
SMALL–LARGE SUBGROUPS OF THE REALS

ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Abstract. We are interested in subgroups of the reals that are small in

one and large in another sense. We prove that, in ZFC, there exists a

non–meager Lebesgue null subgroup of R, while it is consistent that there
there is no non–null meager subgroup of R. This answers a question from

Filipczak, Ros lanowski and Shelah [5].

1. Introduction

Subgroups of the reals which are small in one and large in another sense
were crucial in Filipczak, Ros lanowski and Shelah [5]. If there is a non–meager
Lebesgue null subgroup of (R,+), then there is no translation invariant Borel
hull operation on the σ–ideal N of Lebesgue null sets. That is, there is no
mapping ψ from N to Borel sets such that for each null set A ⊆ R:

• A ⊆ ψ(A) and ψ(A) is null, and
• ψ(A+ t) = ψ(A) + t for every t ∈ R.

Parallel claims hold true if “Lebesgue null” is interchanged with “meager” and/or
(R,+) is replaced with (ω2,+2).

IfM is the σ–ideal of meager subsets of R (and N is the null ideal on R) and
{I,J } = {N ,M}, then various set theoretic assumptions imply the existence
of a subgroup of R which belongs to I but not to J . But in [5, Problem 4.1]
we asked if the existence of such subgroups can be shown in ZFC. This question
is interesting per se, regardless of its connections to translation invariant Borel
hulls.

The present paper presents two theorems. First, in Theorem 2.3 we give
ZFC examples of null non-meager subgroups of (ω2,+2) and (R,+), respectively.
Next in Theorem 4.1 we show that it is consistent with ZFC that every meager
subgroup of (ω2,+2) and/or (R,+) has Lebesgue measure zero. This answers
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[5, Problem 4.1]. Also, our results give another example of a strange asymmetry
between measure and category.

Notation Our notation is rather standard and compatible with that of clas-
sical textbooks (like Jech [6] or Bartoszyński and Judah [1]). However, in forcing
we keep the older convention that a stronger condition is the larger one.

(1) The Cantor space ω2 of all infinite sequences with values 0 and 1 is
equipped with the natural product topology, the product measure λ and
the group operation of coordinate-wise addition +2 modulo 2.

(2) Ordinal numbers will be denoted be the lower case initial letters of the
Greek alphabet α, β, γ, δ. Finite ordinals (non-negative integers) will be
denoted by letters i, j, k, `,m, n while integers will be called L,M .

(3) Most of our intervals will be intervals of non-negative integers, so [m,n) =
{k ∈ ω : m ≤ k < n} etc. They will be denoted by letter J (with possi-
ble indices). However, we will also use the notation [0, 1) to denote the
unit interval of reals.

(4) The Greek letter κ will stand for an uncountable cardinal such that
κℵ0 = κ ≥ ℵ2.

(5) For a forcing notion P, all P–names for objects in the extension via P
will be denoted with a tilde below (e.g., τ

˜
, X

˜
), and G

˜
P will stand for

the canonical P–name for the generic filter in P.
(6) We fix a well ordering ≺∗ of all hereditarily finite sets.
(7) The set of all partial finite functions with domains included in ω and

with values in 2 is denoted ω
^2.

2. Null non–meager

Here we will give a ZFC construction of a non–meager Lebesgue null subgroup
of the reals. The main construction is done in ω2 and then we transfer it to R
using the standard binary expansion E.

Definition 2.1. Let D∞0 = {x ∈ ω2 : (∃∞i < ω)(x(i) = 0)} and for x ∈ D∞0 let

E(x) =
∞∑
i=0

x(i)2−(i+1).

Proposition 2.2. (1) The function E : D∞0 −→ [0, 1) is a continuous bi-
jection, it preserves both the measure and the category.

(2) Assume that
(a) x, y, z ∈ D∞0 , E(z) = E(x) + E(y) modulo 1, and
(b) n < m < ω and both x�[n,m] and y�[n,m] are constant.

Then z�[n,m− 1] is constant.
(3) Assume that

(a) x, y ∈ D∞0 , 0 < E(x) and E(y) = 1−E(x),
(b) n < m < ω and x�[n,m] is constant.
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Then y�[n,m− 1] is constant.

Proof. (1) Well known, cf. Bukovský [4, §2.4].
(2,3) Straightforward (just consider the possible constant values and analyze
how the addition is performed). �

Theorem 2.3. (1) There exists a null non-meager subgroup of (ω2,+2).
(2) There exists a null non-meager subgroup of (R,+).

Proof. (1) For k ∈ ω let nk = 1
2k(k + 1) and let D be a non-principal

ultrafilter on ω. Define

HD =
{
x ∈ ω2 :

(
∃m < ω

)(
∃j < 2

)({
k > m : x�[nk, nk+1 −m) ≡ j

}
∈ D

)}
.

(i) HD is a subgroup of (ω2,+2).

Why? Suppose that x0, x1 ∈ HD and let m` < ω and j` < 2 be such that

A`
def
=
{
k > m` : x`�[nk, nk+1 −m`) ≡ j`

}
∈ D.

