For m = 2 it is the c.c.c. Given it for m, build recursively pairwise disjoint family
of sets Fα ⊆ ω1 of cardinality m for α < ω1 such that Wα =

⋂
ξ∈Fα Vξ 6= ∅, now

apply the c.c.c. for (Wα)α<ω1
. �

In this section we use the following notation:

• κ will denote an uncountable regular cardinal,
• IfA is a Boolean algebra, S(A) denotes the Stone space ofA, i.e., a compact

Hausdorff totally disconnected space such that there is a Boolean isomor-
phism between A and the algebra of clopen subsets of S(A),
• the clopen set of S(A) corresponding to an element a of A will be denoted

by sA(a),
• Fr(κ) denotes the free Boolean algebra generated by (eα,n)α<κ,n∈N,
• ForA ⊆ κ, Fr(A) denotes the subalgebra of Fr(κ) generated by (eα,n)α∈A,n∈N,

• For A ⊆ κ, Fr(A) denotes the Boolean completion of Fr(A),
• We will identify Fr(A) with a subalgebra of Fr(B) when A ⊆ B ⊆ κ,
• For A ⊆ κ, LA denotes the Stone space of Fr(A),
• Lκ will be denoted by L,
• I = [0, 1],
• The supremum of a family F of functions will be denoted by

∨
F . In

principle the supremum of the same family of functions can depend on the
ambient lattice of functions, so we will need to add where the supremum is
taken.

For the Stone duality or other dual terminology concerning Boolean algebras see
[20] or [12], for Gleason spaces see [13]. The following proposition is the summary
of standard facts concerning the above objects:

Proposition 3.2.

• For any A ⊆ κ the space LA is the Gleason space of IA,
• For any A ⊆ κ the space LA is extremally disconnected and c.c.c., which

implies that bounded subsets of C(LA) have suprema in the lattice C(LA),
• For A ⊆ κ there is a continuous surjective map pA : L → LA dual to

the inclusion Fr(A) ⊆ Fr(κ), in particular p−1
A [sFr(A)(a)] = sFr(κ)(a) for

a ∈ Fr(A),
• For A ⊆ κ there is an isometric inclusion C(LA) ⊆ C(L) induced by pA.

Lemma 3.3 ([24] Corollary 2.5). Suppose that A,B are disjoint subsets of κ and
tA ∈ LA and tB ∈ LB. There exists a point t ∈ L such that pA(t) = tA and
pB(t) = tB.
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Definition 3.4. For all α ∈ κ we define a Cantor-like surjection dα ∈ CI(L) by

dα(x) =
∑
n∈N

χsFr(κ)(eα,n)(x)

2n
∈ I,

for all x ∈ L. We will use d1,α = dα and d−1,α = 1 − dα. We will also use the
notation D = {dα : α ∈ κ}.

Definition 3.5. We say that f ∈ C(L) depends on a set A ⊆ κ, if pA(s) = pA(t)
implies f(s) = f(t) for any s, t ∈ L. We say that F ⊆ C(L) depends on a set
A ⊆ κ, if every f ∈ F depends on A.

Lemma 3.6. Let α ∈ κ, then

(1) dα depends on the set {α},
(2) dα[L] = I.

Proof. By Proposition 3.2 χsFr(κ)(eα,n) = χsFr({α})(eα,n) ◦p{α}. So, if s, t ∈ L satisfy

p{α}(s) = p{α}(t), then dα(s) = dα(t), as required. The second part follows from
the fact that eα,ns as free generators are independent, which implies that for every
σ ∈ {0, 1}N there is t ∈ L such that χsFr(κ)(eα,n)(t) = σ(n) for every n ∈ N. Now use

the standard fact that the mapping φ from {0, 1}N into I given by φ(σ) =
∑
n∈N

σ(n)
2n

is surjective. �

Lemma 3.7 ([24], Lemma 2.10). Each f ∈ C(L) depends on some countable A ⊆ κ.

Lemma 3.8. Suppose that X,Y are compact spaces, φ : X → Y is a continuous
surjection and that f ∈ C(X) is such that f(x1) = f(x2) whenever φ(x1) = φ(x2).
Then there is a continuous g ∈ C(Y ) such that f = g ◦ φ. In particular, for every
f ∈ C(L) which depends on some A ⊆ κ there exist g ∈ C(LA) such that f = g◦pA.

Proof. By the hypothesis one can well define g : Y → R satisfying f = g ◦ φ. Since
φ is a closed onto mapping (2.4.8. of [8]) it is a quotient map and so g is continuous
(2.4.2. of [8]). �

Lemma 3.9. Suppose that X,Y are compact spaces φ : X → Y is continuous and
Z ⊆ X, then f [Z] = f [Z].

Proof. Continuous mappings of compact spaces are closed, so φ is a closed function
(see 1.4. C of [8]). �

3.2. Algebras of functions and their Gelfand spaces. Given F ⊆ CI(L) we
will consider the closed algebra over the reals containing constant functions gener-
ated by F in C(L), that is the real unital Banach algebra generated by F , we will
denote it by [F ]. [F ]I will stand for [F ] ∩ CI(L)

The role of the Stone space for Boolean algebras is played for commutative
Banach algebras by the Gelfand space. We will work with the following concrete
representation ∇F of the Gelfand space of [F ] (cf. [24]):

Definition 3.10 ([24]). Let F ,G be families of elements of CI(L).

(1) define ΠF : L→ IF by a formula(
(ΠF)(x)

)
(f) = f(x)

for all x ∈ L and for all f ∈ F ,
(2) the image ΠF [L] ⊆ IF is denoted by ∇F ,
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(3) for G ⊆ F ⊆ CI(L) we define the natural projection

πG,F : ∇F → ∇G,
which is the restriction of the natural projection from IF to IG,

(4) given F ⊆ CI(L) we say that f ∈ C(∇F) depends on a set A ⊆ κ if f ◦ ΠF
depends on A.

Proposition 3.11. Suppose that F ⊆ CI(L). Then there is an isometric iso-
morphism of real Banach algebras TF : C(∇F) → [F ] induced by ΠF such that
TF (π{f},F ) = f for each f ∈ F .

Proof. The surjective continuous function ΠF : L → ∇F induces an isometric
isomorphic embedding of C(∇F) into C(L) simply by sending g ∈ C(∇F) to
g ◦ ΠF . Then it is clear that TF (π{f},F ) = f , so the image of TF includes [F ].
It remains to show that it is included in [F ]. For this it is enough to show that
C(∇F) is generated as a unital algebra by the functions π{f},F for f ∈ F . This
follows from the real Stone-Weierstrass theorem, as the coordinates separate points
in products. �

Lemma 3.12. Suppose that f ∈ [F ] ⊆ CI(L). Then there is a unique f(F) in
C(∇F) satisfying

f = f(F) ◦ΠF .
f(F) will be called the factorization of f through F . If F ⊆ G ⊆ CI(L), then
f(F) ◦ πF,G = f(G).

Proof. Put f(F) to be T−1
F (f) where TF is the isometry from Proposition 3.11.

The second part follows from the fact that πF,G ◦ΠG = ΠF and the uniqueness of
the factorization. �

Lemma 3.13. Suppose that α ∈ κ, then

(1) if F depends on κ\{α}, then there is a homeomorphism φ : ∇(F∪{dα})→
(∇F) × I such that π ◦ φ = πF,F∪{dα} where π is the natural projection
from (∇F)× I onto ∇F ,

(2) ∇D = Iκ.

