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Abstract. We show in §1 that the Ax-Kochen isomorphism theorem [AK]
requires the continuum hypothesis. Most of the applications of this theorem

are insensitive to set theoretic considerations. (A probable exception is the
work of Moloney [?].) In §2 we give an unrelated result on cuts in models of

Peano arithmetic which answers a question on the ideal structure of countable

ultraproducts of Z posed in [?]. In §1 we also answer a question of Keisler and
Schmerl regarding Scott complete ultrapowers of R (see 1.18).
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2 SAHARON SHELAH

§ 0. Introduction

In a previous paper [?] we gave two constructions of models of set theory in
which the following isomorphism principle fails in various strong respects:

Iso1 If M ,N are countable elementarily equivalent structures and F is a non-
principal ultrafilter on ω, then the ultrapowers M ∗,N ∗ of M ,N with
respect to F are isomorphic.

As is well known, this principle is a consequence of the continuum hypothesis. Here
we will give a related example in connection with the well-known isomorphism
theorem of Ax and Kochen. In its general formulation, that result states that a
fairly broad class of henselian fields of characteristic zero satisfying a completeness
(or saturation) condition are classified up to isomorphism by the structure of their
residue fields and their value groups. The case that interests us here is:

Iso2 If F is a non-principal ultrafilter on ω, then the ultraproducts
∏
p
Zp/F

and ΠFp[[t]]/F are isomorphic.

Here Zp is the ring of p-adic integers and Fp is the finite field of order p. It makes no
difference whether we work in the fraction fields of these rings as fields, in the rings
themselves as rings, or in the rings as valued rings, as these structures are mutually
interpretable in one another. In particular, the valuation is definable in the field
structure (for example, if the residual characteristic p is greater than 2 consider
the property: “1 + px2 has a square root”). We show that such an isomorphism
cannot be obtained from the axioms of set theory (ZFC). As an application we may
mention that certain papers purporting to prove the contrary need not be refereed.

Of course, the Ax-Kochen isomorphism theorem is normally applied as a step
toward results which cannot be affected by set-theoretic independence results. One
exception is found in the work of Moloney [Mo] which shows that the ring of con-
vergent real-valued sequences on a countable discrete set has exactly 10 residue
domains modulo prime ideals, assuming the continuum hypothesis. This result de-
pends on the general theorem of Ax and Kochen which lies behind the isomorphism
theorem for ultraproducts, and also on an explicit construction of a new class of
ultrafilters based on the continuum hypothesis. It is very much an open question
to produce a model of set theory in which Moloney’s result no longer holds.

Our result can of course be stated more generally; what we actually show here
may be formulated as follows.

Proposition 0.1. It is consistent with the axioms of set theory that there is an
ultrafilter F on ω such that for any two sequences of discrete rank 1 valuation
rings (Rin)n=1,2,... (i = 1, 2) having countable residue fields, any isomorphism F :∏
n
R1
n/F →

∏
n
R2
n/F is an ultraproduct of isomorphisms Fn : R1

n → R2
n (for a set

of n contained in F ). In particular most of the pairs R1
n, R2

n are isomorphic.

In the case of the rings Fp[[t]] and Zp, we see that (Iso 2) fails.
From a model theoretic point of view this is not the right level of generality for

a problem of this type. There are three natural ways to pose the problem:
1) Characterize the pairs of countable models M ,N such that for some ultrafilter
F in some forcing extension, ΠM ω/F � ΠN F .
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2) Characterize the pairs of countable models M ,N with no isomorphic ultra-
powers in some forcing extension; (there are two variants: the ultrapowers may be
formed either using one ultrafilter twice, or using any two ultrafilters).
3) Write M ≤ N if in every forcing extension, whenever F is an ultrafilter on ω
such that N ω/F is saturated, then M ω/F is also saturated. Characterize this
relation.

This is somewhat like the Keisler order [?], [?, Ch.VI], [?] but does not depend
on the fact that the ultrafilter is regular. We can replace ℵ0 here by any cardinal
κ satisfying κ<κ = κ.

However the set theoretic aspects of the Ax-Kochen theorem appear to have
attracted more interest than the two general problems posed here. We believe that
the methods used here are appropriate also in the general case, but we have not
attempted to go beyond what is presented here.

With the methods used here, we could try to show that for every M with count-
able universe (and language), if P3 is the partial order for adding ℵ3-Cohen reals
then we can build a
boldP3-name for a non principal ultrafilter F on ω, such that in V P ,M ω/F resem-
bles the models constructed in [?]; we can choose the relevant bigness properties in
advance (cf. Definition ??, clause (5.3)). This would be helpful in connection with
problems (1,2) above.

In §2 of this paper we give a result on cuts in models of Peano Arithmetic which
has previously been overlooked. Applied to ω1-saturated models, our result states
that some cut does not have countable cofinality from either side. As we explain
in §2, this answers a question on ideals in ultrapowers of Z which was raised in [?].
The result has nothing to do with the material in §1, beyond the bare fact that it
also gives some information about ultraproducts of rings over ω.

The model of set theory used for the consistency result in §1 is obtained by
adding ℵ3 cohen reals to a suitable ground model. There are two ways to get a
“suitable” ground model. The first way involves taking any ground model which
satisfies a portion of the GCH, and extending it by an appropriate preliminary
forcing, which generically adds the name for an ultrafilter which will appear after
addition of the cohen reals. The alternative approach is to start with an L-like
ground model and use instances of diamond (or related weaker principles) to prove
that a sufficiently generic name already exists in the ground model. That was the
method used in §3 of [?], which is based in turn on [?], which has still not appeared
as of this writing. However, the formalism of [ShHL162], though adequate for
certain applications, turns out to be slightly too limited for our present use. More
specifically, there are continuity assumptions built into that formalism which are
not valid here and cannot easily be recovered. The difficulty, in a nutshell, is that a
union of ultrafilters in successively larger universes is not necessarily an ultrafilter
in the universe arising at the corresponding limit stages, and it can be completed
to one in various ways.

We intend to include a more general version of [ShHL162] in [?]. However as
our present aim is satisfied by any model of set theory with the stated property, we
prefer to emphasize the first approach here. So the family App defined below will be
used as a forcing notion for the most part. However we will also take note of some
matters relevant to the more refined argument based on a variant of [ShHL162].
For those interested in such refinements, we summarize [ShHL162] in an appendix,
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4 SAHARON SHELAH

as well as a version closer to the form we intend to present in [?]. In addition the
exposition in [?, §3] includes a very explicit discussion of the way such a result may
be used to formalize arguments of the type given here, in a suitable ground model
(in the second sense).
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§ 1. Obstructing the Ax-Kochen isomorphism

Discussion 1.1. We will prove Proposition A as formulated in the introduction.
We begin with a few words about our general point of view. In practice we do not
deal directly with valuation rings, but with trees. If one has a structure with a
countable sequence of refining equivalence relations En (so that En+1 refines En)
then the equivalence classes carry a natural tree structure in which the successors
of an En-class are the En+1-classes contained in it. Each element of the structure
gives rise to a path in this tree, and if the equivalence relations separate points
then distinct elements give rise to distinct paths. This is the situation in the
valuation ring of of a valued field with value group Z, where we have the basic
family of equivalence relations: En(x, y)↔ v(x− y) ≥ n. (Or better: E(x, y; z) =:
“v(x − y) ≥ v(z)”.) Of course an isomorphism of structures would induce an
isomorphism of trees, and our approach is to limit the isomorphisms of such trees
which are available.

The main result for trees:
We consider trees as structures equipped with a partial ordering and the relation

of lying at the same level of the tree. We will also consider expansions to much
richer languages. We use the technique of [?, §3] to prove:

Proposition 1.2. It is consistent with the axioms of set theory that there is a
non-principal ultrafilter F on ω such that for any two sequences of countable trees
(T in)n=1,2,... for i = 1, 2, with each tree T in countable with ω levels, and with each
node having at least two immediate successors, if T i =

∏
n
T in/F , then for any

isomorphism F : T 1 ∼= T 2 there is an element a ∈ T 1 such that the restriction of
F to the cone above a is the restriction of an ultraproduct of maps Fn : T 1

n → T 2
n .

Proposition 1.3. B implies Proposition A
Given an isomorphism F between ultraproducts R1, R2 modulo F of discrete

valuation rings Rin, we may consider the induced map F+ on the tree structures T 1,
T 2 associated with these rings, as indicated above. We then find by Proposition B
that on a cone of T 1, F+ agrees with an ultraproduct of maps F+,n between the trees
T in associated with the Rin. On this cone F is definable from F+, in the following
sense: F (x) = y iff for all n, F+(a mod πn1 ) ≡ b mod πn2 , where πi generates
the maximal ideal of Ri and we identify Ri/πni with the n-th level of T i. (This is
expressed rather loosely; in the notation we are using at the moment, one would
have to take n as a nonstandard integer. After formalization in an appropriate
first order language it will look somewhat different.) Furthermore F is definable
in (R1, R2) from its restriction to this cone: the cone corresponds to a principal
ideal (a) of R1 and F (x) = F (ax)/F (a). Summing up, then, there is a first order
sentence valid in (R1, R2;F+) (with F+ suitably interpreted as a parametrized family
of maps R1/πn1 → R2/πn2 ) stating that an isomorphism F : R1 → R2 is definable in
a particular way from F+; so the same must hold in most of the pairs (R1,n, R2,n),
that is, for a set of indices n which lies in F . In particular in such pairs we get an
isomorphism of R1 and R2.

Context 1.4. We concern ourselves solely with Proposition B in the remainder of
this section. For notational convenience we fix two sequences (T in)n<ω of trees
(i = 1 or 2) in advance, where each tree T in is countable with ω levels, no maximal
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point, and no isolated branches. The tree T in is considered initially as a model
with two relations: the tree order and equality of level. Although we fix the two
sequences of trees, we can equally well deal simultaneously with all possible pairs
of such sequences, at the cost of a little more notation.

As explained in the introduction, we work in a cohen generic extension of a
suitable ground model. This ground model is assumed to satisfy 2ℵn = ℵn+1

for n = 0, 1, 2. If we use the partial order App defined below as a preliminary
forcing, prior to the addition of the cohen reals, then this is enough. If we wish to
avoid any additional forcing then we assume that the ground model satisfies �S for
S = {δ < ℵ3 : cfδ = ℵ2}, and we work with App directly in the ground model using
the ideas of [ShHL162]. The second alternative requires more active participation
by the reader.

Let P be the Cohen forcing adding ℵ3 Cohen reals. An element p of
boldP is a finite partial function from ℵ3 × ω to ω. For A ⊆ ℵ3, and p ∈
boldP , let p�A denote the restriction of p to A × ω and P�A = {p�A : p ∈ P}.
Let x

˜
β be the β-th Cohen real. The partial order App is defined below.

We will deal with a number of expansions of the basic language of pairs of trees.
For a forcing notion Q andGQ-generic over V , we write G(T 1

n , T
2
n) for the expanded

structure in which for every k, every sequence (rn)n<ω of k-place relations rn on
(T 1
n , T

2
n) is represented by a k-place relation symbol R (i.e., R(rn:n<ω)); that is, R

is interpreted in (T 1
n , T

2
n) by the relation rn. This definition takes place in V [G]. In

V we will have names for these relations and relation symbols. We write Q(T 1
n , T

2
n)

for the corresponding collection of names. In practice Q will be P�A for some
A ⊆ ω3 and in this case we write A (T 1

n , T
2
n).

Typically we will have certain subsets of each T in singled out, and we will want
to study the ultraproduct of these sets, so we will make use of the predicate whose
interpretation in each T in is the desired set. We would prefer to deal with P(T 1

n , T
2
n),

but this is rather large, and so we have to pay some attention to matters of timing.

