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Abstract. In the first edition of Classification Theory, the second author

characterized the stable theories in terms of saturation of ultrapowers. Prior
to this theorem, stability had already been defined in terms of counting types,

and the unstable formula theorem was known. A contribution of the ultra-

power characterization was that it involved sorting out the global theory, and
introducing nonforking, seminal for the development of stability theory. Prior

to the present paper, there had been no such ultrapower characterization of an

unstable class. In the present paper, we first establish the existence of so-called
optimal ultrafilters on (suitable) Boolean algebras, which are to simple theories

as Keisler’s good ultrafilters [18] are to all (first-order) theories. Then, assum-

ing a supercompact cardinal, we characterize the simple theories in terms of
saturation of ultrapowers. To do so, we lay the groundwork for analyzing the

global structure of simple theories, in ZFC, via complexity of certain amalga-
mation patterns. This brings into focus a fundamental complexity in simple

unstable theories having no real analogue in stability.
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2 M. MALLIARIS AND S. SHELAH

1. Introduction

1.1. Background. We begin by giving some history and context of the power of
ultraproducts as a tool in mathematics, and specifically in model theory. Ultrafilters
on an infinite cardinal λ are maximal (under inclusion) subsets of the power set of
λ which are closed under finite intersection, upward closed, and do not contain the
empty set. These give a robust notion of largeness, allowing for infinite averaging
arguments and the study of asymptotic or pseudofinite behavior in models. Early
appearances were in the work of Tarski 1930 [50] on measures and Cartan 1937
[4], [5] in general topology. The groundwork for their use in model theory was
laid in the 1950s and early 1960s by  Loś [25], Tarski, Keisler [17], Frayne-Morel-
Scott [11], and Kochen [22] in terms of the ultraproduct construction. Given an
ultrafilter D on λ, the ultraproduct N of a sequence of models 〈Mα : α < λ〉 in
a fixed language L has as its domain the set of equivalence classes of elements of
the Cartesian product

∏
α<λMα under the equivalence relation of being equal on

a set in D. One then defines the relations, functions, and constants of L on each
tuple of elements of the ultraproduct to reflect the average behavior across the
index models. The fundamental theorem of ultraproducts,  Loś’ theorem, says that
the set of statements of first order logic true in the ultraproduct are precisely the
statements true in a D-large set of index models, i.e. the theory of N is the average
theory of the models Mα. Model theorists concentrated further on so-called regular
ultrafilters, as will be explained in due course.

This construction gave rise to some remarkable early transfer theorems. For
example, Ax and Kochen [1]-[3] and independently Eršov [10] proved that for any
nonprincipal (=containing all cofinite sets) ultrafilter D on the set of primes, the
ultraproduct Qp =

∏
pQp/D of the p-adic fields Qp and the ultraproduct Sp =∏

p Fp((t))/D of the fields of formal power series over Fp are elementarily equivalent,
i.e. satisfy the same first-order statements. Then from Lang’s theorem that every
homogeneous polynomial of degree > d with more than d2 variables has a nontrivial
zero in Fp((t)) for each p they deduce the corresponding theorem in Qp for all but
finitely many p.

Working with ultrapowers, meaning that all the index models are the same,
a similar averaging process happens. The central “algebraic characterization of
elementary equivalence” now appears: two models satisfy the same set of first order
statements precisely when they have isomorphic ultrapowers, proved by Keisler 1961
under GCH [17] and by Shelah 1971 [45] in general.

The theorems of Ax-Kochen and Ersov just mentioned used only ultrafilters on
ω,  Loś’ transfer of the first order theory and ℵ1-saturation. The first order theory
is a relatively superficial description of models shared by many in the same class,
e.g. all algebraically closed fields of characteristic 0. From a model-theoretic point
of view, the deeper structure of ultrapowers has to do with the Stone space of types
and the property of saturation.1

1Saturation is a fullness condition. Informally, we may identify types over a given set A with

orbits under automorphisms of some much larger universal domain which fix A pointwise, so call
a model M κ-saturated if it contains representatives of all orbits under any automorphism of the

larger universal domain which fix some subset of M of size < κ pointwise. Syntatically, an A-type

p is a maximal consistent set of formulas in a fixed number of free variables and parameters from
A; it is realized in the model M ⊇ A if for some ā ∈ Dom(M), M |= ϕ(ā) for all ϕ ∈ p; and a

κ-saturated model is one in which all types over sets |A| < κ are realized.
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EXISTENCE OF OPTIMAL ULTRAFILTERS AND... 3

Keisler, one of the major architects of model theory beginning in the 1960s, in
particular has done much on ultrapowers, see [19]. He proved that one could define
and build a family of so-called good regular ultrafilters [18],2 and he noticed that for
any D in this family of good regular ultrafilters and any model M in a countable
language, the ultrapower Mλ/D is sufficiently, i.e. λ+-, saturated. Moreover,
ultrapowers of certain theories are only saturated if the ultrafilter is good. In 1967
[21], Keisler proposed a means of comparing the complexity of theories according
to the difficulty of saturating their ultrapowers (Definition 2.4). Progress on this
far reaching program, known as Keisler’s order, requires advances in model theory
on one hand, and advances in ultrafilter construction on the other.

From the model theoretic point of view, a major motivation for understanding
Keisler’s order comes from the search for dividing lines, that is, properties whose
presence gives complexity and whose absence gives a good structure theory. For
example, the dividing line of stable versus unstable theories has been fundamental
since the 1970s [48]. However, there are many unstable theories, and for some of
them a ‘positive theory’ may be analyzed; so if one hopes to generalize stability
theory, a natural approach is to find and develop other dividing lines one by one
in response to suitable questions. By a 1978 theorem of Shelah, Keisler’s order
independently detects the dividing line at stability. This suggests that a fruitful
and moreover uniform way of looking for meaningful divisions in the enormous
class of unstable theories is to progress, if possible, in the unstable classification of
Keisler’s order. In short, Keisler’s order provides a uniform point of view from which
to approach the problem of looking for dividing lines for a large and central family
of theories, and a model-theoretic incentive to characterize equivalence classes. A
natural target is the family of simple theories, a central and popular family in
model theory for more than two decades. For background on simple theories and
some history, see the survey [13]. We mention here that simple unstable theories
include examples such as pseudofinite fields [15] and have been a fertile ground
of model-theoretic interaction with algebra, geometry, combinatorics and number
theory.

For many years there was little progress on Keisler’s order. Recently, a series
of papers by the authors has significantly changed the landscape (see [35] for some
history) and given us the leverage for the present work. In the current paper, we
establish the existence of a new family of ultrafilters in parallel with developing
the model theory of simple theories in a direction very different from prior work.
Combining the two, we prove a characterization of the class of simple theories
in terms of saturation of ultrapowers, assuming a supercompact cardinal. (For a
discussion of our use of a large cardinal, see §2.2 below.) As would be expected, our
work here has two complementary parts: on one hand we define and establish the
existence of optimal ultrafilters, and on the other we extend the model theory of
simple theories in order to show that such ultrafilters affect saturation. We hope to
eventually be able to eliminate the large cardinal hypothesis in the main theorem
of this paper, but for now it clarifies the model-theoretic content by allowing us to
work with models as closed sets (as will be explained in due course).