Let m = max(m0,m1) and j = j0 −2 j1. Then A0 ∩ A1 ∈ D and for each
k ∈ A0 ∩A1 we have (x0 −2 x2)�[nk, nk+1 −m) ≡ j. Hence x0 −2 x1 ∈ HD.

(ii) HD ∈ N .

Why? For each m < k < ω and j < 2 we have

λ({x ∈ ω2 : x�[nk, nk+1 −m) ≡ j}) = 2m−(k+1)

and therefore for each m < ω and j < 2

λ({x ∈ ω2 : (∃∞k)(x�[nk, nk+1 −m) ≡ j)}) = 0.

Now note that HD ⊆
⋃
m<ω

⋃
j<2

{
x ∈ ω2 : (∃∞k)(x�[nk, nk+1 −m) ≡ j)

}
.

(iii) HD /∈M.

Why? Suppose that W is a dense Π0
2 subset of ω2. Then we may choose an

increasing sequence 〈ki : i ∈ ω〉 and a function f ∈ ω2 such that{
x ∈ ω2 :

(
∃∞i

)(
x�[nki , nki+1) = f�[nki , nki+1)

)}
⊆W.

Let A =
⋃
{[k2i, k2i+1) : i ∈ ω} and B =

⋃
{[k2i+1, k2i+2) : i ∈ ω}. Then either

A ∈ D or B ∈ D. Let xA, xB ∈ ω2 be such that, for each i ∈ ω,

xA�[nk2i , nk2i+1
) ≡ 0, xA�[nk2i+1

, nk2i+2
) = f�nk2i+1

, nk2i+2
) and

xB�[nk2i+1
, nk2i+2

) ≡ 0, xB�[nk2i , nk2i+1
) = f�nk2i , nk2i+1

).

Then xA, xB ∈W and either xA ∈ HD or xB ∈ HD. Consequently, W ∩HD 6= ∅.

(2) Consider H∗D = E[HD ∩ D∞0 ] + Z. It follows from 2.2(1) that H∗D is a
Lebesgue null meager subset of R. We will show that it is a subgroup of (R,+).
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Suppose that x0, x1 ∈ HD ∩ D∞0 and L0, L1 ∈ Z and we will argue that
(E(x0) + L0) + (E(x1) + L1) ∈ H∗D. Let m` < ω be such that

A`
def
=
{
k > m` : x`�[nk, nk+1 −m`) is constant

}
∈ D

and let m = max(m0,m1) + 1. Choose y ∈ D∞0 and M ∈ {0, 1} such that
E(x0)+E(x1) = E(y)+M . It follows from 2.2(2) that for every k ∈ A0∩A1, k >
m, we have that y�[nk, nk+1−m) is constant and since A0∩A1 ∈ D we conclude
y ∈ HD. Consequently, (E(x0)+L0)+(E(x1)+L1) = E(y)+(M+L0+L1) ∈ H∗D.

Now assume that x ∈ HD ∩D∞0 , L ∈ Z and we will argue that −(E(x)+L) ∈
H∗D. If E(x) = 0 then the assertion is clear, so assume also E(x) > 0. Let m < ω
be such that

A
def
=
{
k > m : x�[nk, nk+1 −m) is constant

}
∈ D.

Choose y ∈ D∞0 such that 1−E(x) = E(y). It follows from 2.2(3) that for every
k ∈ A, k > m+1, we have that y�[nk, nk+1−(m+1)) is constant. Consequently,
y ∈ HD and −(E(x) + L) = E(y)− 1− L ∈ H∗D. �

Remark 2.4. A somewhat simpler non–meager null subgroup of (ω2,+2) is

H−D =
{
x ∈ ω2 :

{
k ∈ ω : x�[nk, nk+1) ≡ 0

}
∈ D

}
.

The group HD, however, was necessary for our construction of H∗D < R.

Corollary 2.5. There exists no translation invariant Borel hull for the null
ideal on ω2 and/or on R.

3. Some technicalities

Here we prepare the ground for our consistency results.

3.1. Moving from R to ω2. First, let us remind connections between the ad-
dition in R and that of ω2 (via the binary expansion E, see 2.1).

Definition 3.1. Let J = [m,n) be a non-empty interval of integers and c ∈
{0, 1}. For sequences ρ, σ ∈ J2 we define ρ~c σ as the unique η ∈ J2 such that( n−1∑

i=m

ρ(i)2−(i+1) +
n−1∑
i=m

σ(i)2−(i+1) + c · 2−n
)
−
n−1∑
i=m

η(i)2−(i+1) ∈ {0, 2−m}.

For notational convenience we also set ρ~2 σ = ρ+2 σ (coordinate-wise addition
modulo 2).

The operation ~c is defined on the set J2, so it does depend on J . We may,
however, abuse notation and use that same symbol ~c for various J .