Definition 1.5. As in [?], we set up a class App of approximations to the name
of an ultrafilter in the generic extension V [P]. In [?] we emphasized the use of the
general method of [ShHL162] to construct the name F

˜
of a suitable ultrafilter in

the ground model. Here we emphasize the alternative and easier approach, forcing
with App. However we include a summary of the formalism of [?], and a related
formalism, in an appendix at the end.

The elements of App are triples q = (A ,F
˜
, ε) such that:

(1) A is a subset of ℵ3 of cardinality ℵ1;

(2) F
˜

is a P�A -name of a non-principal ultrafilter on ω, called F
˜
�A ;

(3) ε = (εα : α ∈ A ), with each εα ∈ {0, 1}, and εα = 0 whenever cfα < ℵ2;

(4) For β ∈ A we have: [F
˜
∩ {a

˜
: a
˜

a P�(A ∩ β)-name of a subset of ω}] is a
P�(A ∩ β)-name;

(5) If cfβ = ℵ2, β ∈ A , εβ = 1 then P�A forces the following:

(5.1) x
˜
β/F

˜
is an element of (

∏
n<ω

T 1
n/F

˜
�A )V [P�A ] whose level is above all

levels of elements of the form x
˜
/F

˜
for x

˜
a P�(A ∩ β)-name;

(5.2) x
˜
β induces a branch B

˜
on (

∏
n<ω

T 1
n)V [P�(A∩β)]/[F

˜
�(A ∩ β)] which has

elements in every level of that tree (such a branch will be called full)
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and which is a P�(A ∩ β)-name (and not just forced to be equal to
one);

(5.3) The branch B
˜

intersects every dense subset of∏
n

A∩βT 1
n)V [P�(A∩β)]/[F

˜
�(A ∩ β)]

which is definable in (
∏
n

A∩β(T 1
n , T

2
n)/[F

˜
�(A ∩ β)])V [P�(A∩β)].

Note in (5.3) that the dense subset under consideration will have a P�(A ∩ β)-
name, and also that by  Loś’ theorem a dense subset of the type described extends
canonically to a dense subset in any larger model. The notion of “bigness” alluded
to in the introduction is given by (5.3).

We write q1 ≤ q2 if q2 extends q1 in the natural sense. We say that q2 ∈ App is
an end extension of q1, and we write q1 ≤end q2, if q1 ≤ q2 and A q2 \A q1 follows
A q1 . Here we have used the notation: q = (A q,F

˜
q, εq).

Remark 1.6. The following comments bear on the version based on the model
theoretic method of [?]. In a previous vesion of this method, rather than examining
each x

˜
β separately, we would really group them into short blocks Xβ = (x

˜
β+ζ : ζ <

ℵ2), for β divisible by ℵ2. Then our assumptions on the ground model V allow us
to use the method of [ShHL162] to construct the name F

˜
in V . One of the ways

�S would be used is to “predict” certain elements pδ ∈
boldP �δ and certain P�δ-names of functions F

˜
δ which amount to guesses as to

the restriction to a part of
∏
n
T 1
n of (the name of) a function representing some

isomorphism F
˜

modulo F
˜

. However, in A6 this is already taken into account. As
we indicated at the outset, we intend to elaborate on these remarks elsewhere.

Lemma 1.7. If (qζ)ζ<ξ is an increasing sequence of at most ℵ1 members of App
such that qζ1 ≤end qζ2 for ζ1 < ζ2, then we can find q ∈ App such that A q =

⋃
ζ

A qζ

and qζ ≤end q for ζ < ξ.

Proof. We may suppose ξ > 0 is a limit ordinal. If cf(ξ) > ℵ0 then
⋃
ζ<ξ

qζ will do,

while if cf(ξ) = ℵ0 then we just have to extend
⋃
ζ

F
˜
qζ to a P�(

⋃
ζ

A qζ )-name of an

ultrafilter on ω, which is no problem. (cf. [?, 3.10]). �1.7

Claim 1.8. Suppose q ∈ App, γ > sup A q, and B
˜

is a P�A q-name of a branch of
(
∏
n
T εn/F

˜
q)V [P�A q ].

1) Then we can find an r ∈ App with A r = A q ∪ {γ}, and a (P�A r)-name x
˜

of a
member of

∏
n
T εn/F

˜
r which is above B

˜
.

2) We can find an r ∈ App with q ≤end r and A r = A q ∪ [γ, γ + ω1), and a
(P�A r)-name B

˜
′ of a full branch extending B

˜
, which intersects every definable

dense subset of (
∏
n

A r

T εn)V [P�A r]/F
˜
r.

3) In (2) we can ask in addition that any particular type p over ΠA q

(T 1
n , T

2
n)/F

˜
q

(in V [P�A q]) is realized in (
∏
n

A r

T εn)V [P�A r]/F
˜
r.

Proof. 1) Make x
˜
γ realize the required type, and let εγ = 0.
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2) We define rζ = r�(A q∪[γ, γ+ζ)) by induction on ζ ≤ ω1. For limit ζ use 1.7 and
for successor ζ use part (1). One also takes care, via appropriate bookkeeping, that
B
˜
′ should intersect every dense definable subset of (

∏
n

A r

T εn/F
˜
r)P�A r

by arranging

for each such set to be met in some specific (
∏
n

A rζ
T εn/F

˜
rζ )V [P�A rζ ] with ζ < ℵ1.

3) We can take α ∈ [γ, γ+ω1) with cofα 6= ℵ2 and use xα to realize the type. �1.8

Claim 1.9. Suppose q0, q1, q2 ∈ App, q0 = q2�β, q0 ≤ q1, A q1 ⊆ β.
1) If A q2 \ A q0 = {β} and εq2β = 0, then there is q3 ∈ App, q3 ≥ q1, q2 with
A q3 = A q1 ∪A q2 .
2) Suppose A q2 \ A q0 = {β}, cfβ = ℵ2, εq2β 6= 0, and in particular sup A q1 < β.
Assume that B

˜
1 is a P�A q1-name of a full branch of

(ΠT
ε
q2
β
n /F

˜
q1)V [P�A q1 ]

intersecting every dense subset of this tree which is definable in (
∏
n

A q1
(T 1
n , T

2
n)/F

˜
q1)V [P�A q1

,

such that B
˜

1 contains the branch B
˜

0 which x
˜
β induces according to q2. Then there

is q3 ≥ q1, q2 with A q3 = A q1 ∪ {β}, such that according to q3, x
˜
β induces B

˜
1 on

(ΠT
ε
q2
β
n /F

˜
�A q1)V [P�A q1

.
3) If A q2 \ A q0 = {β}, cfβ = ℵ2, εq2β = 1, and sup A q1 < γ < β with cfγ 6= ℵ2,

then there is q3 ∈ App with q1 ≤ q3, q2 ≤ q3, A q3 = A q1 ∪A q2 ∪ [γ, γ + ω1).
4) There are q3 ∈ App, q1, q2 ≤ q3, so that A q3\A q1∪A q2 has the form

⋃
{[γζ , γζ+

ω1) : ζ ∈ A q2\A q0 , cfζ = ℵ2} where γζ is arbitrary subject to sup(A q2�ζ) < γζ < ζ.
5) Assume δ1 < ℵ2, β < ℵ3, that (pi)i<δ is an increasing sequence from App, and
that q ∈ App�β satisfies: for i < δ1: pi�β ≤ q.

Then there is an r ∈ App with q ≤end r and pi ≤ r for all i < δ1.
6) Assume δ1, δ2 < ℵ2, (βj)j<δ2 is an increasing sequence with all βj < ℵ3, that
(pi)i<δ1 is an increasing sequence from App, and that qj ∈ App�βj for j < δ2 where
δ2 < ℵ3 satisfy: for i < δ1, j < δ2 : pi�βj ≤ qj; for j < j′ < δ2 : qj ≤end qj′ .

Then there is an r ∈ App with pi ≤ r and qj ≤end r for all i < δ1 and j < δ2.

Proof. 1) The proof is easy and is essentially contained in the proofs following.
(One verifies that F

˜
q1 ∪F

˜
q2 generates a proper filter in V [P�(A q1upA q2)].)

2) Let Ai = A qi and let F
˜
i = F

˜
qi for i = 1, 2, and A3 = A1∪A2 = A1∪{β}. The

only non-obvious part is to show that in V [P�A3] there is an ultrafilter extending
F
˜

1 ∪F
˜

2 which contains the sets:

{n : T 1
n |= x

˜
(n) ≤ x

˜
β(n)} for x

˜
∈ B

˜
1, x

˜
a P�A1-name.

If this fails, then there is some p ∈ P�A3, a P�A1-name a
˜

of a member of F
˜

1, a
P�A2-name b

˜
of a member of F

˜
2, and some x

˜
∈ B

˜
1 such that p ` “a

˜
∩ b

˜
∩ c

˜
= ∅”

where c
˜

= {n : x
˜

(n) ≤ x
˜
β(n)} for some (P�A q1) − x

˜
, such that p�A1 
 “x

˜
∈ B

˜
1”

and without loss of generality 
 “x
˜
∈
∏
m
T 1
m”. With only those three sets? by the

amount of closure under intersection we have. Let pi = p�Ai for i = 0, 1, 2, and let
H0 ⊆ P�A0 be generic over V , with p0 ∈ H0.

Let:

A
˜

1
n[H0] = {y ∈ T 1

n : for some p′1,p1 ≤ p′1 ∈ P�A1,p
′
1�A0 ∈ H0

and p′1 
 “x
˜

(n) ≤ y and n ∈ a
˜

”}.
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Then A
˜

1
n is a P�A0-name. Let A

˜
1 = (

∏
n
A
˜

1
n/F

˜
�A0)V [P�A0]. Now A

˜
1 is not necessar-

ily dense in (
∏
n
T 1
n/F �A0)V [P�A0], but the set A

˜
∗ := {y

˜
∈ (

∏
n
T 1
n/F

˜
q0)V [P�A0] : y

˜
∈

A1, or y
˜

is incompatible in the tree with all y
˜

′ ∈ A1} is dense, and it is definable (in∏
m

(P�A0)T 1
m/F

˜
q0), hence not disjoint from B

˜
0. Fix y

˜
∈ A

˜
∗ ∩ B

˜
0. As P�A1 forces

(
P�A1
) that x

˜
∈ B

˜
1, clearly x

˜
and y

˜
cannot be incompatible (in

∏
m

(P�A1)T 1
m),

so clearly p1�A1 forces (
P�A1
) that x

˜
, y
˜

are compatible in
∏
m

P�A0T 1
m, and thus

y
˜
∈ A

˜
1.

The following sets are in F
˜
V [H0]:

A
˜

= {n : for some p′1,p1 ≤ p′1 ∈ P�A1,p
′
1�A0 ∈ H0

and p′1 
 “x
˜

(n) ≤ y
˜

(n), and n ∈ a
˜

”}.

B
˜

= {n : for some p′2,p2 ≤ p′2 ∈ P�A2,p
′
2�A0 ∈ H0

and p′2 
 “y
˜

(n) ≤ x
˜
β(n), and n ∈ b

˜
”}.

For example, A
˜

is a subset of ω in V [H0] which is in F
˜
q1 . As the complement of

A
˜

cannot be in F
˜
q0 , A

˜
must be in F

˜
q0 [H0].

Now for any n ∈ A
˜
∩ B

˜
we can force n ∈ a

˜
∩ b

˜
∩ c

˜
by amalgamating the corre-

sponding conditions p′1,p
′
2; as said above this finishes the proof of the existence of

q3.
3) Let B

˜
0 be the P�A q0-name of the branch which x

˜
β induces. By 1.8(2) there is

q∗1 , A q∗1 = A q1 ∪ [γ, γ + ω1), q1 ≤ q∗1 ∈ App and there is a P�A q∗1 -name B
˜

1 ⊇ B
˜

0

of an appropriate branch for q∗1 . Now apply part (2) to q0, q
∗
1 , q2.