Although there has been much interest in and work on simple theories, many
basic structural questions about simple theories and the extent to which they may

2Keisler’s proof assumed GCH, an hypothesis removed by Kunen [24], in a proof which intro-
duced some central techniques in ultrafilter construction.
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4 M. MALLIARIS AND S. SHELAH

differ essentially from a few canonical examples remain wide open. One theme of
this paper has to do with finding the right frame for seeing divisions in complexity
classes among the simple unstable theories. The complexity we detect has primarily
to do with amalgamation; it appears built on non-forking, and has no real analogue
in the stable case (where we have amalgamation even of P−(n)-diagrams, see [48]
Chapter XII). We give a model-theoretic formulation of this property, which we
call explicit simplicity, in Section 3. The history of classification theory would
suggest that future work may well reveal other formulations of this property; such
a formulation would be likely to arise from progress on determining the identity of
equivalence classes in Keisler’s order among the simple theories (as opposed to the
identification of dividing lines).

1.2. Results. We prove the following theorems. In each case, the results will hold
for any four-tuple of infinite cardinals (λ, µ, θ, σ) satisfying the following hypotheses,
plus any additional requirements given in the theorem.

Definition 1.1. Call λ, µ, θ, σ suitable when:

(a) σ ≤ θ ≤ µ < λ.
(b) θ is regular, µ = µ<θ and λ = λ<θ.
(c) (∀α < θ)(2|α| < µ).

Conditions 1.1(b) and (c) will essentially guarantee that certain equivalence re-
lations defined in the course of our proofs are not unnecessarily large. We will
be mainly interested in cases where µ < λ. Note that the hypotheses of 1.1 hold
when σ = θ = ℵ0 and µ < λ are any infinite cardinals, or when σ = θ is regular,
µ = (2θ)+, and µ+ = λ (hence the existence of a suitable tuple with uncountable
σ is provable in ZFC), or when σ is uncountable and supercompact, σ = θ = µ,
and µ+ = λ. It will follow from the main definitions that these cardinals λ, µ, θ, σ
each control specific aspects of both the model-theoretic and the set-theoretic pic-
ture, and varying their values, modulo the basic constraints of 1.1, will give useful
information.

We first state the theorem which organizes our main results, before discussing
“explicitly simple.”

Theorem (Organizing theorem, Theorem 8.1 below). Assume (λ, µ, θ, σ) are suit-
able and that σ is an uncountable supercompact cardinal. There exists a regular
ultrafilter D over λ such that for every model M in a countable signature, Mλ/D
is λ+-saturated if Th(M) is (λ, µ, θ, σ)-explicitly simple, and Mλ/D is not µ++-
saturated if Th(M) is not simple.

Regarding supercompact, usually “σ a compact cardinal” will suffice (keeping
in mind that we will be working with σ-complete filters and ultrafilters), but the
existence theorem for optimal ultrafilters given below assumes existence of an un-
countable supercompact cardinal. As the statement of this theorem suggests, a
model-theoretic contribution of the paper is the development of a notion we call
(λ, µ, θ, σ)-explicitly simple, a measure of the complexity of amalgamation, dis-
cussed further in the introduction to Section 3. It will be clear from Section 3
that (λ, µ, θ, σ)-explicitly simple becomes weaker as µ increases, and that every
(λ, µ, θ, σ)-explicitly simple theory is simple, even when µ = λ. More remarkable is
that it is possible to capture simplicity in this way.
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Theorem (Simple theories are explicitly simple, Theorem 4.10 below). Assume
(λ, µ, θ, σ) are suitable. If µ+ = λ, then every simple theory T with |T | < σ is
(λ, µ, θ, σ)-explicitly simple, and moreover this characterizes simplicity of T .

As discussed later in this paper, we believe this new characterization will re-
open the research on simple theories, which has long been dominated by analogies to
stability theory, by allowing for a classification of simple unstable theories according
to the possible values of µ << λ.

Complementing the development of explicit simplicity, we define and prove ex-
istence of a new family of ultrafilters, called (λ, µ, θ, σ)-optimal. These ultrafilters,
defined in Section 5, may be thought of as an analogue of Keisler’s good ultrafil-
ters from [18] which handle patterns arising from explicitly simple theories. The
Boolean algebra in the statement of this theorem will be defined in 2.19(3).

Theorem (Existence theorem for optimal ultrafilters, Theorem 5.9 below). There
exists a (λ, µ, θ, σ)-optimal ultrafilter on the Boolean algebra B = B1

2λ,µ,θ whenever

(λ, µ, θ, σ) are suitable and σ > ℵ0 is supercompact.

On the connection of this ultrafilter on a Boolean algebra to a regular ultrafilter
on λ, see Section 1.3 below. Finally, leveraging explicit simplicity and optimality,
we prove the algebraic characterization of simple theories.

Theorem (Ultrapower characterization of simplicity, Theorem 8.2 below). Suppose
(λ, µ, θ, σ) are suitable where σ is an uncountable supercompact cardinal and µ+ =
λ. Then there is a regular ultrafilter D on λ such that for any model M in a
countable signature, Mλ/D is λ+-saturated if Th(M) is simple and Mλ/D is not
λ+-saturated if Th(M) is not simple.

Theorem 8.2 has the following consequence for Keisler’s order:

Conclusion (On Keisler’s order E, Conclusion 8.4 below). Assume there exists an
uncountable supercompact cardinal. If T , T ′ are complete countable theories, T is
simple, and T ′ E T , then T ′ is simple.

Finally, we return to ultrafilters in the case σ = θ = ℵ0. We define and prove
existence of so-called perfect ultrafilters for σ = θ = ℵ0, and prove that such
ultrafilters are optimal. Theorem 9.4 is proved in ZFC.

Theorem (Existence of perfect ultrafilters, Theorem 9.4 below). Let (λ, µ,ℵ0,ℵ0)
be suitable. Let B = B1

2λ,µ. Then there exists a (λ, µ,ℵ0,ℵ0)-perfect ultrafilter on

B.

To conclude this catalogue of results, we record that the technology developed
here has some surprising consequences, which will appear in subsequent work. No-
tably, overturning a longstanding conjecture that Keisler’s order has finitely many
classes, we prove in [38] that already within the simple theories there is substantial
complexity:

Theorem A (Malliaris and Shelah [38], in ZFC). Keisler’s order has infinitely
many classes. In fact, there is an infinite strictly descending chain of simple low
theories in Keisler’s order, above the random graph.

Thus Keisler’s order is sensitive to the fine structure of amalgamation as mea-
sured by our criterion of explicit simplicity. This framework raises questions which
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6 M. MALLIARIS AND S. SHELAH

we plan to address in work in progress, related to the natural interpretation of the
coloring criterion developed here within particular classes of simple theories.

1.3. Introduction for set theorists. Here we briefly outline the innovations of
the paper which may be of interest to set theorists, independent of the model-
theoretic questions of saturation of simple theories. These are of two kinds (as we
will explain). First is constructing ultrafilters on λ or on related Boolean algebras.
Second, the classes ModT , for T simple, include examples natural for set theorists
such as the random graphs and certain classes of hypergraphs.

