THE NONSTATIONARY IDEAL ON $P_{\kappa}(\lambda)$ FOR λ SINGULAR

Pierre MATET $\ast\,$ and Saharon SHELAH †

Abstract

We give a new characterization of the nonstationary ideal on $P_{\kappa}(\lambda)$ in the case when κ is a regular uncountable cardinal and λ a singular strong limit cardinal of cofinality at least κ .

1 Introduction

Let κ be a regular uncountable cardinal and $\lambda \geq \kappa$ be a cardinal.

As [10] and [11] of which it is a continuation, this paper investigates ideals on $P_{\kappa}(\lambda)$ with some degree of normality. For $\delta \leq \lambda$, let $\mathrm{NS}_{\kappa,\lambda}^{\delta}$ denotes the least δ -normal ideal on $P_{\kappa}(\lambda)$. Thus $\mathrm{NS}_{\kappa,\lambda}^{\delta}$ = the noncofinal ideal $I_{\kappa,\lambda}$ for any $\delta < \kappa$, and $\mathrm{NS}_{\kappa,\lambda}^{\lambda}$ = the nonstationary ideal $\mathrm{NS}_{\kappa,\lambda}$. $\mathrm{NSS}_{\kappa,\lambda}$ denotes the least seminormal ideal on $P_{\kappa}(\lambda)$. It is simple to see that $\mathrm{NSS}_{\kappa,\lambda} = \mathrm{NS}_{\kappa,\lambda}$ in case $\mathrm{cf}(\lambda) < \kappa$. If λ is regular, then by a result of Abe [1], $\mathrm{NSS}_{\kappa,\lambda} = \bigcup_{\delta < \lambda} \mathrm{NS}_{\kappa,\lambda}^{\delta}$.

One problem we address in the paper is whether for $\lambda > \kappa$ $\mathrm{NS}_{\kappa,\lambda}$ is the restriction of a smaller ideal, i.e. whether $\mathrm{NS}_{\kappa,\lambda} = J|A$ for some ideal $J \subset \mathrm{NS}_{\kappa,\lambda}$ and some $A \in \mathrm{NS}_{\kappa,\lambda}^*$. The question as stated has a positive answer (see [2]) with $J = \nabla^{\lambda} I_{\kappa,\lambda}$. By a result of Abe [1] we can also take $J = \mathrm{NSS}_{\kappa,\lambda}$ in case $\kappa \leq \mathrm{cf}(\lambda) < \lambda$. We investigate the possibility of taking $J = \bigcup_{\delta < \xi} \mathrm{NS}_{\kappa,\lambda}^{\delta}$ for some $\xi \leq \lambda$. If λ is regular, no such J will work since then, by an argument of [11], there is no A such that $\mathrm{NS}_{\kappa,\lambda} = \mathrm{NSS}_{\kappa,\lambda} \mid A$.

^{*}Publication 33.

 $^{^\}dagger \rm Research$ supported by the United States - Israel Binational Science Foundation (Grant no. 2002323). Publication 869.

²⁰¹⁰ Mathematics Subject Classification: 03E05, 03E55

Key words and phrases : $P_{\kappa}(\lambda)$, nonstationary ideal, precipitous ideal

Let $\mathcal{H}_{\kappa,\lambda}$ assert that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$, where $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\tau})$ denotes the reduced cofinality of $\operatorname{NS}_{\kappa,\lambda}^{\tau}$. Clearly, $\mathcal{H}_{\kappa,\lambda}$ follows from $2^{<\lambda} = \lambda$. But there are other situations in which $\mathcal{H}_{\kappa,\lambda}$ holds. For instance, if in V, GCH holds, λ is a limit cardinal, χ is a regular uncountable cardinal less than κ , and \mathbb{P} is the forcing notion to add λ^+ Cohen subsets of χ , then in $V^{\mathbb{P}}, 2^{\chi} > \lambda$ but, by results of [11], for every cardinal τ with $\kappa \leq \tau < \lambda, \operatorname{cof}(\operatorname{NS}_{\kappa,\tau}) = \tau^+$ and hence $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$.

It is known ([16], [10]) that if $cf(\lambda) < \kappa$, then $\mathcal{H}_{\kappa,\lambda}$ holds just in case $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|A$ for some A. We will prove the following.

Theorem 1.1. Suppose that $\kappa \leq \operatorname{cf}(\lambda) < \lambda$ and $\mathcal{H}_{\kappa,\lambda}$ holds. Then (a) $\operatorname{NS}_{\kappa,\lambda} = \operatorname{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)} | A$ for some A, but (b) there is no B such that $\operatorname{NS}_{\kappa,\lambda} = (\bigcup_{\delta < \operatorname{cf}(\lambda)} \operatorname{NS}_{\kappa,\lambda}^{\delta}) | B$.

It is not known whether the converse holds :

Question. Suppose that $\kappa \leq cf(\lambda) < \lambda$ and $NS_{\kappa,\lambda} = NS_{\kappa,\lambda}^{cf(\lambda)}|A$ for some A. Does it follow that $\mathcal{H}_{\kappa,\lambda}$ holds?

If λ is singular and $\mathcal{H}_{\kappa,\lambda}$ holds, then by the results above $NS_{\kappa,\lambda} = NS_{\kappa,\lambda}^{cf(\lambda)}|A$ for some A. The following problem is open.

Question. Is it consistent that " λ is singular but $NS_{\kappa,\lambda} \neq NS_{\kappa,\lambda}^{\delta} | A$ for every $\delta < \lambda$ and every $A \in NS_{\kappa,\lambda}^{*}$ "?

For any infinite cardinal $\tau < \lambda$, let $u(\tau, \lambda)$ = the least size of any cofinal subset of $(P_{\tau}(\lambda), \subset)$.

Now suppose $\kappa \leq \operatorname{cf}(\lambda) < \lambda$. Then by results of [10], there is no A such that $\operatorname{NS}_{\kappa,\lambda} = I_{\kappa,\lambda}|A$. And it is shown in [11] that for any δ such that $\kappa \leq \delta < \operatorname{cf}(\lambda)$ and $u(|\delta|^+, \lambda) = \lambda$, there is no A such that $\operatorname{NS}_{\kappa,\lambda} = \operatorname{NS}_{\kappa,\lambda}^{\delta}|A$. Thus assuming Shelah's Strong Hypothesis (SSH), $\operatorname{NS}_{\kappa,\lambda} \neq \operatorname{NS}_{\kappa,\lambda}^{\delta}|A$ for every $\delta < \operatorname{cf}(\lambda)$ and every $A \in \operatorname{NS}_{\kappa,\lambda}^*$.

Question. Is it consistent relative to some large cardinal that " $\kappa < cf(\lambda) < \lambda$ and $NS_{\kappa,\lambda} = NS_{\kappa,\lambda}^{\delta} | A$ for some $\delta < cf(\lambda)$ and some $A \in NS_{\kappa,\lambda}^{*}$ "?

Another problem we consider is whether $NS_{\kappa,\lambda}^{\delta}$ is nowhere precipitous, where $\delta \leq \lambda$. As shown by Matsubara and Shioya [14], $I_{\kappa,\lambda}$ is nowhere precipitous, and in fact so is any ideal J on $P_{\kappa}(\lambda)$ of cofinality $u(\kappa, \lambda)$. Thus for every ideal J on $P_{\kappa}(\lambda)$,

 $\overline{\operatorname{cof}}(J) \leq \lambda \Rightarrow \operatorname{cof}(J) = u(\kappa, \lambda) \Rightarrow J$ is nowhere precipitous.

We establish the following.

Proposition 1.2. Suppose that $\mathcal{H}_{\kappa,\lambda}$ holds, and let $\xi > \kappa$ be such that

- ξ is either a successor ordinal, or a limit ordinal of cofinality at least κ ;
- $\xi \leq \eta$, where η equals $\lambda + 1$ if $cf(\lambda) < \kappa$, and $cf(\lambda)$ otherwise.

Then $\overline{\operatorname{cof}}\left(\bigcup_{\delta<\xi} \operatorname{NS}_{\kappa,\lambda}^{\delta}\right) \leq \lambda.$

It follows from Theorem 1.1 and Proposition 1.2 that if $\mathcal{H}_{\kappa,\lambda}$ holds, then $\mathrm{NSS}_{\kappa,\lambda}|A = \mathrm{NS}^{\delta}_{\kappa,\lambda}|A$ for some $A \in \mathrm{NS}^{*}_{\kappa,\lambda}$, where δ equals $\mathrm{cf}(\lambda)$ if $\kappa \leq \mathrm{cf}(\lambda) < \lambda$, and 0 otherwise.

Let us next consider cases when $\kappa \leq \delta \leq \lambda$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\delta}) > u(\kappa, \lambda)$. Goldring [7] and the second author proved that if λ is regular and $\mu > \lambda$ is Woodin, then in $V^{\operatorname{Col}(\lambda, <\mu)}$ NS_{κ,λ} is precipitous. On the other hand Matsubara and the second author [13] showed ⁽¹⁾ that if λ is a strong limit cardinal with $\kappa \leq \operatorname{cf}(\lambda) < \lambda$, then NS_{κ,λ} is nowhere precipitous. We establish the following.

Theorem 1.3. Let σ be a cardinal such that $\kappa \leq cf(\lambda) \leq \sigma < \lambda$ Then the following hold :

- (i) If $\sigma = cf(\lambda)$ and $\tau^{cf(\lambda)} < \lambda$ for every cardinal $\tau < \lambda$, then $NS^{\sigma}_{\kappa,\lambda}$ is nowhere precipitous.
- (ii) If $cf(\lambda) < \sigma$ and $\tau^{c(\kappa,\sigma)} < \lambda$ for every cardinal $\tau < \lambda$, where $c(\kappa,\sigma)$ denotes the least size of any closed unbounded subset of $P_{\kappa}(\sigma)$, then $NS^{\sigma}_{\kappa,\lambda}$ is nowhere precipitous.

Note that if $\kappa \leq \operatorname{cf}(\lambda) \leq \sigma < \lambda$ and the hypothesis of (i) (respectively, (ii)) of Theorem 1.3. holds, then $\lambda^{\operatorname{cf}(\lambda)} = \lambda$, so by results of [10],

$$\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\sigma}) \ge \operatorname{\overline{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\sigma}) > \lambda = u(\kappa,\lambda).$$

By combining Theorems 1.1 and 1.3, we obtain the following.

Theorem 1.4. Suppose that $\mathcal{H}_{\kappa,\lambda}$ holds, $\kappa \leq \mathrm{cf}(\lambda) < \lambda$, and $\tau^{\mathrm{cf}(\lambda)} < \lambda$ for every cardinal $\tau < \lambda$. Then $\mathrm{NS}_{\kappa,\lambda}$ is nowhere precipitous.

It is not clear whether Theorem 1.4 constitutes a real improvement in comparison to the result of Matsubara and the second author quoted above.

Question. Suppose that $\mathcal{H}_{\kappa,\lambda}$ holds, $\kappa \leq \mathrm{cf}(\lambda) < \lambda$, and $\tau^{\mathrm{cf}(\lambda)} < \lambda$ for every cardinal $\tau < \lambda$. Does it then follow that λ is a strong limit cardinal ?

¹ At some point the first author claimed to have found an error in the proof but it turned out that the mistake was his.

The paper is organized as follows. Section 2 collects basic definitions and facts concerning ideals on $P_{\kappa}(\lambda)$. It is shown in Section 3 that $\overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\lambda}^{\pi})$ is a nondecreasing function of π . In Section 4 we establish that if λ is regular, then $\overline{\operatorname{cof}}(\mathrm{NSS}_{\kappa,\lambda}) = \lambda$ just in case $\mathcal{H}_{\kappa,\lambda}$ holds. In Section 5, Proposition 1.2 is proved. In Section 6 we show that it is consistent relative to a large cardinal that " λ is regular and $\overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\lambda}|A) < \lambda$ for some A". It is shown in Section 7 that if λ is singular and $\mathcal{H}_{\kappa,\lambda}$ holds, then $\mathrm{NS}_{\kappa,\lambda} = \mathrm{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)}|A$ for some A. Finally in Section 8 we prove Theorem 1.3 and note that it is consistent relative to a large cardinal that "there is an ideal J on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) > \lambda$ but $\operatorname{cof}(J) = u(\kappa, \lambda)$."

2 Ideals on $P_{\kappa}(\lambda)$

In this section we collect basic material concerning ideals on $P_{\kappa}(\lambda)$.

 NS_{κ} denotes the nonstationary ideal on κ .

For a set A and a cardinal ρ , let $P_{\rho}(A) = \{a \subseteq A : |a| < \rho\}$.

Given four cardinals τ , ρ , χ and σ , we define $\operatorname{cov}(\tau, \rho, \chi, \sigma)$ as follows. If there is $X \subseteq P_{\rho}(\tau)$ with the property that for any $a \in P_{\chi}(\tau)$, we may find $Q \in P_{\sigma}(X)$ with $a \subseteq \bigcup Q$, we let $\operatorname{cov}(\tau, \rho, \chi, \sigma)$ = the least cardinality of any such X. Otherwise we let $\operatorname{cov}(\tau, \rho, \chi, \sigma) = 0$.

We let $cov(\tau, \rho, \chi, \sigma) = u(\tau, \chi)$ in case $\rho = \chi$ and $\sigma = 2$.