4) As in [?, 3.9(2)], by induction on the order type γ of (A q2 \ A q1): if γ = 0
trivial; if γ = γ′+ 1, β last member of A q2 , εq2β = 0 use part (1); if γ = γ′+ 1 and β

last member of A q2 , εq2β = 1 use part (3). If γ is a limit ordinal, use part (6) below.

5), 6) Since (6) includes (5), it suffices to prove (6); but as we go through the details
we will treat the cases corresponding to (5) first. We point out at the outset that
if δ2 is a successor ordinal or a limit of uncountable cofinality, then we can replace
the qj by their union, which we call q, setting β = supj βj , so all these cases can be
treated using the notation of (5).

We will prove by induction on γ < ω2 that if all βj ≤ γ and all pi belong to
App�γ, then the claim (6) holds for some r in App�γ.

We first dispose of most of the special cases which fall under clause (5) (so for
the present, q is well defined). If δ1 = δ0 +1 is a successor ordinal it suffices to apply
(1) on (3) to pδ0 and q. So we assume for the present that δ1 is a limit ordinal. In
addition if γ = β we take r = q, so we will assume β < γ throughout.

The case γ = γ0 + 1, a successor:
In this case our induction hypothesis applies to the pi�γ0, q, β, and γ0, yielding

r0 in App�γ0 with pi�γ0 ≤ r0 and q ≤end r0. What remains to be done is an
amalgamation of r0 with all of the pi, where dompi ⊆ domr0∪{γ0}, and where one
may as well suppose that γ0 is in dompi for all i. This is a slight variation on 1.9
(1) or (3) (depending on the value of εpiγ , which is independent of i).

The case γ a limit of cofinality greater than ℵ1:
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Since δ1 < ℵ2 there is some γ0 < γ such that all pi lie in App�γ0 and β < γ0,
and the induction hypothesis then yields the claim.

The case γ a limit of cofinality ℵ1:
Choose γj a strictly increasing and continuous sequence of length at most ω1

with supremum γ, starting with γ0 = β. By induction choose rj ∈ App�γj for
i < ω1 such that:

r0 = q

rj ≤end rj′ for j < j′ < ω1

pi�γj ≤ rj for i < δ1 and j < ω1

At successor stages the inductive hypothesis is applied to pi�γj+1, rj , γj , and γj+1.
At limit stages j we apply the inductive hypothesis to pi�γj , rj′ for j′ < j, γj′ for
j′ < j, and γj ; and here (6) is used, inductively.

Finally let r =
⋃
rj .

We now make an observation about the case of (5) that we have not yet treated,
in which γ has cofinality ω. In this case we can use the same construction used
when γ has cofinality ℵ1, except for the last step (where we set r =

⋃
rj , above).

What is needed at this stage would be an instance of (6), with the rj in the role of
the qj and δ2 = ω.

This completes the induction for the cases that fall under the notation of (5),
apart from the case in which γ has cofinality ω, which we reduced to an instance
of (6) with the same value of γ and with cf(δ2) = ω. Accordingly as we deal with
the remaining case we may assume cf(δ2) = ω. In this case q =

⋃
qj

is a well-defined

object, but not necessarily in App, as the filter F
˜
q is not necessarily an ultrafilter

(there are reals generated by P�(domq) which do not come from any P�(domqj)).
Now we prove part (6), so by the cases already treated, δ2 is a limit ordinal. We

distinguish two cases. If β := supβj is less than γ (remember qj ∈ App�βj), then
the induction applies, delivering an element r0 ∈ App�β ≤ r0 and all qj ≤end r0.
This r0 may then play the role of q in an application of 1.9(5) for the same γ, and
either it has already been proved or it is the last case above which was reduced to
a case of 1.9(5) in which β = γ, a case treated below.

In some sense the main case (at least as far as the failure of continuity is con-
cerned) is the remaining one in which β = γ. Notice in this case that although
pi�βj ≤ qj it does not follow that pi�β ≤ q (for the reason mentioned above: pi�β
includes an ultrafilter on part of the universe, while the filter associated with q
need not be an ultrafilter). All that is needed at this stage is an ultrafilter contain-
ing all F

˜
pi ∪F

˜
qj . As this is a directed system of filters, it sufficed to check the

compatibility of each such pair, as was done in 1.9(2). �1.9

Construction 1.10. First version.
We force with App and the generic object G gives us a P-name of an ultrafilter

in V [App][P] = V [G][P]. The forcing is ℵ2-complete by 1.9(5). We also claim
that it satisfies the ℵ3-chain condition (see below), and hence does not collapse
cardinals and does not affect our assumptions on cardinal arithmetic. (Subsets of
ℵ2 are added, but not very many.) Let F

˜
G = ∪{F

˜
r : r ∈ G}, it is P-name of
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an ultrafilter on ω, it belongs to V [G]. In particular for each member r of the

generic subset of App we have F
˜

[G] ∩P(ω)V [G]P�Ar

= F
˜

[G] ∩P(ω)V [P�A r] and
ΠA r

(T 1
n , T

2
n/F

˜
r)V [P�A r] both are P�A r-names, not dependent on forcing with

App, i.e. on G.
We now check the chain condition. Suppose we have an antichain {qα} of cardi-

nality ℵ3 in App, where for convenience the index α is taken to vary over ordinals
of cofinality ℵ2. We claim that by Fodor’s lemma, we may suppose that the condi-
tion qα�α is constant. One application of Fodor’s lemma allows us to assume that
γ = sup(A qα ∩ α) is constant. Once γ is fixed, there are only ℵ2 possibilities for
qα�γ, by our assumptions on the ground model, and a second application of Fodor’s
lemma allows us to take qα�γ to be constant.

Now fix α1 of cofinality ℵ2 (or more accurately, in the set of indices which
survive two applications of Fodor’s lemma), and let q′1 := qα1 , β = sup(A )q1 , and
take α2 > β of cofinality ℵ2. We find that q2 := qα2 and q1 are compatible, by
1.9(4), and this is a contradiction.

Second version.
As we wish to apply the model theoretic method (over a suitable ground model)

and build the name of our ultrafilter in the ground model, we proceed as follows. For
α ≤ ℵ3 we choose Gα ⊆ App�α, directed under ≤, increasing with α, inductively
as in [?, §3], making all the commitments we can; more specifically, take Nα ≺
(H (i+

ω+1),∈) of cardinality ℵ2 with α ∈ N ,ℵ2 ⊆ Nα,Nα includes the sequence
of the first α move and is (< ℵ2)-complete, increasing with α, and the oracle
associated with ♦S belongs to Nα, and in stage α if the Guelf will make all the
commitments known to Nα, then Gα is in the ground model but behaves like a
generic object for App�α in V , and in particular gives rise to a name F

˜
α. Note

that V [Gα] = V here.
The lengthy discussion in [?, §3] is useful for developing intuition. Here we will

just note briefly that what is called a commitment here is really an isomorphism
type of commitment, in a more conventional sense; this is a device for compressing
ℵ3 possible commitments into a set of size ℵ2.

The axioms in the appendix have been given in a form suitable to their appli-
cation to the proof of the relevant combinatorial theorem, rather than in the form
most convenient of verification. 1.9 above represents the sort of formulation we use
when we are actually verifying the axioms.

The formalism is documented in the appendix to this paper, but as we have said
it has to be adapted to allow weaker continuity axioms. Compare paragraphs A1
and A6 of the appendix. The axioms in the appendix have been given in a form
suitable to their application to the proof of the relevant combinatorial theorem,
rather than in the form most convenient for verification. 1.9 above represents the
sort of formulation we use when we are actually verifying the axioms.

We will now add a few details connecting 1.9 with the eight axioms of paragraph
A6. The first three of these are formal and it may be expected that they will be
visibly true of any situation in which this method would be applied. The fourth
axiom is the so-called amalgamation axiom which has been given in a slightly more
detailed form in 1.9(4). The last four axioms are various continuity axioms, which
are instances of 1.9(6). We produce them here:
5) If (pi)i<δ is an increasing sequence in App of length less than λ, then it has an
upper bound q.
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6) If (pi)i<δ is an increasing sequence of length less than λ of members of App�(β+
1), with β < λ+ and if q ∈ App�β satisfies pi�β ≤ q for all i < δ, then {pi : i <
δ} ∪ {q} has an upper bound r in App with q ≤end r.
7) If (βj)j<δ is a strictly increasing sequence of length less than λ, with each βj <
λ+, and p ∈ App, qi ∈ App�βi, with p�βj ≤ qj , and pj′�βj = pj for j < j′ < δ, then
{p} ∪ {qj : i < δ} has an upper bound r with all qj ≤end r.
8) Suppose δ1, δ2 are limit ordinals less than λ, and (βj)j<δ2 is a strictly increasing
continuous sequence of ordinals less than λ+. Let I(δ1, δ2) := (δ1 + 1)× (δ2 + 1)−
{(δ1, δ2)}. Suppose that for (i, j) ∈ I(δ1, δ2) we have pij ∈ App�βi such that

i ≤ i′ ⇒ pij ≤ pi′j

j ≤ j′ ⇒ pij = pij′�βj .

Then {pij : (i, j) ∈ I(δ1, δ2)} has an upper bound r in App with r�βj = pδ1,j for
all j < δ2.

The first three are visibly instances of 1.9(6). In the case of axiom (8′) we set
pi = pi,δ2 for i < δ1 and qj = pδ1,j for j < δ2. Then pi�βj = pi,j ≤ qj , so 1.9(6)
applies and yields (8′).

Lemma 1.11. Suppose δ < ℵ3, cf(δ) = ℵ2, and Hδ ⊆ P�δ is generic for P�δ.
Then in V [Hδ] we have:∏

n

δ(T 1
n , T

2
n)/F

˜
δ[Hδ] is ℵ2-compact.

Proof. Similar to 1.8(2). We can use some x
˜
β with β of cofinality less than ℵ2 to

realize each type. In the forcing version, this means App forces our claim to hold
since it can’t force the opposite. In the alternative approach, what we are saying
is that the commitments we have made include commitments to make our claim
true. As 2ℵ1 = ℵ2 in V [Hδ] we can “schedule” the commitments conveniently, so
that each particular type of cardinality ℵ1 that needs to be considered by stage δ,
in fact, appears before stage δ. �1.11

Killing Isomorphisms 1.12. We begin the verification that our filter F
˜

satisfies
the condition of Proposition B. We suppose therefore that we have a P-name F

˜
and

a condition p∗ ∈ P forcing: “F
˜

is a map from
∏
n
T 1
n onto

∏
n
T 2
n which represents

an isomorphism modulo F
˜

”.
We then have a stationary set S of ordinals δ < ℵ3 of cofinality ℵ2 which satisfy:

(a) p∗ ∈ P�δ

(b) For every P�δ-name x
˜

for an element of
∏
n
T 1
n , F

˜
(x
˜

) is a P�δ-name

(c) Similarly for F
˜
−1.

If we are using our second approach, over an L-like ground model:

(d) At stage δ of the construction of the Gα, the diamond “guessed” pδ = p∗

and F
˜
δ = F

˜
�δ.
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(In this connection, recall that the guesses made by diamond influence the choice
of “commitments” made in the construction of the Gδ.)

Let y
˜

∗ := F
˜

(x
˜
δ).

Then:

p∗ 



“y
˜

∗ induces a branch in (
∏
n
T 2
n/F

˜
)V [P�δ]

which is the image under F
˜
δ of the branch which

x
˜
δ induces on (

∏
n
T 1
n/F

˜
)V [P�δ]”.

Now we come to one of the main points. We claim that there is some q∗ ∈ G with
the following property:

(†)δ Given q1 ∈ Gδ with q∗�δ ≤ q1 and P�A q1-names (x
˜
, y
˜

) with x
˜
∈ ΠT 1

n , y
˜
∈

ΠT 2
n , then for any q′3 ∈ App with q1, q

∗ ≤ q′3 and q′3�δ ∈ Gδ, we have: x
˜
, y
˜are (P�A q′3�δ)-names and p∗�A q′3 forces (i.e. 