A major part of the paper has to do with the construction of regular ultrafilters
using large cardinals. Historically, model theorists had typically focused on regular
ultrafilters because of the connections to the compactness theorem, and in particular
their nice saturation properties (see e.g. Theorem B, page 7 below) whereas set
theorists had typically focused on understanding quite complete ultrafilters under
the relevant large cardinal hypotheses (or remnants of this like ℵℵ1

0 /D = ℵ1). Our
present approach, following our earlier paper [36], reunites the two. Let B be a
complete Boolean algebra of cardinality ≤ 2λ with the ≤ λ+-c.c. Following [36], we
build regular ultrafilters on λ by first building a regular, λ+-good filter D0 so that
P(λ)/D0 is isomorphic to B, and then complete the construction by specifying an
ultrafilter D∗ on B, which need not be regular. In the present paper, our main
case is B = B1

2λ,µ,θ, the completion of the free Boolean algebra generated by 2λ

independent partitions of size µ, where intersections of size < θ are nonempty.
(Further work considering the case where B is not necessarily the completion of
a free Boolean algebra will be developed in [41].) In the present paper, we use B
exclusively to refer to one of these completions of a free Boolean algebra.

In this setup, our focus is on construction of appropriate ultrafilters D∗ on B.
The present paper introduces two new set-theoretic properties of ultrafilters on
such Boolean algebras, “optimal” in 5.8 and “perfect” in 9.1, and proves that such
ultrafilters exist. Both definitions capture in some sense being as good (c.f. Keisler’s
‘good’ ultrafilters) as possible modulo some background cardinal constraints. We
succeed to prove that if σ ≤ θ ≤ λ and σ is supercompact then on B = B1

2λ,µ,θ

an optimal ultrafilter exists; and we prove existence of a perfect ultrafilter on B
in ZFC assuming σ = θ = ℵ0, and show that any such ultrafilter is optimal. In
the present paper, we require that σ, if uncountable, is supercompact rather than
simply requiring existence of a σ-complete ultrafilter on λ, because this is what we
use in the existence proof for optimal ultrafilters.

The model-theoretic usefulness of this “separation of variables” approach was
established by [36], in particular Theorem F quoted in the next section, which
says that the resulting saturation properties of the regular ultrafilter D induced
on λ by D0 and D∗ may be characterized in terms of related conditions on the
ultrafilter D∗. So we are free to address saturation problems by working with σ-
complete ultrafilters D∗ on Boolean algebras (in the present case, completions of
free Boolean algebras), a much richer context. But it has also pure set-theoretic
meaning: for instance, finding ultrafilters on λ which are flexible but not good, see
5.18 below, as asked by Dow 1985 [8].

Readers unfamiliar with simple theories may prefer to keep in mind one of the
many natural combinatorial examples of such theories. For each n > k ≥ 2, let
Tn,k be the theory of the unique countable generic hypergraph in a language with a
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EXISTENCE OF OPTIMAL ULTRAFILTERS AND... 7

k+ 1-ary graph hyperedge (a symmetric, irreflexive k+ 1-place relation) where the
axioms say that the theory is infinite and any configuration of edges and non-edges
is allowed provided that there are no complete hypergraphs on n + 1 vertices (i.e.
there do not exist n + 1 vertices of which every distinct subset of size k + 1 is a
hyperedge). When k = 1 such theories are not simple (e.g. the triangle-free random
graph) but when k ≥ 2 they are (e.g. the tetrahedron-free three-hypergraph), as
proved by Hrushovski [15]. These examples will be central to a further analysis of
simple theories via perfect ultrafilters in [38].

The reader interested primarily in these new ultrafilters may skip ahead to Sec-
tions 5 and 9. Such a reader may also find it useful to skim Section 2 for insight
into the saturation claims we make about these ultrafilters, which are largely com-
binatorial in nature.

2. Overview and preparation

2.1. Overview. We begin by giving an overview of some main themes of the paper.
For additional information on Keisler’s order the reader may wish to consult Keisler
1967 [21], or the recent papers [35], [32], and [43].

Convention 2.2 (on types). Given N := Mλ/D an ultrapower,

(a) Call a type or partial type p over A, A ⊆ N small if |A| ≤ λ.
(b) Any small type may be enumerated (possibly with repetitions) as {ϕi(x, ai) :

i < λ}, where `(ai) need not be 1.
(c) For each parameter a ∈ A ⊆ N , fix in advance some lifting of a to Mλ.

Then by the notation a[t] we mean the t-th coordinate of this lifting of a.
When a is a tuple a1, . . . , an, the notation a[t] is understood to mean the
tuple a1[t], . . . , an[t].3 We will use this notation throughout the paper.

(d) By  Loś’ theorem, if p is a consistent partial type in N then we may define
the  Loś map f : [p]<ℵ0 → D by

u 7→ {t ∈ λ : M |= ∃x
∧
i∈u

ϕi(x, ai[t])}

(e) [A]<κ denotes the set of all subsets of A of cardinality < κ.
(f) Dom(M) denotes the universe of a structure M , and ||M || = |Dom(M)|.

Definition 2.3. The ultrafilter D on λ is regular if it contains a regularizing family,
that is, a set {Xi : i < λ} ⊆ D such that for any u ⊆ λ, |u| ≥ ℵ0,⋂

i∈u
Xi = ∅.

Equivalently, D is regular if every set of size ≤ λ in any D-ultrapower is covered by
a pseudofinite set.

The hypothesis regular entails that saturation of ultrapowers is a property of the
(countable) theory, not the model chosen:

Theorem B (Keisler [18] Cor. 2.1a). When D is a regular ultrafilter on λ and
M ≡ N in a countable signature, then Mλ/D is λ+-saturated iff Nλ/D is λ+-
saturated.

3Informally, a[t] is the “projection of a to index t” or “to the index model Mt”.
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8 M. MALLIARIS AND S. SHELAH

Theorem B justifies the quantification over all models in the next, central defi-
nition.

Definition 2.4 (Keisler’s order, Keisler 1967 [21]). Let T1, T2 be complete countable
first order theories. Say T1 E T2 if whenever λ ≥ ℵ0, D is a regular ultrafilter on
λ, M1 |= T1, M2 |= T2 we have that

(M2)λ/D is λ+-saturated =⇒ (M1)λ/D is λ+-saturated

Keisler’s order E is a preorder on theories, often thought of as a partial order on
the E-equivalence classes.

Question 2.5 (Keisler 1967). Determine the structure of Keisler’s order.

The state of what was known about the structure Keisler’s order through 2012
can be found in section 4 of the authors’ paper [32]. Since that paper was written,
and prior to the current paper, the following results have been obtained:

Theorem C (Malliaris and Shelah [36]). Keisler’s order has at least two classes
among the simple unstable theories.

Theorem D (Malliaris and Shelah [34], announced in [35]). Any theory with the
model-theoretic tree property SOP2 belongs to the maximum class in Keisler’s order.

To explain what is, in general, at stake in questions of saturation of ultrapowers,
we now discuss types in regular ultrapowers. For transparency, in this section, all
languages and thus all theories are countable. (Beginning in §3, we will allow the
language to be uncountable.)

Definition 2.6. Let D be a regular ultrafilter on λ, M a model in a countable
signature, p a small partial type over A ⊆ N := Mλ/D. A distribution of p is a
map d : [p]<ℵ0 → D such that:

(a) d is monotonic, i.e. u ⊆ v =⇒ d(v) ⊆ d(u), and d(∅) = λ
(b) d refines the  Loś map f , meaning that d(u) ⊆ f(u) for each u ∈ [p]<ℵ0

(c) the image of d is a regularizing family, 2.3 above.