FACT 2.1. ([15, pp. 85-86]) Let τ, ρ, χ and σ be four cardinals such that $\tau \ge \rho \ge \chi \ge \omega$ and $\chi \ge \sigma \ge 2$. Then the following hold :

- (i) If $\tau > \rho$, then $\operatorname{cov}(\tau, \rho, \chi, \sigma) \ge \tau$.
- (ii) $\operatorname{cov}(\tau, \rho, \chi, \sigma) = \operatorname{cov}(\tau, \rho, \chi, \max\{\omega, \sigma\}).$
- (iii) $\operatorname{cov}(\tau^+, \rho, \chi, \sigma) = \max\{\tau^+, \operatorname{cov}(\tau, \rho, \chi, \sigma)\}.$
- (iv) If $\tau > \rho$ and $\operatorname{cf}(\tau) < \sigma = \operatorname{cf}(\sigma)$, then $\operatorname{cov}(\tau, \rho, \chi, \sigma) = \sup\{\operatorname{cov}(\tau', \rho, \chi, \sigma) : \rho \le \tau' < \tau\}$.
- (v) If τ is a limit cardinal such that $\tau > \rho$ and $cf(\tau) \ge \chi$, then $cov(\tau, \rho, \chi, \sigma) = \sup \{ cov(\tau', \rho, \chi, \sigma) : \rho \le \tau' < \tau \}.$

 $I_{\kappa,\lambda}$ denotes the set of all $A \subseteq P_{\kappa}(\lambda)$ such that $\{a \in A : b \subseteq a\} = \emptyset$ for some $a \in P_{\kappa}(\lambda)$.

By an *ideal* on $P_{\kappa}(\lambda)$, we mean a collection J of subsets of $P_{\kappa}(\lambda)$ that is closed under subsets (i.e. $P(A) \subseteq J$ for all $A \in J$), κ -complete (i.e. $\bigcup X \in J$ for every $X \in P_{\kappa}(J)$), fine (i.e. $I_{\kappa,\lambda} \subseteq J$) and proper (i.e. $P_{\kappa}(\lambda) \notin J$). Given an ideal J on $P_{\kappa}(\lambda)$, let $J^+ = \{A \subseteq P_{\kappa}(\lambda) : A \notin J\}$ and $J^* = \{A \subseteq P_{\kappa}(\lambda) : P_{\kappa}(\lambda) \setminus A \in J\}$. For $A \in J^+$, let $J|A = \{B \subseteq P_{\kappa}(\lambda) : B \cap A \in J\}$. Given a cardinal $\chi > \lambda$ and $f : P_{\kappa}(\lambda) \to P_{\kappa}(\chi)$, we let

$$f(J) = \{ X \subseteq P_{\kappa}(\chi) : f^{-1}(X) \in J \}.$$

 \mathcal{M}_J denotes the collection of all maximal antichains in the partially ordered set (J^+, \subseteq) , i.e. of all $Q \subseteq J^+$ such that

- $A \cap B \in J$ for any distinct $A, B \in Q$;
- for every $C \in J^+$, there is $A \in Q$ with $A \cap C \in J^+$.

For a cardinal ρ, J is ρ -saturated if $|Q| < \rho$ for every $Q \in \mathcal{M}_J$. $\operatorname{cof}(J)$ denotes the least cardinality of any $X \subseteq J$ such that $J = \bigcup_{A \in X} P(A)$. $\overline{\operatorname{cof}}(J)$ denotes the least size of any $Y \subseteq J$ with the property that for every $A \in J$, there is $y \in P_{\kappa}(Y)$ with $A \subseteq \bigcup y$. $\operatorname{non}(J)$ denotes the least cardinality of any $A \in J^+$. Note that $\operatorname{cof}(J) \ge \operatorname{non}(J) \ge \operatorname{non}(I_{\kappa,\lambda}) = u(\kappa, \lambda)$. The following is well-known (see e.g. [10] and [11]).

FACT 2.2.

- (i) $\lambda^{<\kappa} = \max\{2^{<\kappa}, u(\kappa, \lambda)\}.$
- (ii) $\overline{\operatorname{cof}}(I_{\kappa,\lambda}) = \lambda.$
- (iii) Let J be an ideal on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) \leq \lambda$. Then $\operatorname{cof}(J) = u(\kappa, \lambda)$.

Shelah's Strong Hypothesis (SSH) asserts that for any two uncountable cardinals χ and ρ with $\chi \ge \rho = \operatorname{cf}(\rho)$, $u(\rho, \chi)$ equals χ if $\operatorname{cf}(\chi) \ge \rho$, and χ^+ otherwise.

FACT 2.3. ([8])

- (i) Suppose that there is a π -saturated ideal on $P_{\nu}(\lambda)$, where π and ν are two cardinals such that $\omega < \nu = cf(\nu) \leq \lambda$ and $\pi < \nu \cap \kappa^+$. Then $u(\kappa, \lambda)$ equals λ if $cf(\lambda) \geq \kappa$, and λ^+ otherwise.
- (ii) Suppose that there is a regular uncountable cardinal $\nu < \lambda$ that is mildly π^+ -ineffable for every cardinal π with $\nu \leq \pi < \lambda$. Then the following hold :
 - $u(\kappa, \lambda)$ equals λ if $cf(\lambda) \ge \kappa$, and λ^+ if $\omega < cf(\lambda) < \kappa$.
 - $\operatorname{cov}(\lambda, \kappa, \kappa, \omega_1) = \lambda$ if $\operatorname{cf}(\lambda) = \omega$.

Numerous variations on the original notion of ideal normality have been considered over the years. One such variant is the concept of δ -normality which has been studied by Abe [1].

Let $\delta \leq \lambda$. An ideal J on $P_{\kappa}(\lambda)$ is δ -normal if given $A \in J^+$ and $f : A \to \delta$ with the property that $f(a) \in a$ for all $a \in A$, there exists $B \in J^+ \cap P(A)$ such that f is constant on B.

 $\mathrm{NS}_{\kappa,\lambda}^{\delta}$ denotes the smallest δ -normal ideal on $P_{\kappa}(\lambda)$. Note that λ -normality is the same as normality, so $\mathrm{NS}_{\kappa,\lambda}^{\lambda} = \mathrm{NS}_{\kappa,\lambda}$.

 $c(\kappa, \lambda)$ denotes the least size of any closed unbounded subset of $P_{\kappa}(\lambda)$.

FACT 2.4.

- (i) ([1]) Let δ be an ordinal such that $\delta + \kappa \leq \lambda$. Then $\mathrm{NS}_{\kappa,\lambda}^{\delta+\kappa} \setminus \mathrm{NS}_{\kappa,\lambda}^{\delta} \neq \emptyset$.
- (ii) ([11]) Suppose $\kappa \leq \delta < \lambda$. Then $NS^{\delta}_{\kappa,\lambda} = NS^{|\delta|}_{\kappa,\lambda} |A|$ for some A.
- (iii) ([11]) Let δ and η be two ordinals such that $|\delta| < |\eta| < \lambda$ and $\kappa \le \eta$. Then there is no A such that $NS^{\eta}_{\kappa,\lambda} = NS^{\delta}_{\kappa,\lambda}|A$.

FACT 2.5.

- (i) ([10]) $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\delta}) \geq \lambda$ for every $\delta \leq \lambda$.
- (ii) ([8], [10]) Let $\delta \leq \lambda$. Then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\delta}|A) = \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\delta})$ for every $A \in \operatorname{NS}_{\kappa,\lambda}^{*}$.
- (iii) ([10]) $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}) \geq \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\rho})$ for every cardinal ρ with $\kappa \leq \rho < \lambda$.
- (iv) ([10]) Suppose $cf(\lambda) \ge \kappa$. Then $\overline{cof}(NS_{\kappa,\lambda}) > \lambda$.

The concept of $[\delta]^{<\theta}$ -normality generalizes that of δ -normality.

Let $\delta \leq \lambda$, and let θ be a cardinal with $\theta \leq \kappa$. An ideal J on $P_{\kappa}(\lambda)$ is $[\delta]^{<\theta}$ -normal if given $A \in J^+$ and $f : A \to P_{\theta}(\delta)$ with the property that $f(a) \in P_{|a \cap \theta|}(a \cap \delta)$ for all $a \in A$, there exists $B \in J^+ \cap P(A)$ such that f is constant on B. Note that for $\theta = \kappa$, $[\lambda]^{<\theta}$ -normality is the same as strong normality. We set $\overline{\theta} = \theta$ if $\theta < \kappa$, or $\theta = \kappa$ and κ is a limit cardinal, and $\overline{\theta} = \nu$ if $\theta = \kappa = \nu^+$.

FACT 2.6. ([11])

- (i) Suppose that $\delta < \kappa$, or $\theta < \kappa$, or κ is not a limit cardinal. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if $|P_{\overline{\theta}}(\rho)| < \kappa$ for every cardinal $\rho < \kappa \cap (\delta + 1)$.
- (ii) Suppose that $\delta \geq \kappa, \theta = \kappa$ and κ is a limit cardinal. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if κ is a Mahlo cardinal.
- (iii) Suppose that there exists a $[\kappa]^{<\theta}$ normal ideal on $P_{\kappa}(\lambda)$. Then $\kappa^{<\overline{\theta}} = \kappa$, and $(\pi^{<\overline{\theta}})^{<\overline{\theta}} = \pi^{<\overline{\theta}}$ for every cardinal $\pi > \kappa$.

Assuming that there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, $NS_{\kappa,\lambda}^{[\delta]^{<\theta}}$ denotes the smallest such ideal.

FACT 2.7. ([11])

(i) Suppose that $\theta < 2$ or $\delta < \kappa$. Then $NS_{\kappa,\lambda}^{[\delta]^{<\theta}} = I_{\kappa,\lambda}$.

- (ii) Suppose that $2 \le \theta \le \omega$. Then $NS_{\kappa,\lambda}^{[\delta]^{\le \theta}} = NS_{\kappa,\lambda}^{\delta}$.
- (iii) Suppose that $|\delta|^{<\overline{\theta}} = |\eta|^{<\overline{\pi}}$, where $\kappa \leq \eta \leq \lambda$ and π is a cardinal with $2 \leq \pi \leq \kappa$. Then $\mathrm{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}} | A = \mathrm{NS}_{\kappa,\lambda}^{[\eta]^{<\pi}} | A$ for some $A \in (\mathrm{NS}_{\kappa,\lambda}^{[\gamma]^{<\rho}})^*$, where $\gamma = \max\{\delta,\eta\}$ and $\rho = \max\{\theta,\pi\}$.

Given an ordinal η , a cardinal π and $f: P_{\pi}(\eta) \to P_{\kappa}(\lambda)$, let $C(f, \kappa, \lambda)$ be the set of all $a \in P_{\kappa}(\lambda)$ such that $a \cap \pi \neq \emptyset$ and $f(e) \subseteq a$ for every $e \in P_{|a \cap \pi|}(a \cap \eta)$.

FACT 2.8. ([11]) Suppose that $A \subseteq P_{\kappa}(\lambda)$, $\kappa \leq \delta \leq \lambda$, and θ is a cardinal with $2 \leq \theta \leq \kappa$. Then the following are equivalent :

- (i) $A \in \mathrm{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}}$.
- (ii) $A \cap C(f, \kappa, \lambda) = \emptyset$ for some $f : P_{\max\{\overline{\theta}, 3\}}(\delta) \to P_{\kappa}(\lambda)$.
- (iii) $A \cap \{a \in C(g, \kappa, \lambda) : a \cap \kappa \in \kappa\} = \emptyset$ for some $g : P_{\max\{\overline{\theta}, 3\}}(\delta) \to P_3(\lambda)$.

FACT 2.9. ([10]) Let χ and θ be two cardinals such that $2 \le \theta \le \kappa \le \chi \le \lambda$. Then the following hold :

(i) Let J be a $[\chi]^{<\theta}$ - normal ideal on $P_{\kappa}(\lambda)$. Then either $\operatorname{cf}(\overline{\operatorname{cof}}(J)) < \kappa$, or $\operatorname{cf}(\overline{\operatorname{cof}}(J)) > \chi^{<\overline{\theta}}$.

(ii) If
$$\chi^{<\overline{\theta}} < \lambda$$
, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{[\chi]^{<\theta}}) \ge \lambda$.

FACT 2.10. ([10], [11]) Suppose that $\kappa \leq \delta < \lambda$, and θ is a cardinal with $2 \leq \theta \leq \kappa$. Then the following hold :

(i)
$$\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \max\{\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,|\delta|}^{|\delta|^{<\theta}}), \operatorname{cov}(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, \kappa)\} \text{ and} \operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \max\{\operatorname{cof}(\operatorname{NS}_{\kappa,|\delta|}^{|\delta|^{<\theta}}), \operatorname{cov}(\lambda, (|\delta|^{<\overline{\theta}})^+, (|\delta|^{<\overline{\theta}})^+, 2)\}.$$

(ii) If λ is a limit cardinal and either $\operatorname{cf}(\lambda) < \kappa$ or $\operatorname{cf}(\lambda) > |\delta|^{<\overline{\theta}}$, then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \sup\{\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\delta]^{<\theta}}) : \delta < \tau < \lambda\}.$

For a cardinal $\tau, \mathfrak{d}_{\kappa,\lambda}^{\tau}$ denotes the smallest cardinality of any family F of functions from τ to $P_{\kappa}(\lambda)$ with the property that for any $g: \tau \to P_{\kappa}(\lambda)$, there is $f \in F$ such that $g(\alpha) \subseteq f(\alpha)$ for every $\alpha < \tau$.

FACT 2.11. ([11])

- (i) For any cardinal $\tau > 0$, $cf(\mathfrak{d}_{\kappa,\lambda}^{\tau}) > \tau$.
- (ii) Suppose that $0 < \delta \leq \lambda$, and θ is a cardinal with $0 < \theta \leq \kappa$. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}} | A) = \mathfrak{d}_{\kappa,\lambda}^{|P_{\overline{\theta}}(\delta)|}$ for every $A \in (\operatorname{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}})^+$.

Next let us recall a few facts concerning the notion of precipitousness.

An ideal J on $P_{\kappa}(\lambda)$ is precipitous if whenever $A \in J^+$ and $\langle Q_n : n < \omega \rangle$ is a sequence of members of $\mathcal{M}_{J|A}$ such that $Q_{n+1} \subseteq \bigcup_{B \in Q_n} P(B)$ for all $n < \omega$, there exists $f \in \prod_{n \in \omega} Q_n$ such that $f(0) \supseteq f(1) \supseteq \ldots$ and $\bigcap_{n < \omega} f(n) \neq \emptyset$. J is nowhere precipitous if for each $A \in J^+, J|A$ is not precipitous.