Observation 3.2. Let m, `, n be integers such that m < ` < n and let J =
[m,n).
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(1) For each c ∈ {0, 2}, (J2,~c) is an Abelian group.
(2) If ρ, σ ∈ J2 and ρ(`) = σ(`), then (ρ~0 σ)�[m, `) = (ρ~1 σ)�[m, `).
(3) If ρ, σ ∈ J2 and (ρ~0 σ)(`) = 0, then (ρ~0 σ)�[m, `) = (ρ~1 σ)�[m, `).
(4) Suppose that r, s ∈ [0, 1), ρ, σ, η ∈ D∞0 , E(ρ) = r, E(σ) = s and E(η) =

r + s modulo 1. Then
• if

∑
i≥n

(
(ρ(i) + σ(i))/2i+1

)
≥ 2−n, then η�J = (ρ�J)~1 (σ�J);

• if
∑
i≥n

(
(ρ(i) + σ(i))/2i+1

)
< 2−n, then η�J = (ρ�J)~0 (σ�J).

3.2. The combinatorial heart of our forcing arguments. For this subsec-
tion we fix a strictly increasing sequence n̄ = 〈nj : j < ω〉 ⊆ ω.

Definition 3.3. We define m̄[n̄] = 〈mi : i < ω〉, N̄ [n̄] = 〈N(i) : i < ω〉,
J̄ [n̄] = 〈Ji : i < ω〉, H̄[n̄] = 〈Hi : i < ω〉, π[n̄] = 〈πi : i < ω〉 and F[n̄] as follows.

We set m0 = 0 and then inductively for i < ω we let

(∗)1 mi+1 = 2nmi+1081.

Next, for i < ω,

(∗)2 N(i) = nmi , Ji =
[
N(2i), N(2i+1)

)
, and

(∗)3 Hi =
{
a ⊆ Ji2 : (1− 2−N(2i)) · 2|Ji| ≤ |a|

}
.

We also set πi : |Hi| −→ Hi to be the ≺∗–first bijection from |Hi| onto Hi.
Finally, for η ∈

∏
m<ω

(m+ 1) we let

(∗)4 F0[n̄](η) =
{
x ∈ ω2 :

(
∀i < ω

)(
x�Ji ∈ πi(η(|Hi| − 1))

)}
and

F[n̄](η) =
{
x ∈ ω2 :

(
∀∞i < ω

)(
x�Ji ∈ πi(η(|Hi| − 1))

)}
.

Lemma 3.4. For every η ∈
∏
m<ω

(m+1), F0[n̄](η) ⊆ ω2 is a closed set of positive

Lebesgue measure, and F[n̄](η) is a Σ0
2 set of Lebesgue measure 1.

Proof. Note that Ji ∩ Jj = ∅ and |Hi| < |Hj | for i < j, and
∞∑
i=0

2−N(2i) < 1. �

Lemma 3.5. Let i < ω, c ∈ {0, 2} and let η ∈ Ji2. Suppose that for each ` < 2i

and x < 2 we are given a function Zx` : Hi −→ Ji2 such that Zx` (a) ∈ a for
each a ∈ Hi. Then there are a0, a1 ∈ Hi such that for every ` < 2i there is
k ∈ [m2i+`,m2i+`+1) satisfying(

Z0
` (a0)�[nk, nk+1)

)
~kc
(
Z1
` (a1)�[nk, nk+1)

)
= η�[nk, nk+1),

where ~kc denotes the operation ~c on [nk,nk+1)2.

Proof. We start the proof with the following Claim.

Claim 3.5.1. If A ⊆ Hi, |A| ≤ 2|Ji|−N(2i)−i and x < 2, then there is b ∈ Hi

such that Zx` (b) /∈ {Zx` (a) : a ∈ A} for each ` < 2i.
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Proof of the Claim. Note that |{Zx` (a) : ` < 2i & a ∈ A}| ≤ 2i · 2|Ji|−N(2i)−i =

2|Ji|−N(2i), so letting b = Ji2 \ {Zx` (a) : ` < 2i & a ∈ A} we have b ∈ Hi. Since
Zx` (b) ∈ b we see that b is as required in the claim. �

It follows from Claim 3.5.1 that we may pick sequences 〈a0
j : j < j∗〉 ⊆ Hi

and 〈a1
j : j < j∗〉 ⊆ Hi with Zx` (axj1) 6= Zx` (axj2) for j1 < j2 < j∗, ` < 2i, x < 2

and such that j∗ > 2|Ji|−N(2i)−i. Now, by induction on ` < 2i, we choose sets
X`, Y` ⊆ j∗ and integers k` ∈ [m2i+`,m2i+`+1) such that the following demands
are satisfied.

(i) X`+1 ⊆ X` ⊆ j∗, Y`+1 ⊆ Y` ⊆ j∗,
(ii) if j0 ∈ X` and j1 ∈ Y` then(
Z0
` (a0

j0)�[nk` , nk`+1)
)
~k`c

(
Z1
` (a1

j1)�[nk` , nk`+1)
)

= η�[nk` , nk`+1),

(iii) min
(
|X`|, |Y`|

)
≥ j∗ · 2N(2i)−N(2i+`+1)−`−1.