Proof. Fix x ∈ I and y ∈ ∇F . Using Lemma 3.6 let t ∈ L be such that dα(t) = x.
Fix s ∈ L such that (ΠF)(s) = y. Use Lemma 3.3 to find u ∈ L such that p{α}(u) =
p{α}(t) and pκ\{α}(u) = pκ\{α}(s). Since dα depends on α by Lemma 3.6 and F
depends on κ \ {α} by the hypothesis, we obtain that (Π(F ∪ {dα}))(u) = (y, x)
which completes the proof of part (1). (2) follows from (1) applied inductively and
Lemma 3.6. �

For a Banach space X a density character of X is a cardinality of a minimal
dense subset of X and it is denoted by d(X).

Lemma 3.14 (GCH). Let D ⊆ F ⊆ CI(L). Then the density character of C(∇F)
equals κ.

Proof. Using the surjections πD,F and ΠF we obtain isometric injection of C(∇D)
into C(∇F) and C(∇F) into C(L), so κ ≤ d(C(∇F)) ≤ d(C(L)) by Lemma 3.13.
On the other hand, by the Stone-Weierstrass theorem, the density of the Banach
space C(L) is not bigger than the cardinality of the Boolean algebra of clopen
subsets of L which is isomorphic to the algebra Fr(κ), which is c.c.c. (Proposition
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3.2) and contains a dense subalgebra Fr(κ) of cardinality κ. So each element of
Fr(κ) is the supremum of a countable subset of Fr(κ), hence |Fr(κ)| ≤ κω. So, we
obtain d(C(L)) ≤ κω = κ (see Lemma 5.1), which completes the proof. �

It turns out to be convenient to talk about open subsets of the Gelfand spaces
∇F of the algebras [F ] using a language purely depending on F . The next definition
is aiming at this purpose.

Definition 3.15. Suppose that F ⊆ G ⊆ CI(L). Let J denote the family of all
nonempty open subintervals of [0, 1] with rational endpoints. By B(F) we denote
the family of all partial functions

U : dom(U)→ J ,
where the domain dom(U) of U is a finite subset of F . We will consider the
evaluation U(G) of U at G which is defined as

U(G) = {x ∈ ∇G : x(f) ∈ U(f) for all f ∈ dom(U)}.
By U(L) we will mean the set {x ∈ L : f(x) ∈ U(f) for all f ∈ dom(U)} =⋂
f∈dom(U) f

−1[U(f)].

Note that with the above notation U(f) is the same subinterval of I as the one
defined as U({f}).

Lemma 3.16. Suppose that F ⊆ G ⊆ CI(L) and U, V ∈ B(F). Then

(1) The family of all sets of the form W (F) for W ∈ B(F) forms a basis of
open sets for ∇F .

(2) (ΠF)−1[U(F)] = U(L)
(3) ΠF [U(L)] = U(F),
(4) π−1

F,G [U(F)] = U(G),

(5) πF,G [U(G)] = U(F)
(6) U(F) ∩ V (F) = ∅, if and only if U(G) ∩ V (G) = ∅.
(7) U(F) ⊆ V (F), if and only if U(G) ⊆ V (G).

(8) U(F) ⊆ V (F), if and only if U(G) ⊆ V (G), where the closures are taken in
∇F and ∇G respectively,

Proof. The first item is clear from the definition of the product topology. Item (2)
follows directly from Definition 3.15. Item (3) is the immediate consequence of (2).
Item (4) follows from the fact that π−1

F,G [X] = ΠG[(ΠF)−1[X] for any X ⊆ ∇F and

(2) - (3), namely π−1
F,G [U(F)] = ΠG[(ΠF)−1[U(F)] = ΠG[U(L)] = U(G). Item (5) is

the immediate consequence of (4). Items (6) - (7) are the immediate consequences
of (4) and the properties of the preimages of functions. For the forward direction of

(8), note that always π−1
F,G [U(F)] ⊆ π−1

F,G [U(F)] and apply (4). For the backward

direction of (8), note that always πF,G [U(G)] = πF,G [U(G)] by Lemma 3.9 and
apply (5). �

Definition 3.17. Suppose that F ⊆ CI(L). A family U ⊆ B(F) is called an
antichain if and only if U(F) ∩ V (F) = ∅ for all U, V ∈ U .

We see by Lemma 3.16 that the property of being of antichain does not change if
we pass from F to a bigger G. Despite of Lemma 3.16 a nontrivial interplay between
properties U(F)s and U(G)s for F ⊆ G ⊆ CI(L) is possible and will actually be at
the heart of the difficulties of the main construction of this paper. For example,
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as we want ∇F to be connected, we would need ΠF [U ] ∩ ΠF [L \ U ] 6= ∅ for any
clopen U ⊆ L, In fact, the main properties of ∇F for the main construction of
F (Section 5) corresponding to Definition 1.4 (b) are expressed in terms of the

nonemptyness of the intersection
⋃
n∈M Un(F)∩

⋃
n∈N\M Un(F) for some antichain

(Un)n∈N ⊆ B(F) and M ⊆ N, while
⋃
n∈M Un(L)∩

⋃
n∈N\M Un(L) is always empty,

since L is extremally disconnected, which implies that it is empty if we replace
Un(L)s by Un(G)s for sufficiently big G. The following lemma is the first of a series
of observations aiming at developing techniques of increasing the family F to a
bigger G with preserving the nonemptyness of the intersections of the closures of
unions as above.

Lemma 3.18. Let F ⊆ CI(L), and let (Un)n∈N ⊆ B(F) be an antichain. Let
M ⊆ N be such that there exists x ∈ ∇F with

x ∈
⋃
n∈M

Un(F) ∩
⋃

n∈N\M

Un(F).

Then there exist s, t ∈ L such that

(1) s ∈
⋃
n∈M Un(L) and t ∈

⋃
n∈N\M Un(L), and

(2) ΠF(s) = ΠF(t) = x.

Moreover if f ∈ CI(L) is such that

(3) f(s) = f(t) for any s, t satisfying (2),

then ⋃
n∈M

Un(G) ∩
⋃

n∈N\M

Un(G) 6= ∅,

where G = F ∪ {f}.

Proof. By Lemma 3.9 and Lemma 3.16 (3) we have

ΠF [
⋃
n∈M

Un(L)] = ΠF [
⋃
n∈M

Un(L)] =
⋃
n∈M

Un(F) 3 x,

so the existence of s, t as in (1) - (2) follows. For (3) again use Lemma 3.9 and
Lemma 3.16 (3) to note that

Π(F ∪ {f})(s) ∈ Π(F ∪ {f})[
⋃
n∈M

Un(L)] = Π(F ∪ {f})[
⋃
n∈M

Un(L)] =
⋃
n∈M

Un(G),

and similarly Π(F∪{f})(t) ∈
⋃
n∈N\M Un(G), which finishes the proof, since Π(F∪

{f})(t) = (x, f(t)) = (x, f(s)) = Π(F ∪ {f})(s) by (2) and by the hypothesis of
(3). �

3.3. Adding suprema. If we pass from a smaller algebra of functions to a bigger
one, a sequence of functions from the smaller one may aquire its supremum in the
bigger one. This is quite natural when we work with subalgebras of an algebra
where all bounded sequences have suprema, i.e., in the algebra of all continuous
functions on an extremally disconnected compact space. However in general a
function which is the supremum in a subalgebra may no longer be the supremum
in a bigger algebra. In this section we recall and prove lemmas describing the
above phenomena in the context we are interested in. One should note that adding
suprema in a careful way while extending algebras is one of the main techniques
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18 PIOTR KOSZMIDER, SAHARON SHELAH, AND MICHA L ŚWIȨTEK

behind our construction in Section 5 as the main property of the required Banach
space is expressed in terms of the suprema in Definition 1.4.