In some sense, the problem of realizing types in ultrapowers is already visible
in what  Loś’ theorem does not guarantee. Although a type is “on average” (in
the ultrapower) consistent, i.e. distributions exist, when we try to realize it by
assigning finitely many formulas of the type to each index model via a distribution
2.6 it becomes apparent that there is no guarantee that the finite set of formulas
{ϕi(x, ai[t]) : t ∈ d({ϕi})} assigned to index t has a common realization.

Note that 2.6(a) is not necessary, as it may always be ensured (refining a given
map by induction on the size of u).

Specifically, the following fact explains a basic mechanism controlling saturation
of regular ultrapowers.

Fact 2.7 ([32] 1.8). Let D be a regular ultrafilter on λ, M a model in a countable
signature, p a small partial type over A ⊆ N := Mλ/D. Then the following are
equivalent:

(1) p is realized in N .
(2) Some distribution d of p has a multiplicative refinement, that is, a map

d′ : [p]<ℵ0 → D such that for any u, v, first, d′(u) ⊆ d(u), and second,
d′(u) ∩ d′(v) = d′(u ∪ v).
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The property of (monotonic) maps from [λ]<ℵ0 → D admitting multiplicative
refinements is a natural set-theoretic question:

Definition 2.8. (Good ultrafilters, Keisler [18]) The filter D on λ is said to be µ+-
good if every f : [µ]<ℵ0 → D has a multiplicative refinement, where this means that
for some f ′ : [µ]<ℵ0 → D, u ∈ [µ]<ℵ0 =⇒ f ′(u) ⊆ f(u), and u, v ∈ [µ]<ℵ0 =⇒
f ′(u) ∩ f ′(v) = f ′(u ∪ v).

Note that we may assume the functions f are monotonic.
D is said to be good if it is λ+-good.

Keisler proved that good regular ultrafilters on λ always exist assuming GCH
[18]; this was proved in ZFC by Kunen [24]. Thus, by Fact 2.7, for any λ there
exists a regular ultrafilter on λ such that Mλ/D is λ+-saturated for any M in a
countable signature. In the other direction, there exist T able to code failures of
goodness, e.g. Th([ω]<ℵ0 ,⊆), so that if M |= T then Mλ/D is λ+-saturated iff D
is good (Keisler [21] Theorem 1.4c). This proves existence of a maximum class in
Keisler’s order.

Definition 2.9. Reflecting the saturation properties of good ultrafilters, when D is
an ultrafilter on λ we will say that “D is good for T ,” or “D is (λ+, T )-good,” to
mean that for any M |= T , Mλ/D is λ+-saturated.

We now know that it is also possible for a theory to be Keisler-maximal without
explicitly coding all failures of goodness:

Theorem E (Shelah 1978 [48] VI.3.9). Any theory with the strict order property
is maximal in Keisler’s order, e.g. Th(Q, <).

In fact, SOP2 suffices (Malliaris and Shelah, Theorem D above). The “basis”
of functions whose multiplicative refinements ensure that of all others is not yet
understood. We know the only essential complexity is local:

Fact 2.10 (Local saturation suffices, Malliaris [27] Theorem 12). Suppose D is a
regular ultrafilter on I and T a countable complete first order theory. Then for any
M I/D, the following are equivalent:

(1) M I/D is λ+-saturated.
(2) M I/D realizes all ϕ-types over sets of size ≤ λ, for all formulas ϕ in the

language of T .

To understand classes other than the Keisler-maximal class, as in the present
paper, it is therefore necessary to realize some types while omitting others, that
is, to understand how certain model-theoretically meaningful families of functions
may have multiplicative refinements while others do not. A point of leverage on
this problem was built in [36] and applied there to obtain the first ZFC dividing
line among the unstable theories. It translates the problem just described into a
problem about patterns in some quotient Boolean algebra, as we now explain. For
2.11, note that the notion of an λ+-excellent filter is defined in [36]. It is proved in
Theorem 12.3 of that paper that a filter is λ+-excellent if and only if it is λ+-good
and in the present paper, λ+-excellent and λ+-good are used interchangeably.4

4More precisely, one can define a notion of “excellent for a theory T” and likewise of “good for
a theory T .” What is proved in [36] is that “excellent” i.e. “excellent for all countable T” coincides

with “good” i.e. “good for all countable T” i.e. every monotonic function from finite subsets of I
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10 M. MALLIARIS AND S. SHELAH

Definition 2.11 (Regular ultrafilters built from tuples, from [36]). Suppose D is
a regular ultrafilter on I, |I| = λ. We say that D is built from (D0,B,D∗) when
the following hold. Note that λ is given by D0, and if not mentioned otherwise, we
will assume the index set of D is λ.

(1) D0 is a regular, |I|+-excellent filter on I
(for the purposes of this paper, it is sufficient to use regular and good)

(2) B is a complete Boolean algebra of cardinality 2λ and ≤ λ+-c.c.
(3) D∗ is an ultrafilter on B
(4) there exists a surjective homomorphism j : P(I)→ B such that:

(a) D0 = j−1({1B})
(b) D = {A ⊆ I : j(A) ∈ D∗}.

We may make j explicit and write “built from (D0,B,D∗, j)”.

It was verified in [36] Theorem 8.1 that whenever µ ≤ λ and B = B1
2λ,µ, Defini-

tion 2.19 below, there exists a regular good D0 on λ and a surjective homorphism
j : P(I)→ B such that D0 = j−1(1). Thus, Definition 2.11 is meaningful, and this
opens up many possibilities for ultrafilter construction.

We now state Theorem F, used throughout the present paper, and then define
“morality” in 2.14.

Theorem F. (Separation of variables, Malliaris and Shelah [36] Theorem 6.13; see
Observation 2.15 below) Let κ ≤ λ. Suppose that D is built from (D0,B,D∗, j),
and D0 is excellent.5 Then the following are equivalent:

(A) D∗ is (κ,B, T )-moral, i.e. κ-moral for each formula ϕ of T .
(B) For any M |= T , Mλ/D1 is κ+-saturated.

The practical consequence of Theorem F is that one can construct regular ultra-
filters in a two-step process. First, one constructs a λ+-excellent filter D0 admitting
the desired homomorphism j to a specified Boolean algebra B. One may ensure
the non-saturation half of the argument at this stage by clever choice of B: for
example, a key move of [36] is to show that if B has the µ+-c.c. for µ < λ, then
D cannot be good for non-low or non-simple theories, regardless of the choice of
D∗. See Section 2.2 below.6 See §2.2 below for the present analogue. Second, one
builds an appropriate ultrafilter D∗ on the Boolean algebra B, usually focused on
the positive (saturation) side of the argument. Theorem F ensures that D∗ controls
the resulting saturation properties of D. This will be our strategy below.