We stipulate X−1 = Y−1 = j∗ and we assume that X`−1, Y`−1 have been already

determined (and min
(
|X`−1|, |Y`−1|

)
≥ j∗ · 2N(2i)−N(2i+`)−` if ` > 0). Let

X∗ =
{
j ∈ X`−1 : |X`−1| · 2N(2i+`)−N(2i+`+1)−1 ≤∣∣{j′ ∈ X`−1 : Z0

` (a0
j′)�[N(2i+`), N(2i+`+1)) = Z0

` (a0
j )�[N(2i+`), N(2i+`+1))}

∣∣},
Y ∗ =

{
j ∈ Y`−1 : |Y`−1| · 2N(2i+`)−N(2i+`+1)−1 ≤∣∣{j′ ∈ Y`−1 : Z1

` (a1
j′)�[N(2i+`), N(2i+`+1)) = Z1

` (a1
j )�[N(2i+`), N(2i+`+1))}

∣∣}.
Claim 3.5.2. |X∗| ≥ 1

2 |X`−1| and |Y ∗| ≥ 1
2 |Y`−1|.

Proof of the Claim. Assume towards contradiction that |X∗| < 1
2 |X`−1|. Then

for some ν0 ∈ [N(2i+`),N(2i+`+1))2 we have∣∣{j ∈ X`−1 \X∗ : ν0 ⊆ Z0
` (a0

j )
}∣∣ ≥ |X`−1 \X∗| · 2N(2i+`)−N(2i+`+1) >

1
2 |X`−1| · 2N(2i+`)−N(2i+`+1).

Let j ∈ X`−1 \X∗ be such that ν0 ⊆ Z0
` (a0

j ). Then j ∈ X∗, a contradiction.
Similarly for Y ∗. �

Claim 3.5.3. For some k ∈ [m2i+`,m2i+`+1) we have that both
∣∣{Z0

` (a0
j )�[nk, nk+1) :

j ∈ X∗
}∣∣ > 2nk+1−nk−1 and

∣∣{Z1
` (a1

j )�[nk, nk+1) : j ∈ Y ∗
}∣∣ > 2nk+1−nk−1.

Proof of the Claim. Let

KX =
{
k ∈ [m2i+`,m2i+`+1) : |{Z0

` (a0
j )�[nk, nk+1) : j ∈ X∗}| ≤ 2nk+1−nk−1

}
and

KY =
{
k ∈ [m2i+`,m2i+`+1) : |{Z1

` (a1
j )�[nk, nk+1) : j ∈ Y ∗}| ≤ 2nk+1−nk−1

}
.

Assume towards contradiction that |KX | ≥ 1
2 (m2i+`+1 −m2i+`). Then

|X∗| = |{Z0
` (a0

j ) : j ∈ X∗}| ≤ 2−1/2(m2i+`+1−m2i+`) · 2|Ji| < 2|Ji| · 2−4N(2i+`).
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(Remember 3.3(∗)1.) Hence |X`−1| ≤ 2|Ji|−4N(2i+`)+1. If ` = 0 then we get

2|Ji|−2N(2i) < j∗ ≤ 2|Ji|−4N(2i)+1, which is impossible. If ` > 0, then by

the inductive hypothesis (iii) we know that |X`−1| ≥ j∗ · 2N(2i)−N(2i+`)−` >

2|Ji|−i−N(2i+`)−`, so 3N(2i + `)− 1 < i+ `, a clear contradiction. Consequently
|KX | < 1

2 (m2i+`+1 −m2i+`), and similarly |KY | < 1
2 (m2i+`+1 −m2i+`). Pick

k ∈ [m2i+`,m2i+`+1) such that k /∈ KX ∪KY . �

Now, let k` ∈ [m2i+`,m2i+`+1) be as given by Claim 3.5.3. Necessarily the

sets
{
ρ ∈ [nk` ,nk`+1)2 : (∃j ∈ X∗)((Z0

` (a0
j )�[nk` , nk`+1))~k`c ρ = η�[nk` , nk`+1))

}
and

{
Z1
` (a1

j )�[nk` , nk`+1) : j ∈ Y ∗
}

have non-empty intersection. Therefore, we
may find jX ∈ X∗ and jY ∈ Y ∗ such that(

Z0
` (a0

jX )�[nk` , nk`+1)
)
~k`c

(
Z1
` (a1

jY )�[nk` , nk`+1)
)

= η�[nk` , nk`+1).

Set

X` =
{
j ∈ X`−1 : Z0

` (a0
j )�[N(2i+`), N(2i+`+1)) = Z0

` (a0
jX )�[N(2i+`), N(2i+`+1))

}
,

and

Y` =
{
j ∈ Y`−1 : Z1

` (a1
j )�[N(2i+`), N(2i+`+1)) = Z1

` (a1
jY )�[N(2i+`), N(2i+`+1))

}
.

By the definition of X∗, Y ∗ and by the inductive hypothesis (iii) we have

|X`| ≥ |X`−1| · 2N(2i+`)−N(2i+`+1)−1 ≥ j∗ · 2N(2i)−`−N(2i+`+1)−1

and similarly for Y`. Consequently, X`, Y` and k` satisfy the inductive demands
(i)–(iii).

After the above construction is completed fix any j0 ∈ X2i−1, j1 ∈ Y2i−1 and
consider a0 = aj0 and a1 = aj1 . For each ` < 2i we have j0 ∈ X`, j1 ∈ Y` so(

Z0
` (a0)�[nk` , nk`+1)

)
~k`c

(
Z1
` (a1)�[nk` , nk`+1)

)
= η�[nk` , nk`+1).