Definition 3.19. Suppose that K is a compact Hausdorff space. For a pairwise
disjoint sequence (fn)n∈N ⊆ CI(K) and a function f ∈ CI(K) we define the set

∆
(
f, (fn)n∈N

)
= {x ∈ K | f(x) 6=

∑
n∈N

fn(x)}.

Lemma 3.20 (4.1.(a) [21]). Let K be a compact Hausdorff space. A function f ∈
CI(K) is the supremum in C(K) of a pairwise disjoint sequence (fn)n∈N ⊆ CI(K)
if and only if the set ∆

(
f, (fn)n∈N

)
is nowhere dense.

Lemma 3.21. Let K be a compact Hausdorff space. For a pairwise disjoint se-
quence (fn)n∈N ⊆ CI(K) the following set

D((fn)n∈N) =
⋃
{U | U is open in K and {n ∈ N : U ∩ supp(fn) 6= ∅} is finite}

is dense open and for f =
∨
n∈N fn in C(K) we have

f � D((fn)n∈N) =
∑
n∈N

fn � D((fn)n∈N).

Proof. The first part is the first part of 4.1. (b) of [21]. The second part follows
from the second part of Lemma 4.1. (b) which says that

∑
n∈N fn is continuous on

the open set D((fn)n∈N), from the fact that two distinct continuous function differ
on an open set and from Lemma 3.20. �

Lemma 3.22. Let K be a compact Hausdorff space. Suppose that (fn)n∈N ⊆ CI(K)
is an antichain and f =

∨
n∈N fn in C(K). Then

supp(f) ⊆
⋃
n∈N

supp(fn).

Proof. The set

supp(f) \
⋃
n∈N

supp(fn) ⊆ ∆
(
f, (fn)n∈N

)
is open. If it was nonempty, it would contradict Lemma 3.20. �

In general, when passing from C(∇F) to C(∇G) for F ⊆ G ⊆ CI(L) the supre-
mum f of a pairwise disjoint sequence (fn)n∈N of functions in C(∇F) may no longer
be its supremum in C(∇G), i.e., f◦πF,G may not be the supremum of (fn◦πF,G)n∈N.
However, if we use the supremum of (fn ◦ΠF)n∈N in C(L), this will not happen as
stated in the following:

Lemma 3.23. Suppose that F ⊆ CI(L) and (fn)n∈N ⊆ [F ] is a pairwise disjoint
sequence of functions, and let f =

∨
n∈N fn in C(L). Then for every G ⊆ CI(L)

such that F ∪{f} ⊆ G we have that the factorization f(G) of f is the supremum of
the factorizations (fn(G))n∈N in CI(∇G).

Proof. Use Definition 5.11 and Lemma 5.12 of [24] and the isometric isomorphism
between [F ] and ∇F from Proposition 3.11 and Lemma 3.12. �

Lemma 3.24. Let A ⊆ κ. Suppose that (fn)n∈N ⊆ CI(L) is pairwise disjoint
sequence of functions which all depend on A. Then the supremum

∨
n∈N fn in C(L)

depends on A.
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Proof. Let f ′n be such a function in C(LA) that f ′n◦pA = fn for n ∈ N. Its existence
follows from Lemma 3.8. It is clear that f ′ns are pairwise disjoint as well. As LA
is extremally disconnected (Proposition 3.2), we can take the suprema of bounded
sequences in C(LA). So let g =

∨
n∈N f

′
n, where the supremum is taken in C(LA).

It is clear that g ◦ pA depends on A. So it is enough to prove that g ◦ pA is the
supremum

∨
n∈N fn in C(L). Recall Definition 3.19 and let X = ∆(g, (f ′n)n∈N). It

is clear that Y = p−1
A [X] = ∆(g ◦ pA, (fn)n∈N). So by lemma 3.20 it is enough to

prove that that preimages of nowhere dense sets under pA are nowhere dense, or
that images of open sets under pA have nonempty interior.

As Fr(κ) is a dense subalgebra of Fr(κ), it is enough to prove that pA[sFr(κ)(a)]

has a nonempty interior in LA for any a ∈ Fr(κ) (see section 2.2.) But by the
independence of the generators of Fr(κ) such an a is a finite sum of elements of the
form a′ ∧ a′′ where a′ ∈ Fr(A) and a′′ ∈ Fr(κ \A). Moreover pA[sFr(κ)(a

′ ∧ a′′)] =

sFr(A)(a
′) by the definition of the Stone functor and the fact that any ultrafilter in

Fr(A) which contains a′ can be extended to one in Fr(κ) which contains a′∧a′′. It
follows that images of open sets under pA have nonempty interior which completes
the proof. �

Lemma 3.25. Let F ⊆ CI(L), (fn)n∈N ⊆ [F ] be pairwise disjoint, (νn)n∈N ⊆
{±1}, (ηn)n∈N ⊆ κ be increasing with dηn ∈ F for all n ∈ N and let f =∨
n∈N(fndνn,ηn) in CI(L). Then

f �
⋃
n∈N

supp(fn) =
∑
n∈N

(fndνn,ηn) �
⋃
n∈N

supp(fn).

Proof. Note that supp(fn) ⊆ D((fndνn,ηn)n∈N) and so the second part of the
Lemma 3.21 may be used. �

3.4. Extensions and preserving the connectedness. For sets X,Y and a func-
tion f : X → Y let us denote the graph of f by Γ(f).

Definition 3.26 (4.2. [21]). Let K be a compact Hausdorff space and let (fn)n∈N ⊆
CI(K) be pairwise disjoint. Then the closure of Γ

(∑
n∈N fn � D((fn)n∈N)

)
in K×I

is called an extension of K by (fn)n∈N. We denote it by ext(K, (fn)n∈N). The
extension is called strong if Γ

(∑
n∈N fn

)
⊆ ext(K, (fn)n∈N). If K = ∇F for some

F ⊆ CI(K) and (fn)n∈N ⊆ [F ], then an extension of ∇F by (fn)n∈N means the
extension of ∇F by (fn(F))n∈N and is denoted ext(∇F , (fn)n∈N)

Indiscriminate adding of suprema leads to a complete lattice C(K) and implies
that K is extremally disconnected, so in general extensions of compact spaces do
not need to preserve the connectedness (for explicite analysis of this phenomenon
in the case of pairwise disjoint sequences of functions see [4]), however we have the
following:

Lemma 3.27 ([21], Lemma 4.4. ). Let K be a compact and connected Hausdorff
space and let (fn)n∈N ⊆ CI(K) be pairwise disjoint. The strong extension of K by
(fn)n∈N is a compact and connected space.

Lemma 3.28. Let F ⊆ CI(L) and A ⊆ κ be such that the family F depends on A
and {dα | α ∈ A} ⊆ F . Let (fn)n∈N ⊆ [F ] be pairwise disjoint and let f ∈ CI(L)
be the supremum of (fn)n∈N. Then ext(∇F , (fn)n∈N) = ∇(F ∪ {f}).