We now explain the condition of “morality” on D∗.
Definition 2.12. (Possibility patterns, c.f. [36]) Let B be a Boolean algebra and
ϕ = 〈ϕα : α < λ〉 a sequence of formulas of L. Say that b is a (λ,B, T, ϕ)-possibility
when:

into the filter has a multiplicative refinement. This is the property we need for Theorem F, so the
reader may substitute good for excellent in that theorem. However, it is important to mention
that for specific values of T , “excellent for T” and “good for T” need not coincide. If one wanted

to work with more precise versions of Theorem F where D0 is excellent only for certain theories,

the situation might be different.
5The requirement “D0 is λ+-excellent” is assumed in the definition of “built from” but we

repeat it here for emphasis.
6Informally, there is too little room in the Boolean algebra to account for the “wideness” of

theories with significant forking: see [36] §9, specifically Conclusion 9.10. That proof uses in an
essential way that (in our notation) θ = ℵ0, as will be explained in due course.
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(1) b = 〈bu : u ∈ [λ]<ℵ0〉
(2) u ∈ [λ]<ℵ0 implies bu ∈ B+

(3) if v ⊆ u ∈ [λ]<ℵ0 then bu ⊆ bv (monotonicity) and bu = 1B
(4) if u∗ ∈ [λ]<ℵ0 and c ∈ B+ satisfies

(u ⊆ u∗ =⇒ ((c ≤ bu) ∨ (c ≤ 1− bu)))

then we can find a model M |= T and aα ∈ M for α ∈ u∗ such that for
every u ⊆ u∗,

M |= (∃x)
∧
α∈u

ϕα(x; aα) iff c ≤ bu.

When the sequence ϕ is constant with each ϕα = ϕ, say b is a (λ,B, T, ϕ)-
possibility.

2.12 ensures that a could have plausibly arisen as the image under j of the dis-
tribution of a ϕ-type by asking that the Venn diagram of the elements a accurately
reflects the complexity of ϕ: that is, whenever some nonzero element b of B induces
an ultrafilter on some {av : v ⊆ u}, we can find a set of instances {ϕi : i ∈ u} in
a monster model of T whose pattern of intersection corresponds exactly to that
dictated by b.

Example 2.13. Let D be built from (D1,B,D0, j). Let p ∈ S(A), A ⊆ Mλ/D1 be
a small ϕ-type and, identifying p with λ, let f : [λ]<ℵ0 → D1 be the  Loś map of
p. Let a = 〈au : u ∈ [λ]<ℵ0〉 be given by au = j(f(u)), so au ∈ B+. Then a is a
(λ,B, T, ϕ)-possibility.

Then morality, 2.14, is simply the Boolean algebra equivalent to a regular ultra-
filter being good for a theory, see 2.7 and 2.9 above.

Definition 2.14. (Moral ultrafilters on Boolean algebras, [36]) We say that an ul-
trafilter D∗ on the Boolean algebra B is (λ,B, T, ϕ)-moral when for every (λ,B, T, ϕ)-
possibility b = 〈bu : u ∈ [λ]<ℵ0〉 such that bu ∈ D∗ for each u ∈ [λ]<ℵ0 , there is a
multiplicative D∗-refinement b′ = 〈b′u : u ∈ [λ]<ℵ0〉, i.e.

(1) u1, u2 ∈ [λ]<ℵ0 =⇒ b′u1
∩ b′u2

= b′u1∪u2

(2) u ∈ [λ]<ℵ0 =⇒ b′u ⊆ bu
(3) u ∈ [λ]<ℵ0 =⇒ b′u ∈ D∗.

We write (λ,B, T,∆)-moral to mean (λ,B, T, ϕ)-moral for all ϕ ∈ ∆. We write
(λ,B, T )-moral to mean (λ,B, T, ϕ)-moral for all formulas ϕ.

In the last sentence of the definition of “moral”, we could equivalently have
said: we write (λ,B, T )-moral to mean (λ,B, T, ϕ)-moral for all sequences ϕ of
formulas and all (λ,B, T, ϕ)-possibilities, because our theories T are countable.
(On uncountable T , see [46].) The equivalence is by Fact 2.10 and Theorem F.
Since in the present paper it is not usually necessary to restrict to ϕ-types, we will
often use this second formulation.

The statement of [36] Theorem 6.13 was stated just for the case κ = λ. For
completeness, we justify the use of κ ≤ λ in Theorem F above.

Observation 2.15. Fix |I| = λ and κ ≤ λ. Then (1) iff (2).

(1) D is a regular ultrafilter on I, built from (D0,B,D∗), and D∗ is (κ,B, T )-
moral for all formulas ϕ of T .
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12 M. MALLIARIS AND S. SHELAH

(2) For any model M |= T , and any type p ∈ S(N) where N ⊆ M , ||N || = κ,
p is realized in M .

Proof. (1) implies (2): This is the direction we use in the present paper. Recall
that “built from” implies D0 is λ+-excellent. By regularity of D, we may choose
any model M of T , in particular we may choose M λ+-saturated. By Fact 2.10,
we may assume p is a ϕ-type. Let 〈ϕ(x, ā∗α) : α < κ〉 be an enumeration of ϕ. Fix
some lifting of the parameters so that we may write “a[t]” for a ∈ N and t ∈ I. For
each u ∈ [λ]<ℵ0 , define

Bu = {t ∈ I : (∃x)
∧
α∈u

ϕα(x, āvα [t])}.

Without loss of generality, B∅ = I. Define 〈Au : u ∈ [λ]<ℵ0〉 by: Au = Bu∩κ. Let
au = j(Au) ∈ D∗, which gives us the sequence ā = 〈au : u ∈ [λ]<ℵ0〉, which is
a possibility pattern, by  Loś’ theorem, c.f. 2.13. By hypothesis (1), there exists
ā′ = 〈a′u : u ∈ [λ]<ℵ0〉 such that ā′ is a sequence of elements of D∗ which form a
multiplicative refinement of ā. For each u ∈ [λ]<ℵ0 , choose A′u such that j(A′u) = a′u.
Let A′′u = A′u ∩ Au. Then the sequence 〈A′′u : u ∈ [λ]<ℵ0〉 refines 〈Au : u ∈ [λ]<ℵ0〉
and is multiplicative mod D0. Now we use the definition of excellent, specifically
Claim 4.9(1) of [36], using D0 and Ā′′ here for D and Ā there. By that Claim, there
is a sequence B̄′ = 〈B′u : u ∈ [λ]<ℵ0〉 such that first, B̄′ refines Ā′′ so a fortiori B̄′

refines Ā, and second, B̄′ is actually multiplicative, not just multiplicative mod D0.
The map f : [κ]<ℵ0 → D given by u 7→ B′u is therefore a multiplicative map, which
means that for each t ∈ I, the set

{ ϕ(x, ā∗α[t]) : t ∈ f({α}) }
is a partial type in M . Since M is λ+-saturated, we may choose some b∗[t] realizing
this type. Let b∗ =

∏
t∈I b∗[t]/D. Then b∗ realizes p as desired.

(2) implies (1): This is immediate from Lemma 6.12 of [36] replacing λ by κ in
conclusions (A) and (B) of that lemma and in the corresponding proof. �

2.2. Why a large cardinal? The cardinal σ is supercompact iff on every set A
of cardinality ≥ σ there exists a normal σ-complete ultrafilter on [A]<σ (see 5.2
below). This implies that σ is compact, i.e. that every σ-complete filter can be
extended to a σ-complete ultrafilter.

Where do complete filters appear, given that all ultrafilters in Keisler’s order
are regular? The idea is that Theorem F allows us to build regular ultrafilters
from complete ones: D∗ may be σ-complete for some uncountable σ, assuming the
existence of σ > ℵ0 compact.