Let G(J) denote the following two-player game lasting ω moves, with player I making the first move : I and II alternately pick members of J^+ , thus building a sequence $\langle X_n : n < \omega \rangle$, subject to the condition that $X_0 \supseteq X_1 \supseteq \ldots$ II wins G(J) just in case $\bigcap_{n < \omega} X_n = \emptyset$.

FACT 2.12. ([5]) An ideal J on $P_{\kappa}(\lambda)$ is nowhere precipitous if and only if II has a winning strategy in the game G(J).

The following is a straightforward generalization of a result of Foreman [4]:

PROPOSITION 2.13. Let χ and θ be two cardinals such that $\chi \leq \lambda$ and $\theta \leq \kappa$. Then every $[\chi]^{<\theta}$ -normal, $(\chi^{<\overline{\theta}})^+$ -saturated ideal on $P_{\kappa}(\lambda)$ is precipitous.

FACT 2.14. ([14]) Suppose that J is an ideal on $P_{\kappa}(\lambda)$ such that cof(J) = non(J). Then J is nowhere precipitous.

Thus for an ideal J on $P_{\kappa}(\lambda)$,

 $\overline{\operatorname{cof}}(J) \leq \lambda \Rightarrow \operatorname{cof}(J) = u(\kappa, \lambda) \Rightarrow J$ is nowhere precipitous.

Let τ be a cardinal with $\kappa \leq \tau \leq \lambda$. It is simple to see that if GCH holds and either $\operatorname{cf}(\lambda) < \kappa$ or $\tau < \operatorname{cf}(\lambda)$, then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) = u(\kappa, \lambda)$. Note that if SSH holds and $\kappa \leq \operatorname{cf}(\lambda) \leq \tau$, then by Facts 2.5 (i) and 2.9, $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) > u(\kappa, \lambda)$.

PROPOSITION 2.15. Suppose that σ is a strong limit cardinal with $cf(\sigma) < \kappa < \sigma \le \lambda \le 2^{\sigma}$. Then the following hold :

- (i) $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) = u(\kappa,\lambda)$ for every cardinal τ with $\kappa \leq \tau \leq \sigma$.
- (ii) Suppose $2^{\lambda} = 2^{\sigma}$. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) = u(\kappa,\lambda)$ for every cardinal τ with $\sigma < \tau \leq \lambda$.

Proof.

(i) : Let τ be a cardinal with $\kappa \leq \tau \leq \sigma$. If $\tau = \lambda$, then

$$\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) \leq 2^{\lambda} = \lambda^{<\kappa} = u(\kappa,\lambda).$$

Otherwise by Fact 2.10, $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) = \max\{\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}), u(\tau^+, \lambda)\} \leq \lambda^{\tau} = \sigma^{\operatorname{cf}(\sigma)} \leq \lambda^{<\kappa} = u(\kappa, \lambda).$

(ii) : Given a cardinal τ with $\sigma < \tau \leq \lambda$,

$$\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\tau}) \le 2^{\lambda} = 2^{\sigma} = \sigma^{\operatorname{cf}(\sigma)} = u(\kappa,\lambda).$$

$\overline{\mathbf{cof}}(\mathrm{NS}_{\kappa,\lambda}^{\chi})$ 3

By Fact 2.11 (ii), $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) = \mathfrak{d}_{\kappa,\lambda}^{\chi}$ for any cardinal χ with $\kappa \leq \chi \leq \lambda$. We now derive a similar formula for $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\chi})$.

For a cardinal $\tau, \overline{\mathfrak{d}}'_{\kappa,\lambda}$ denotes the smallest cardinality of any family F of functions from τ to $P_{\kappa}(\lambda)$ with the property that for any $g: \tau \to P_{\kappa}(\lambda)$, there is $Z \in P_{\kappa}(F)$ such that $g(\alpha) \subseteq \bigcup_{f \in Z} f(\alpha)$ for every $\alpha < \tau$.

LEMMA 3.1. Let θ and χ be two cardinals such that $2 \le \theta \le \kappa \le \chi \le \lambda$. $Then \ \overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}) \leq \overline{\mathfrak{d}}_{\kappa,\lambda}^{\chi^{<\overline{\theta}}}.$

Proof. Select a collection G of functions from $P_{\max\{\overline{\theta},3\}}(\chi)$ to $P_{\kappa}(\lambda)$ so that $|G| = \overline{\mathfrak{d}}_{\kappa,\lambda}^{\chi^{\leq \theta}}$ and for any $k : P_{\max\{\overline{\theta},3\}}(\chi) \to P_{\kappa}(\lambda)$, there is $Z_k \in P_{\kappa}(G)$ such that $k(e) \subseteq \bigcup_{g \in Z_k} g(e)$ for all $e \in P_{\max\{\overline{\theta},3\}}(\chi)$. Then clearly for each k: $P_{\max\{\overline{\theta},3\}}(\chi) \to P_{\kappa}(\lambda), \bigcap_{g \in Z_{k}} C(g,\kappa,\lambda) \subseteq C(k,\kappa,\lambda). \text{ Hence } \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}) \leq |G|.$

LEMMA 3.2. Let θ and χ be two cardinals such that $\omega \leq \theta = cf(\theta) < \kappa \leq$ $\chi \leq \lambda$. Then $\overline{\mathfrak{d}}_{\kappa,\lambda}^{\chi^{<\theta}} \leq u(\theta, \operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}})).$

Proof. Pick a collection H of functions from $P_{\theta}(\chi) \rightarrow P_{3}(\lambda)$ so that $|H| = \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}})$ and for any $A \in (NS_{\kappa,\lambda}^{[\chi]^{<\theta}})^*$, there is $Q \in P_{\kappa}(H) \setminus \{\emptyset\}$ with $\{b \in \bigcap_{h \in Q} C(h, \kappa, \lambda) : b \cap \kappa \in \kappa\} \subseteq A$. Select $\mathfrak{X} \subseteq P_{\theta}(H) \setminus \{\emptyset\}$ so that $|\mathfrak{X}| = u(\theta, |H|)$ and for any $Z \in P_{\theta}(H)$, there is $X \in \mathfrak{X}$ with $Z \subseteq X$. For $X \in \mathfrak{X}$, define $t_X: P_{\theta}(\chi) \to P_{\kappa}(\lambda)$ by $t_x(e) = \bigcap T_{X,e}$, where

 $T_{X,e} = \left\{ b \in \bigcap_{h \in X} C(h,\kappa,\lambda) : e \cup \theta \subseteq b \text{ and } b \cap \kappa \in \kappa \right\}.$ Note that $t_X(e) \in T_{X,e}$, and $t_Y(e) \subseteq t_X(e)$ for all $Y \in \mathfrak{X} \cap P(X)$. Now fix $f: P_{\theta}(\chi) \to P_{\kappa}(\lambda)$. We may find $W \in P_{\kappa}(\mathfrak{X})$ such that

 $\left\{b \in \bigcap_{h \in \bigcup W} C(h, \kappa, \lambda) : b \cap \kappa \in \kappa\right\} \subseteq C(f, \kappa, \lambda),$ $\theta \leq |W| \text{ and for any } K \in P_{\theta}(W), \text{ there is } Z \in W \text{ with } \bigcup K \subseteq Z. \text{ For } e \in P_{\theta}(\chi),$ put $b_e = \bigcup_{X \in W} t_X(e)$. Note that $b_e \cap \kappa \in \kappa$.

Claim. Let $k \in \bigcup W$. Then $b_e \in C(k, \kappa, \lambda)$.

Proof of Claim. Fix $d \in P_{\theta}(b_e \cap \chi)$. Pick $\varphi : d \to W$ so that $\beta \in t_{\varphi(\beta)}(e)$ for every $\beta \in d$. Select $Y \in W$ with $k \in Y$. There must be $Z \in W$ such that $Y \cup (\bigcup_{\beta \in d} \varphi(\beta)) \subseteq Z$. Then $d \in P_{\theta}(t_Z(e))$ and $t_Z(e) \in C(k, \kappa, \lambda)$, so $k(d) \subseteq t_Z(e) \subseteq b_e$. This completes the proof of the claim.

Thus $b_e \in \bigcap_{h \in \bigcup W} C(h, \kappa, \lambda)$. Hence $b_e \in C(f, \kappa, \lambda)$, and consequently $f(e) \subseteq b_e$. \Box

PROPOSITION 3.3. Let χ be a cardinal with $\kappa \leq \chi \leq \lambda$. Then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\chi}) = \overline{\mathfrak{d}}_{\kappa,\lambda}^{\chi}$.

Proof. By Lemmas 3.1 and 3.2.

COROLLARY 3.4. Let π and χ be two cardinals such that $\kappa \leq \pi < \chi \leq \lambda$.

Then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\pi}) \leq \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\chi}).$

4 NSS_{κ,λ}

An ideal J on $P_{\kappa}(\lambda)$ is seminormal if it is δ -normal for every $\delta < \lambda$. NSS_{κ,λ} denotes the smallest seminormal ideal on $P_{\kappa}(\lambda)$.

FACT 4.1.

- (i) (Folklore) Suppose $cf(\lambda) < \kappa$. Then $NS_{\kappa,\lambda} = NSS_{\kappa,\lambda}$.
- (ii) ([1]) Suppose $\kappa \leq cf(\lambda) < \lambda$. Then $NS_{\kappa,\lambda} = NSS_{\kappa,\lambda}|A$ for some A.

PROPOSITION 4.2. Suppose $\kappa \leq cf(\lambda) < \lambda$. Then $\overline{cof}(NSS_{\kappa,\lambda}) > \lambda$.

Proof. By Facts 2.5 (iv) and 4.1.

We will see that " $\overline{\operatorname{cof}}(\operatorname{NSS}_{\kappa,\lambda}) > \lambda$ " needs not hold in case λ is regular. Note that if λ is regular, then by Fact 2.5 (iv), $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}) > \lambda$.

FACT 4.3. ([1]) Suppose that λ is regular. Then $\text{NSS}_{\kappa,\lambda} = \bigcup_{\delta < \lambda} \text{NS}_{\kappa,\lambda}^{\delta}$.

Proof. It is immediate that $\bigcup_{\delta < \lambda} \mathrm{NS}_{\kappa,\lambda}^{\delta} \subseteq \mathrm{NSS}_{\kappa,\lambda}$. To show the reverse inclusion, fix $A \in \left(\bigcup_{\delta < \lambda} \mathrm{NS}_{\kappa,\lambda}^{\delta}\right)^+$, η with $\kappa \leq \eta < \lambda$, and $f : A \longrightarrow \eta$ with the property that $f(a) \in a$ for all $a \in A$. For ξ with $\eta \leq \xi < \lambda$, we may find $B_{\xi} \in \left(\mathrm{NS}_{\kappa,\lambda}^{\xi}\right)^+ \cap P(A)$ and $\gamma_{\xi} < \eta$ such that f takes the constant value γ_{ξ} on B_{ξ} . There must be $\beta < \eta$ and $Z \subseteq \{\xi : \eta \leq \xi < \lambda\}$ such that $|Z| = \lambda$ and

 $\gamma_{\xi} = \beta$ for all $\xi \in Z$. Now set $C = \bigcup_{\xi \in Z} B_{\xi}$. Then clearly $C \in \left(\bigcup_{\delta < \lambda} NS_{\kappa,\lambda}^{\delta}\right)^+$. Moreover f is identically β on C.

FACT 4.4. ([10]) Suppose that θ is a cardinal with $2 \le \theta \le \kappa$, and J is an ideal on $P_{\kappa}(\lambda)$ such that $J \subseteq \mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{\le \theta}}$ and $\overline{\mathrm{cof}}(J) \le \lambda^{\le \overline{\theta}}$. Then $J|A = I_{\kappa,\lambda}|A$ for some $A \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{\le \theta}})^*$.

In particular, if $J \subseteq \mathrm{NS}_{\kappa,\lambda}$ and $\overline{\mathrm{cof}}(J) \leq \lambda$, then $J|D = I_{\kappa,\lambda}|D$ for some $D \in \mathrm{NS}^*_{\kappa,\lambda}$.

FACT 4.5. ([10]) Suppose that θ is a cardinal with $2 \le \theta \le \kappa$, and let σ be the least cardinal τ such that $\tau^{<\overline{\theta}} \ge \lambda$. Then $\overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \ge \sigma$ for every $A \in \left(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$.

PROPOSITION 4.6. Suppose that θ is a cardinal with $2 \leq \theta \leq \kappa$, and J is an ideal on $P_{\kappa}(\lambda)$ with $J \subseteq \mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{\leq \theta}}$. Let σ be the least cardinal τ such that $\tau^{\leq \overline{\theta}} \geq \lambda$. Then $\overline{\mathrm{cof}}(J) \geq \sigma$.

Proof. If $\overline{\operatorname{cof}}(J) > \lambda^{<\overline{\theta}}$, there is nothing to prove. Otherwise, there is by Fact $4.4 \ A \in \left(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$ such that $J|A = I_{\kappa,\lambda}|A$. Then by Fact 4.5, $\sigma \leq \overline{\operatorname{cof}}(I_{\kappa,\lambda}|A) \leq \overline{\operatorname{cof}}(J)$.

In particular, $\overline{\operatorname{cof}}(J) \geq \lambda$ for any ideal $J \subseteq \operatorname{NS}_{\kappa,\lambda}$.