Proof. Use Lemma 5.13. of [24] and Lemma 3.12. �
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Lemma 3.29 ([24], Lemma 2.7.). Let F ⊆ C(L). Then ∇F is connected if and
only if ∇F is connected for all finite F ⊆ F .

Lemma 3.30. Let

(1) F ⊆ CI(L),
(2) (fn)n∈N ⊆ [F ]I be an pairwise disjoint,
(3) F depends on A ⊆ κ,
(4) (ηn)n∈N ⊆ κ be such that the set {n ∈ N | ηn ∈ A} is finite,
(5) (νn)n∈N ∈ {−1, 1}N.

Then for all infinite M ⊆ N and for G = F ∪ {dηn | n ∈ N} the extension of
∇G by (fndνn,ηn)n∈M is strong. Moreover, if ∇G is compact and connected, then
ext(∇G, (fndνn,ηn)n∈M ) is compact and connected as well.

Proof. Fix some infinite M ⊆ N and (x, s) ∈ Γ(
∑
n∈M (fndνn,ηn)(G)). We need to

check that

(x, s) ∈ Γ
( ∑
n∈M

(fndνn,ηn)(G) � D(((fndνn,ηn)(G))n∈M )
)
.

If s > 0, then x ∈ D(((fndνn,ηn)(G))n∈M ), so we can assume that s = 0. Fix a
neighborhood of (x, 0) of the form U(G) × (−ε, ε) where U ∈ B(G) and ε > 0. It
will be sufficient to show that

(U(G)× (−ε, ε)) ∩ Γ
( ∑
n∈M

(fndνn,ηn)(G) � D(((fndνn,ηn)(G))n∈M )
)
6= ∅.

If U(G) intersects only finitely many sets supp((fndνn,ηn)(G)), then we have the
inclusion U(G) ⊆ D(((fndνn,ηn)(G))n∈M ) and so the point (x, 0) belongs to the
graph Γ

(∑
n∈M (fndνn,ηn)(F) � D(((fndνn,ηn)(G))n∈M )

)
.

If U(G) intersects supp((fndνn,ηn)(G)) for infinitely many n ∈ M then, by the
hypothesis of the lemma, we can pick a number n0 ∈ M such that ηn0 6∈ A ∪ B
where B = {ηn | dηn ∈ dom(U)}, and there is an x ∈ U(G)∩supp((fn0dνn0

,ηn0
)(G)).

In particular fn0
(G)(x) 6= 0. Let u ∈ L be such that ΠG(u) = x. Let v ∈ L be such

that

(1) 0 < dνn0 ,ηn0
(v) < ε/fn0

(G)(x),

which exists by Lemma 3.6 (2). By Lemma 3.3 there is t ∈ L such that pA∪B(t) =
pA∪B(u) and p{ηn0}(t) = p{ηn0}(v). Put y = ΠG(t). It follows that f(t) = f(u) for

every f ∈ dom(U) and so

(2) y ∈ U(G),

since ΠG(u) = x ∈ U(G). Also by the dependence of F by A, Lemma 3.12 and
Lemma 3.6 we have

(3) fn0
(G)(y) = fn0

(t) = fn0
(u) = fn0

(G)(x) 6= 0,

and dνn0 ,ηn0
(G)(y) = dνn0 ,ηn0

(t) = dνn0 ,ηn0
(v) and so by (1) and (3) we have

(4) 0 < (fn0dνn0
,ηn0

)(G)(y) < ε.

The first inequality of (4) implies that y ∈ D(((fndνn,ηn)(G))n∈M ) and so that
(y, fn0dνn0

,ηn0
)(G)(y)) is in Γ

(∑
n∈M fndνn,ηn � D((fndνn,ηn)n∈M ), while (2) and

the second inequality of (4) imply that it is in U(G) × (−ε, ε) which completes
the proof of the first part of the lemma. The moreover part follows from Lemma
3.27. �
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3.5. Separations. Definition 1.4 requires us in (a) to have many suprema while
maintaining the disjointness of certain closures in (b). In this sections we prove
lemmas concerning the disjointness of these closures.

Definition 3.31. Let F ⊆ CI(L). We say that an antichain (Un)n∈N of elements
of B(F) is separated along M in [F ] iff⋃

n∈M
Un(F) ∩

⋃
n 6∈M

Un(F) = ∅,

where the closures are taken in ∇F .

Lemma 3.32. Let F ⊆ CI(L) and let (Un)n∈N be an antichain of elements of
B(F). Then (Un)n∈N is separated along M in [F ] if and only if there are elements
{Vj | j ∈ J}, {V ′j | j ∈ J ′} ⊆ B(F), with J and J ′ finite, such that for V (F) =⋃
j∈J Vj(F) and V ′(F) =

⋃
j∈J′ V ′j (F) and we have⋃

n∈M
Un(F) ⊆ V (F) ⊆ V (F) ⊆ V ′(F) ⊆ ∇F \

( ⋃
n 6∈M

Un(F)
)
.

Proof. It follows directly from the normality of the compact space ∇F and from
Lemma 3.16 (1). �

Note that by Lemma 3.16 the above condition from Lemma 3.32 is preserved if
we pass from F to a bigger G. However if an antichain (Un)n∈N is not separated
along M ⊆ N in [F ], it may become separated along M ⊆ N in [G].

Lemma 3.33. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N ⊆ B(F) be an antichain,
M ⊆ N. Then the antichain (Un)n∈N ⊆ B(G) is separated along M in [G] if and
only if it is separated in [F ∪H] for some finite H ⊆ G.

Proof. Suppose that (Un)n∈N is separated along M in [G] and let V, V ′, {Vj | j ∈
J}, {V ′j | j ∈ J ′} be as in Lemma 3.32. Let H ⊆ G be a finite set including domains
of all Vj for j ∈ J and all V ′j for all j ∈ J ′. Now use Lemma 3.16 (7) and (8). �

Lemma 3.34. Let F ⊆ CI(L) be countable and let (Un)n∈N ⊆ B(F) be an an-
tichain. Then there is a set M ⊆ N such that the antichain (Un(F))n∈N is not
separated along M in [F ].

Proof. The separation of (Un)n∈N along M would yield finite sets {VMj : j ∈
J}, {(V ′j )M : j ∈ J ′} ⊆ B(F) as in Lemma 3.32. For distinct M1,M2 ⊆ N ,
these finite families must be distinct. However there are continuum many subsets
of N while B(F) is countable for countable F . �

Definition 3.35. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N be an antichain in B(F).
We say that F is separating for (Un)n∈N in G, if whenever (Un(G))n∈N is separated
along some M ⊆ N in [G], then already (Un(F))n∈N is separated along M in [F ].

Lemma 3.36. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N be an antichain in B(F)
such that F is separating for (Un)n∈N in G. Suppose that (fn)n∈N ⊆ CI(L) is an
antichain such that Un(L)∩ supp(fm) = ∅ for every n,m ∈ N and let f ∈ CI(L) be
the supremum of (fn)n∈N in C(L). Then F is separating for (Un)n∈N in G ∪ {f}.

Proof. Fix M ⊆ N and suppose that the antichain (Un(F))n∈N is not separated
along M in [F ]. Then the hypothesis of the lemma guarantees that (Un(G))n∈N is
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not separated alongM in [G] and so we can pick x ∈
⋃
n∈M Un(G)∩

⋃
n∈N\M Un(G) ⊆

∇G. Now it is enough to find appropriate s, t ∈ L and use Lemma 3.18.
By the hypothesis we have for every P ⊆ N:⋃

n∈P
Un(L) ∩

⋃
n∈N

supp(fn) = ∅,

but the space L is extremally disconnected, hence for every P ⊆ N we have

(∗)
⋃
n∈P

Un(L) ∩
⋃
n∈N

supp(fn) = ∅.