Hence a1, a2 ∈ Hi are as required. �

3.3. The ∗–Silver forcing notion. The consistency result of the next section
will be obtained using CS product of the following forcing notion S∗.

Definition 3.6. (1) We define the ∗–Silver forcing notion S∗ as follows.
A condition in S∗ is a partial function p : dom(p) −→ ω such that
dom(p) ⊆ ω is coinfinite and p(m) ≤ m for each m ∈ dom(p).
The order ≤=≤S∗ of S∗ is the inclusion, i.e., p ≤ q if and only if p ⊆ q.

(2) For p ∈ S∗ and 1 ≤ n < ω we let u(n, p) be the set of the first n elements
of ω \dom(p) (in the natural increasing order). Then for p, q ∈ S∗ we let
p ≤n q if and only if p ≤ q and u(n, q) = u(n, p).

We also define p ≤0 q as equivalent to p ≤ q.
(3) Let p ∈ S∗. We let S(n, p) be the set of all functions s : u(n, p) −→ ω

with the property that s(m) ≤ m for all m ∈ u(n, p).
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(4) We let η
˜

to be the canonical S∗–name such that

 η
˜

=
⋃
{p : p ∈ G

˜
S∗}.

Remark 3.7. The forcing notion S∗ may be represented as a forcing of the type
Q∗w∞(K,Σ) for some finitary creating pair (K,Σ) which captures singletons, see
Ros lanowski and Shelah [8, Definition 2.1.10]. It is a close relative of the Silver
forcing notion and, in a sense, it lies right above all Sn’s studied for instance in
Ros lanowski [7] and Ros lanowski and Steprāns [9].

Lemma 3.8. (1) (S∗,≤S∗) is a partial order of size c. If p ∈ S∗ and s ∈
S(n, p) then p ∪ s ∈ S∗ is a condition stronger than p.

(2) S∗ η
˜
∈
∏
m<ω

(m+ 1) and p S∗ p ⊆ η
˜

(for p ∈ S∗).

(3) If p ∈ S∗ and 1 ≤ n < ω, then the family {p ∪ s : s ∈ S(n, p)} is an
antichain pre-dense above p.

(4) The relations ≤n are partial orders on S∗, p ≤n+1 q implies p ≤n q.
(5) Assume that τ

˜
is an S∗–name for an ordinal, p ∈ S∗, 1 ≤ n,m < ω.

Then there is a condition q ∈ S∗ such that p ≤n q, max
(
u(n+1, q)

)
> m

and for all s ∈ S(n, q) the condition q ∪ s decides the value of τ
˜

.
(6) The forcing notion S∗ satisfies Axiom A of Baumgartner [2, §7] as wit-

nessed by the orders ≤n, it is ωω–bounding and, moreover, every meager
subset of ω2 in an extension by S∗ is included in a Σ0

2 meager set coded
in the ground model.

Proof. Straightforward - the same as for the Silver forcing notion. �

Definition 3.9. Assume κℵ0 = κ ≥ ℵ2.

(1) S∗(κ) is the CS product of κ many copies of S∗. Thus
a condition p in S∗(κ) is a function with a countable domain dom(p) ⊆
κ and with values in S∗, and
the order ≤ of S∗(κ) is such that
p ≤ q if and only if dom(p) ⊆ dom(q) and (∀α ∈ dom(p))(p(α) ≤S∗
q(α)).

(2) Suppose that p ∈ S∗(κ) and F ⊆ dom(p) is a finite non-empty set and
µ : F −→ ω \ {0}. Let v(F, µ, p) =

∏
α∈F

u(µ(α), p(α)) and T (F, µ, p) =∏
α∈F

S(µ(α), p(α)).

If σ ∈ T (F, µ, p) then let p|σ be the condition q ∈ S∗(κ) such that
dom(q) = dom(p) and q(α) = p(α) ∪ σ(α) for α ∈ F and q(α) = p(α)
for α ∈ dom(q) \ F .

We let p ≤F,µ q if and only if p ≤ q and v(F, µ, p) = v(F, µ, q).
If µ is constantly n then we may write n instead of µ.
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(3) Suppose that p ∈ S∗(κ) and τ̄
˜

= 〈τ
˜
n : n < ω〉 is a sequence of names for

ordinals. We say that p determines τ̄
˜

relative to F̄ if
• F̄ = 〈Fn : n < ω〉 is a sequence of finite subsets of dom(p), and
• p forces a value to τ

˜
0 and for 1 ≤ n < ω and σ ∈ T (Fn, n, p) the

condition p|σ decides the value of τ
˜
n.

Lemma 3.10. (1) The forcing notion S∗(κ) satisfies c+–chain condition.
(2) Suppose that p ∈ S∗(κ), F ⊆ dom(p) is finite non-empty, µ : F −→

ω \ {0} and τ
˜

is a name for an ordinal. Then there is a condition
q ∈ S∗(κ) such that p ≤F,µ q and for every σ ∈ T (F, µ, q) the condition
q|σ decides the value of τ

˜
.

(3) Suppose that p ∈ S∗(κ) and τ̄
˜

= 〈τ
˜
n : n < ω〉 is a sequence of S∗(κ)–

names for objects from the ground model V. Then there is a condition
q ≥ p and a ⊆–increasing sequence F̄ = 〈Fn : n < ω〉 of finite subsets of
dom(q) such that q determines τ̄

˜
relative to F̄ .