P�A q′3
) the following:

(a) “If y
˜

= F
˜

(x
˜

) then x
˜
≤ x

˜
δ iff y

˜
≤ y

˜

∗, and

(b) if y
˜

and F
˜

(x
˜

) are incomparable, then x
˜
≤ x

˜
δ implies y

˜
� y

˜

∗”.

Notice here that q′3 need not be in G.
The reason for this depends slightly on which of the two approaches to the

construction of G we have taken. In a straight forcing approach, we may say that
some q∗ ∈ G forces (∗)y

˜

∗ , and this yields (†)δ. In the second, pseudo-forcing,

approach we find that our “commitments” include a commitment to falsify (∗)y
˜

∗ if

possible; as we did not do so, at a certain point it must have been impossible to
falsify it, which again translates into (†)δ.

We now fix q∗ satisfying (†)δ, and we set q0 = q∗�δ. At this stage, (†)δ gives
some sort of local definition of F

˜
�δ, on a cone in (ΠδT 1

n/F
˜
δ)V [P�δ], (the cone is

determined by q0). The next result allows us to put this definition in a more useful
form (and this is nailed down in ??). One may think of this as an elimination of
quantifiers.

Claim 1.13. Suppose that:

(1) q0, q1, q2, q3 are in App with q0 = q2�β0 ≤ q1 ≤end q3, and q2 ≤ q3

(2) q0 ≤ r0 ∈ App with A q1 ⊆ A r0 ⊆ β0.

Let Ai = A qi for i = 0, 1, 2, 3, and suppose that

(1) f
˜

0 is a P�A r0-name of a map from (
∏
n

(T 1
n , T

2
n))V [P�A1] into (

∏
n

(T 1
n , T

2
n))V [P�A r0 ]

representing a partial elementary embedding of (
∏
n

A0(T 1
n , T

2
n)/F

˜
�A1)V [P�A1]

into (
∏
n

A0(T 1
n , T

2
n)/F

˜
�A r0)V [P�A r0 ] which is equal to the identity on (

∏
n

(T 1
n , T

2
n)/F

˜
�A0)V [P�A0].

Then there is an r ∈ App with: q2 ≤ r; r0 ≤end r; A3 ⊆ A r; A r ∩β0 = A r0 ;
and there is a P-name f

˜
of a function from (

∏
n

(T 1
n , T

2
n))V [P�A3] into

(
∏
n

(T 1
n , T

2
n))V [P�A r]
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representing an elementary embedding of (
A2∏
n

(T 1
n , T

2
n)/F

˜
�A3)V [P�A3] into

(
∏
n

A2(T 1
n , T

2
n)/F

˜
�A r)V [P�A r]

which is the identity on (
∏
n

(T 1
n , T

2
n)/F

˜
�A2)V [P�A2].

Proof. It will be enough to get f
˜

as a partial elementary embedding, as one may
then iterate 1.8(3) ℵ1 times.

We may suppose β0 = inf(A3\A r0). Let A3 \ β0 = (βi)i<ξ enumerated in
increasing order. We will construct two increasing sequences, one of names f

˜
i and

and one of elements ri ∈ App, indexed by i ≤ ξ, such that our claim holds for
f
˜
i, q2�βi, q3�βi, ri, and in addition A ri ⊆ βi. At the end we take r = rξ and
f
˜

= f
˜
ξ.

The case i = 0: Initially r0 and f
˜

0 are given.

The limit case:
Suppose first that i is a limit ordinal of cofinality ℵ0, and let A =

⋃
j<i

A rj . In

this case
⋃
j<i

F
˜
rj is not an ultrafilter in V [P�A ] and the main point will be to prove

that there is a P�A -name for an ultrafilter F
˜
i extending F

˜
q2�βi and

⋃
j<i

F
˜
ri , such

that

(∗) The map f
˜
i defined as the identity on (

∏
n

(T 1
n , T

2
n))V [P�(A2∩βi)] and as

⋃
j<i

f
˜
j

on the latter’s domain is a partial elementary map from∏
n

A2∩βi(T 1
n , T

2
n)/F

˜
�(A3 ∩ βi))V [P�(A3∩βi)]

into
(
∏
n

A2∩βi(T 1
n , T

2
n)/F

˜
ri)V [P�A ].

So it will suffice to find F
˜
i making (∗) true. This means we must check the finite

intersection property for a certain family of (names of) sets. Suppose toward a
contradiction that we have a condition p ∈ P�A forcing “a

˜
∩ b

˜
∩ c

˜
= ∅”, where for

some j < i:

(A) a
˜

is a P�A rj -name for a member of F
˜
rj

(B) b
˜

is a P�A q2�βi-name for a member of F
˜
q2�βi

(C) c
˜

is the name of a set of the form:

{n : A q2�βi
(T 1
n , T

2
n) |= φ

˜
(x
˜

(n), f
˜
j(y

˜
)(n))}

(note: f
˜
j(y

˜
) is a (P�A 1)-name)

(C1) x
˜
,y
˜

are finite sequences from (
∏
n

(T 1
n , T

2
n))V [P�A q2�βi]

and (
∏
n

(T 1
n , T

2
n))V [P�A3∩βj)]

respectively

(C2) φ
˜

is a P�A q2�βi-name for a formula in the language of
∏
n

A q2�βi
(T 1
n , T

2
n)

(C3) φ
˜

(x
˜
r,y

˜
) holds in

∏
n

A2∩βi(
∏
n

(T 1
n , T

2
n)/F

˜
�(A3 ∩ βi))V [P�A3∩βi].
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Here j < i arises as the supremum of finitely many values below i. Note that as i
is a limit ordinal, we have no “bigness” conditino. As x

˜
can be absorbed into the

language, we will drop it.
Now let H be generic for P�(A2 ∩ βj) with p�(A2 ∩ βj) ∈ H, and define:

A
˜
n := {u : for some p2 ≥ p�(A2 ∩ βi) with p2�(A2 ∩ βj) ∈ H,

p2 
 “n ∈ b
˜

and (T 1
n , T

2
n) |= φ

˜
(u)”}.

A
˜
n is a P�(A2∩βi)-name of a subset of T 2

n . Take (A
˜
n) as a relation in ΠA q2�βj

(T 1
n , T

2
n).

By hypothesis {n : (T 1
n , T

2
n) |= φ

˜
(y
˜

(n))} ∈ F
˜
q3�βi , and this set is contained in the

set c
˜
′ = {n : y

˜
(n) ∈ A

˜
n}, hence p forces c

˜
′ to be in F

˜
q3�βi . But c

˜
′ is a (P�A q3�βj )-

name. Therefore c
˜
′ ∈ F

˜
q3�βj and applying f

˜
j , we find:

{n : f
˜
j(y

˜
)(n) ∈ A

˜
n} ∈ F

˜
rj .

Hence we may suppose that p forces: for n ∈ a
˜
, f
˜
j(y

˜
)(n) ∈ A

˜
n. But then any

element of a
˜

can be forced by an extension of p to lie in b
˜
∩ c

˜
, by amalgamating

appropriate conditions over A2 ∩ βj .
Limits of larger cofinality are easier.

The successor case:
Suppose now that i = j + 1. We may suppose that βj ∈ A2 as otherwise there

is nothing to prove. If εq2βj = 0 we argue as in the previous case. So suppose that

εq2βj = 1. In particular βj has cofinality ℵ2.

Using 1.8(3) repeatedly, and the limit case, we can find B
˜
, q′1, r

′, f
˜

′ such that
(remember that by the first sentence in the proof we look for f ′ with domain

(Domf
˜
j) ∪

∏
m

(T 1
m, T

2
m)V [P�A q2�βi]

):

(1) q3�βj ≤end q
′
1; A q′1 ⊆ βj ;

(2) rj ≤end r
′; A r′ ⊆ βj ;

(3) f
˜

′ is a map from
∏
n

(T 1
n , T

2
n)V [P�A q′1 ] onto

∏
n

(T 1
n , T

2
n)V [P�A r′ ] representing an

elementary embedding of (
∏
n

A q2�βj
(T 1
n , T

2
n)/F

˜
q′1)V [P�A q′1 ] into (

∏
n

A q2�βj
(T 1
n , T

2
n)/F

˜
r′)V [P�A r′ ]

extending fj ;

(4) B
˜

is a P�A q′1-name of a branch of (
∏
n
T 1
n/F

˜
q′1)V [P�A q′1 ] which is sufficiently

generic;

(5) f
˜

′[B
˜

] is a P�A r′ -name of a branch of (
∏
n
T 1
n/F

˜
r′)V [P�A r′ ] which is suffi-

ciently generic.

(6) B
˜

includes {x
˜

: x
˜

is a P�A q2�βj -name of a member of
∏
n
T 1
n which is below

x
˜
βj according to q2�βj}, (remember that this is a P�A q2�βj -name by the

definition of App).

Let q′3 satisfy q3�βi ≤ q3, q
′
1 ≤end q

′
3, with A q′3 ⊆ βi such that according to q′3 the

vertex x
˜
βj lies above B

˜
(using 1.9(2)). We intend to have ri put x

˜
βj above f

˜

′[B
˜

]
(to meet conditions (??, ??) in the definition of App), while meeting our other
responsibilities. As usual the problem is to verify the finite intersection property
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for a certain family of names of sets. Suppose therefore toward a contradiction that
we have a condition p ∈ P forcing “a

˜
∩ b

˜
∩ c

˜
∩ d

˜
= ∅”, where

a
˜
textisaP�A r′ -name of a member of F

˜
r′ ;

b
˜

is a P�A q2�βi-name of a member of F
˜
q2�βi ;

c
˜

is the name of a set of the form {n : A q2�βj (T 1
n,T

2
n)|=φ

˜
(x
˜
βj

(n),z
˜
,f
˜

′(y
˜

)(n))}

d
˜

is {n : T 1
n |= x

˜
(n) < x

˜
βj (n)}

where in connection with c
˜

and d
˜

we have:

y
˜

is a finite sequence from (
∏
n

(T 1
n , T

2
n))V [P�A q′1 ],

z
˜

is a finite sequence from (
∏
n

(T 1
n , T

2
n))V [P�A q′2�βi ],

φ
˜

(x
˜
βj ,y

˜
) is defined and holds in (

∏
n

A2∩βi(T 1
n , T

2
n)/F

˜
q′3)V [P�A q′3 ],

x
˜

is a P�A q′1 -name for a member of f
˜

′[B
˜

] (in connection with d
˜

).
We can absorb the parameters z

˜
occurring in φ

˜
into the expanded language

which is associated with Π(T 1
n , T

2
n)A q2�βi as individual constants so without loss of

generality z
˜

disappears.
Let H∗ ⊆ P be generic over V with H ⊆ H∗ and p ∈ H∗. So H = H∗�A q2�βj

and set H1 = H∗�A q′1 , and H3 = H∗�A q′3 .
In V [H] we define:

A
˜

1
n := {(x,u) : for some p1 ∈ P�A r′ , with p1 ≥ p�A r′textand

p1�A q2�βj ∈ H,
p1 forces : “n ∈ a

˜
, x
˜

(n) = x, f
˜

′(y
˜

)(n) = u}

A
˜

2
n := {(x∗,u) : for some p2 ∈ P�A q2�β2 with p2 ≥ p�(A2 ∩ βi)

and p2�(A2 ∩ βj) ∈ H,
p2 forces : “n ∈ b

˜
, x
˜
βj (n) = x∗ and φ

˜
(x∗,u)”}.

In V [H] there is no n satisfying:

(∗)n) (∃x, x∗,u)[(x,u) ∈ A
˜

1
nand(x∗,u) ∈ A

˜
2
nandx < x∗].

Otherwise we could extend p by amalgamating suitable conditions p1,p2, to force
such an n into a

˜
∩ b

˜
∩ c

˜
∩ d

˜
.