By Lemma 3.18 (1) - (2) there are s ∈
⋃
n∈M Un(L) such that (ΠG)(s) = x and t ∈⋃

n∈N\M Un(L) such that (ΠG)(t) = x. By (∗) we have that s, t 6∈
⋃
n∈N supp(fn),

so by Lemma 3.22 we have s, t 6∈ supp(f), which means exactly that f(s) = f(t) = 0
so an application of Lemma 3.18 (3) completes the proof. �

Lemma 3.37. Let A ⊆ κ, α ∈ κ\A and suppose that F ⊆ CI(L) depends on A and
(Un)n∈N is an antichain in B(F). Then F is separating for (Un)n∈N in F ∪ {dα}.

Proof. By Lemma 3.13 (1) the sets Un(F ∪ {dα}) correspond to Un(F)× I, so the
lemma follows. �

Lemma 3.38. Suppose that we are given

(1) A ⊆ κ,
(2) F ⊆ CI(L) which depends on A with {dα | α ∈ A} ⊆ F ,
(3) an antichain (Un)n∈N ⊆ B(F)
(4) a pairwise disjoint (fn)n∈N ⊆ [F ]I
(5) (νn)n∈N ⊆ {±1},
(6) a strictly increasing (ηn)n∈N ⊆ κ with the set {n ∈ N | ηn ∈ A} finite.

Let
f =

∨
n∈N

fndνn,ηn

in CI(L). Then G is separating for (Un)n∈N in G∪{f} where G = F∪{dηn | n ∈ N}.

Proof. Fix M ⊆ N such that the antichain (Un)n∈N is not separated along M in
[G], we will show that (Un)n∈N is not separated along M in [G ∪ {f}]. Let F ⊆ N
be the finite set of all n’s such that ηn ∈ A and let H = F ∪ {ηn : n ∈ F} ⊆ G.
Lemma 3.33 implies that (Un)n∈N is not separated along M in [H]. Hence there

is x ∈
⋃
n∈M Un(H) ∩

⋃
n∈N\M Un(H) ⊆ ∇H. Using Lemma 3.18 (1) - (2) fix

t ∈
⋃
n∈M Un(L) and s ∈

⋃
n∈N\M Un(L) such that ΠH(t) = ΠH(s) = x.

As H depends on A we have ΠH(t′) = ΠH(s′) = x for any t′, s′ ∈ L such that
pA(t′) = pA(t) and pA(s′) = pA(s). Using this observation and inductively Lemma
3.6 and Lemma 3.3 we may assume that dνn,ηn(s) = dνn,ηn(t) = 0 for all n ∈ N\F .
Inductive application of Lemma 3.18 and later Lemma 3.33 implies that (Un)n∈N
is not separated along M in [G ∪ {g}] where

g =
∨

n∈N\F

fndνn,ηn

in CI(L). So it is enough to show that there is a continuous surjection φ : ∇(G ∪
{g})→ ∇(G ∪ {f}) such that φ[U(G ∪ {g})] = U(G ∪ {f}) for every U ∈ B(G). For
this it is enough to have a continuous surjection ψ : ∇(G ∪ {g}) → ∇(G ∪ {f, g})
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such that φ[U(G ∪ {g})] = U(G ∪ {f, g}) for every U ∈ B(F) since then we can
consider φ = πG∪{f},G∪{f,g} ◦ ψ and Lemma 3.16 (5). To get ψ note that f is the
composition of Π(G∪{g}) with the sum h of two continuous functions on ∇(G∪{g})
namely g(G ∪ {g}) and Σn∈F ((fndνn,ηn)(G ∪ {g})), so ψ(x) = (x, h(x)) works. �

3.6. Butterfly points. Recall Definition 1.1 (4) of a butterfly point and Theorem
1.2. Thus, if we want to construct a space C(K) with few operators, we would like
to obtain K with no butterfly points. The purpose of this subsection is to prove a
lemma which provides a sufficient condition for the nonexistence of butterfly points.

Lemma 3.39. Let F ⊆ CI(L) and let U ⊆ ∇F be open. Then there is a countable
subset F0 ⊆ F and an antichain (Un)n∈N ⊆ B(F0) such that

U =
⋃
n∈N

Un(F) in ∇F .

Proof. Let U be a maximal with respect to inclusion subfamily of B(F) such that

• V (F) ⊆ U for all V ∈ U ,
• V (F) ∩W (F) = ∅ for any two distinct V,W ∈ U .

Note that U is countable since ∇F satisfies the c.c.c. as a continuous image of
L and by Proposition 3.2. The maximality together with Lemma 3.16 (1) gives

U =
⋃
n∈N Un(F). �

Recall the notion of a butterfly point from Definition 1.1.

Lemma 3.40. Let D = {dα : α < κ} ⊆ F ⊆ CI(L) be of the form F =
⋃
α<κ Fα

for Fαs satisfying Fα′ ⊆ Fα, Fα+1 = Fα ∪ {dα}, Fα depends on α and Fα ∪ {dα}
is separating in F for every antichain in B(Fα′) for each α′ < α < κ. Then ∇F
has no butterfly points.

Proof. Fix two disjoint open set U, V ⊂ ∇F such that there exists x ∈ U ∩ V . We
will show that U ∩ V contains at least two distinct points. By Lemmas 3.39 and
3.7 there exist countable sets A ⊆ κ and G ⊆ F and antichains (Un)n∈N ⊆ B(G)
and (Vn)n∈N ⊆ B(G) such that G depends on A and

U =
⋃
n∈N

Un(F) and V =
⋃
n∈N

Vn(F) in ∇F .

Using the regularity of κ we see that there exists α < κ such that A ⊆ α and
G ⊆ Fα

By Lemma 3.16 (6) we have that πFα,F [Un(F)] = Un(Fα) and πFα,F [Vn(F)] =

Vn(Fα), so x′ ∈
⋃
n∈N Un(Fα)∩

⋃
n∈N Vn(Fα) where x′ = πFα,F (x). It is clear that

in ∇Fα × [0, 1] we have (x′, u+v
2 ) ∈

⋃
n∈N Un(Fα)× (u, v) ∩

⋃
n∈N Vn(Fα)× (u, v)

for any 0 < u < v < 1.
Now defineWu,v

2n = Un∪{〈dα, (u, v)〉} in B(Fα+1) andWu,v
2n+1 = Vn∪{〈dα, (u, v)〉}

in B(Fα+1) for all n ∈ N. By the above observation and Lemma 3.13 (1), for every
0 < u < v < 1 the sequence (Wu,v

n )n∈N is an antichain in B(Fα+1) which is not
separated along 2N in ∇(Fα+1). By Lemma 3.37 and the hypothesis that Fα+1

depends on α+ 1 the sequence (Wu,v
n )n∈N is an antichain in B(Fα+1) which is not

separated along 2N in ∇(Fα+2). Hence by the hypothesis that Fα+2 is separating
in F for every antichain in Fα+1, the antichain (Wu,v

n )n∈N is not separated along
2N in ∇F .
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Now let X = 〈dα, (0, 1/3)〉 and Y = 〈dα, (2/3, 1)〉 be elements of B(F). We see

that W
0,1/3
n (F) ⊆ X(F) as well as W

2/3,1
n (F) ⊆ Y (F) while X(F) ∩ Y (F) = ∅

which shows that the points witnessing the nonseparation of (W
0,1/3
n (F))n∈N and