FACT 4.7. ([8])

- (i) Suppose that λ is a successor cardinal, say $\lambda = \nu^+$. Then $\text{NSS}_{\kappa,\lambda}|C = I_{\kappa,\lambda}|C$ for some $C \in \text{NS}^*_{\kappa,\lambda}$ if and only if $\overline{\text{cof}}(\text{NS}_{\kappa,\nu}) \leq \lambda$.
- (ii) Suppose that λ is a regular limit cardinal. Then $\text{NSS}_{\kappa,\lambda}|C = I_{\kappa,\lambda}|C$ for some $C \in \text{NS}^*_{\kappa,\lambda}$ if and only if $\overline{\text{cof}}(\text{NS}_{\kappa,\tau}) \leq \lambda = \text{cov}(\lambda, \tau^+, \tau^+, \kappa)$ for every cardinal τ with $\kappa \leq \tau < \lambda$.

Recall from the introduction that $\mathcal{H}_{\kappa,\lambda}$ is said to hold if $\operatorname{cof}(NS_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$.

PROPOSITION 4.8. Suppose that λ is a regular cardinal. Then the following are equivalent :

- (i) $\mathcal{H}_{\kappa,\lambda}$ holds.
- (ii) $\overline{\operatorname{cof}}(\operatorname{NSS}_{\kappa,\lambda}) = \lambda.$
- (iii) $\text{NSS}_{\kappa,\lambda}|C = I_{\kappa,\lambda} \mid C \text{ for some } C \in \text{NS}^*_{\kappa,\lambda}.$

Proof.

(i) \longrightarrow (ii) : By Proposition 4.6, $\overline{\operatorname{cof}}(\operatorname{NSS}_{\kappa,\lambda}) \geq \lambda$. For the reverse inequality, we consider two cases. First suppose that λ is a successor cardinal, say $\lambda = \nu^+$. Then by Fact 4.3 $\operatorname{NSS}_{\kappa,\lambda} = \bigcup_{\nu \leq \delta < \lambda} \operatorname{NS}^{\delta}_{\kappa,\lambda}$. Now for $\nu \leq \delta < \lambda$, $\overline{\operatorname{cof}}(\operatorname{NS}^{\delta}_{\kappa,\lambda}) \leq \overline{\operatorname{cof}}(\operatorname{NS}^{\nu}_{\kappa,\lambda}) = \max\{\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\nu}), \operatorname{cov}(\lambda,\lambda,\lambda,\kappa)\} \leq \max\{\lambda,\lambda\} = \lambda$ by Facts 2.4 (ii) and 2.10. Hence $\overline{\operatorname{cof}}(\bigcup_{\nu \leq \delta < \lambda} \operatorname{NS}^{\delta}_{\kappa,\lambda}) \leq \lambda$.

Next suppose that λ is a limit cardinal. Given a cardinal χ with $\kappa \leq \chi < \lambda$, by Corollary 3.4 $\overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\tau}^{\chi}) \leq \lambda$ for every cardinal τ with $\chi \leq \tau < \lambda$, so by Fact 2.10 $\overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\lambda}^{\chi}) \leq \lambda$. It follows that $\overline{\operatorname{cof}}(\mathrm{NSS}_{\kappa,\lambda}) \leq \lambda$ since by Fact 4.3 $\mathrm{NSS}_{\kappa,\lambda} = \bigcup_{\kappa \leq \chi \leq \lambda} \mathrm{NS}_{\kappa,\lambda}^{\chi}$.

(ii) \longrightarrow (iii) : By Fact 4.4. (iii) \longrightarrow (i) : By Facts 2.5 (iii) and 4.7.

5 Ideals J on $P_{\kappa}(\lambda)$ with $\overline{\mathbf{cof}}(J) = \lambda$

In this section we look for cases when $\overline{\operatorname{cof}}(\bigcup_{\delta < \xi} \operatorname{NS}_{\kappa,\lambda}^{\delta}) = \lambda$, where $\kappa < \xi \leq \lambda + 1$. We start with the following observation.

LEMMA 5.1. Suppose that $K \subseteq NS_{\kappa,\lambda}$ is an ideal on $P_{\kappa}(\lambda)$ with $cof(K) \leq \lambda$, and ξ is an ordinal such that

- $\kappa < \xi \leq \lambda + 1$;
- ξ is either a successor ordinal, or a limit ordinal of cofinality at least κ ;
- $\bigcup_{\delta < \varepsilon} \mathrm{NS}^{\delta}_{\kappa, \lambda} \subseteq K.$

Then $\overline{\operatorname{cof}}(\bigcup_{\delta < \varepsilon} \operatorname{NS}_{\kappa, \lambda}^{\delta}) = \lambda.$

Proof. By Fact 4.5 we may find $A \in NS_{\kappa,\lambda}^*$ such that $K|A = I_{\kappa,\lambda}|A$. For any cardinal χ with $\kappa \leq \chi < \xi$, $NS_{\kappa,\lambda}^{\chi}|A = I_{\kappa,\lambda}|A$, so by Lemma 2.5 (ii) $\overline{cof}(NS_{\kappa,\lambda}^{\chi}) \leq \lambda$. Hence by Fact 2.4 (ii) $\overline{cof}(NS_{\kappa,\lambda}^{\delta}) \leq \lambda$ for every δ with $\kappa \leq \delta < \xi$. It easily follows that $\overline{cof}(\bigcup_{\delta < \xi} NS_{\kappa,\lambda}^{\delta}) \leq \lambda$. The reverse inequality holds by Proposition 4.6.

So we are looking for a large $K \subseteq \mathrm{NS}_{\kappa,\lambda}$ with $\overline{\mathrm{cof}}(K) \leq \lambda$. Assuming that $\mathcal{H}_{\kappa,\lambda}$ holds, we can take $K = \bigcup_{\delta < \mathrm{cf}(\lambda)} \mathrm{NS}_{\kappa,\lambda}^{\delta}$ if λ is a singular cardinal of cofinality at least κ , and $K = \mathrm{NSS}_{\kappa,\lambda}$ otherwise.

FACT 5.2. ([10]) Let θ be a cardinal with $2 \leq \theta \leq \kappa$. Suppose $\overline{\theta} \leq \operatorname{cf}(\lambda) < \kappa$. Then for any cardinal ν with $\kappa \leq \nu < \lambda$, $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}) \leq \bigcup_{\nu \leq \tau < \lambda} \operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{<\theta}})$. **PROPOSITION 5.3.** Let θ be a cardinal with $2 \leq \theta \leq \kappa$. Suppose that $\overline{\theta} \leq \operatorname{cf}(\lambda) < \kappa$ and there is a cardinal ν with $\kappa \leq \nu < \lambda$ such that for any cardinal τ with $\nu \leq \tau < \lambda$, $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{\leq \theta}}) \leq \lambda$ and $\tau^{<\overline{\theta}} < \lambda$. Then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{\leq \theta}}) = \lambda$.

Proof. By Proposition 4.6 and Fact 5.2.

In particular, if $cf(\lambda) < \kappa$ and $\mathcal{H}_{\kappa,\lambda}$ holds, then $\overline{cof}(NS_{\kappa,\lambda}) = \lambda$.

Note that if $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}) = \lambda$, then by Fact 4.4 $\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}} = I_{\kappa,\lambda}|C$ for some C.

FACT 5.4. ([11]) Let $A \in I_{\kappa,\lambda}^+$ be such that $|\{a \in A : b \subseteq a\}| = |A|$ for every $b \in P_{\kappa}(\lambda)$. Then A can be decomposed into |A| pairwise disjoint members of $I_{\kappa,\lambda}^+$.

PROPOSITION 5.5. Let θ be a cardinal with $2 \le \theta \le \kappa$. Suppose that there is C such that $\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}} = I_{\kappa,\lambda}|C$. Then $P_{\kappa}(\lambda)$ can be split into π members of $\left(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^+$, where π is the least size of any member of $\left(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$.

Proof. Pick $D \in \left(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$. Then by Fact 5.4, $C \cap D$ can be decomposed into π pairwise disjoints members of $\left(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^+$.

In particular, if $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|C$ for some C, then $P_{\kappa}(\lambda)$ can be split into $c(\kappa, \lambda)$ disjoint stationary sets.

PROPOSITION 5.6. Suppose that θ and ρ are two cardinals such that $\omega \leq \theta = \operatorname{cf}(\theta) < \kappa \leq \rho \leq \lambda$, $u(\theta, \lambda) = \lambda$, and either $\operatorname{cf}(\lambda) < \kappa$ or $\operatorname{cf}(\lambda) > \rho^{<\theta}$. Suppose further that for every cardinal τ with $\rho \leq \tau < \lambda$, $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{<\theta}}) \leq \lambda$. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\rho]^{<\theta}}) \leq \lambda$.

Proof. It suffices to show that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\rho]^{<\theta}}) \leq \lambda$ for any cardinal τ with $\rho \leq \tau < \lambda$ since by Facts 2.1 and 2.10 $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\rho]^{<\theta}}) = \bigcup_{\rho < \tau < \lambda} \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\rho]^{<\theta}})$ if λ is a limit cardinal, and $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\rho]^{<\theta}}) = \max\{\lambda, \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\nu}^{[\rho]^{<\theta}})\}$ if $\lambda = \nu^+$. Now for any cardinal τ with $\rho \leq \tau < \lambda$,

$$\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\rho]^{<\theta}}) \leq \overline{\mathfrak{d}_{\kappa,\tau}^{\rho^{<\overline{\theta}}}} \leq \overline{\mathfrak{d}_{\kappa,\tau}^{\tau^{<\overline{\theta}}}} \leq u(\theta, \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{<\theta}})) \leq u(\theta, \lambda) = \lambda$$

by Lemmas 3.1 and 3.2.

PROPOSITION 5.7. Suppose that $\mathcal{H}_{\kappa,\lambda}$ holds, and ξ is an ordinal such that

- $\kappa < \xi \leq \eta$, where η equals $\lambda + 1$ if $cf(\lambda) < \kappa$, and $cf(\lambda)$ otherwise ;
- ξ is either a successor ordinal, or a limit ordinal of cofinality at least κ .

Then $\overline{\operatorname{cof}}\left(\bigcup_{\delta<\xi} \operatorname{NS}_{\kappa,\lambda}^{\delta}\right) = \lambda.$ **Proof.** By Facts 2.4 (ii) and 5.1 and Propositions 4.8, 5.3 and 5.6.

In particular if $\mathcal{H}_{\kappa,\lambda}$ holds and $\kappa \leq \mathrm{cf}(\lambda) < \lambda$, then $\mathrm{\overline{cof}}\left(\bigcup_{\delta < \mathrm{cf}(\lambda)} \mathrm{NS}_{\kappa,\lambda}^{\delta}\right) = \lambda$ (and hence by Fact 1.5 (iv) there is no A such that $\mathrm{NS}_{\kappa,\lambda} = \left(\bigcup_{\delta < \mathrm{cf}(\lambda)} \mathrm{NS}_{\kappa,\lambda}^{\delta}\right)|A$).

6 Ideals J on $P_{\kappa}(\lambda)$ with $\overline{\operatorname{cof}}(J) < \lambda$

There may exist ideals J on $P_{\kappa}(\lambda)$ such that $\overline{\operatorname{cof}}(J) < \lambda$. Some examples were presented in [10]. We now give some more.

Given two cardinals $\pi \leq \kappa$ and $\chi \geq \lambda$, $\mathcal{A}_{\kappa,\lambda}(\pi,\chi)$ asserts the existence of $Z \subseteq P_{\pi}(\lambda)$ with $|Z| = \chi$ such that $|Z \cap P(a)| < \kappa$ for every $a \in P_{\kappa}(\lambda)$.

FACT 6.1. ([10]) Let θ and χ be two cardinals such that

- $2 \le \theta \le \kappa$, $\lambda < \chi$ and there is a $[\chi]^{\le \theta}$ -normal ideal on $P_{\kappa}(\chi)$;
- $\mathcal{A}_{\kappa,\lambda}(\pi,\chi)$ holds for some regular uncountable cardinal $\pi < \kappa$.

Then $\overline{\operatorname{cof}}(I_{\kappa,\chi}|A) \leq \lambda$ for some $A \in \left(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{\leq \theta}}\right)^+$.

FACT 6.2. ([9]) Let τ be the largest limit cardinal less than or equal to κ . Assume $cf(\lambda) < \kappa$ and one of the following conditions is satisfied :

- (a) $\tau = \kappa$.
- (b) $\tau > cf(\lambda)$ and $cf(\lambda) \neq cf(\tau)$.
- (c) $\tau > \operatorname{cf}(\lambda) = \operatorname{cf}(\tau)$ and $\min\{\operatorname{pp}(\tau), \tau^{+3}\} < \kappa$.
- (d) $\tau \leq \operatorname{cf}(\lambda)$ and $\min\{2^{\operatorname{cf}(\lambda)}, (\operatorname{cf}(\lambda))^{+3}\} < \kappa$.
- Then $\mathcal{A}_{\kappa,\lambda}((\mathrm{cf}(\lambda))^+, \lambda^+)$ holds.

Suppose for instance that κ is a limit cardinal and $cf(\lambda) < \kappa$. Then by Facts 6.1 and 6.2, $\overline{cof}(I_{\kappa,\lambda^+}|B) \leq \lambda$ for some $B \in NS^+_{\kappa,\lambda^+}$.

Note that in case κ is the successor of a cardinal of cofinality $cf(\lambda)$, Fact 6.2 does not apply, as none of the conditions (a) - (d) is satisfied. To handle this case, we introduce the following principle.

Given a cardinal $\chi \geq \lambda$, $\mathcal{B}_{\kappa,\lambda}(\chi)$ asserts the existence of $Z \subseteq P_{\kappa}(\lambda)$ with $|Z| = \chi$ such that for every $e \subseteq Z$ with $|e| = \kappa$, there is a $< \kappa$ -to-one function in $\prod_{z \in e} z$.

FACT 6.3. ([10]) Let θ and χ be two cardinals such that

- $2 \le \theta \le \kappa, \lambda < \chi$ and there is a $[\chi]^{\le \theta}$ -normal ideal on $P_{\kappa}(\chi)$;
- $\mathcal{B}_{\kappa,\lambda}(\chi)$ holds.