For n < ω and u ∈ T 1
n let

A
˜

2
n(u) := {x ∈ T 1

n : (x,u) ∈ A2
n}

A
˜

3
n(u) := {x ∈ T 1

n : either (x,u) ∈ A
˜

2
n or there is no x′

above x in T 1
n for which (x′,u) ∈ A

˜
2
n}

Paper Sh:405, version 2016-04-27 10. See https://shelah.logic.at/papers/405/ for possible updates.
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Then A
˜

3
n(

boldu) is dense in T 1
n and hence A

˜
3 := ΠA

˜
3
n/F

˜
q2�βi [H]. is a dense subset of

(
∏
n
T 1
n/F

˜
q2�βi)V [P�A q2�βj ].

Let T = (T 1, T 2;A2, A3) be the ultraproduct

(
∏
n

(T 1
n , T

2
n ;A

˜
2
n, A

˜
3
n)/F q′3)V [H1].

Now φ
˜

[x
˜
β ,y

˜
] holds in

∏
n

A2∩βi(T 1
n , T

2
n)/F q′3 [H3] ∈ A2(y[H3]), (using  Loś’ theorem

to keep track of the meaning of A2 in this model). By the choice of B
˜

, B
˜

[H1] meets
A3(y

˜
[h1]) (as the later is dense) and indeed:

A3(y
˜

[H1]) ∩B
˜

[H1] is unbounded in B
˜

[H1].

For z
˜
∈ A3(y

˜
[H1]) ∩B

˜
[H1], as z

˜
< x

˜
βj we have also z

˜
∈ A2(y

˜
[H1]) ∩B

˜
[H1].

Hence in V [H1] we have:

A2[y
˜

] ∩B
˜

[H1] is unbounded in B
˜

[H1].

Hence A2(f
˜

′(y
˜

)) ∩ f
˜

′[B
˜

][H∗�A r′ ] is unbounded in f
˜

′[B
˜

][H∗�A r′ ], and we can

find z
˜
∈ A2(f

˜

′(y
˜

[H3])) ∩ f
˜

′[B
˜

][H∗�A r′ ] with x
˜
< z

˜
(all in the ultraproduct∏

n
T 1
n/F

r′ [H∗�A r′ ] as f ′ is an elementary embedding).

In particular for some n ∈ a
˜

[H∗], we have x
˜

(n)[H∗] < z
˜

(n)[H∗] in T 1
n and

z
˜

(n) ∈ A2(y
˜

(n)). Letting x = x
˜

(n)[H1], x∗ = z
˜

(n)[H1], and u = f
˜

′(y
˜

)(n)[H�A r′ ],
we find that (∗) holds in V [H], a contradiction. �1.13

Proposition 1.14. Weak definability
Let δ < ℵ3 be an ordinal of cofinality ℵ2 satisfying conditions 1.12(a-d). Suppose

q1, q2 ∈ G, q2�δ = q0 ≤ q1, A q1 ⊆ δ, δ ∈ Aq2 , y
˜

∗ is a P�A q2-name of an element

of
∏
n
T 2
n , and εq2δ = 1. Suppose further that x

˜
′, x

˜
′′ and y

˜

′, y
˜

′′ are P�A q1-names,

p ∈ P, pi = p�A qi (i = 1, 2), and:

p2 
 “F
˜

(x
˜
δ) = y

˜

∗”

p1 
 “x
˜
′, x

˜
′′ ∈

∏
n

T 1
n and y

˜

′, y
˜

′′ ∈
∏
n

T 1
n and y

˜

′, y
˜

′′ ∈
∏
n

T 2
n

p1 
 “the types of x
˜
′, y

˜

′) and of (x
˜
′′, y

˜

′′) over {x
˜
/F

˜
: x

˜
a P�A q0-name of a

member of
∏
n

A q0
(T 1
n , T

2
n)} in the model (

∏
n

A q0
(T 0
n , T

1
n)/F

˜
q1)V [P�A q1 ] are equal”.

Then the following are equivalent.
1) There is r0 ∈ App such that q1, q2 ≤ r0, r0�δ ∈ Gδ, and

p 

∏
n

T 1
n/F

˜
r0 |= (x

˜
′/F

˜
r0 < x

˜
δ/F

˜
r0)

and ∏
n

T 2
n/F

˜
r0 |= (y

˜

′/F
˜
r0 < y

˜

∗/F
˜
r0)”.
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2) There is r1 ∈ App such that q1, q2 ≤ r1, r1�δ ∈ Gδ and

p 

∏
n

T 1
n/F

˜
r1 |= (x

˜
′′/F

˜
r1 < x

˜
δ/F

˜
r1)

and ∏
n

T 2
n/F

˜
r1 |= (y

˜

′′/F
˜
r1 < y

˜

∗/F
˜
r1)”.

Proof. By symmetry it suffices to show that (1) implies (2). Take Hδ ⊆ P�δ generic
over V with p1 ∈ Hδ, and suppose that r0 is as in (1). Let r0 = r0�δ and let f

˜
0 be

the extension of the identity map on (ΠT 1
n)V [P�A ]q0 by: f

˜
0(x

˜
′) = x

˜
′′, f

˜
0(y

˜

′) = y
˜

′′.
Writing β0 = δ and taking q3 provided by 1.9(4), we recover the assumptions of
1.12, which produces a certain r in App, an end extension of r0; here we may easily
keep r�δ ∈ Gδ (cf. 1.11). It suffices to take r1 = r. �

Definability 1.15. We claim now that F
˜

is definable on a cone by a first order
formula. For a stationary set S0 of δ < ℵ3 of cofinality ℵ2, we will have conditions
(a-d) of 1.12 which may be expressed as follows:

both F
˜
�(P�δ − names) and F

˜
−1�(P�δ − names) are P�δ-names.

When working with ♦S :
♦S guessed the names of these two restrictions and also guessed p∗ correctly;

and hence for suitable y
˜
δ and q∗δ we have the corresponding conditions (∗)y

˜
δ

and

(†)δ (with q∗δ in place of q∗). By Fodor’s lemma, on a stationary set S1 ⊆ S0 we
have q0 = q∗δ �δ is constant, and also the isomorphism type of the pair (q∗δ , y

˜
δ) over

A q0 is constant.
So for δ in S1, we have the following two properties, holding for x

˜
′ in V [P�δ]

and y
˜

′ = F
˜

(x
˜
′)), by (†)δ and ?? respectively.

1) The decision to put x
˜
′ below x

˜
δ implies also that y

˜

′ must be put below y
˜

∗.

2) This decision is determined by the type of (x
˜
′, y

˜

′) in ΠA q0
(T 1
n , T

2
n)/F

˜
V [H][P�δ/H].

As S1 is unbounded below ℵ3 this holds generally.
This gives a definition by types of the isomorphism F

˜
above the branch in

ΠT 1
n/F

˜
V [P�A q0 ] which the condition q∗δ says that the vertex x

˜
δ induces there (us-

ing 1.9(2)), and this branch does not depend on δ. Note that this set contains a
cone, and the image of this cone is a cone in the image. Now by ℵ2-saturation of∏
n

A q0
(T 1
n , T

2
n)/F

˜
V [P�A q0 ] we get a first order definition on a smaller cone; this last

step is written out in detail in the next paragraph. This proves Proposition B.

Claim 1.16. (true definability):

Let M be a λ-saturated structure, and A ⊆ M with |A| < λ. Let (D1;<1),
(D2;<2) be A-definable trees in M ; that is, the partial orderings <i are linear
below each node. Assume that every node of D1 or D2 has at least two immediate
successors. Let F : D1 → D2 be a tree isomorphism which is type-definable in the
following sense:

f(x) = y and tp(x, y/A) = tp(x′, y′/A)]→ f(x′) = y′.
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Then f is A-definable (i.e. by a first order formula with parameters from A), on
some cone of D1.

Note: We do not required a relation eq meaning equality of level exists. Before
entering into the proof, we note that we use somewhat less information about F
(and its domain and range) than is actually assumed; and this would be useful
in working out the most general form of results of this type (which will apply to
some extent in any unsuperstable situation). We intend to develop this further
elsewhere1, as it would be too cumbersome for our present purpose.

Note that this fits well with the framework of [?], [?] - also there is a lemma
saying every type definable object of a specific kind in a quite saturated model is
definable. Se more in [?].

The proof may be summarized as follows. If a function F is definable by types
in a somewhat saturated model, then on the locus of each 1-type, it agrees with the
restriction of a definable function. If F is an automorphism and the locus of some
1-type separates the points in a definable set C in an appropriate sense, then F can
be recovered, definably, on C. Finally, in sufficiently saturated trees of the type
under consideration, some 1-type separates the points of a cone. Details follow.

Proof. If we replace M by a λ-saturated elementary extension, the definition of F
by types continues to work (and the extension is an elementary extension for the
expansion by F ). In particular, replacing |M | by a more saturated structure, if
necessary, but keeping A fixed, we may suppose that λ > |T |, |A|,ℵ0.

We show first there is a 1-type p defined over A such that its set of realizations
p[D1] is dense in a cone of D1, i.e., for some a in D1 we require that any element
above a lies below a realization of p. For any 1-type p over A, if p[D1] does not
contain a cone of D1 then by saturation there is some φ ∈ p with:

∀a∃b > a¬∃x > bφ(x).

So if (1) fails we may choose one such formula φp for each 1-type p over A, and
then it is consistent (hence true) that we have a well ordered increasing sequence
ap (in the tree ordering) such that for each 1-type p, above ap we have:

¬∃x > ap φp(x).

By saturation there is a further element a above all ap (either by increasing λ or by
paying attention to what we are actually doing) and we have arranged that there
is no 1-type left for it to realize. As this is improbable, (1) holds. We fix a 1-type p
and an element a0 in D1 so that the realizations of p are dense in the cone above a0.
It is important to note at this point that the density implies that any two distinct
vertices above a0 are separated by the realizations of p in the sense that there is
a realization of p lying above one but not the other (here we use the immediate
splitting condition we have assumed in the tree D1).

Let a realize the type p, and let q be the type of a, F (a) over A. If b is any other
realization of p, then there is an element c with the pair b, c realizing q, and hence
F (b) = c, so in particular F (a) is definable over A ∪ {a} and by the assumption of
the lemma p determines q uniquely. So each realization a of p determines a unique

1see citeSh:384, [?]
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element b such that the pair (a, d) realizes q, and hence by saturation there is a
formula φ(x, y) ∈ q so that φ(x, y)⇒ ∃!z φ(x, z). H ence p ∪ {φ} ` q proves q.

Now the following holds in M :

p(x) ∪ p(x′) ∪ {φ(x, y), φ(x′, y′)} ⇒ (x < x′ ↔ y < y′)

and hence for some formula ψ(x) ∈ p the same holds with p replaced by ψ. Increas-
ing φ we may suppose φ(x, y) → ψ(x) and conclude that φ(x, y) defines a partial
isomorphism f . Let B be {a > a0 : ∃yφ(a, y)}. Now f coincides with F on the set
of realizations of p above a, and the action of F on this set determines its action
on the cone above a by density (or really by the separation condition mentioned
above), so f coincides with F on B. Furthermore the action of F on B determines
its action on the cone above a0 definably, so F is definable above a.

The definition φ∗(x, y) of F on the cone above a obtained in this manner may
easily be written down explicitly:

“∀x′, y′ [φ(x′, y′)⇒ (x < x′ ↔ y < y′)]”.

Here we have finished proving the main theorem ?? and Proposition A from the
introduction.

For the application in ?? we take λ = ℵ2. �

Proposition 1.17. P forces: In
∏
n
T 1
n/F

˜
(F

˜
= F

˜
[Gℵ3 ]), every full branch is an

ultraproduct of branches in the original trees T 1
n .