Why is this useful? In the main theorem of [36], we proved existence of a
ZFC dividing line in Keisler’s order among the unstable theories, by separating the
minimum unstable theory, the random graph, from all non-simple and simple non-
low theories. The non-saturation half of that argument proved, in the context of
Theorem F, that when the quotient Boolean algebra is B = B1

2λ,µ,ℵ0
and CC(B) =

µ+ ≤ λ, i.e. the maximal size of an antichain in B is µ, then the resulting D1 was
not good for any non-low or non-simple theory, see also 9.6 below. It is crucial
there that B is the completion of a free Boolean algebra and that the last of
the three cardinal subscripts for B is ℵ0, so in our notation, σ = θ = ℵ0. [The
saturation part of the proof showed that the lack of global inconsistency in the
random graph meant that its types could still be realized when µ was small.] To
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the extent that the random graph is typical of simple theories, one can ask whether
higher octaves of those arguments would work to separate all simple theories from
all non-simple ones. Our strategy here is, therefore, to continue working with
completions of free Boolean algebras, and to continue to concentrate on the case
where CC(B) = µ+ ≤ λ. (We will consider other Boolean algebras in the paper [41]
in preparation.) However, the ultrafilter D∗ we construct is σ-complete for some
uncountable σ, so in our present notation θ ≥ σ > ℵ0, in order to have a chance at
saturating simple theories which are non-low. The large cardinal assumption gives
us enough room in the construction to deal with the extra amount of forking in
simple non-low theories, while still allowing us to ensure non-saturation of any non-
simple theory. The remarkable fact is that, after taking care of this one possible
problem at lowness, we are able to leverage a new analysis of amalgamation in
simple theories to build ultrafilters which precisely characterize the dividing line at
simplicity.

We consider both σ = ℵ0 and also σ uncountable and supercompact in our vari-
ous ultrafilter existence proofs. We use the second case in this paper to characterize
simplicity, and will use the first [which necessarily does not saturate non-low simple
theories, but is in ZFC] in [38].

2.3. Structure of the paper. The structure of the paper is as follows. We as-
sume throughout that our tuples (λ, µ, θ, σ) of cardinals are suitable in the sense
of 1.1 above. In §3, we develop the model-theoretic amalgamation condition called
“(λ, µ, θ, σ)-explicitly simple.” In §4, we characterize simple theories as explicitly
simple using µ+ = λ. As discussed there and carried further in [38], varying the
distance of µ and λ outlines a new approach to classifying the simple unstable
theories. In §5, we define the new property of ultrafilters on certain Boolean al-
gebras, called “(λ, µ, θ, σ)-optimal,” and prove an existence theorem assuming σ is
uncountable and supercompact. (Existence in the case σ = θ = ℵ0 will follow from
Theorem 9.4 below.) If D is a regular ultrafilter on λ built from (D0,B,D∗) where
D∗ is (λ, µ, θ, σ)-optimal, we will call D (λ, µ, θ, σ)-optimized. Assuming µ < λ, we
then show how to ensure optimized ultrafilters do not saturate non-simple theories.
§6 proves a technical lemma about arranging presentations to interact well with
liftings in ultrapowers. In §7, assuming µ+ = λ (as well as σ uncountable and
supercompact to quote the ultrafilter existence theorem of §5), we prove that opti-
mized ultrafilters saturate simple theories. §8 contains the paper’s main theorems,
characterizing simple theories via saturation of ultrapowers. §9 states and proves
existence of so-called perfect ultrafilters on certain Boolean algebras, which will be
useful for σ = ℵ0 in future papers. §10 contains a list of open problems.

2.4. Basic definitions. For history on simple unstable theories, and for statements
of theorems from the literature, we refer to the survey article [13]. We will use:

Definition 2.16 (Simple theories). Given a background theory T ,

(1) A formula ϕ = ϕ(x, y) has the k-tree property, for k < ω, when there exist
parameters {aη : η ∈ ω>ω}, `(aη) = `(y), so that:
(a) for each η ∈ ω>ω, the set {ϕ(x, aηai) : i < ω} is k-inconsistent
(b) for each η ∈ ωω, the set {ϕ(x, aη|n) : n < ω} is consistent.

(2) A formula ϕ is simple if it does not have the tree property, i.e. it does not
have the k-tree property for any k.
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14 M. MALLIARIS AND S. SHELAH

A theory is called simple if all of its formulas are.

Definition 2.17 (D-rank, lowness). Again fix T .

(1) For each formula ϕ(x̄, ȳ), an integer k < ω, and a formula θ(x̄), all possibly
with parameters, we define D(θ, ϕ, k) to be ≥ 0 if θ(x̄) is consistent, and
≥ α + 1 if there exists āα which forks over the parameters of θ such that
D(θ(x̄)∧ϕ(x, āα), ϕ, k) ≥ α. Equivalently, T is simple if and only if for all
formulas ϕ and θ and all k < ω, the rank D(θ, ϕ, k) is finite.

(2) We say T is low if for each formula ϕ(x̄; ȳ) there is k < ω such that for
any indiscernible sequence 〈ān : n < ω〉, with `(ān) = `(y), we have that
{ϕ(x̄; ān) : n < ω} is consistent iff it is k-consistent.

Theorem G (Independence theorem, version of [13] Theorem 2.11). Let T be
simple and M |= T . Let A, B be sets such that tp(A/MB) does not fork over M .
Let p ∈ S(M). Let q be a nonforking extension of p over MA and r be a nonforking
extension of p over MB. Then q ∪ r is consistent, moreover q ∪ r is a nonforking
extension of p over MAB.

Definition 2.18. (Partitions)

(1) A partition of a Boolean algebra is a maximal set of pairwise disjoint
nonzero elements. We may also apply this to sequences with no repetitions.

(2) CC(B) = sup{µ+ : B has a partition of size µ }.
(3) When a ∈ B and c̄ = 〈cε : ε < µ〉 is a partition of B, we say that c̄

supports a when ε < µ =⇒ (cε ≤ a) ∨ (cε ≤ 1− a) (in B).
(4) When c̄ = 〈cζ : ζ < µ〉, d̄ = 〈dε : ε < µ〉 are partitions of B, say that d̄

refines c̄ if for each ε < µ, there is ζ < µ such that dε ≤ cζ .

We focus on completions of free Boolean algebras, mainly B = B1
2λ,µ,θ, the

completion of the Boolean algebra generated freely by 2λ independent partitions of
size µ, where intersections of fewer than θ nonzero elements are nonzero precisely
when no two are from the same partition. It will be convenient to describe such
objects as follows.

Definition 2.19. (Boolean algebra notation7) Let α be an ordinal, µ ≥ θ cardinals;
the existence statement is 2.21.

(1) Let FIµ,θ(α) =

{h : h is a function, Dom(h) ⊆ α, |Dom(h)| < θ and Range(h) ⊆ µ}
(2) B0 = B0

α,µ,θ is the Boolean algebra generated by:

{xf : f ∈ FIµ,θ(α)} freely subject to the conditions that
(a) xf1

≤ xf2
when f1 ⊆ f2 ∈ FIµ,θ(α).

(b) xf ∩ xf ′ = 0 if f, f ′ are incompatible functions.8

(3) B1
α,µ,θ is the completion of B0

α,µ,θ.