Then $\overline{\operatorname{cof}}(I_{\kappa,\chi}|A) \leq \lambda$ for some $A \in \left(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{\leq \theta}}\right)^+$.

Note that in case $\operatorname{cf}(\lambda < \kappa, \mathcal{B}_{\kappa,\lambda}(\lambda^+))$ follows from $\operatorname{ADS}_{\lambda}$, where $\operatorname{ADS}_{\lambda}$ asserts the existence of $y_{\alpha} \subseteq \lambda$ for $\alpha < \lambda^+$ such that

- for any $\alpha < \lambda^+$, sup $y_\alpha = \lambda$ and o.t. $(y_\alpha) = cf(\lambda)$;
- given $\beta < \lambda^+$, there is $g : \beta \longrightarrow \lambda$ such that $(y_\alpha \setminus g(\alpha)) \cap (y_{\alpha'} \setminus g(\alpha')) = \emptyset$ for any $\alpha, \alpha' \in \beta$ with $\alpha \neq \alpha'$.

For more on the existence of $A \in \left(NS_{\kappa,\chi}^{[\chi]^{<\theta}}\right)^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\chi}|A) < \chi$, see [9] and [10].

PROPOSITION 6.4. Suppose that θ and χ are two cardinals such that $2 \leq \theta \leq \kappa$ and $\lambda < \chi$, and $A \in \left(NS_{\kappa,\chi}^{[\chi]} \right)^+$ is such that $\overline{\operatorname{cof}}(I_{\kappa,\chi}|A) \leq \lambda$. Then there is $B \in \left(NS_{\kappa,\chi}^{[\chi]} \right)^+$ and a function f such that

- f is an isomorphism from $(P_{\kappa}(\lambda), \subset)$ onto (B, \subset) ;
- for any $\delta \leq \lambda$, $f(\mathrm{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}}) = \mathrm{NS}_{\kappa,\chi}^{[\delta]^{<\theta}}|B$ (and hence $\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\chi}^{[\delta]^{<\theta}}|B) \leq \overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}})$ and $\mathrm{cof}(\mathrm{NS}_{\kappa,\chi}^{[\delta]^{<\theta}}) \leq \mathrm{cof}(\mathrm{NS}_{\kappa,\lambda}^{[\delta]^{<\theta}})).$

Proof. Select $x_{\beta} \in P_{\kappa}(\chi)$ for $\beta < \lambda$ so that for each $X \in I_{\kappa,\chi}$, there is $z \in P_{\kappa}(\lambda)$ with $X \cap \{y \in A : \bigcup_{\beta \in z} x_{\beta} \subseteq y\} = \emptyset$. For $\lambda \leq \alpha < \chi$, pick $z_{\alpha} \in P_{\kappa}(\lambda)$ with $\{y \in A : \bigcup_{\beta \in z_{\alpha}} x_{\beta} \subseteq y\} \subseteq \{t \in P_{\kappa}(\chi) : \alpha \in t\}.$

Let C be the set of all $x \in P_{\kappa}(\chi)$ such that $\left(\bigcup_{\beta \in x \cap \lambda} x_{\beta}\right) \cup \left(\bigcup_{\alpha \in x \setminus \lambda} z_{\alpha}\right) \subseteq x$. Note that $C \in \mathrm{NS}^*_{\kappa,\chi}$.

Claim 1. Let $x \in A \cap C$. Then $x \setminus \lambda = \{ \alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq x \cap \lambda \}.$

Proof of Claim 1. Since $x \in C$, $x \setminus \lambda \subseteq \{\alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq x \cap \lambda\}$. To show the reverse inclusion, fix $\alpha \in \chi \setminus \lambda$ with $z_{\alpha} \subseteq x \cap \lambda$. Then $\bigcup_{\beta \in z_{\alpha}} x_{\beta} \subseteq x$, and hence $\alpha \in x$, which completes the proof of Claim 1.

Claim 2. Let $a \in P_{\kappa}(\lambda)$. Then $|\{\alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq a\}| < \kappa$.

Proof of Claim 2. Pick $x \in A \cap C$ with $a \subseteq x$. Then by Claim 1,

 $\{\alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq a\} \subseteq \{\alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq x \cap \lambda\} \subseteq x,$ which completes the proof of Claim 2.

Using Claim 2, define $f: P_{\kappa}(\lambda) \longrightarrow P_{\kappa}(\chi)$ by $f(a) = a \cup \{\alpha \in \chi \setminus \lambda : z_{\alpha} \subseteq a\}$. Put $B = \operatorname{ran}(f)$. By Claim 1, $x = f(x \cap \lambda)$ for any $x \in A \cap C$, so $A \cap C \subseteq B$. It follows that $B \in \left(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}\right)^+$.

As is easily seen, f is an isomorphism from $(P_{\kappa}(\lambda), \subset)$ onto (B, \subset) , and moreover $f^{-1}(X) \in I_{\kappa,\lambda}$ for any $X \in I_{\kappa,\chi}$. Now fix $\delta \leq \lambda$. Set $J = \mathrm{NS}_{\kappa,\lambda}^{[\delta]^{\leq \theta}}$. It is simple to see that f(J) is an ideal on $P_{\kappa}(\chi)$ with the property that $B \in (f(J))^*$.

Claim 3. f(J) is $[\delta]^{<\theta}$ -normal.

Proof of Claim 3. Fix $X \in (f(J))^+ \cap P(B)$ and $h: X \longrightarrow P_{\theta}(\delta)$ such that $h(x) \in P_{|x \cap \theta|}(x)$ for every $x \in X$. Define $k: f^{-1}(X) \longrightarrow P_{\theta}(\delta)$ by k(a) = h(f(a)). There must be $A \in J^+ \cap P(f^{-1}(X))$ such that k is constant on A. Then clearly $f^*A \in (f(J))^+ \cap P(X)$, and moreover h is constant on f"A, which completes the proof of the claim.

It immediately follows from Claim 3 that $NS_{\kappa,\chi}^{[\delta]^{\leq \theta}}|B \subseteq f(J)$.

To establish the reverse inclusion fix $Y \in f(J)$. Since $f^{-1}(Y \cap B) \in J$, we may find $g: P_{\theta}(\delta) \longrightarrow P_{\kappa}(\lambda)$ such that $f^{-1}(Y \cap B) \cap C(g, \kappa, \lambda) = \emptyset$. Then clearly $(Y \cap B) \cap C(g, \kappa, \chi) = \emptyset$ and hence $Y \cap B \in \mathrm{NS}_{\kappa, \chi}^{[\delta]^{\leq \theta}}$.

Let $\kappa = (2^{\rho})^+$, where ρ is an infinite cardinal, and suppose that λ is a strong limit cardinal with $cf(\lambda) \leq \rho$. Then $\mathcal{A}_{\kappa,\lambda}(\rho^+, 2^{\lambda})$ holds, since $|P_{\rho^+}(\lambda) \cap P(a)| \leq 2^{\rho}$ for any $a \in P_{\kappa}(\lambda)$. Hence by Facts 5.2 and 6.1 and Proposition 6.4, $\overline{cof}(NS^{\lambda}_{\kappa,2^{\lambda}}|B) \leq \lambda$ for some $B \in NS^+_{\kappa,2^{\lambda}}$.

PROPOSITION 6.5. Suppose that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}) \leq \lambda^+$, and there is $A \in \operatorname{NS}_{\kappa,\lambda^+}^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\lambda^+}|A) \leq \lambda$. Then $\overline{\operatorname{cof}}(\operatorname{NSS}_{\kappa,\lambda^+}|B) < \lambda^+$ for some $B \in \operatorname{NS}_{\kappa,\lambda^+}^+$.

Proof. By Fact 4.7 (i), there is $C \in NS^*_{\kappa,\lambda^+}$ such that $NSS_{\kappa,\lambda^+}|C = I_{\kappa,\lambda^+}|C$. Then $B = A \cap C$ is as desired.

For example, suppose that $\kappa = \omega_4$ and $\lambda = \beth_{\alpha}$ for some infinite limit ordinal α of cofinality ω . Then by Facts 5.2, 6.1 and 6.2 and Proposition 6.5, $\overline{\operatorname{cof}}(\operatorname{NSS}_{\kappa,\lambda^+}|B) \leq \lambda$ for some $B \in \operatorname{NS}^+_{\kappa,\lambda^+}$.

If λ is singular, then by Fact 4.1 NS_{κ,λ} = NSS_{κ,λ} |B for some B, so $\overline{\text{cof}}(\text{NSS}_{\kappa,\lambda}|A) < \lambda$ for some $A \in \text{NS}^+_{\kappa,\lambda}$ just in case $\overline{\text{cof}}(\text{NS}_{\kappa,\lambda}|D) < \lambda$ for some $D \in \text{NS}^+_{\kappa,\lambda}$.

Suppose that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}|D) < \lambda$ for some $D \in \operatorname{NS}^+_{\kappa,\lambda}$. Then setting $\sigma = \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}|D)$,

 $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}) \le u(\kappa,\sigma) \le u(\kappa,\lambda) \le \operatorname{cof}(\operatorname{NS}_{\kappa,\lambda})$

by Fact 2.11 (ii), so $\operatorname{cof}(NS_{\kappa,\lambda}) = u(\kappa, \sigma) = u(\kappa, \lambda)$. Hence by Fact 2.5 (iv), SSH does not hold.

PROPOSITION 6.6. Let θ and χ be two cardinals such that $2 \leq \theta \leq \kappa$ and $\lambda < \chi$. Suppose that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}) \leq \chi^{<\overline{\theta}}$, and there is $A \in \left(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}\right)^+$ such that $\overline{\operatorname{cof}}(I_{\kappa,\chi}|A| \leq \lambda$. Then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}|B) \leq \lambda$ for some $B \in \left(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}\right)^+$.

Proof. By Fact 4.4 there is $C \in \left(NS_{\kappa,\chi}^{[\chi]^{\leq \theta}}\right)^*$ such that $NS_{\kappa,\chi}|C = I_{\kappa,\chi}|C$. Then $B = A \cap C$ is as desired.

Here is an example of a situation where Proposition 6.6 applies. Starting from a $\mathcal{P}^3(\nu)$ -hypermeasurable, Cummings [3] constructs a generic extension W of V in which for any infinite cardinal ρ , 2^{ρ} equals ρ^+ if ρ is a successor cardinal, and ρ^{++} otherwise. In W, let σ be a regular uncountable cardinal, and $\mu > \sigma$ be a cardinal of cofinality less than σ . Suppose that

- σ is not the successor of a cardinal τ with $cf(\tau) \leq cf(\mu)$;
- σ is not the successor of the successor of a limit cardinal π with $cf(\pi) \leq cf(\mu)$.

Then by Facts 6.1 and 6.2 and Proposition 6.6, $\overline{\operatorname{cof}}(\operatorname{NS}_{\sigma,\mu^+}|B) \leq \mu$ for some $B \in (\operatorname{NS}_{\sigma,\mu^+}^{[\mu^+]^{\leq (\operatorname{cf}(\mu))^+}})^+$.

7 Cases when $NS_{\kappa,\lambda} = NS_{\kappa,\lambda}^{cf(\lambda)} | A$ for some A

In this section we establish that if $\kappa \leq \operatorname{cf}(\lambda) < \lambda$ and $\mathcal{H}_{\kappa,\lambda}$ holds, then $\operatorname{NS}_{\kappa,\lambda} = \operatorname{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)} | A$ for some A. Note that if $\operatorname{cf}(\lambda) < \kappa$ and $\mathcal{H}_{\kappa,\lambda}$ holds, then by Facts 4.5 and 5.1, $\operatorname{NS}_{\kappa,\lambda} = I_{\kappa,\lambda} | A$ for some A. Note further that if λ is regular, then trivially $\operatorname{NS}_{\kappa,\lambda} = \operatorname{NS}_{\kappa,\lambda}^{\lambda} | P_{\kappa}(\lambda)$. By combining the three cases, we obtain that if $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\max\{\kappa, \operatorname{cf}(\lambda)\} \leq \tau < \lambda$, then $\operatorname{NS}_{\kappa,\lambda} = \operatorname{NS}_{\kappa,\lambda}^{\epsilon} | A$ for some A.

THEOREM 7.1. Let π , θ and χ be three cardinals with $\kappa \leq \pi < \lambda$ and $2 \leq \theta \leq \kappa \leq \chi \leq \lambda$. Suppose that

- λ is singular;
- $\overline{\theta} \leq \operatorname{cf}(\lambda)$ in case $\chi = \lambda$;
- $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\min\{\chi,\tau\}]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$ for every cardinal τ with $\pi \leq \tau < \lambda$.

Then there is $A \in \left(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{\leq \theta}} \right)^*$ such that $\mathrm{NS}_{\kappa,\lambda}^{[\chi]^{\leq \theta}} \subseteq \mathrm{NS}_{\kappa,\lambda}^{\mathrm{cf}(\lambda)} | A$.

Proof. Set $\mu = cf(\lambda)$ and select an increasing sequence of cardinals $\langle \lambda_{\eta} : \eta < \mu \rangle$ so that

- $\sup\{\lambda_{\eta}: \eta < \mu\} = \lambda;$
- $\lambda_0 > \max\{\pi, \mu\}$;
- $\lambda_0 \ge \chi$ in case $\chi < \lambda$.