Proof. (in brief): One can follow the line of the previous argument, or derive the
result from Proposition B. Following the line of the previous argument we argue as
follows. If B

˜
is a P-name for such a branch, then for a stationary set of ordinals

δ < ℵ3 of cofinality ℵ2, B
˜
∩ (

∏
n
T 1
n/F

˜
)V [P�δ] will be a full branch and a P�δ-name,

guessed correctly by ♦S . We tried to make a commitment to terminate this branch,
but failed, and hence for some q∗ and y∗ witnesses to the failure, we were unable
to omit having q∗�δ ∈ Gδ where q∗ is essentially the support of “y∗ is a bound”.
Using 1.13 one shows that the branch was definable at this point by types in ℵ1

parameters, and by ℵ2-compactness we get a first order definition, which by Fodor’s
lemma can be made independent of δ. �

Filling in the details in the foregoing argument constitutes an excellent, morally
uplifting exercise for the reader. However the more pragmatic reader may prefer
the following derivation of the proposition from Proposition B.

Proof. Second proof.
We can derive the result from Proposition B. In the first place, we may replace

the trees T 1
n in the proposition above by the universal tree of this type, which we

take to be T = Z<ω (writing Z rather than ω for the sake of the notation used
below). Now apply Proposition B to the pair of sequences (T 1

n), (T 2
n) in which

T in = T for all i, n. Using the model of ZFC and the ultrafilter referred to in
Proposition B, suppose B is a full branch of T ∗ = ΠT 2

n/F (in V [Gℵ3 ]), and let
Z∗ = Zω/F , N∗ = Nω/F . For each i ∈ N∗ let Bi be the i-th node of B; this
is a sequence in (Z∗)[0,i] which is coded in N∗. Define an automorphism fB of T ∗

whose action on the i-th level is via addition of Bi (pointwise addition of sequences).
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Applying Proposition B and  Loś’ theorem to this automorphism, we see that fB
is the ultraproduct of addition maps corresponding to various branches of T , and
that B is the ultraproduct of these branches. �

Claim 1.18. It is consistent with ZFC that Rω/F is Scott-complete for some
ultrafilter F .

Here Rω/F is called Scott-complete if it has no proper dedekind cut (A,B) in
which inf(b − a : a ∈ A, b ∈ B) is 0 in Rω/F . Now ?? is sufficient for this by
[?, Prop.1.3]. This corollary shows that a positive answer to Question 4.3 of [?,
pg.1024] is relatively consitent with ZFC.

Remark 1.19. In the proof of ?? the predicate “at the same level” may be omitted
from the language of the trees T in throughout as the condition on x

˜
δ that uses this

(the “full branch” condition) follows from the “bigness” condition: meeting every
suitable dense subset.
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§ 2. Cuts in models of Peano Arithmetic

We refer to a proper Dedekind cut (A,B) in a linear order as a gap. We refer
to the cofinality of A and the co-initiality of B as the left and right cofinalities
of the gap, respectively. For results provable in ZFC see [?, Ch.VI,3.12,pg.357]
for example, in Nω/F ,F in ultrafilter on ω, if we take A = N(⊆ Nω/F ) and
B its complement then any regular cardinal in the interval (ℵ0, 2

ℵ0 ] can be the
right cofinality of this cut. In general, the possible values of these cofinalities in
ultrapowers of the linearly ordered set N, or other reduced reduced products, depend
heavily on the set-theoretic background. (See [?] for background information.)
However, we show here by a simple argument.

Theorem 2.1. Let N be a non-standard model of Peano arithmetic. Then there
is a gap in N whose left and right cofinalities are equal.

As a corollary, any ℵ1-saturated elementary extension of N, and in particular,
any ultrapower N I/F with respect to an ω-incomplete ultrafilter, has a gap whose
left and right cofinalities are both uncountable. This answers a question posed in a
slightly different formulation in [?] (and, as we have lately heard, by Renling Jim),
which we review in 2.4 below.

Construction 2.2. We will write exp x for xx.
We will construct elements aα,n, bα,n in N for n < ω and α < γ0 for some limit

ordinal γ0 such that for all n and for all α < β < γ0:

aα,n < aβ,n < bβ,n < bα,n

exp(bα,n+1) < aα+1,n − aα,n.

The construction is by induction on limit ordinals γ. At each stage we construct
all of the elements aα,n and bα,n for α < γ, as long as this is possible.

To initiate the construction, with γ = ω, we first choose infinite elements dn ∈ N
for n finite such that for all n we have exp dn+1 � dn, where we write x � y if
kx < y for all finite k. We let ai,n = dn+1 + i · exp(dn+1) and bi,n = dn − i− 1. In
particular, ai,n < [dn/2] < bi,n for i, n finite.

The Inductive Step 2.3. Now suppose the elements aα,n and bα,n have been
chosen for α < γ with γ a limit ordinal. Let An, Bn be the ranges of the seqeunces
aα,n, bα,n (for α < γ) respectively. If one of the pairs (An, Bn) determines a gap
in N , then it is the desired gap (i.e. the gap ({x : (∃y ∈ An)(x < y)}, {x : (∃y ∈
Bn)(y < x)}).

Assume therefore, for all n there is an element cn with An < cn < Bn, i.e.
(∀x ∈ An)(∀y ∈ Bn)[x < cn < y]. Under this assumption we will continue the
construction by defining agamma+i,n and bγ+i,n for all finite i, n.

We set c′n = cn−exp cn+1 and we observe that An < c′n (i.e. (∀x ∈ An)(x < c′n))
since aα,n < aα+1,n − exp(bα,n+1) < aα+1,n − exp cn+1 < cn − exp cn+1 = c′n for
α < gamma.

We set (for i, n < ω):

aγ+i,n := c′n + i · exp(cn+1 − 1)

bγ+i,n := c′n + cn+1 · exp(cn+1 − 1)− i.
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Condition (1) clearly remains valid: aγ+i,n increase with i [by its definition], for α <
γ, aα,n < aγ+i,n [ as aα,n ∈ An hence by a previous statement aα,n < c′n and trivially
c′n < aγ+i,n], also aγ+i,n < bγ+i,n [as cn+1 is non-standard], bγ+i,n decrease with i
[check definition] and for α < γ, bγ+i,n < bα,n [as cn+1 · exp(cn+1 − 1) < exp(cn+1)
(by the definition of exp) so by the definition of c′n, bγ+i,n we have bγ+i,n < c′n +
exp cn+1 = cn but by the choice of cn, we have cn < bα,n]. Furthermore, since
cn+1 · exp(cn+1 − 1) < exp cn+1 − 1 we have bα,n < c′n + exp cn+1 − 1 = cn − 1 (for
α = γ + i for i < ω), hence exp(bα,n+1) < exp(cn+1 − 1) = aα+1,n − aα,n and this
yields condition (2).

Discussion 2.4. By G.Cherlin.
We recall briefly the way the question was posed in [?]. Let Z = Zω/F be an

ultrapower of the ring of integers. Each prime ideal lies below a unique maximal
idea in this ring and the set of prime ideals below a given maximal ideal is linearly
ordered under inclusion. In [?] the question is posed, whether in such a ring the
following holds for every maximal ideal m: there is a prime ideal below m which
is neither a union nor an intersection of countably many pricipal ideals.

It was shown above that this is true, and now we want to make this more explicit.
This requires two steps. The analysis is simplest in the case in which m is principal,
and the general case will reduce to this one. The background for what follows is
given in [?].

Suppose first that m is principal. Then each prime ideal p below m has a rep-
resentation as p = mT where T is an initial of N := Nω/F and mT =

⋂
n∈T

mn.

Here T must be closed under addition, or equivalently under multiplication by 2,
and conversely for T additively closed, mT is prime. We associate to T the initial
segment log T := {n ∈ N : 2n ∈ T } and we fvind that T is additively closed if
and only if log T is closed under addition of 1, or in other words, log T is the left
half of a gap in N . Conversely, a gap (J̄0, J̄1) in N corresponds to an additively
closed initial segment T̄ = {n : (∃m ∈ I0)[n ≤ 2m]} and hence to a prime ideal
below m.

Furthermore, this correspondence (is one to one into and) preserves left and right
cofinalities. So the result proved above shows that in an ω1-saturated model, our
claim holds below a principal maximal ideal.

If m is non-principal it is necessary to use more machinery. The details of this
machinery, which inolves a reduction of general idealsw to principal ideals by pas-
sage to a definable ultrapower of N , are given in [?, §4]. What interests us here is
the following: the prime ideals below m are again classified by gaps in an order, but
the order is not the order on N ; rather it is the order on a definable ultrapower
N ∗ of N taken with respect to a bounded ultrafilter on the definable sets of N
[?, Theorems 4.5,4.8]. By “bounded” we simply mean that the ultrafilter contains
some bounded set.

To conclude, it suffices to prove that the model N ∗ is again ω1-dense. This
follows from Lemma 2.1.1 of [?]; in [?] it is also shown that the ω1-density condition
implies ω1-saturation in models of Peano arithmetic. For the reader’s convenience
we give a self-contained proof of the density condition.

Proposition 2.5. Let N be an ω1-saturated model of PA and let F be an ultrafilter
on the (Boolean algebra of the) definable subsets of N that contains the bounded
definable set A. Then the definable ultrapower N ∗ := Def(N )/F is ω1-dense.
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Proof. We take elements mi, ni in N ∗ with m1 ≤ m2 ≤ . . . ≤ n2 ≤ n1. These
elements are represented by definable functions fi, gi in N and actually it suffices
to take the restrictions of fi, gi to A, which are coded by elements of N . By the
saturation hypothesis, there are sequences of functions of length K with K ∈ N
infinite, which extend the given two sequences and are coded in N . (We have now
verified the hypothesis of [?, Lemma 2.1.1], and could therefore stop at this point.)
So we may speak of fi and gi for i ≤ K, as functions defined on A.

For x ∈ A let i(x) be the largest i ≤ K such that:

f1(x) ≤ f2(x) ≤ . . . fi(x) ≤ gi(x) ≤ . . . ≤ g2(x) ≤ g1(x).

Observe that for i finite, {x : i(x) ≥ i} ∈ F . We may also suppose that i(x) ≥ 1
on A.

Set f(x) = fi(x)(x) for x ∈ A and observe that this definition makes sense in
N . Accordingly f represents an element of m of N ∗ and by the construction
mi ≤ m ≤ ni for all finite i. �2.5
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§ 3. Appendix

Omitting Types:
This appendix bears only on the version of §1 that depends on the ideas of [?].

On the one hand, we wish to recall explicitly what those ideas are. On the other
hand, we will propose a variant of the formalism of [?] more suitable for the present
purpose. All in all we consider three variants for framework in A1, A6 and inside
A11.

In the context of this paper, the formalism of [?] is intended to provide a com-
binatorial refinement of forcing with App, which gives a P3-name F

˜
in suitable

ground model for an ultrafilter which will have the desired properties in a P3-
generic extension. We now review this material. Our discussion complements the
discussion in [?], which focused more on filling the gap between the intuitive no-
tion of “sufficiently generic” and the formalism given in [?]. Here the focus of our
discussion is more technical: we discuss the replacement of the continuity axiom of
[?] by a more flexible setup. For the reader who wants to understand how to apply
the method and is not familiar with [?] the discussion in the appendix to [?] should
be more useful than the present discussion.

In sections A1-A5 we are presenting the material of [?] as it was summarized in
[?]. An alternative setup is presented in sections A6 - A10. The axioms given in
section A6 below should supercede the axioms given in section A1, and one would
check that the proofs of [?] work with these new axioms. For completeness we give
a proof under somewhat weaker set theoretic condition which applies in the case of
§1.