(4) Assume p, τ̄
˜

are as in (3) above and p  “τ̄
˜

is a sequence of elements
of ω

^2 with disjoint domains”. Then there are a condition q ≥ p and
an increasing sequence F̄ of finite subsets of dom(q) and a function
f = (f0, f1) :

⋃
1≤n<ω

T (Fn, n, q) −→ ω × ω
^2 such that q|σ  τ

˜
f0(σ) =

f1(σ) (for all σ ∈ dom(f)) and the elements of 〈dom(f1(σ)) : σ ∈⋃
n<ω T (Fn, n, q)〉 are pairwise disjoint.

Proof. The same as for the CS product of Silver or Sacks forcing notions, see
e.g. Baumgartner [3, §1]. �

Corollary 3.11. Assume κ = κℵ0 ≥ ℵ2. The forcing notion S∗(κ) is proper and
every meager subset of ω2 in an extension by S∗(κ) is included in a Σ0

2 meager
set coded in the ground model.
If CH holds, then S∗(κ) preserves all cardinals and cofinalities and S∗(κ) 2ℵ0 =
κ.

4. Meager non–null

The goal of this section is to present a model of ZFC in which every meager
subgroup of R or ω2 is also Lebesgue null.

Theorem 4.1. Assume CH. Let κ = κℵ0 ≥ ℵ2. Then

(1) S∗(κ)“ 2ℵ0 = κ and each meager subgroup of (ω2,+2) is Lebesgue null.”
(2) S∗(κ)“ every meager subgroup of (R,+) is Lebesgue null.”

Proof. For α < κ let η
˜
α be the canonical name for the S∗–generic function in∏

m<ω
(m+ 1) added on the αth coordinate of S∗(κ).
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(1) Suppose towards contradiction that for some p0 ∈ S∗(κ) and a S∗(κ)–
name H

˜
we have

p0 S∗(κ) “ H
˜

is a meager non–null subgroup of (ω2,+2). ”

By Corollary 3.11 (or, actually, Lemma 3.10(4)) we may pick a condition p1 ≥ p0,
a strictly increasing sequence n̄ = 〈nj : j < ω〉 ⊆ ω and a function f ∈ ω2 such
that

(∗)0 p1 S∗(κ) “ H
˜
⊆
{
x ∈ ω2 :

(
∀∞j < ω

)(
x�[nj , nj+1) 6= f�[nj , nj+1)

)}
. ”

Let m̄ = m̄[n̄], N̄ = N̄ [n̄], J̄ = J̄ [n̄], H̄ = H̄[n̄], π = π[n̄] and F = F[n̄] be as
defined in Definition 3.3 for the sequence n̄. Also let A = {|Hi| − 1 : i < ω} and
r+ ∈ S∗ be such that dom(r+) = ω \A and r+(k) = 0 for k ∈ dom(r+).

Since, by Lemma 3.4, we have “ F(η
˜
α) ⊆ ω2 is a measure one set ”, we know

that p1 S∗(κ) “ (∀α < κ)(F(η
˜
α) ∩H

˜
6= ∅) ”. Consequently, for each α < κ, we

may choose a S∗(κ)–name ρ
˜
α for an element of ω2 such that

p1 S∗(κ) “ ρ
˜
α ∈ H

˜
& ρ

˜
α ∈ F(η

˜
α) ”.

Let us fix α ∈ κ\dom(p1) for a moment. Let pα1 ∈ S∗(κ) be a condition such that
dom(pα1 ) = dom(p1) ∪ {α}, pα1 (α) = r+ and p1 ⊆ pα1 . Using the standard fusion
based argument (like the one applied in the classical proof of Lemma 3.10(3)
with 3.10(2) used repeatedly), we may find a condition qα ∈ S∗(κ), a sequence
F̄ = 〈Fαn : n < ω〉 of finite sets, a sequence 〈µαn : n < ω〉 and an integer iα < ω
such that the following demands (∗)1–(∗)6 are satisfied.

(∗)1 qα ≥ pα1 , dom(qα) =
⋃
n<ω

Fαn , Fαn ⊆ Fαn+1 and Fα0 = {α}.

(∗)2 µαn : Fαn −→ ω, µαn(α) = n+ 1, µαn(β) = n for β ∈ Fαn \ {α}.
(∗)3 min

(
ω \ dom(qα(α))

)
> |Hiα | and

if max
(
u(n+ 1, qα(α))

)
= |Hi| − 1 and n ≥ 1, then |T (Fn, n, q

α)|2 < 2i,

(∗)4 qα 
(
∀i ≥ iα

)(
ρ
˜
α�Ji ∈ πi(η

˜
α(|Hi| − 1))

)
, and

(∗)5 qα determines ρ
˜
α relative to F̄ , moreover

(∗)6 if σ ∈ T (Fαn , µ
α
n, q

α) and max
(
u(n + 1, qα(α))

)
= |Hi| − 1, then qα|σ

decides the value of ρ
˜
α�Ji.