For $\eta < \mu$, pick a family G_{η} of functions from $P_{\max\{\overline{\theta},3\}}(\min\{\chi,\lambda_{\eta}\})$ to $P_{3}(\lambda_{\eta})$ so that $|G_{\eta}| \leq \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda_{\eta}}^{[\min\{\chi,\lambda_{\eta}\}]^{\leq \theta}})$ and for every $H \in (\operatorname{NS}_{\kappa,\lambda_{\eta}}^{[\min\{\chi,\lambda_{\eta}\}]^{\leq \theta}})^{*}$, there is $y \in P_{\kappa}(G_{\eta}) \setminus \{\emptyset\}$ such that $\{b \in \bigcap_{g \in y} C(g, \kappa, \lambda_{\eta}) : b \cap \kappa \in \kappa\} \subseteq H$. Let $\bigcup_{\eta < \mu} G_{\eta} = \{g_{e} : e \in P_{\overline{\theta}}(\lambda)\}.$ Let A be the set of all $a \in P_{\kappa}(\lambda)$ such that

- $\overline{\theta} \subseteq a$ in case $\overline{\theta} < \kappa$;
- $\omega \subseteq a$;
- $a \cap \kappa \in \kappa$;
- $k(\alpha) \in a$ for every $\alpha \in a$, where $k : \lambda \to \mu$ is defined by $k(\alpha)$ = the least $\eta < \mu$ such that $\alpha \in \lambda_{\eta}$;
- if $\chi = \lambda$, then $i(v) \in a$ for every $v \in P_{|a \cap \max\{\overline{\theta},3\}|}(a)$, where $i : P_{\max\{\overline{\theta},3\}}(\lambda) \to \mu$ is defined by i(v) = the least $\eta < \mu$ such that $v \subseteq \lambda_{\eta}$;
- $g_e(u) \subseteq a$ whenever $e \in P_{|a \cap \overline{\theta}|}(a)$ and $u \in P_{|a \cap \max\{\overline{\theta},3\}|}(a) \cap \operatorname{dom}(g_e)$.

It is immediate that $A \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}})^*$. Let us check that A is as desired. Thus fix $f: P_{\max\{\overline{\theta},3\}}(\chi) \to P_3(\lambda)$. Given $\eta < \mu$, define $p_\eta: P_{\max\{\overline{\theta},3\}}(\min\{\chi,\lambda_\eta\}) \to P_2(\lambda_\eta)$ by $p_\eta(v) = \{\zeta\}$, where ζ = the least σ such that $\eta \leq \sigma < \mu$ and $f(v) \subseteq \lambda_\sigma$. Also define $q_\eta: P_{\max\{\overline{\theta},3\}}(\min\{\chi,\lambda_\eta\}) \to P_3(\lambda_\eta)$ by $q_\eta(v) = \lambda_\eta \cap f(v)$. Select $x_\eta, y_\eta \in P_\kappa(P_{\overline{\theta}}(\lambda)) \setminus \{\emptyset\}$ so that

- $\{g_e : e \in x_\eta \cup y_\eta\} \subseteq G_\eta$;
- $\{b \in \bigcap_{e \in x_n} C(g_e, \kappa, \lambda_\eta) : b \cap \kappa \in \kappa\} \subseteq C(p_\eta, \kappa, \lambda_\eta);$
- $\{b \in \bigcap_{e \in \eta_n} C(g_e, \kappa, \lambda_\eta) : b \cap \kappa \in \kappa\} \subseteq C(q_\eta, \kappa, \lambda_n).$

Finally define $u: \mu \to P_{\kappa}(\lambda)$ by $u(\eta) = \bigcup (x_{\eta} \cup y_{\eta})$, and $t: P_2(\mu) \to P_{\kappa}(\lambda)$ so that for any $\eta \in \mu$, $t(\{\eta\})$ equals $u(\eta)$ if $\overline{\theta} < \kappa$, and $u(\eta) \cup |u(\eta)|^+$ otherwise. We claim that $A \cap C_t^{\kappa,\lambda} \subseteq C_f^{\kappa,\lambda}$. Thus let $a \in A \cap C_t^{\kappa,\lambda}$ and $v \in P_{|a \cap \max\{\overline{\theta},3\}|}(a \cap \chi)$. There must be $\eta \in a \cap \mu$ such that $v \subseteq \lambda_{\eta}$. Then $a \cap \lambda_{\eta} \in C(p_{\eta}, \kappa, \lambda_{\eta})$ since $x_{\eta} \subseteq P_{|a \cap \overline{\theta}|}(a)$. It follows that $v \cup f(v) \subseteq \lambda_{\sigma}$ for some $\sigma \in a \cap \mu$. Now

$$a \cap \lambda_{\sigma} \in C(q_{\sigma}, \kappa, \lambda_{\sigma})$$
, since $y_{\sigma} \subseteq P_{|a \cap \overline{\theta}|}(a)$, so $f(v) \subseteq a$.

In Theorem 7.1 we assumed that $\overline{\theta} \leq \operatorname{cf}(\lambda)$ in case $\chi = \lambda$. Some condition of this kind is necessary. In fact if $\operatorname{cf}(\lambda) < \kappa$ and $u(\kappa, \lambda^{<\overline{\theta}}) = \lambda^{<\overline{\theta}}$, then for each $A \in (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*, \operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}} \neq \operatorname{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)} | A$ since by Fact 2.11,

$$\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\overline{\theta}}}) > \lambda^{<\overline{\theta}} \ge \lambda \ge \overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda}^{\mathrm{cf}(\lambda)} \mid A).$$

COROLLARY 7.2. Suppose that one of the following holds :

- (i) SSH holds.
- (ii) There exists a σ -saturated ideal on $P_{\nu}(\lambda)$, where σ and ν are two cardinals such that $\omega < \nu = cf(\nu) < \lambda$ and $\sigma < \nu$.
- (iii) There is a regular uncountable cardinal $\tau < \lambda$ that is mildly π -ineffable for every cardinal π with $\tau \leq \pi < \lambda$.

Let θ and χ be two cardinals such that $2 \leq \theta \leq \kappa$, $\max\{\kappa, \operatorname{cf}(\lambda)\} \leq \chi < \lambda$ and $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$. Then $\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}|A = \operatorname{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)}|A$ for some $A \in (\operatorname{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$.

Proof. Use Facts 2.3 and 2.10.

COROLLARY 7.3. Suppose that
$$\operatorname{cf}(\lambda) < \kappa$$
, and θ and χ are two cardinals such that $2 \leq \theta \leq \kappa \leq \chi < \lambda$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{[\chi]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$ for every cardinal τ with $\chi \leq \tau < \lambda$. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}) = u(\kappa, \lambda)$.

Proof. By Theorem 7.1 there is $A \in \left(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$ such that $NS_{\kappa,\lambda}^{[\chi]^{<\theta}}|A = I_{\kappa,\lambda}|A$. Then by Fact 2.11 (ii), $\operatorname{cof}\left(NS_{\kappa,\lambda}^{[\chi]^{<\theta}}\right) = \operatorname{cof}\left(NS_{\kappa,\lambda}^{[\chi]^{<\theta}}|A\right) = \operatorname{cof}(I_{\kappa,\lambda}|A) = \operatorname{cof}(I_{\kappa,\lambda}) = u(\kappa,\lambda)$.

COROLLARY 7.4.

- (i) Suppose that λ is singular and $\mathcal{H}_{\kappa,\lambda}$ holds. Then $NS_{\kappa,\lambda} = NS_{\kappa,\lambda}^{cf(\lambda)} | A$ for some A.
- (ii) Let χ be a cardinal such that $\max\{\kappa, \operatorname{cf}(\lambda)\} \leq \chi < \lambda$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{\chi}) \leq \lambda$ for every cardinal τ with $\chi \leq \tau < \lambda$. Then $\operatorname{NS}_{\kappa,\lambda}^{\chi}|A = \operatorname{NS}_{\kappa,\lambda}^{\operatorname{cf}(\lambda)}|A$ for some $A \in \operatorname{NS}_{\kappa,\lambda}^{*}$.

COROLLARY 7.5.

- (i) Let $\chi \geq \kappa$ be a cardinal, and $\alpha < \kappa$ be a limit ordinal such that $\overline{\operatorname{cof}}(NS_{\kappa,\chi}) \leq \chi^{+\alpha}$. Then $NS^{\chi}_{\kappa,\chi^{+\alpha}}|A = I_{\kappa,\chi^{+\alpha}}|A$ for some $A \in NS^*_{\kappa,\chi^{+\alpha}}$.
- (ii) Let $\chi > \kappa$ be a cardinal such that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}) < \chi^{+\kappa}$. Then $\operatorname{NS}_{\kappa,\chi^{+\kappa}}^{\chi}|A = \operatorname{NS}_{\kappa,\chi^{+\kappa}}^{\kappa}|A$ for some $A \in \operatorname{NS}_{\kappa,\chi^{+\kappa}}^{*}$.

Proof. Use Facts 2.1 and 2.10.

Note that we do get a better result by considering the reduced cofinality ($\overline{\operatorname{cof}}$) instead of the usual one (cof). For example, suppose that GCH holds in V. By a result of [12], there is a $< \kappa$ -closed, κ^+ -cc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}, \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\kappa}) = \kappa^{+\omega}$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\kappa}) = \kappa^{+(\omega+1)}$. Then in $V^{\mathbb{P}}$, there is by Corollary 7.5 (i) $A \in \operatorname{NS}^*_{\kappa,\kappa^{+\omega}}$ such that $\operatorname{NS}^{\kappa}_{\kappa,\kappa^{+\omega}} | A = I_{\kappa,\kappa^{+\omega}} | A$.

Let us next discuss the condition in Theorem 7.1 that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$ for almost all cardinals $\tau < \lambda$.

PROPOSITION 7.6. Let θ and χ be two cardinals such that $2 \leq \theta \leq \kappa \leq \chi < \lambda$. Suppose that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$ and $\chi^{<\overline{\theta}} \geq \lambda$. Then $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}) = \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \chi$.

Proof. By Fact 2.6 (iii) $\chi^{<\overline{\theta}} = \lambda^{<\overline{\theta}}$, so by Fact 4.5 $\mathrm{NS}_{\kappa,\chi}^{[\chi]^{<\theta}} = I_{\kappa,\chi}|A$ for some *A*. It follows that $\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \chi$. Moreover by Fact 2.10

$$\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{[\chi]^{<\theta}}) = \max\{\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}), \operatorname{cov}(\lambda, (\lambda^{<\overline{\theta}})^{+}, (\lambda^{<\overline{\theta}})^{+}, \kappa)\} = \overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}).$$

COROLLARY 7.7. Let θ and χ be two cardinals such that $2 \leq \theta \leq \kappa \leq \chi < \chi^{<\overline{\theta}} = \lambda$. Suppose $\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \chi^{<\overline{\theta}}$. Then there is $A \in (\mathrm{NS}_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$ such that $\overline{\mathrm{cof}}(\mathrm{NS}_{\kappa,\lambda} \mid A) \leq \chi$.

Proof. By Fact 2.7 we may find $A \in \left(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}\right)^*$ such that $NS_{\kappa,\lambda}|A = NS_{\kappa,\lambda}^{[\chi]^{<\theta}}|A$. Then by Proposition 7.6, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}|A) \leq \overline{\operatorname{cof}}\left(NS_{\kappa,\lambda}^{[\chi]^{<\theta}}\right) \leq \chi$.

Question. Suppose that θ and χ are two cardinals such that $2 \leq \theta \leq \kappa \leq \chi$ and $\overline{\operatorname{cof}}(NS_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \chi^{<\overline{\theta}}$. Does then $\chi^{<\overline{\theta}} = \chi$ hold ?

PROPOSITION 7.8.

(i) Suppose that θ and σ are two cardinals such that $2 \leq \theta \leq \kappa \leq \sigma < \lambda$, $\overline{\theta} \leq \operatorname{cf}(\lambda)$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{[\tau]^{<\theta}}) \leq \lambda^{<\overline{\theta}}$ for every cardinal τ with $\sigma \leq \tau < \lambda$. Then there is a cardinal π with $\sigma \leq \pi < \lambda$ such that $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{\leq \theta}}) \leq \lambda$ for every cardinal χ with $\pi \leq \chi < \lambda$.

(ii) Let θ and π be two cardinals with $2 \leq \theta \leq \kappa \leq \pi < \lambda$. Suppose that $\kappa \leq \operatorname{cf}(\lambda) < \lambda$, and $\operatorname{cof}(\operatorname{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \leq \lambda$ for every cardinal χ with $\pi \leq \chi < \lambda$. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\rho}^{[\rho]^{<\theta}}) < \lambda$ for every cardinal ρ with $\max\{\pi, \operatorname{cf}(\lambda)\} \leq \rho < \lambda$.

Proof.

(i) : If $\nu^{\rho} < \lambda$ for every cardinal $\nu < \lambda$ and every cardinal $\rho < \overline{\theta}$, then $\lambda^{<\overline{\theta}} = \lambda$, and $\pi = \sigma$ is as desired. Now suppose there are two cardinals $\nu < \lambda$ and $\rho < \overline{\theta}$ such that $\nu^{\rho} \ge \lambda$. Set $\pi = \max\{\nu, \sigma\}$. Let χ be a cardinal with $\pi \le \chi < \lambda$. Then $\chi^{<\overline{\theta}} = \lambda^{<\overline{\theta}}$, so by Proposition 7.6 $\overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\chi}^{[\chi]^{<\theta}}) \le \chi$.

(ii) : By Fact 2.9.

In particular, if $\kappa \leq \operatorname{cf}(\lambda) < \lambda$, then $\mathcal{H}_{\kappa,\lambda}$ holds just in case $\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}) < \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$.

Suppose that λ is a limit cardinal and χ is a cardinal with $\kappa \leq \chi \leq \lambda$. If either $cf(\lambda) < \kappa$ or $cf(\lambda) > \chi$, then by Fact 2.10 and Lemma 5.1,

 $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) \le \sup\{\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\tau}^{\min\{\chi,\tau\}}) : \pi \le \tau < \lambda\},\$

where π equals κ if $\chi = \lambda$, and χ otherwise. We will now deal with the case when $\kappa \leq cf(\lambda) \leq \chi$. The proof of the following is a modification of that of Theorem 7.1.