A1 quad Uniform Partial Orders:
We review the formalism of [?].
With the cardinal λ fixed, a partiall ordered set (P, <) is said to be standard

λ+-uniform if P ⊆ λ× Pλ(λ+) (we refer here to subsets of λ+ of size strictly less
than λ), has the following properties (if p = (α, u) we write domp for u and we
write Pβ for {p ∈P : domp ⊆ β}).
1) If p ≤ q then domp ⊆ domq.
2) For all p ∈P and α < λ+ there exists a q ∈P with q ≤ p and domq = domp∩α;
furthermore, there is a unique maximal such q, for which we write q = p�α.
3) (Indiscernibility) If p = (α, v) ∈P and h : v → v′ ⊆ λ+ is an order-isomorphism
onto v′ then (α, v′) ∈ P. We write h[p] = (α, h[v]). Moreover, if q ≤ p then
h[q] ≤ h[p].
4) (Amalgamation)2 For every p, q ∈ P and α < λ+, if p�α ≤ q and domq ⊆ α,
then there exists r ∈P so that p, q ≤ r.
5) For all p, q, r ∈ P with p, q ≤ r there is r′ ∈ P so that p, q ≤ r′ and domr′ =
domp ∪ domq.
6) If (pi)i<δ is an increasing sequence of length less than λ, then it has a least
upper bound q, with domain

⋃
i<δ

dompi; we will write q =
⋃
i<δ

pi or more succinctly:

q = p<δ.

2Actually this implies that we can weaken the demand domq ⊆ α to (domp) ∩ (domq) =
(domp) ∩ α; this holds also for the framework in A11(2) as we can find n < ω, α0 < α1 < . . . <

αn = λ+ from W ∗
λ (see there) such that (domp)∩α0 ⊆ dom(q)∩α1 and for ` ∈ (1, n−1), (domp)∩

[α`, α`+1) 6= ∅ ⇔ (domq) ∩ [α`, α`+1) 6= ∅. Not so in A6.
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7) For limit ordinals δ, p�δ =
⋃
α<δ

p�α.

8) If (pi)i<δ is an increasing sequence of length less than λ, then (
⋃
i<δ

pi)�α =⋃
i<δ

(pi�α).

It is shown in [?] that under a diamond-like hypothesis, such partial orders admit
reasonably generic objects. The precise formulation is given in A5 below.

A2 Density Systems:
Let P be a standard λ+-uniform partial order. For α < λ+,Pα denotes the

restriction of P to p ∈ P with domain contained in α. A subset G of Pα is
an admissible ideal (of Pα) if it is closed downward, is λ-directed (i.e. has upper
bounds for all small subsets), and for every p ∈Pα\G some q ∈ G is incompatible
with p (in Pα). For G an admissible ideal in Pα,P/G denotes the restriction of
P to {p ∈P : p�α ∈ G}.

If G is an admissible ideal in Pα and α < β < λ+, then an (α, β)-density system
for G is a function D from pairs (u, v) in Pλ(λ+) with u ⊆ v ∈Pλ(λ+) into subsets
of P with the following properties:

(i) D(u, v) is an upward-closed dense subset of {p ∈P/G : domp ⊆ v ∪ β}
(ii) for pairs (u1, v1), (u2, v2) in the domain of D, if u1 ∩ β = u2 ∩ β and

v1 ∩β = v2 ∩β and there is an order isomorphism from v1 onto v2 carrying
u1 to u2, then for any γ we have (γ, v1) ∈ D(u1, v1) iff (γ, v2) ∈ D(u2, v2).

An admissible ideal G′ (of Pγ) is said to meet the (α, β)-density system D for G
if γ ≥ α,G′ ⊇ G and for each u ∈Pλ(γ) there is v ∈ Pλ(γ) containing u such that
G′ meets D(u, v).

A3 The Genericity Game:
Given a standard λ+-uniform partial order P, the genericity game for P is

a game of length λ+ played by Guelfs and Ghibellines, with Guelfs moving first.
The stages of the game are α < λ+ such that β < α ⇒ β′ < α (see below).
The Ghibellines build an increasing sequence of admissible ideals meeting density
systems set by the Guelfs. Consider stage α. If α is a successor, we write α− for
the predecessor of α; if α is a limit, we let α− = α. Now at stage α for every β < α
an admissible ideal Gβ i some Pβ′ is given,and one cn check that there is a unique
admissible ideal Gα− in Pα− containing

⋃
β<α

Gβ′ (remember A 1(5)) or [?, lemma

1.3]. The Guelfs now supply at most λ density systems Di over Gα− for (α, βi) and
also fix an element gα in P/Gα− .

Let α′ be minimal such that gα ∈ Pα′ and α′ ≥ sup(βi). The Ghibellines then
build an admissible ideal Gα′ for Pα′ containing Gα− as well as gα, and meeting
all specified density systems, or forfeit the match; they let Gα′′ = Gα′ ∩ α′′ when
α ≤ α′′ < α′. The main result is that the Ghibellines can win (i.e. not forfeit at
any stage) with a little combinatorial help in predicting their opponents’ plans, see
A4 below.

For notational simplicity, we assume that Gδ is an ℵ2-genreic ideal on App�δ
when cf(δ) = ℵ2, which is true on a club in any sense.

A4 D`λ
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The combinatorial principle D`λ states that there are subsets Qα of the power
set of α for α < λ such that |Qα| < λ, and for any A ⊆ λ the set {α : A ∩ α ∈ Qα}
is stationary. This follows from ♦λ or inaccessibility, obviously, and Kunen showed
that for successors, D` and ♦ are equivalent. In additino D`λ implies λ<λ = λ.

A5 A General Principle

Theorem 3.1. Assuming D`λ, the Ghibellines can win any standard λ+-uniform
P-game.

This is Theorem 1.9 of [?].

A6 Uniform Partial Orders Revisited
We introduce a second formalism that fits the setups encountered in practice

more closely. In our second version we write “quasi-uniform” rather than “uniform”
throughout as the axioms have been weakened slightly.

With the cardinal λ fixed, a partially ordered set (P, <) is said to be standard
λ+-quasi-uniform if P ⊆ λ+ × Pλ(λ+) has the following properties (if p = (α, u)
we write domp for u, and we write Pβ for {p ∈P : domp ⊆ β}).
1) If p ≤ q then domp ⊆ domq.
2) For all p ∈P and α < λ+ there exists a q ∈P with q ≤ p and domq = domp∩α;
furthermore, there is a unique maximal such q, for which we write q = p�α and
then we write q ≤end p.
3) (Indiscernibility) If p = (α, v) ∈P and h : v → v′ ⊆ λ+ is an order-isomorphism
onto v′ then (α, v′) ∈ P. We write h[p] = (α, h[v]). Moreover, if q ≤ p then
h[q] ≤ h[p].
4) (Amalgamation) For every p, q ∈ P and α < λ+, if p�α ≤ q, cf(α) = λ and
domp ⊆ α, then there exists r ∈P so that p, q ≤ r.
5) If (pi)i<δ is an increasing sequence of length less than λ, then it has a least upper
bound q.
6) If (pi)i<δ is an increasing sequence of length less than λ of members of Pβ+1

with β < λ+ and if q ∈ Pβ satisfies pi�β ≤ q for all i < δ, then {pi : i < δ} ∪ {q}
has an upper bound r in P with q = r�β.
7) If (βi)i<δ is a strictly increasing sequence of length less than λ, with each βi < λ+

and q ∈P, pi ∈Pβi , with q�βi ≤ pi, then {pi : i < δ} ∪ {q} has an upper bound r
with pj = r�βj for all j < δ.
8) Suppose δ1, δ2 are limit ordinals less than λ and (βi)i<ζ is a strictly increasing
continuous sequence of ordinals less than λ+. Let I(δ1, δ2) := (δ1 + 1) × (δ2 +
1)\{(δ1, δ2)}. Suppose that for (i, j) ∈ I(δ1, δ2) we have pij ∈P�βi such that

i ≤ i′ ⇒ pij ≤ pi′j

j ≤ j′ ⇒ pij ≤ pij′�βj .

Then {pi,j : (i, j) ∈ I(δ1, δ2)} has an upper bound r in P with r�βj = pδ1,j for all
j < δ2.

These axioms apply in th cae of the partial order App by 1.9.

A7 Remark:
We can weaken the end extension requirements in the conclusions of these axioms

but this does not seem useful.
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A8 Density Systems Revisited:
Let P be a standard λ+-quasi-uniform partial order. A subset G of Pα is

a quasi-admissible ideal (of Pα) if it is closed downward and is λ-directed (i.e.
has upper buonds for all small subsets) and for every p ∈ Pα\G some q ∈ G is
incompatible with p (in Pα). For G a quasi-admissible ideal in Pα,P/G denotes
the restriction of P to {p ∈ P : p�α ∈ G}. If 〈Gα : α < β〉 is increasing, Gα
quasi-admissible ideal of Pα, then P/

⋃
α<β

Gα = {p : p�α ∈ Gα for α < β}.

If Ḡ = 〈Gγ : γ < α〉 is an increasing sequence, Gγ is a quasi-admissible ideal in
Pγ and α ≤ β < λ+, then an (α, β)-density system for Ḡ is a function D from sets
u in Pλ(λ+) into subsets of P with the following properties:

(i) D(u) is an upward-closed dense subset of P/
⋃
γ<α

Gγ

(ii) for pairs (u1, v1) and (u2, v2) with u1, u2 in the domain of D and v1, v2 ∈
Pλ(λ+) with u1 ⊆ v1, u2 ⊆ v2 if u1 ∩ β = u2 ∩ β and v1 ∩ β = v2 ∩ β and
there is an order isomorphism from v1 onto v2 carrying u1 to u2, then for
any γ we have (γ, v1) ∈ D(u1) iff (γ, v2) ∈ D(u2).

For γ ≥ α, a quasi-admissible ideal G′ of Pγ is said to meet the (α, β)-density
system D for Ḡ if (G′ ⊇

⋃
γ<α

Gγ and) for each u ∈ Pλ(γ)G′ meets D(u).

A9 The Genericity Game Revisted:
Given a standard λ+-quasi-uniform partial order P, the genericity game for P

is a game of length λ+ played by Guelfs and Ghibellines, with Guelfs moving first.
The Ghibellines build an increasing sequence of quasi-admissible ideals meeting
density systems set by the Guelfs.

Consider stage α. Not at stage α for every β < α an admissible ideal Gβ in
Pβ is given. The Guelfs now apply at most λ density systems Di over

⋃
β<α

Gβ

for (α, βi) and also fix an element gα in P/
⋃
β<α

Gβ . Let α′ be minimal such that

gα ∈ Pα′ and α′ ≥ sup(βi). The Ghibellines then build an admissible ideal Gα′

for Pα′ containing
⋃
β<α

Gβ as well as gα, and meeting all specified density systems,

or forfeit the match; they let Gα′′ = Gα′ ∩ α′′ when α ≤ α′′ < α′. The main result
is that the Ghibellines can win with a little combinatorial help in predicting their
opponent’s plans.

A10 Theorem:
Assuming D`λ, the Ghibellines can win any standard λ+-uniform P-game.

A11 Claim:
For proving A10, (for a given λ) it is enough:

1) to prove it for a framework as in A6 reduced to closed u ∈ Pλ(λ+) and β’s in
W ′λ := {δ < λ+ : (̧δ) = λ} (we call this the closed λ+-quasi uniform setting). (We
call u ⊆ λ+ closed if 0 ∈ u and [δ = sup(u∩ δ)andδ is a limit ordinal ⇒ δ ∈ u]. We
define the closure of u, c`(u) naturally
2) to prove it when the following stronger version (i.e. with stronger requirements)
holds. Let W ∗λ = {α < λ+ : ¬[ℵ0 ≤ cf(ℵ) < λ]}. A partially ordered set (P, <) is
said to be standard λ+-semi-uniform if P ⊆ λ×{u : u ⊆ λ+, |u| < λ+, u is closed}

Paper Sh:405, version 2016-04-27 10. See https://shelah.logic.at/papers/405/ for possible updates.
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has the following properties (if p = (α, u) we write domp for u and we write Pβ

for {p ∈P : domp ⊆ β}).
1)” If p ≤ q then domp ⊆ domq.
2)” For all p ∈ P and α ∈ W ∗λ there exists a q ∈ P with q ≤ p and domq =
domp ∩ α; furthermore, there is a unique maximal such q, for which we write
q = p�α and then we write q ≤end p.
3)” (Indiscernibility) If p = (α, v) ∈P and h : v → v′ ⊆ λ+ is an order isomorphism
onto v′ and v′ is closed then (α, v′) ∈ P. We write h[p] = (α, h[v]). Moreover, if
q ≤ p then h[q] ≤ h[p].
4)” (Amalgamation) For every p, q ∈ P and α < λ+, if p�α ≤ q, α ∈ W ∗λ and
domq ⊆ α, then there exists r ∈P so that p, q ≤ r and Domr = (Domp)∪ (Domq).
5)” If (pi)i<δ is an increasing sequence of length less than λ, then it has an upper
bound q and Dom(q) = c`(

⋃
i<δ

Dompi).