Unfixing α and using a standard ∆–system argument with CH we may find
distinct γ, δ ∈ κ \ dom(p1) such that otp(dom(qγ)) = otp(dom(qδ)) and if
g : dom(qγ) −→ dom(qδ) is the order preserving bijection, then the following
demands (∗)7–(∗)9 hold true.

(∗)7 iγ = iδ, g�
(
dom(qγ) ∩ dom(qδ)

)
is the identity, g(γ) = δ,

(∗)8 qγ(β) = qδ(g(β)) for each β ∈ dom(qγ), and g[F γn ] = F δn ,
(∗)9 if F ⊆ dom(qδ) is finite, µ : F −→ ω \ {0}, i < ω, σ ∈ T (F, µ, qδ), then

qδ|σ  ρ
˜
δ�Ji = z if and only if qγ |(σ ◦ g)  ρ

˜
γ�Ji = z.
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Clearly q∗
def
= qγ ∪ qδ is a condition stronger than both qγ and qδ. Let F ∗n =

F γn ∪ F δn for n < ω.
Let 〈k` : ` < ω〉 be the increasing enumeration of ω \ dom(qγ(γ)) = ω \

dom(qδ(δ)). Note that by the choice of r+ and pγ1 , we have ω \dom(qγ(γ)) ⊆ A,
so each k` is of the form |Hi| − 1 for some i. Now we will choose conditions
rδ, rγ ∈ S∗ so that

dom(rδ) = dom(rγ) = dom(qδ(δ)) ∪ {k2` : ` < ω},

qδ(δ) ≤ rδ, qγ(γ) ≤ rγ and the values of rδ(k2`), rγ(k2`) are picked as follows.
Let i be such that k2` = |Hi| − 1. If x ∈ {γ, δ} and σ ∈ T (F x2`, µ

x
2`, q

x) then
qx|σ decides the value of ρ

˜
x�Ji (by (∗)6) and this value belongs to πi

(
σ(x)(k2`)

)
(by (∗)4 + (∗)3). Consequently, for x ∈ {γ, δ} and τ ∈ T (F ∗2`, 2`, q

∗) we may
define a function Zxτ : Hi −→ Ji2 so that

(∗)10 if a ∈ H(i), µ : F ∗2` −→ ω is such that µ(x) = 2`+ 1 and µ(α) = 2` for
α 6= x, and τa ∈ T (F ∗2`, µ, q

∗) is such that τa(α) = τ(α) for α ∈ F ∗2` \{x}
and τa(x) = τ(x) ∪ {(k2`, a)},
then q∗|τa S∗(κ) ρ

˜
x�Ji = Zxτ (a) and Zxτ (a) ∈ a.

Since |T (F ∗2`, 2`, q
∗)| ≤ |T (F γ2`, 2`, q

γ)|2 < 2i (remember (∗)3), we may use
Lemma 3.5 to find rδ(k2`), rγ(k2`) ≤ k2` such that

(∗)11 for every τ ∈ T (F ∗2`, 2`, q
∗) there is k ∈ [m2i ,m2i+1) satisfying(

Zγτ (πi(rγ(k2`)))�[nk, nk+1)
)

+2

(
Zδτ (πi(rδ(k2`)))�[nk, nk+1)

)
= f�[nk, nk+1).

(Remember, f was chosen in (∗)0.)

This completes the definition of rγ and rδ. Let q+ ∈ S∗(κ) be such that
dom(q+) = dom(q∗) = dom(qγ)∪dom(qδ) and q+(α) = q∗(α) for α ∈ dom(q+)\
{γ, δ} and q+(γ) = rγ and q+(δ) = rδ. Then q+ is a (well defined) condition
stronger than both qγ and qδ and such that

(♣) q+ 
(
∃∞k < ω

)((
ρ
˜
γ�[nk, nk+1)

)
+2

(
ρ
˜
δ�[nk, nk+1)

)
= f�[nk, nk+1)

)
(by (∗)10 + (∗)11). Consequently, by (∗)0,

(♥) q+ “ ρ
˜
γ , ρ

˜
δ ∈ H

˜
and ρ

˜
γ +2 ρ

˜
δ /∈ H

˜
and (H

˜
,+2) is a group”,

a contradiction.

(2) The proof is a small modification of that for the first part, so we describe
the new points only. Assume towards contradiction that for some p0 ∈ S∗(κ)
and a S∗(κ)–name H

˜
∗ we have

p0 S∗(κ) “ H
˜
∗ is a meager non–null subgroup of (R,+) ”.

Let H
˜

0, H
˜

1 be S∗–names for subsets of D∞0 such that

p0 S∗(κ) “ H
˜

0 = E−1[H
˜
∗ ∩ [0, 1/2)] and H

˜
1 = E−1[H

˜
∗ ∩ [0, 1)] ”.

Paper Sh:1081, version 2016-11-13 10. See https://shelah.logic.at/papers/1081/ for possible updates.



12 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Necessarily p0 “ H
˜
∗ ∩ [0, 1/2) is not null ”, so it follows from 2.2(1) that

p0 S∗(κ) “ H
˜

0 /∈ N and H
˜

1 ∈M and H
˜

0 ⊆ H
˜

1 ”.