(W
2/3,1
n (F))n∈N along 2N in ∇F must be distinct.
On the other hand we have Wu,v

2n (F) ⊆ Un(F) and Wu,v
2n+1(F) ⊆ Vn(F) for any

0 < u < v < 1 and any n ∈ N which shows that these two distinct points must
belong to

⋃
n∈N Un(F) ∩

⋃
n∈N Vn(F) and consequently to U ∩ V which completes

the proof. �

4. Ladder families

This section is devoted to a particular type of construction of a family of functions
F ⊆ CI(Lλ) which we call a ladder family. The construction depends, among
others, on a choice of “ladders” i.e., sequences (ηαn)n∈N ⊆ α increasingly convergent
to α for each α ∈ S ⊆ Eλω where Eλω denotes the set of ordinals less then λ of
countable cofinality. In Section 5 the choice of the ladders will be provided by a
combinatorial principle which follows from GCH.

Definition 4.1. Let λ < κ and S ⊆ Eλω. We say that a family F ⊆ CI(Lλ) is a
ladder family of length λ given by the following parameters defined for all α ∈ S:

(1) (ναn )n∈N ⊆ {−1, 1},
(2) sequences (ηαn)n∈N ⊆ α increasingly convergent to α,
(3) pairwise disjoint (fαn )n∈N ⊆ [F ], which depends on some βα < α,
(4) infinite coinfinite set of integers Mα ⊆ N,

if F = {dα | α < λ} ∪ {gα | α ∈ S} where

gα =
∨

n∈Mα

fαn dναn ,ηαn in C(L)

and each fαn belongs to

[{dβ | β < βα} ∪ {gβ | β ∈ S ∩ βα}].
Given B ⊆ λ we denote the family {dα | α ∈ B} by D[B] and the family D[B]∪{gα |
α ∈ B ∩ S} by F [B].

Thus a ladder family is a family determined by S and the parameters as in (1) -
(4) and constructed in a recursive manner following the values of these parameters.

Lemma 4.2. Suppose that F is a ladder family of length λ. Then F [α] depends
on α for every α < λ.

Proof. Use the recursive definition of F [α], Lemma 3.6 (1) and Lemma 3.24. �

Lemma 4.3. Let λ < κ and let F be a ladder family of length λ and let (Un)n∈N ⊆
B(F [λ0]) be an antichain for some λ0 < λ. Then the family F [λ0 ∪ {λ0}] is sepa-
rating for (Un)n∈N in F .

Proof. Let S ⊆ Eλω be as in the definition of a ladder family and let M ⊆ N be such
that the antichain (Un)n∈N ⊆ B(F [λ0]) is not separated along M in [F [λ0 ∪ {λ0}]].
By Lemma 3.33 it is enough to show that the antichain (Un)n∈N is not separated
along M in [F [α+ 1]] for all α ∈ [λ0, λ). We proceed by induction. The base step
α = λ0 follows from the choice of M . For the inductive step we fix α ∈ (λ0, λ) and
assume the hypothesis for all ordinals smaller than α. Then by Lemma 3.33 the
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antichain (Un)n∈N is not separated along M in F [α] and we have the following two
cases:
Case 1. α 6∈ S. Then F [α+ 1] = F [α]∪ {dα} and the family F [α] depends on α so
we can use Lemma 3.37.
Case 2. α ∈ S. Then F [α+ 1] = F [α]∪{gα, dα}. First, we show that the antichain
(Un)n∈N is not separated along M in [F [α]∪ {gα}]. By the definition of the ladder
family we have that gα =

∨
n∈Mα

(fαn dναn ,ηαn ) and all fαn s are from [F [βα]]. Now, as
βα < α, we observe that by Lemma 3.33, it is enough to show that the antichain
(Un)n∈N is not separated along M in [F [β] ∪ {gα}] for all β ∈ [βα, α). But this
follows from Lemma 3.38 for F = F [β + 1], A = β, f = gα and the inductive
hypothesis that for all β ∈ [βα, α) the antichain (Un)n∈N is not separated along M
in [F [β + 1]].

Finally, to conclude that the antichain (Un)n∈N is not separated along M in
[F [α] ∪ {gα, dα}] we use Lemma 3.37 as in the Case 1 and Lemma 3.24. The proof
of the Lemma is finished. �

Lemma 4.4. Suppose that κ is an uncountable regular cardinal, S ⊆ Eκω and a
strictly increasing sequence (ηαn)n∈N ⊆ κ is convergent to α for every α ∈ S. Then
for every countable A ⊆ κ the set SA of all α ∈ S such that {ηαn | n ∈ N} ∩ A is
infinite is at most countable.

Proof. Define f : SA → A ∪ {supA} by putting for α ∈ SA the value f(α) to be
the least upper bound of the set {ηαn | n ∈ N} ∩ A among the elements of the set
A∪ {supA}. Since A∪ {supA} is countable it is enough to check the injectivity of

f . Fix α, α′ ∈ SA such that α < α′. A ∩ {ηα′

n | n ∈ N} is cofinal in α′, so we can

pick n0 such that α < ηα
′

n0
and ηα

′

n0
∈ A. Then we see that f(α) ≤ ηα′

n0
< f(α′). �

Lemma 4.5. Let λ < κ, let F be a ladder family of length λ and let (Un)n∈N ⊆
B(F) be an antichain. Then there is a countable A ⊆ λ such that (Un)n∈N ⊆
B(F [A]) and F [A] is separating for (Un)n∈N in F .

Proof. Fix the set S from the definition of a ladder family.

Claim 1. There exists an increasing sequence (An)n∈N of countable subsets of λ
such that

(i) (Un)n∈N ⊆ B(F [A0]),
(ii) for all n ∈ N the family F [An] depends on An,

(iii) for all α ∈ S and all n ∈ N if ηαk ∈ An for infinitely many k then α ∈ An+1.

Proof. By the assumption the domain of every Un is some finite set Fn ⊆ F of
coordinates. Fix an arbitrary countable set A0,0 ⊆ λ such that

⋃
n∈N Fn ⊆ F [A0,0].

This choice guarantees that (Un)n∈N ⊆ B(F [A0,0]). Then for every n ∈ N define
A0,n+1 ⊆ λ as the union of A0,n and the countable set

⋃
{Yα | α ∈ An,0 ∩S} where

Yα ⊆ α is some countable set such that gα depends on Yα for α ∈ S. We see that
A0,n is countable for every n ∈ N and so is the set A0 =

⋃
n∈NA0,n. Now we have

(i) and (ii) for n = 0.
Fix n ∈ N and assume we have defined An such that (ii) and (iii) hold. We

define An+1 in two steps. First, we use Lemma 4.4 with S = S and A = An
to obtain the countable set SAn so that we know the set An+1,0 = An ∪ SAn is
countable and that any superset An+1 of An+1,0 satisfies (iii). Then we apply the
procedure outlined above for constructing A0 to obtain countable An+1 such that
(i) and (ii) hold. This completes the proof of the Claim. �
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Fix a sequence (An)n∈N from the above claim and set A =
⋃
n∈NAn. We will

show that F [A] is separating for (Un)n∈N in F . So suppose that (Un)n∈N is not
separated along M in [F [A]]. By Lemma 3.33 it is enough to show that (Un)n∈N is
not separated along M in [F [A∪α+ 1]] for every α < λ. We prove it by induction
on α < λ. The base step for α = 0 that (Un)n∈N is not separated along M in [F [A]]
follows from the choice of M . Now assume that α < λ and that the hypothesis is
true for all ordinals smaller than α that is the antichain (Un)n∈N is not separated
along M in [F [A ∪ α]]. We have the following three cases:
Case 1. α ∈ A. Then F [A∪ (α+ 1)] = F [A∪α∪{α}] = F [A∪α] and we are done
by inductive hypothesis.
Case 2. α 6∈ A and α 6∈ S. Then

F [A ∪ (α+ 1)] = F [A ∪ α] ∪ {dα}.