6)” If (pi)i<δ is an increasing sequence of length less than λ of members of Pβ+1,
with β ∈ W ′λ and if q ∈ Pβ satisfies pi�β ≤ q for all i < δ, then {pi : i < δ} ∪ {q}
has an upper bound r in P with q = r�β and Dom(r) = c`(Domq) ∪

⋃
i<δ

Dompi].

7)” If (βi)i<δ is an increasing sequence of length less than λ, with each βi ∈ W ∗λ
and q ∈P, pi ∈Pβi , with q�βi ≤ pi, then {pi : i < δ} ∪ {q} has an upper bound r
with all pj = r�βj and Domr = c`[Domq ∪

⋃
i<δ

Dom(pi)].

8)” Supopse δ1, δ2 are limit ordinals from W ∗λ and (βi)i<ζ is a strictly increasing
sequence of ordinals from W ∗λ . Let I(δ1, δ2) := (δ1+1)×(δ2+1)\{(δ1, δ2)}. Suppose
that for 9i, j) ∈ I(δ1, δ2) we have pij ∈P�βi such that

i ≤ i′ ⇒ pij ≤ pi′j

j ≤ j′ ⇒ pij ≤ pij′�βj

Then {pij : (i, j) ∈ I(δ1, δ2)} has as upper bound r in P with r�βj = pδ1,j for all
j < δ2 and Dom(r) = c`(∪{Dom(pi,j : (i, j) ∈ Iδ1,δ2}).

These axioms apply in the case of the partial order App by 1.9.
In the parallel of A8 (density system) we use only closed u and also the game is

defined as in A4 and we define admissible ideal of Pα (for α ∈W ∗λ ).

Proof. 1) Easy, as this framework includes more cases.
2) We are given a framework as in A1 and we shall “translate” to a new one. Of
course, instead P ⊆ λ+ ×Pλ(λ+) we can use P ⊆ A×Pλ(λ+) for any set A of
cardinality λ. Let A = {(α, ζ, v̄) : α < λ and v̄ has the form 〈vε : ε < ζ〉, ζ < λ not
limit and vε is a subset of λ of cardinality < λ} (possibly empty). For x = (α, ζ, v̄) ∈
A and u ⊆ λ+ closed of order type ζ, we let u[x] = {λγ + i : γ ∈ u, i ∈ votp(γ∩u)}.
Let P ′ = {(x, u) : x = (α, ζ, v̄) ∈ A, u ⊆ λ+ has order type ζ, u is closed and
(α, u[v̄]) ∈P}.

We define a function from P ′ onto P:

f(x, u) = (α, u[x]) when x = (α, ζ, v̄) ∈ A.

We define the partial order < on P ′ such that f is an isomorphism, i.e. p ≤ q iff
f(p) ≤ f(q). We now show that P ′ satisfies (1)” - (8)”.

It is straightforward to check (1)”,(2)”,(3)”.
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For (4)” the point is that if for p, q, α are as there, we know that f(p), f(q) has a
common upper bound, r. By the indiscernibility condition, without loss of general-
ity if α ∈ Domr, letting δ ≤ α < δ + λ, δ divisible by λ, we have δ ∈ c`(Domf(p))
or δ ∈ c`(Domf(q)) (remember D ∈ (Domp)∩ (domq)a by the definition of a closed
set). So we can find r̄, f(r̄) = r, with the right domain. �

A12 Notation:
From now on we will work toward proving A10, in the content A11(2), this

suffices concentrating on λ > ℵ0.
1) For sets a, b of ordinals, let OPa,b be the function: OPa,b(α) = β iff α ∈ a, β ∈ b
and otp(α ∩ α) = otp(b ∩ β) so dom(OPa,b) is an initial segment of a, rang(OPa,b)
is an initial segment of b and in at least one case we have equality.
2) ā is a λ-representation of A if ā = 〈ai : i < λ〉 is increasing continuous, ai ⊆ A =⋃
j<λ

aj , |ai| < λ.

3) p̄ is a candidate for Pα (or α-candidate) if p̄ = 〈pi : i < λ〉 and i < j < λ ⇒
pi ≤ pj ∈Pα.
4) If α1 ≤ α2, p̄

` an α`-candidate then p̄1 ≤ p̄2 means
∧
i<λ

∨
j<λ

p1
i ≤ p2

j�α1.

5) p̄ represents Gα (for α) if p̄ is a candidate for Pα and Gα = {q ∈Pα :
∨
i<λ

q ≤ p1}

and we write Gα = Gα[p̄]. Let p̄1 ≈ p̄2 iff Gα1
[p̄1] = Gα2

[p̄2] and α1 = α2. See
A13(2).
6) p̄1 ≈ p̄2 iff

∧
i<`g(p̄1)

∨
j<`g(p̄2)

p1
i ≤ p2

j and
∧

i<`g(p̄2)

∨
j<`g(p̄1)

p2
i ≤ p1

j (so ≈ is an

equivalence relation).
7) If p̄ = 〈pi : i < i∗〉, pi ∈ P, h a partial function from λ+ to λ+ then: h(p̄) =
〈h(pi) : i < i∗〉.
8) Let S be a family of λ+ subsets of λ, [S1, S2 ∈ S ⇒ |S1∩S2| < λandλ = supS1]
and ♦S (when λ > ℵ0) for S ∈ S (see A13(4)).

A13 Claim:
1) If α < λ+, Gα an admissible ideal of Pα (or is just a λ-directed subset of

Pα), then for some candidate p̄ for Pα, p̄ represents Gα (for α).
2) If α < λ+ and p̄1, p̄2 are candidates for Pα both representing one G then p̄1 ≈ p2,
if in addition λ is uncountable then {δ < λ : p̄1�δ ≈ p̄2�δ} is a club of λ.
3) In A12(6) if G[p̄1] is admissible for Pα1

, then
∧
i

∨
j

p1
i ≤ p2

j suffices.

4) If ♦λ holds (or λ = ℵ0) then S exists.

A14 Claim:
Assume S ⊆ λ is stationary, ♦λ and β < λ+ then we can find p = 〈γδ, Sδ, p̄δ :

δ ∈ S〉 such that:

(α) (i) γδ < λ

(ii) p̄δ = 〈pδ,i : i < δ〉
(iii) pδ,i ∈P

(iv) Dompδ,i ⊆ β ∪ [β, β + γδ)

(v) i < j ⇒ pδ,i ≤ pδ,j
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(vi) 〈
⋃
i<δ

dom(pδ,i) : δ ∈ S〉 is increasing continuous

(vii) sδ ⊆ [β, β + γδ)

(β) if γ ∈ S, p̄ = 〈pi : i < λ〉 generates an admissible ideal of Pα and
〈ai : i < λ〉 is a λ-representation of γ then {δ ∈ S : γδ = otp(aδ) and∧
i<δ

OPβ∪aδ,β∪[β,β+γδ](pi) = pδ,i} is a stationary subset of λ.

A15 Definition:
We say c is an explicit β-commitment if:

(α) β < λ+

(β) c consists of βc, γ, pc = 〈γcδ,S c
δ , p̄

c
δ : δ ∈ Sc〉 and qc = 〈qcδ; y ∈ Sc〉, of course,

pcδ = 〈pcδ,i : i < δ〉
(γ) pc is as in A14

(δ) for δ ∈ S, qcβ ∈ P,Domqcδ ⊆ β ∪ [β, β + γδ) and qcβ is an upper bound of

{pcδ,i : i < δ}.

A16 Definition:
Let c be an explicit β-commitment, β < α ∈W ∗λ and p̄ a candidate for Pα, ā =

〈ai : i < λ〉, ai ⊇ ∪{Dompj : j < i}ā is a representation of α. We say p̄ satisfies c
if: for some club E of λ, for every δ ∈ Sc ∩ E for some γ ≤ γcδ we have:

(i) OPβ∪[β,β+γc
δ ),β∪aδ(p̄

c
δ) ≈ 〈pi : i < δ〉 ⇒ OPβ∪[β,β+γc

δ ),β∪aδ(q
c
δ) = pδ

(ii) for every γ′ ∈ [β, γ) we have: ℵ0 ≤ cf(γ′) < λ ⇔ OPβ∪[β,β+γc
δ ),β∪aδ(γ

′) ∈
scδ.

A17 Claim:
For S ∈ S there is an explicit commitment c = c[S] with Sc = S, such that: if

α < λ, p̄ a candidate for Pα, p̄ satisfies c then Gα[p̄] is an admissible ideal of Pα.

A18 Notation:
Γ denotes a function with domain a subset of S of cardinality ≤ λ, each Γ(S)

an explicit β-commitment for some β ≤ α, SΓ(S) = S, one of them is the one from
A17 above. We say p̄ (an α-candidate for some α ∈ W ∗λ ) satisfies Γ if it satisfies
every Γ(S) for S ∈ DomΓ.

A19 Claim:
Assume α < α′ are from W ∗λ .

1) If p̄ is an α-candidate satisfying Γ then there is an α′-candidate p̄′ satisfying Γ
with p̄ ≤ p̄′.
2) Moreover, if r ∈Pα′ , r�α ∈ Gα[p̄] then we can demand r ∈ Gα′ [p̄].

A20 Claim:
Assume δ < λ+,ℵ0 ≤ κ = f(δ) < λ,w ⊆ δ = sup(w), 〈p̄α : α ∈ w〉 is such that

each p̄α is an α-candidate, [α1 < α2 ∈ w ⇒ p̄α
1 ≤ p̄α

2

], 〈Γα : α ∈ w〉 is increasing,
p̄α satisfies Pα (for α ∈ w) then there is a δ-candidate p̄ satisfying

⋃
α∈w

Γα such

that
∧
α∈w

p̄α ≤ p̄.
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If δ ≤ α′ < λ+, p ∈ Pα,
∧
α∈w

p�α ∈ G[p̄α] then we can find an α′-candidate p̄

satisfying
⋃
α∈w

Γα such that
∧
α
p̄α ≤ p̄ and p ∈ Gα′ [p̄].

A21 Claim:
As in A20, when cf(δ) = λ.

A22 Claim:
1) Assume α ∈ W ∗λ , p̄ and α-candidate, Gα = Gα[p̄] is an admissible ideal of

Pα. For any (α, β)-density system D over Gα and S ∈ S there is a β-explicit
β-commitment c satisfied by Gβ with Sc = S such that: if α′ ≤ β, p̄′ ≤ p̄ are α′-
candidate such that Gα′ = Gα[barp] is an admissible ideal on Pα′ and p̄′ satisfies
c then Gα′ [p̄

′] meets D.
2) We can replace in (1) Gα by 〈Gα′ : α′ ∈ α ∩W ∗λ 〉, Gα increasing with α.

A23 Proof of Theorem A10 when ♦λ holds:
The Ghibellines in addition to choosing for α ∈ W ∗λ an admissible ideal Gα

(increasing with α), choose on the side Γα, increasing with α, such that Gα satisfies
Γα. The previous claims do the job.
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