Clearly we may pick a condition p1 ≥ p0, a sequence n̄ = 〈nj : j < ω〉 ⊆ ω and
a function f ∈ ω2 such that

(⊕)0 nj+1 > nj + j + 1 for each j,
(⊕)1 f(nj+1 − 1) = 0 for each j, and
(⊕)2 p1 S∗(κ)“H

˜
1 ⊆

{
x ∈ ω2 :

(
∀∞j < ω

)(
x�[nj , nj+1−1) 6= f�[nj , nj+1−1)

)}
.”

(Note: “[nj , nj+1 − 1)” not “[nj , nj+1)”.)

Like in part (1), let m̄ = m̄[n̄], N̄ = N̄ [n̄], J̄ = J̄ [n̄], H̄ = H̄[n̄], π = π[n̄] and
F = F[n̄]. Let A = {|Hi|−1 : i < ω} and r+ ∈ S∗ be such that dom(r+) = ω \A
and r+(k) = 0 for k ∈ dom(r+). Then each α < κ fix a S∗(κ)–name ρ

˜
α such

that p1 S∗(κ)“ ρ
˜
α ∈ H

˜
0 ∩ F(η

˜
α) ”.

Now repeat the arguments of the first part (with (∗)1–(∗)11 there applied to
our n̄, f, ρ

˜
α and the operation ~0 here) to find q+ ≥ p1 and γ, δ ∈ dom(q+) such

that

(♦) q+ “
(
∃∞k < ω

)(
(ρ
˜
γ�[nk, nk+1))~0 (ρ

˜
δ�[nk, nk+1)) = f�[nk, nk+1)

)
”.

Let G ⊆ S∗(κ) be a generic over V such that q+ ∈ G and let us work in V[G]. Let
η ∈ D∞0 be such that E(ρ

˜

G
γ ) + E(ρ

˜

G
δ ) = E(η) (remember E(ρ

˜

G
γ ),E(ρ

˜

G
δ ) < 1/2).

We know from (♦) that there are infinitely many k < ω satisfying

(�) (ρ
˜

G
γ �[nk, nk+1))~0 (ρ

˜

G
δ �[nk, nk+1)) = f�[nk, nk+1).

Since f(nk+1 − 1) = 0 (see (⊕)1), we get from 3.2(3) that for each k as in (�)
we also have(

(ρ
˜

G
γ �[nk, nk+1))~0 (ρ

˜

G
δ �[nk, nk+1))

)
�[nk, nk+1 − 1) =(

(ρ
˜

G
γ �[nk, nk+1))~1 (ρ

˜

G
δ �[nk, nk+1))

)
�[nk, nk+1 − 1) = f�[nk, nk+1 − 1).

Therefore (by 3.2(4)) for each k satisfying (�) we have η�[nk, nk+1 − 1) =
f�[nk, nk+1 − 1), so(

∃∞k < ω
)(
η�[nk, nk+1 − 1) = f�[nk, nk+1 − 1)

)
.

Consequently, by (⊕)2, we have that η /∈ H
˜
G
1 , i.e., E(η) /∈ (H

˜
∗)G ∩ [0, 1). This

contradicts the fact that E(ρ
˜

G
γ ),E(ρ

˜

G
δ ) ∈ (H

˜
∗)G, E(η) = E(ρ

˜

G
γ ) + E(ρ

˜

G
δ ) and

(H
˜
∗)G is a subgroup of (R,+). �

Remark 4.2. Instead of the CS product of forcing notions S∗ we could have used
their CS iteration of length ω2. Of course, that would restrict the value of the
continuum in the resulting model.
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5. Problems

Both theorems 2.3(1) and 4.1(1) can be repeated for other product groups.
We may consider a sequence 〈Hn : n < ω〉 of finite groups and their coordinate-
wise product H =

∏
n<ω

Hn. Naturally, H is equipped with product topology

of discrete Hn’s and the product probability measure. Then there exists a null
non–meager subgroup of H but it is consistent that there is no meager non–null
such subgroup. It is natural to ask now:

Problem 5.1. (1) Does every locally compact group (with complete Haar
measure) admit a null non–meager subgroup?

(2) Is it consistent that no locally compact group has a meager non–null
subgroup?

In relation to Theorem 4.1, we still should ask:

Problem 5.2. Is it consistent that there exists a translation invariant Borel
hull for the meager ideal on ω2? On R?
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[9] Andrzej Ros lanowski and Juris Steprāns. Chasing Silver. Canadian Mathematical Bulletin,
51:593–603, 2008. arxiv:math.LO/0509392.

Paper Sh:1081, version 2016-11-13 10. See https://shelah.logic.at/papers/1081/ for possible updates.



14 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-

0243, USA

Email address: roslanow@member.ams.org

URL: http://www.unomaha.edu/logic

Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem,
Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ

08854, USA

Email address: shelah@math.huji.ac.il

URL: http://www.math.rutgers.edu/∼shelah

Paper Sh:1081, version 2016-11-13 10. See https://shelah.logic.at/papers/1081/ for possible updates.


	1. Introduction
	2. Null non–meager
	3. Some technicalities
	3.1. Moving from R to 2
	3.2. The combinatorial heart of our forcing arguments
	3.3. The *–Silver forcing notion

	4. Meager non–null
	5. Problems
	References