In 1., 2., 3. when θ = ℵ0 we may omit it.

Convention 2.20. We will assume that giving B determines a set of generators
〈xf : f ∈ FIµ,θ(α∗)〉, so also α∗, µ, θ.

7Following [48] VI §3 or [33]. “FI” recalls the simplest case θ = ℵ0, i.e. “finite intersection.”
8Note that ‘iff’ follows. It also follows that when j < θ, g =

⋃
i<j fi implies xg =

⋂
i<j xfi in

B0 and in B1.
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Fact 2.21. Assuming λ = λ<θ, B0
2λ,µ,θ and thus its completion exists.

Proof. See Engelking-Karlowicz [9], Fichtenholz and Kantorovich[12], Hausdorff
[14], or Shelah [48] Appendix, Theorem 1.5. �

Convention 2.22 (Conventions on notation). Some effort has been made to stan-
dardize notation as follows (these objects will be defined below, and will be subject
to further hypotheses). The reader can quickly scan the following list at this point,
and refer back to it later on as needed.

• The letters D, E always indicate a filter.
• When occurring together, the symbols D,D0,D∗, j, I are used in compliance

with Theorem F p. 10.
• B is a Boolean algebra; in the proofs, it is always a completion of a free

Boolean algebra, so of the form B1
2λ,µ,θ, as defined in 2.19.

• B+ is B \ {0}.
• When D is a filter on B, D+ = {a ∈ B : a 6= 0 mod D}.
• λ ≥ µ ≥ θ ≥ σ are suitable infinite cardinals (1.1), where:

– λ is the size of the index set for our background regular ultrafilter D1,
thus, we are interested in realizing types in simple theories over sets of
cardinality ≤ λ.

– µ ≤ λ, in the interesting case µ < λ: this is the range of the coloring
function we build on fragments of types in simple theories, and also
the size of a maximal antichain in our Boolean algebra B.

– θ (note σ ≤ θ ≤ µ) is the last parameter for the underlying Boolean
algebra B = B1

2λ,µ,θ, see 2.19.

– if σ is an uncountable supercompact cardinal then we build D∗ to be
σ-complete.

We have kept θ and σ separate due to their different roles and requirements,
but the casual reader will not lose much by assuming they are equal.
• Boldface letters c,x,b . . . are elements of B.
• Fraktur letters are generally used for objects of interest having multiple

parts, e.g. m for presentations, r for elements of the set of type fragments
Rm associated to a presentation m.
• f, f1, f2 . . . are elements of FIµ,θ(α∗), noting that xf ∈ B is an element

corresponding to the function f as in 2.19.
• Ω ⊆ [λ]<σ is stationary, which means cofinal if σ = ℵ0.
• u, v, w are subsets of λ; generally u ∈ Ω, so |u| < σ, whereas w, v may be

larger.
• ε, ζ, ξ are elements of µ, i.e. ordinals < µ.
• δm is an ordinal ≤ |T |, usually clM(∅) in the context of a presentation m.
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3. Definition of “explicitly simple”

In this section and the next we develop a new perspective on simplicity.
This section gives the first main definition of the paper: “the theory T is

(λ, µ, θ, σ)-explicitly simple.” The definition makes sense for any suitable four-tuple
of infinite cardinals λ ≥ µ ≥ θ ≥ σ > |T | in the sense of 1.1, and so varying these
cardinals will give information about the theory. The parameter we are mainly
interested in varying is µ. As mentioned, it will follow from the definitions in this
section that (λ, µ, θ, σ)-explicitly simple becomes weaker as µ increases, and that
every (λ, µ, θ, σ)-explicitly simple theory is simple, even when µ = λ.

Recall from 2.6 that when analyzing saturation of ultrapowers,  Loś’ theorem
guarantees that while projections of finite pieces of a type to a given index model
may each be consistent, their ‘relative position’ is a priori not preserved, so there
is no guarantee that the union of these pieces is consistent.

An informal model-theoretic description of this problem is the following. Sup-
pose, for clarity, that T is a theory whose only forking comes from equality, and
p is a type over a set of size λ. Suppose that finitely many finite pieces of the
type are moved by piecewise automorphisms of the monster model agreeing on
common intersections and introducing no new forking. Is the union of these au-
tomorphic images consistent? Not necessarily: consider the effect of piecewise
automorphisms f, g, h on three formulas {R(x, a, b)}, {R(x, b, c)}, {R(x, a, c)} in
the generic tetrahedron-free three-hypergraph where despite f(a) = h(a), f(b) =
g(b), g(c) = h(c) we may have R(f(a), g(b), h(c)). So instead we may try to gauge
the complexity of the ‘amalgamation problems’ arising under such partial auto-
morphisms by asking: can we color the pieces [p]<ℵ0 with no more than µ colors in
such a way that within each color class, after piecewise automorphism, the union is
always consistent? Note that when µ = λ there is trivially a coloring, as each piece
gets its own color. To make the question precise, one will want to add some clari-
fying hypotheses, such as closure conditions on the finite pieces, and in the general
case, some natural conditions on forking. After doing so, however, the question is
whether a non-trivial coloring exists (µ < λ).

Our picture is that all simple theories are in some sense close to what we see
in these generic hypergraphs: the noise arising from forking may be muted so
that the basic amalgamation problems controlling consistency rise to the surface.
Enumerating each p in such a way that an algebra defined on its indices captures
this additional noise, a precise general formulation of this partial-automorphism
condition “T is (λ, µ, θ, σ)-explicitly simple” may be given. The first main theorem
of the paper, which we prepare for here and prove in the next section, will prove
that we may essentially always find such a coloring when T is simple and µ+ = λ
(so using the first nontrivial number of colors), and moreover that this characterizes
simplicity of T .

Context 3.1. In this section we make the following assumptions. However, many
of the definitions make sense under weaker hypothesis.

(1) ℵ0 < σ ≤ θ ≤ µ < λ are suitable in the sense of 1.1. Note that the
definitions in this section will also make sense in the case where µ = λ.
The reader may wish to assume σ = θ.
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(2) T is a complete first order theory, with infinite models, and |T | < σ. The
definition of ‘explicitly simple’ will entail that T is simple, i.e. κ(T ) exists,
see Fact 3.8.

(3) C = CT is the monster model for T , of cardinality > λ.
(4) For transparency, T eliminates imaginaries, i.e. T = T eq∗ for some complete

theory T∗. In particular, we assume that whenever M |= T , every finite
sequence of elements of M is coded by some a ∈ Dom(M). Otherwise,
write T eq and Meq throughout.9

(5) “Independent” means nonforking and “dnf” means does not fork.

We begin by stating the organizing definition. We will define the key items “m
is a presentation,” “n refines m,” the set of type fragments “Rm” associated to m,
and “G : Rm → µ is an intrinsic coloring” over the course of the section, in 3.3,
3.6, 3.9, 3.11 respectively.

Definition 3.2 (Explicitly simple). Assume (λ, µ, θ, σ) are suitable. We say T
is (λ, µ, θ, σ)-explicitly simple if T is simple and for every N |= T , ||N || = λ,
p ∈ S(N) nonalgebraic,

(a) there exists a presentation m of p.
(b) for every presentation m of p, there is a presentation n of p refining m and

a function G : Rn → µ such that G is an intrinsic coloring of Rn.