PROPOSITION 7.9 Let χ be a cardinal such that $\max\{\kappa, \operatorname{cf}(\lambda)\} \leq \chi \leq \lambda$. Set $\pi = \kappa$ if $\chi = \lambda$, and $\pi = \chi$ otherwise. Then $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) \leq \operatorname{cof}(\operatorname{NS}_{\kappa,\rho}^{\operatorname{cf}(\lambda)})$ and $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) \leq \operatorname{cof}(\operatorname{NS}_{\kappa,\rho}^{\operatorname{cf}(\lambda)})$ where $\rho = \sup\{\operatorname{cof}(\operatorname{NS}_{\kappa,\tau}^{\min\{\chi,\tau\}}) : \pi \leq \tau < \lambda\}$.

Proof. We can assume that $cf(\lambda) < \chi$ since otherwise the result is trivial. We show that $\overline{cof}(NS_{\kappa,\lambda}^{\chi}) \leq \overline{cof}(NS_{\kappa,\rho}^{cf(\lambda)})$ and leave the proof of the other assertion to the reader. Put $\mu = cf(\lambda)$ and pick an increasing sequence $\langle \lambda_{\eta} : \eta < \mu \rangle$ of cardinals cofinal in λ so that $\lambda_0 > \max\{\kappa, \mu\}$, and $\lambda_0 \geq \chi$ in case $\chi < \lambda$. For $\eta < \mu$, select a family G_{η} of functions from $P_3(\min\{\chi, \lambda_{\eta}\})$ to $P_3(\lambda_{\eta})$ so that $|G_{\eta}| \leq \overline{cof}(NS_{\kappa,\lambda_{\eta}}^{\min\{\chi,\lambda_{\eta}\}})$ and for any $H \in (NS_{\kappa,\lambda_{\eta}}^{\min\{\chi,\lambda_{\eta}\}})^*$, there is $y \in P_{\kappa}(G_{\eta}) \setminus$ $\{\emptyset\}$ with $\{b \in \bigcap_{g \in \mathcal{Y}} C(g, \kappa, \lambda_{\eta}) : b \cap \kappa \in \kappa\} \subseteq H$. Let $\bigcup_{\eta < \mu} G_{\eta} = \{g_{\xi} : \xi < \rho\}$. For $\xi < \rho$, let $g_{\xi} \in G_{\eta_{\xi}}$. Let A be the set of all $a \in P_{\kappa}(\lambda)$ such that $\omega \subseteq a$, $a \cap \kappa \in \kappa$ and $k(\alpha) \in a$ for all $\alpha \in a$, where $k : \lambda \to \mu$ is defined by $k(\alpha) =$ the least $\eta < \mu$ such that $\alpha \in \lambda_{\eta}$. Clearly $A \in NS_{\kappa,\lambda}^*$, so by Fact 2.5 (ii) $\overline{cof}(NS_{\kappa,\lambda}^{\chi}|A) = \overline{cof}(NS_{\kappa,\lambda}^{\chi})$.

By Proposition 2.3 we may find a collection T of functions from μ to $P_{\kappa}(\rho)$ such that $|T| = \overline{\operatorname{cof}}(\mathrm{NS}_{\kappa,\rho}^{\mu})$ and for any $u: \mu \to P_{\kappa}(\rho)$, there is $z \in P_{\kappa}(T)$ with the

property that $u(\eta) \subseteq \bigcup_{t \in z} t(\eta)$ for every $\eta \in \mu$. For $t \in T$, let D_t be the set of all $a \in P_{\kappa}(\lambda)$ such that for any $\eta \in a \cap \mu$ and any $\xi \in t(\eta)$, $a \cap \lambda_{n_{\xi}} \in C(g_{\xi}, \kappa, \lambda_{\eta_{\xi}})$. Note that $D_t \in (NS^{\chi}_{\kappa,\lambda})^*$.

Now fix $f: P_3(\chi) \to P_3(\lambda)$. Given $\eta < \mu$, define $p_\eta : P_3(\min\{\chi, \lambda_\eta\}) \to P_2(\lambda_\eta)$ by $p_n(v) = \{\zeta\}$, where ζ = the least σ such that $\eta \leq \sigma < \mu$ and $f(v) \leq \lambda_\sigma$, and $q_n : P_3(\min\{\chi, \lambda_\eta\}) \to P_3(\lambda_\eta)$ by $q_\eta(v) = \lambda_\eta \cap f(v)$. Select $x_\eta, y_\eta \in P_\kappa(\rho) \setminus \{\emptyset\}$ so that

- $\{g_{\xi}: \xi \in x_{\eta} \cup y_{\eta}\} \subseteq G_{\eta};$
- $\{b \in \bigcap_{\xi \in x_n} C(g_{\xi}, \kappa, \lambda_{\eta}) : b \cap \kappa \in \kappa\} \subseteq C(p_{\eta}, \kappa, \lambda_{\eta});$
- $\{b \in \bigcap_{\xi \in u_n} C(g_{\xi}, \kappa, \lambda_{\eta}) : b \cap \kappa \in \kappa\} \subseteq C(q_{\eta}, \kappa, \lambda_{\eta}).$

We may find $z \in P_{\kappa}(T)$ such that $x_{\eta} \cup y_{\eta} \subseteq \bigcup_{t \in z} t(\eta)$ for every $\eta \in \mu$.

Let us show that $A \cap \left(\bigcap_{t \in z} D_t\right) \subseteq C(f, \kappa, \lambda)$. Thus let $a \in A \cap \left(\bigcap_{t \in z} D_t\right)$ and $v \in P_3(a \cap \chi)$. There must be $\eta \in a \cap \mu$ such that $v \subseteq \lambda_{\eta}$. Then $a \cap \lambda_{\eta} \in \bigcap_{\xi \in x_{\eta}} C(g_{\xi}, \kappa, \lambda_{\eta})$, so $v \cup f(v) \subseteq \lambda_{\sigma}$ for some $\sigma \in a \cap \mu$. Now $a \cap \lambda_{\sigma} \in \bigcap_{\xi \in y_{\sigma}} C(g_{\xi}, \kappa, \lambda_{\sigma})$, and therefore $f(v) \subseteq a$.

8 Nowhere precipitousness of $NS_{\kappa,\lambda}^{\nu}$

Throughout this section it is assumed that $\kappa \leq \operatorname{cf}(\lambda) < \lambda$. Let ν be a cardinal with $\operatorname{cf}(\lambda) \leq \nu < \lambda$. We will show that under certain conditions, $\operatorname{NS}_{\kappa,\lambda}^{\nu}$ is nowhere precipitous. Our proof will follow that of Theorem 2.1 in [13], except that we do not appeal to pcf theory.

Set $\mu = cf(\lambda)$. We assume that $c(\kappa, \nu) < \lambda$ in case $\nu > \mu$. Let $\rho < \lambda$ be a regular cardinal such that $\rho > \mu$ if $\nu = \mu$, and $\rho > c(\kappa, \nu)$ otherwise. Select a continuous, increasing sequence $\langle \lambda_{\beta} : \beta < \mu \rangle$ of cardinals so that $\sup\{\lambda_{\beta} : \beta < \mu\} = \lambda$ and $\lambda_0 > \rho$. Let *E* be the set of all infinite limit ordinals $\alpha < \mu$ with $cf(\alpha) < \kappa$. We define *D* as follows. If $\nu = \mu$, we set D = E. Otherwise we pick *D* in NS^{*}_{\kappa,\nu} so that

- for any $d \in D$, $\sup(d \cap \mu)$ is an infinite limit ordinal;
- $|D| = c(\kappa, \nu).$

We will show that if $\tau^{|D|} < \lambda$ for every cardinal $\tau < \lambda$, then $NS^{\nu}_{\kappa,\lambda}$ is nowhere precipitous.

For $d \in D$, put $\alpha(d) = \sup(d \cap \mu)$. Note that $\alpha(d) \in E$. Moreover $\alpha(d) = d$ in case $\nu = \mu$.

Let W be the set of all $a \in P_{\kappa}(\lambda)$ such that

- $0 \in a$;
- $\gamma + 1 \in a$ for every $\gamma \in a \cap \nu$;
- $a \cap \kappa \in \kappa$;
- $\lambda_{\beta} \in a$ for every $\beta \in a \cap \mu$;
- $a \cap \nu \in D$ in case $\nu > \mu$.

Then clearly, $W \in (NS_{\kappa,\lambda}^{\nu})^*$. For $d \in D$, define W_d by letting $W_d = \{a \in W : \sup(a \cap \mu) = d\}$ if $\nu = \mu$, and $W_d = \{a \in W : a \cap \nu = d\}$ otherwise. Note that W is the disjoint union of the W_d 's. Moreover, $\sup(a \cap \lambda_{\alpha(d)}) = \lambda_{\alpha(d)}$ for every $a \in W_d$.

LEMMA 8.1. Suppose that there is $T \subseteq P_{\kappa}(\lambda)$ such that

- (a) $|T \cap P(a)| < \rho$ for any $a \in P_{\kappa}(\lambda)$;
- (b) $u(\rho, \tau) \leq |T|$ for every cardinal τ with $\rho \leq \tau < \lambda$.

Then for every $R \in (NS^{\nu}_{\kappa,\lambda})^+$,

$$\{d \in D : |\{a \cap \lambda_{\alpha(d)} : a \in R \cap W_d\}| \ge u(\rho, \lambda_{\alpha(d)})\}$$

lies in NS^+_{μ} if $\nu = \mu$, and in $NS^+_{\kappa,\nu}$ otherwise.

Proof. For $\beta \in \mu$, select $Z_{\beta} \in I_{\rho,\lambda_{\beta}}^{+}$ with $|Z_{\beta}| \leq |T|$. Then clearly there is $Q \subseteq T$ with $|\bigcup_{\beta < \mu} Z_{\beta}| = |Q|$. Pick a bijection $i : \bigcup_{\beta < \mu} Z_{\beta} \to Q$ and let j denote the inverse of i. For $\alpha \in E$, define $k_{\alpha} : P_{\kappa}(\lambda_{\alpha}) \to P_{\rho}(\lambda_{\alpha})$ by $k_{\alpha}(b) = \bigcup_{e \in Q \cap P(b)} (j(e) \cap \lambda_{\alpha}).$

Claim. Let $S \in (NS^{\nu}_{\kappa,\lambda})^+$. Then there is $d \in D$ such that

$$\{k_{\alpha(d)}(a \cap \lambda_{\alpha(d)}) : a \in S \cap W_d\} \in I^+_{\rho, \lambda_{\alpha(d)}}.$$

Proof of the claim. Assume otherwise. For $d \in D$, select $y_d \in P_{\rho}(\lambda_{\alpha(d)})$ so that $y_d \setminus k_{\alpha(d)}(a \cap \lambda_{\alpha(d)}) \neq \emptyset$ for every $a \in S \cap W_d$. Set $y = \bigcup_{d \in D} y_d$. Note that $y \in P_{\rho}(\lambda)$. For $\beta \in \mu$, pick $z_{\beta} \in Z_{\beta}$ so that $y \cap \lambda_{\beta} \subseteq z_{\beta}$. Now let H be the set of all $a \in P_{\kappa}(\lambda)$ such that $i(z_{\beta}) \in \bigcup_{\zeta \in a \cap \mu} P(a \cap \lambda_{\zeta})$ for every $\beta \in a \cap \mu$. Since $H \in (NS^{\mu}_{\kappa,\lambda})^*$, we can find a in $S \cap B \cap H$. Set $d = \sup(a \cap \mu)$ if $\nu = \mu$, and $d = a \cap \nu$ otherwise. Then $a \in W_d$ and $y_d \subseteq y \cap \lambda_{\alpha(d)} = \bigcup_{\beta \in a \cap \mu} (y \cap \lambda_{\beta}) \subseteq \bigcup_{\beta \in a \cap \mu} z_{\beta} = \bigcup_{\beta \in a \cap \mu} j(i(z_{\beta})) \subseteq k_{\alpha(d)}(a \cap \lambda_{\alpha(d)})$. This contradiction completes the proof of the claim.

It is now easy to show that the conclusion of the lemma holds: Fix $R \in (NS_{\kappa,\lambda}^{\nu})^+$, and A such that $A \in NS_{\mu}^*$ if $\nu = \mu$, and $A \in NS_{\kappa,\nu}^*$ otherwise. Set $Y = \bigcup_{d \in D \cap A} W_d$. Since $Y \in (NS_{\kappa,\lambda}^{\nu})^*$, there must be some $d \in D$ such that

$$\{k_{\alpha(d)}(a \cap \lambda_{\alpha(d)}) : a \in (R \cap Y) \cap W_d\} \in I^+_{\rho, \lambda_{\alpha(d)}}.$$

Then clearly, $d \in A$ and $|\{a \cap \lambda_{\alpha(d)} : a \in R \cap W_d\}| \ge u(\rho, \lambda_{\alpha(d)}).$

Consider for instance the following situation : In V, GCH holds, σ is a strong cardinal with $\rho < \sigma < \lambda$, and η a cardinal greater than λ . Then by a result of Gitik and Magidor [6], there is a cardinal preserving, σ^+ -cc forcing notion \mathbb{P} such that in $V^{\mathbb{P}}$,

- no new bounded subsets of σ are added ;
- σ changes its cofinality to ω ;
- $2^{\sigma} \geq \eta$.

Now working in $V^{\mathbb{P}}$, let $T = P_{\omega_1}(\sigma)$. Then clearly $|T \cap P(a)| \leq 2^{|a|} \leq \kappa < \rho$ for any $a \in P_{\kappa}(\lambda)$. Moreover for any two uncountable cardinals χ and θ with $cf(\chi) = \chi < \sigma \leq \theta \leq \eta$,

$$u(\chi,\theta) = \max\{2^{<\chi}, u(\chi,\theta)\} = \theta^{<\chi} = \sigma^{<\chi} = \sigma^{\aleph_0} = |T|.$$

Hence $u(\rho, \tau) \leq |T|$ for every cardinal τ with $\rho \leq \tau < \lambda$, so by Lemma 8.1 for any $R \in (NS^{\nu}_{\kappa,\lambda})^+$,

$$\left\{ d \in D : |\{a \cap \lambda_{\alpha(d)} : a \in R \cap W_d\}| \ge u(\rho, \lambda_{\alpha(d)}) \right\}$$

lies in NS⁺_µ if $\nu = \mu$, and in NS⁺_{κ,ν} otherwise.