The family F [A ∪ α] depends on A ∪ α by (ii) of the above claim, by Lemma 4.2
and by definition of ladder family. Therefore, we can use Lemma 3.37 to conclude
that the antichain (Un)n∈N is not separated along M in [F [A ∪ (α+ 1)]].
Case 3. α 6∈ A and α ∈ S. Then

F [A ∪ (α+ 1)] = F [A ∪ α] ∪ {gα, dα}.

We prove the inductive step in this case in two steps. In the first step we show
that the antichain (Un)n∈N is not separated along M in [F [Ak∪α]∪{gα}] for every
k ∈ N, which, by Lemma 3.33, implies that the antichain (Un)n∈N is not separated
along M in [F [A ∪ α] ∪ {gα}]. Fix k ∈ N and let βα < α be as in the definition
of a ladder family. Using Lemma 3.33 once more we see that it is sufficient to
show that the antichain (Un)n∈N is not separated along M in [F [Ak ∪ β] ∪ {gα}]
for all β ∈ (βα, α). Fix β ∈ (βα, α) and apply Lemma 3.38 with F = F [Ak ∪ β],
A = Ak ∪ β and f = gα. Let us check the assumptions of Lemma 3.38:

• the family F [Ak ∪ β] depends on the set Ak ∪ β by (ii) of the above claim,
Lemma 4.2 and the definition of ladder family,

• we have D[Ak ∪ β] ⊆ F [Ak ∪ β] by the definition of operation F [(·)],
• the elements fαn all depend on β because we have βα < β,
• the set {n ∈ N | ηαn ∈ Ak ∪ β} is finite because by the assumption of this

case α 6∈ Ak+1 and (ηαn)n∈N increasingly converges to α > β.

As the antichain (Un)n∈N is not separated along M in [F [Ak∪β]], then Lemma 3.38
guarantees that the antichain (Un)n∈N is not separated along M in [F [A∪β]∪{gα}].

The second step of the proof of Case 3 consists of showing that the antichain
(Un)n∈N is not separated along M in [F [A∪α]∪{gα, dα}]. This is done by Lemma
3.37 since the family F [A∪α]∪{gα} depends on A∪α. This completes the inductive
step and hence the proof of the lemma. �

Lemma 4.6. Let F be a ladder family of length κ. Then ∇F is connected.

Proof. By Lemma 3.29 it is enough to show that ∇F [α + 1] is connected for all
α < κ. We use the transfinite induction so let us fix α < κ and let us assume that
we are done below α. The inductive hypothesis implies that ∇F [α] is connected.
If α 6∈ S then

∇(F [α+ 1]) = ∇(F [α] ∪ {dα}) = ∇(F [α])× I
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by Lemma 3.13, since F [α] depends on α by Lemma 4.2, so we are done. If α ∈ S
then F [α+ 1] = F [α] ∪ {gα, dα}. By the definition of the ladder family we have

gα =
∨

n∈Mα

fαn dναn ,ηαn

and all fαn s are from [F [βα]] where βα < α. Using Lemma 3.29 once more we see
that it is enough to prove that ∇(F [β]∪ {gα}) is connected for all β ∈ (βα, α). By
Lemma 3.28 we have that

∇(F [β] ∪ {gα}) = ext
(
∇(F [β]), (fαn dναn ,ηαn )n∈N

)
and we use Lemma 3.30 to conclude that ∇(F [β] ∪ {gα}) is connected for all β ∈
(βα, α) since ∇(F [β]) is connected by the inductive hypothesis. With adding dα
we proceed as in the first case. �

Lemma 4.7. Let F be a ladder family of length κ. Then ∇F has no butterfly
points.

Proof. Put Fα = F [α+ 1] and note that the hypothesis of Lemma 3.40 is satisfied
by Lemmas 4.2 and 4.3, so the proof is completed by applying Lemma 3.40. �

5. The construction

In this section we construct ladder families F ⊆ CI(Lκ) as described in Section
4 such that the spaces C(K) for K = ∇F satisfy Theorem 1.3. To do so we use
the previously developed techniques and a combinatorial principle ♦(Eκω) (Theorem
5.2) which follows from GCH.

Lemma 5.1. Assume the GCH. Let κ be a regular cardinal which is of the form
λ+ for λ which is a cardinal of uncountable cofinality. Then κω = κ and for every
α < κ we have

αω < κ

Proof. We prove the lemma by induction on a cardinal α < κ. If cf(α) = ω, then
αω ≤ 2α = α+ ≤ κ by the GCH and α+ < κ by the hypothesis on κ. If cf(α) > ω,
then αω =

∑
{βω | β < α} which is less than κ by the inductive assumption and

the regularity of κ. It also follows that κω = κ. �

When talking about topological concepts like convergence in the context of or-
dinals we always refer to the order topology on the ordinals. Recall that a subset
C ⊆ κ is called club if and only if it is unbounded in κ and closed in the order
topology. S ⊆ κ is called stationary if it intersects all club sets. It is well known
that Eκω is stationary for any uncountable regular κ (see [17], [25]). Assuming GCH
we have the following theorem due to Gregory:

Theorem 5.2 (Theorem 23.2 [17]). Assume GCH. There is a sequence (Sα)α∈Eκω
such that:

(1) Sα ⊆ α for every α ∈ Eκω,
(2) for every X ⊆ κ the set

{α ∈ Eκω | X ∩ α = Sα}
is stationary in κ.

The above statement is called ♦(Eκω).
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Fix a bijection Ψ from κ onto ({−2,−1}∪κ)×{−1, 1}N×
(
CI(L)N∪B(CI(L))N

)
,

which exists by the fact that the cardinalities of the sets CI(L) and B(CI(L)) are
κ and κω = κ by Lemma 5.1 and Lemma 3.14. By the standard closure argument
and the fact that αω < κ for all α < κ (Lemma 5.1) the set

CΨ = {α ∈ κ : Ψ[α] = ({−2,−1} ∪ α)× {−1, 1}N ×
(
CI(Lα)N ∪ B(CI(Lα))N

)
}

is a club set in κ. While using Ψ we will only be working with such subsets
T ⊆ α for α ∈ CΨ ∪ {κ} that Ψ[T ] is a graph of a function with two coordinate
functions, first from {−2,−1} ∪ α into {−1, 1}N and the second from {−2,−1} ∪ α
into CI(Lα)N ∪ B(CI(Lα))N considered as a subset of ({−2,−1} ∪ α)× {−1, 1}N ×(
CI(Lα)N∪B(CI(Lα))N

)
. That is, Ψ will serve as a coding of such pairs of functions

by subsets of ordinals in κ. ♦(Eκω) from Theorem 5.2 will be our prediction principle
which for α ∈ CΨ may provide such a code for the above pair of functions in the
form of T = Sα ⊆ α.