Note that for any cardinal χ with $\kappa \leq \chi \leq \sigma$, $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) = u(\kappa,\lambda)$ since $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) \leq (\lambda^{<\kappa})^{\chi} = (2^{\sigma})^{\chi} = 2^{\sigma}$, and moreover, by Fact 2.9 and Proposition 4.6, $\overline{\operatorname{cof}}(\operatorname{NS}_{\kappa,\lambda}^{\chi}) > \lambda$ in case $\mu \leq \chi$.

Let us observe that if $T \subseteq P_{\kappa}(\lambda)$ is, as in condition (a) of Lemma 8.1, such that $|T \cap P(a)| \leq u(\kappa, \lambda)$ for any $a \in P_{\kappa}(\lambda)$, then it is easy to see that $|T| \leq u(\kappa, \lambda)$.

PROPOSITION 8.2. Suppose that there is $T \subseteq P_{\kappa}(\lambda)$ and a cardinal π with $\rho \leq \pi < \lambda$ such that

- $|T \cap P(a)| < \rho$ for any $a \in P_{\kappa}(\lambda)$;
- $\tau^{\nu} \leq u(\rho, \tau) \leq |T|$ for every cardinal τ with $\pi < \tau < \lambda$.

Then $NS^{\nu}_{\kappa,\lambda}$ is nowhere precipitous.

Proof. By Fact 2.12 it suffices to show that II has a winning strategy in the game $G(NS^{\nu}_{\kappa,\lambda})$. We can assume without loss of generality that $\lambda_0 > \pi$. For $g: P_3(\nu) \to P_3(\lambda)$ and $\alpha < \mu$, define $g_{\alpha}: P_3(\nu) \to P_3(\lambda_{\alpha})$ by $g_{\alpha}(e) = g(e) \cap \lambda_{\alpha}$.

Claim 1. Let
$$g: P_3(\nu) \to P_3(\lambda)$$
. Then
 $\{d \in D: \{a \in W_d : a \cap \lambda_{\alpha(d)} \in C(g_{\alpha(d)}, \kappa, \lambda_{\alpha(d)})\} \subseteq C(g, \kappa, \lambda)\}$

lies in $(NS_{\mu}|E)^*$ if $\nu = \mu$, and in $NS^*_{\kappa,\nu}$ otherwise.

Proof of Claim 1. We prove the claim in the case when $\nu > \mu$, and leave the proof in the case when $\nu = \mu$ to the reader. Define $h : P_3(\nu) \to \mu$ by h(e) = the least $\beta < \mu$ such that $g(e) \subseteq \lambda_\beta$. Let Q be the set of all $d \in D$ such that $h(e) \in d$ for every $e \in P_3(d)$. Then clearly $Q \in NS^*_{\kappa,\nu}$. Now fix $d \in Q$ and $a \in W_d$ such that $a \cap \lambda_{\alpha(d)} \in C(g_{\alpha(d)}, \kappa, \lambda_{\alpha(d)})$. Let $e \in P_3(a \cap \nu)$. Then $h(e) \in d$, so $g(e) \subseteq \lambda_{\alpha(d)}$. It follows that $g(e) \subseteq a$, since $g(e) \cap \lambda_{\alpha(d)} \subseteq a$. Thus $a \in C(g, \kappa, \lambda)$. This completes the proof of Claim 1.

Claim 2. Let $X \in (NS_{\kappa,\lambda}^{\nu})^+$ and $Y \subseteq W$. Suppose that

$$Y \cap \{a \in W_d : a \cap \lambda_{\alpha(d)} \in C(k, \kappa, \lambda_{\alpha(d)})\} \neq \emptyset$$

whenever $d \in D$ and $k : P_3(\nu) \to P_3(\lambda_{\alpha(d)})$ are such that

 $|\{a \cap \lambda_{\alpha(d)} : a \in X \cap W_d \text{ and } a \cap \lambda_{\alpha(d)} \in C(k, \kappa, \lambda_{\alpha(d)})\}| \ge u(\rho, \lambda_{\alpha(d)}).$ Then $Y \in (NS_{\kappa,\lambda}^{\nu})^+$.

Proof of Claim 2. Fix $g: P_3(\nu) \to P_3(\lambda)$. By Lemma 8.1 and Claim 1, there must be $d \in D$ such that

$$|\{a \cap \lambda_{\alpha(d)} : a \in (X \cap C(g, \kappa, \lambda)) \cap W_d\}| \ge u(\rho, \lambda_{\alpha(d)})$$

and

$$\left\{a \in W_d : a \cap \lambda_{\alpha(d)} \in C(g_{\alpha(d)}, \kappa, \lambda_{\alpha(d)})\right\} \subseteq C(g, \kappa, \lambda).$$

Then

$$Y \cap \left\{ a \in W_d : a \cap \lambda_{\alpha(d)} \in C(g_{\alpha(d)}, \kappa, \lambda_{\alpha(d)}) \right\} \neq \emptyset$$

since $a \cap \lambda_{\alpha(d)} \in C(g_{\alpha(d)}, \kappa, \lambda_{\alpha(d)})$ for every $a \in X \cap C(g, \kappa, \lambda) \cap W_d$. Hence $Y \cap C(g, \kappa, \lambda) \neq \emptyset$. This completes the proof of the claim.

Now to describe a strategy τ for player II in the game $G(NS_{\kappa,\lambda}^{\nu})$, let $X_0, Y_0, X_1, \ldots, Y_{n-1}, X_n$

be a partial play of the game. We may assume $X_0 \subseteq W$. We define a subset of $X_n, Y_n \in (NS_{\kappa,\lambda}^{\nu})^+$ and its 1-1 enumeration $\langle y_{d,\xi}^n : d \in D$ and $\xi < |K_d^n| \rangle$. Here K_d^n is the set of all $k : P_3(\nu) \to P_3(\lambda_{\alpha(d)})$ such that

 $\begin{aligned} |X_n \cap \{a \in W_d : a \cap \lambda_{\alpha(d)} \in C(k, \kappa, \lambda_{\alpha(d)})\}| &\geq u(\rho, \lambda_{\alpha(d)}). \\ \text{Fix } d \in D \text{ with } K_d^n \text{ nonempty. Enumerate } K_d^n \text{ as } \langle k_{d,\xi}^n : \xi < |K_d^n| \rangle. \text{ Note that } |K_d^n| &\leq \lambda_{\alpha(d)}^{\nu} \leq u(\rho, \lambda_{\alpha(d)}) \text{ (and } K_d^n \subseteq K_d^{n-1} \text{ by } X_n \subseteq X_{n-1}). \text{ So by induction } \end{aligned}$

on $\xi < |K_d^n|$ we can choose $y_{d,\xi}^n$ from

$$\begin{split} X_n \cap \{a \in W_d : a \cap \lambda_{\alpha(d)} \in C(k_{d,\xi}^n, \kappa, \lambda_{\alpha(d)})\} \setminus \left(\{y_{d,\zeta}^n : \zeta < \xi\} \cup \{y_d^{n-1} : \zeta \le \xi\}\right). \\ \text{Define } Y_n = \{y_{d,\xi}^n : d \in D \text{ and } \xi < |K_d^n|\}. \text{ Then } Y_n \text{ is a subset of } X_n \text{ by construction, and is an element of } (NS_{\kappa,\lambda}^{\nu})^+ \text{ by Claim 2. Moreover the enumeration is 1-1 by construction and the definition of } W_d. \end{split}$$

To see that τ is a winning strategy, suppose that X_0, Y_0, X_1, \ldots is a play during which player II obeyed the strategy τ . We claim that $\bigcap_{n < \omega} Y_n = \emptyset$. Suppose to the contrary that $x \in \bigcap_{n < \omega} Y_n$. Let d be $\sup(x \cap \mu)$ if $\nu = \mu$, and $x \cap \nu$ otherwise. Then $d \in D$ and for each $n < \omega$, there is $\xi(n)$ such that $x = y_{d,\xi(n)}^n$. By the choice of $y_{d,\xi}^n$ we have $\xi(n) < \xi(n-1)$ for each $0 < n < \omega$, a contradiction. \Box

Let us observe the following. Suppose that there exist T and π as in the statement of Proposition 8.2. Then either $\operatorname{cof}(\operatorname{NS}_{\kappa,\lambda}^{\nu}) = u(\kappa,\lambda)$, or $\lambda^{<\mu} = \lambda$. To establish this, note that $u(\kappa,\lambda) \leq \lambda^{<\kappa} \leq \lambda^{<\mu} \leq |T| \leq u(\kappa,\lambda)$, so $|T| = u(\kappa,\lambda) = \lambda^{<\mu}$. It is now simple to see that $|T| = \lambda$ if $\tau^{\nu} < \lambda$ for every cardinal $\tau < \lambda$, and $|T| = \lambda^{\nu}$ otherwise.

THEOREM 8.3.

- (i) Suppose that $\tau^{\mu} < \lambda$ for every cardinal $\tau < \lambda$. Then $NS^{\mu}_{\kappa,\lambda}$ is nowhere precipitous.
- (ii) Suppose that $\nu > \mu$, and $\tau^{c(\kappa,\nu)} < \lambda$ for every cardinal $\tau < \lambda$. Then $NS_{\kappa,\lambda}^{\nu}$ is nowhere precipitous.
- (iii) Suppose that $\mathcal{H}_{\kappa,\lambda}$ holds, and $\tau^{\mu} < \lambda$ for every cardinal $\tau < \lambda$. Then $NS_{\kappa,\lambda}$ is nowhere precipitous.

Proof.

- (i) : Put $\nu = \mu$, $\rho = \mu^+$, $\pi = 2^{\mu} = 2^{<\rho}$ and $T = P_2(\lambda)$. Then clearly, $|T \cap P(a)| \leq |a| < \kappa < \rho$ for any $a \in P_{\kappa}(\lambda)$. Moreover, $\tau^{\nu} = \tau^{<\rho} = u(\rho, \tau) < \lambda = |T|$ for any cardinal τ with $\pi < \tau < \lambda$. Hence by Proposition 8.2, $NS_{\kappa,\lambda}^{\nu}$ is nowhere precipitous.
- (ii) : Put $\rho = c(\kappa, \nu)^+$, $\pi = 2^{<\rho}$ and $T = P_2(\lambda)$. Then clearly, $|T \cap P(a)| \le |a| < \kappa < \rho$ for all $a \in P_{\kappa}(\lambda)$. Moreover, $\tau^{\nu} \le \tau^{<\rho} = u(\rho, \tau) < \lambda = |T|$ for every cardinal τ with $\pi < \tau < \lambda$. Now apply Proposition 8.2.
- (iii) : Use (i) and Corollary 7.4 (i).

Acknowledgments. The authors would like to express their gratitude to the referee for a number of helpful suggestions.

References

- [1] Y. ABE, A hierarchy of filters smaller than $CF_{\kappa\lambda}$; Archive for Mathematical Logic 36 (1997), 385-397.
- [2] D.M. CARR, The minimal normal filter on $P_{\kappa}\lambda$; Proceedings of the American Mathematical Society 86 (1982), 316-320.
- J. CUMMINGS, A model in which GCH holds at successors but fails at limits; Transactions of the American Mathematical Society 329 (1992), 1-39.

- [4] M. FOREMAN, *Potent axioms*; Transactions of the American Mathematical Society 294 (1986), 1-28.
- [5] F. GALVIN, T. JECH and M. MAGIDOR, An ideal game; Journal of Symbolic Logic 43 (1978), 284-292.
- [6] M. GITIK and M. MAGIDOR, The Singular Cardinal Hypothesis revisited; in : Set Theory of the Continuum (H. Judah, W. Just and W.H. Woodin, eds.), Mathematical Sciences Research Institute publication # 26, Berlin, Springer, 1992, pp. 243-279.
- [7] N. GOLDRING, The entire NS ideal on P_γμ can be precipitous; Journal of Symbolic Logic 62 (1997), 1161-1172.
- [8] P. MATET, Large cardinals and covering numbers; Fundamenta Mathematicae 205 (2009), 45-75.
- [9] P. MATET, Weak saturation of ideals on P_κ(λ); Mathematical Logic Quarterly 57 (2011), 149-165.
- [10] P. MATET, C. PÉAN and S. SHELAH, Cofinality of normal ideals on $P_{\kappa}(\lambda)II$; Israel Journal of Mathematics 150 (2005), 253-283.
- [11] P. MATET, C. PÉAN and S. SHELAH, Cofinality of normal ideals on $P_{\kappa}(\lambda)I$; preprint.
- [12] P. MATET, A. ROSLANOWKI and S. SHELAH, Cofinality of the nonstationary ideal; Transactions of the American Mathematical Society 357 (2005), 4813-4837.
- [13] Y. MATSUBARA and S. SHELAH, Nowhere precipitousness of the nonstationary ideal over $\mathcal{P}_{\kappa}\lambda$; Journal of Mathematical Logic 2 (2002), 81-89.
- [14] Y. MATSUBARA and M. SHIOYA, Nowhere precipitousness of some ideals; Journal of Symbolic Logic 63 (1998), 1003-1006.
- [15] S. SHELAH, Cardinal Arithmetic; Oxford Logic Guides vol 29, Oxford University Press, Oxford, 1994.
- [16] S. SHELAH, On the existence of large subsets of [λ]^{<κ} which contain no unbounded non-stationary subsets; Archive for Mathematical Logic 41 (2002), 207-213.

Université de Caen - CNRS Laboratoire de Mathématiques BP 5186 14032 Caen Cedex France

pierre.matet @unicaen.fr

Institute of Mathematics The Hebrew University of Jerusalem 91904 Jerusalem Israel shelah@math.huji.ac.il

and

Department of Mathematics Rutgers University New Brunswick, NJ 08854 USA shelah@math.huji.ac.il