Theorem 5.3. Assume GCH. Let κ be the successor of a cardinal of uncountable
cofinality. There is a compact Hausdorff connected c.c.c. space K of weight κ
without a butterfly point such that C(K) has asymmetric distribution of separations
in the direction of some D ⊆ CI(K).

Proof. We will construct a ladder family F ⊆ CI(Lκ) such that K = ∇F satisfies
the theorem. Let (Sα)α<κ be a ♦κ(Eκω)-sequence as in 5.2. Let Ψ and CΨ be as
above. For each ordinal α ∈ Eκω choose a ladder (ηαn)n∈N, that is an increasing,
cofinal in α sequence of type ω. The family F will depend of S ⊆ κ and will be a
ladder family with the following parameters for α ∈ S:

• (ραn)n∈N ⊆ {−1, 1},
• (ηαn)n∈N ,
• (fαn )n∈N ⊆ [F ], which depends on some βα < α,
• Mα ⊆ N.

So we will use for it the terminology and notation as in Definition 4.1. In fact
the above parameters are build by recursion together with some additional objects
which will witness the fact that F has asymmetric distribution of separations.
Namely, the recursive construction involves:

(1) S = {αξ : ξ < κ} ⊆ Eκω ∩ CΨ,
(2) {βαξ : ξ < κ} ⊆ κ, βαξ < αξ,

(3) (ρ
αξ
n )n∈N ⊆ {−1, 1},

(4) {fαξn : n ∈ N} which is a pairwise disjoint sequence in the algebra [F [βξ]],
(5) {V ξn : n ∈ N} which is an antichain in B(F [αξ]) such that

V ξn (L) ∩ supp(f
αξ
m ) = ∅, for all n,m ∈ N,

(6) Aξ a countable subset of αξ such that F [Aξ] is separating in F [αξ] for
{V ξn : n ∈ N} (see Definition 3.35),

(7) Mαξ ⊆ N such that {V ξn : n ∈ N} is not separated in [F [Aξ]] along Mαξ ,

(8) gαξ =
∨
n∈Mαξ

(f
αξ
n d

η
αξ
n ,ρ

αξ
n

).

Suppose that we have constructed all these objects for all ξ < γ for some γ < κ.
This gives ladder families F [α] for any sup{αξ : ξ < γ} ≤ α ≤ κ, just consisting of
the elements {gαξ : ξ < γ} and {dβ : β < α} for α as above. Let αγ be the first
ordinal in Eκω ∩ CΨ not smaller than sup{αξ : ξ < γ} such that
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(i) Ψ[Sαγ ] = (φ, ψ) is a function (identified with its graph) from ({−2,−1}∪αγ)

into {−1, 1}N ×
(
CI(L)N ∪ B(CI(L))N

)
.

(ii) ψ(−2) is a a pairwise disjoint sequence (f
αγ
n )n∈N in F [βγ ] for some βγ < αγ ,

(iii) ψ(−1) is an antichain (V γn )n∈N in B[F [αγ ]] such that for all n,m ∈ N we have
V γn (L) ∩ supp(f

αγ
m ) = ∅,

(iv) for α ∈ αγ the value ψ(α) is an antichain {V γα,n : n ∈ N} in B[F [αγ ]] whose
n-th element V γα,n is below V γn .

In this case we define

(a) βγ , f
αγ
n , V γn as above,

(b) ρ
αγ
n = φ(η

αγ
n )(n),

The existence of αγ follows from ♦(Eκω). To define Aγ and Mαγ we need to make
some argument: The family F [αγ ] is a ladder family and {V γ

η
αγ
n ,n

: n ∈ N} is an

antichain in B[F [αγ ]], hence by Lemma 4.5, there is a countable Aγ ⊆ αγ such that
F [Aγ ] is separating for{V γ

η
αγ
n ,n

: n ∈ N} in F [αγ ]. Since F [Aγ ] is a countable, by

Lemma 3.34 we can find an infinite Mαγ ⊆ N such that

(c) {V γ
η
αγ
n ,n

: n ∈ N} is not separated in [F [Aγ ]] along Mαγ .

Finally put

(d) gαγ =
∨
n∈Mαγ

(f
αγ
n dηαγn ,ρ

αγ
n

)

This completes the inductive step in the construction of the ladder family F . Now
let us prove that C(∇F) has asymmetric distribution of separations in the direction
of D = {dα : α < κ}. So, fix

• Pairwise disjoint (fn)n∈N ⊆ [F ] and and antichain (Un)n∈N ⊆ B(F) such
that

supp(fn) ∩ Un(L) = ∅ for all n,m ∈ N,
• (νξn)n∈N ⊆ {−1, 1} for all ξ ∈ κ,
• { (Uξn)n∈N | ξ ∈ κ } ⊆ B(F) such that Uξn(F) ⊆ Un(F) for every n ∈ N and
ξ ∈ κ.

Let X ⊆ κ be such that Ψ[X] is a function (φ, ψ) from {−2,−1}∪αγ into {−1, 1}N×(
CI(L)N ∪ B(CI(L))N

)
(identified with its graph) such that:

• φ(α)(n) = ναn for each n ∈ N and each α ∈ κ,
• ψ(−2) is (fn)n∈N,
• ψ(−1) is (Un)n∈N,
• ψ(α) is (Uαn )n∈N for each α ∈ κ.

By the properties of the ♦κ(Eκω)-sequence (Theorem 5.2), the facts that Eκω is
stationary and Cψ \ β is a club set, there is α ∈ Eκω ∩ [Cψ \ (β + 1)] such that
Sα = X ∩ α where β < κ is such that fn ∈ F [β] and Un ∈ B[F [β]] for each n ∈ N
which exists by the uncountable cofinality of κ. By the definition of CΨ and the
choice of α we have

Ψ[Sα] = Ψ[X ∩ α] = Ψ[X] ∩Ψ[α] = (φ, ψ) ∩Ψ[α] = (φ, ψ) � ({−2,−1} ∪ α).

So, (i)-(iv) are satisfied, moreover, then α = αγ ∈ S for some γ < κ. In particular,
by the construction (1) - (8) we have

• ραγn = νηnn , where ηn = η
αγ
n ,

• fαγn = fn for each n ∈ N,
• βγ = β,
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• V γn = Un for each n ∈ N.
• V γα,n = Uαn for all α < αγ and each n ∈ N.

So

gαγ =
∨

n∈Mαγ

(fαγn dηαγn ,ρ
αγ
n

) =
∨

n∈Mαγ

(fndηαγn ,νηnn
)

as required in Definition 1.4. So it remains to prove that the antichain (Uηnn )n∈N
is not separated along the set Mγ in [F ]. First note that (Uηnn )n∈N is (V γηn,n)n∈N
so is not separated along Mγ in [F [αγ ]] by (c). Now, since Un ∩ supp(fm) = ∅
for all n,m ∈ N, and Uαn ⊆ Un by Lemma 3.36 and Lemma 4.3 we conclude that
(Uηnn )n∈N is not separated along Mγ in [F ]. So, C(∇F) has asymmetric distribution
of separations in the direction of {dα : α < κ}. ∇∆ is connected and has no butterfly
points by Lemma 4.7 and Lemma 4.6. It is c.c.c. as a continuous image of a c.c.c.
space Lκ by Proposition 3.2, and has weight κ by Lemma 3.14, so the proof is
completed. �
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