Note that Definition 3.2 makes sense because we will prove the existence of
presentations m for all simple theories in Section 4. Why is simplicity of T assumed
in 3.2? See Discussion 3.12 below.

Next we define a presentation of a type. This will essentially be the data of a certain
enumeration of that type along with an algebra to capture nonforking and amalga-
mation bases. By ‘algebra’ on λ we mean a first order structure with functions and
no relations whose domain is λ. The closure of a set u ⊆ λ in such an algebra M,
denoted clM(u), is the substructure generated by u, so u ⊆ clM(u) = clM(clM(u)).
We also give a value to clM(∅).

Definition 3.3. Suppose we are given N |= T , ||N || = λ, and p ∈ S(N). A
(λ, θ, σ)-presentation for p is the data of an enumeration and an algebra,

m = (〈ϕα(x, a∗α) : α < λ〉,M)

where these objects satisfy:

(1) p = 〈ϕα(x; a∗α) : α < λ〉 is an enumeration of p, which induces an enumer-
ation 〈a∗α : α < λ〉 of Dom(N), possibly with repetitions, and with the a∗α
possibly imaginary.

(2) M is an algebra on λ with < θ functions.
(3) For any finite u ⊆ λ, | clM(u)| < σ. Thus, for any u ⊆ λ, if |u| < σ then
| clM(u)| < σ, and if |u| < θ then | clM(u)| < θ.

9For general T this assumption indeed makes things clearer, although for certain specific T

it may be more transparent to stick to elements. The use of imaginaries poses no problems in
ultrapowers, since ultrapowers commute with reducts, so there is no issue in passing to a larger

theory and proving realization of types there. We use imaginaries below in the definition of the

algebra, as 〈a∗α : α < λ〉 is allowed to be a sequence of imaginaries. However, by use of a more
complex indexing scheme and algebra, this assumption could straightforwardly be avoided, as is

done for the notationally simpler case of certain hypergraphs in [38].
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(4) clM(∅) is an infinite cardinal ≤ |T |, so an initial segment of λ.
M∗ := N � {a∗α : α < clM(∅)} is a distinguished elementary submodel of
N , and we require that p does not fork over M∗.

(5) Moreover, for each u ∈ [λ]<σ, Nu := N � {a∗α : α ∈ clM(u)} is an elemen-
tary submodel of N , and {ϕα(x, a∗α) : α ∈ clM(u)} is a complete type over
this submodel which dnf over M∗. (In particular, {ϕα(x, a∗α) : α ∈ clM(∅)}
is a complete type over M∗.)

(6) If α ∈ clM(u), β ≤ α, writing Aβ = {a∗γ : γ < β}, we have that
tp(a∗α, Aβ ∪M∗) does not fork over {a∗γ : γ ∈ clM(u) ∩ β} ∪M∗.

In a context where (λ, θ, σ) are given, “presentation” means “(λ, θ, σ)-presentation.”

Remark 3.4. From a presentation m, the following were unambiguously defined:
M∗ in item 4, clM(∅) in item 4, Nu in item 5 for any u ⊆ λ, Aα in item 6 for any
α < λ.10

Although we don’t pursue this approach in the present paper, it is worth noting
that in Definition 3.3, for certain less complicated theories (e.g. T with no function
symbols and trivial forking, as is the case in [38]) we might prefer to allow clM(u)
to be a set, rather than requiring it to be a submodel, and in particular to only
require of clM(∅) that the following observation holds.

Observation 3.5 ((Independence theorem over clM(∅)), see [13], 2.13, p. 17). By
the definition of presentation and the simplicity of T , the following will be true for
any presentation m. If ` = 1, 2 are such that:

(1) clM(∅) ⊆ u` ⊆ λ
(2) u` = clM(u`), thus u1 ∩ u2 = clM(u1 ∩ u2)
(3) A` = {a∗α : α ∈ u`} and A1 is independent from A2 over A1 ∩A2

(4) p` ∈ S(A`) dnf over {a∗α : α ∈ clM(∅)} and p` ⊇ p � {a∗α : α ∈ A`}
then p1 ∪ p2 is a consistent type which does not fork over {a∗α : α ∈ clM(∅)}.

Definition 3.6 (Refinements of presentations). Suppose we are given N |= T ,
||N || = λ, and p ∈ S(N). Let m = (ϕ̄m,Mm), n = (ϕ̄n,Mn) be presentations of p.
We say that n refines m when:

(a) ϕ̄m = ϕ̄n.
(b) clMm

(∅) = clMn
(∅).

(c) Mm ⊆Mn, i.e. the algebra of n extends that of m.

Since we allow the sequence 〈a∗α : α < λ〉 to contain repetitions, some care was
needed in the definition of the models Nu: the set {α : aα ∈ |Nu|} could have size λ,
although Dom(Nu) has cardinality < θ. Note also that the cardinal θ has two roles:
first, the size of clM(u) thus ||Nu|| is < θ, call this θ1, and second, in FIµ,θ(α∗) in
§7, call this θ2. We don’t separate them here, but what we use is θ1 ≤ θ2, and we
could have used σ = θ1 < θ2.

10Although it is already a global assumption for the section, note that together items 3, 4, and
5 and the fact that σ is strongly inaccessible imply that |T | < σ essentially, i.e. identifying two
non-logical symbols under the relation of equivalence modulo T . That is, if T is a complete first

order theory, T has a model M = M∗ of cardinality δ < σ, and E is the equivalence relation on
τ(T ) which identifies functions, resp. predicates, iff they have the same interpretation in M , then
we may conclude E has ≤ 2δ < σ classes.
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Let us emphasize that we have included simplicity of T in definition of explicitly
simple, to avoid trivial satisfaction of the hypotheses (see also Discussion 3.12
below).

Observation 3.7. Let T be a theory and let (λ, µ, θ, σ) be suitable infinite cardinals.
Suppose that for every N |= T of size λ every nonalgebraic type p ∈ S(N) has a
(λ, θ, σ)-presentation. Then T is simple.

A fortiori, if T is (λ, µ, θ, σ)-explicitly simple, then T is simple.

Proof. By the definition. �

Nonetheless, the assumption of simplicity is natural because we assume that p
does not fork over a small set. Recall that:

Fact 3.8. Let T be a complete theory. Then T is simple iff κ(T ) exists iff κ(T ) ≤
|T |+, where

κ(T ) = min{κ : if A ⊆ C, q ∈ S(A) then q dnf over some B ⊆ A, |B| < κ}.

Proof. See Theorems 3.4 and 3.6 of [13]. �

We now arrive to the right general analogue of a ‘fragment of a type.’ Its
ingredients are a set of indices u, a closed set w ⊇ u (containing e.g. forking
of u), the type of a model in the variables x̄w, and a type over that model in
the variables x, x̄w, satisfying some additional conditions suitable to automorphic
images of pieces of p.

Definition 3.9. (The set of quadruples Rm) Let m be a presentation of a given
type p = pm. Then R = Rm is the set of r = (u,w, q, r) such that:

(1) u ∈ [λ]<σ, w ∈ [λ]<θ and w = clM(w).
(2) u ⊆ clM(u) ⊆ w.
(3) q = q(xw) is a complete type in the variables xw such that:

(a) for any finite v ⊆ clM(∅), if M∗ |= ψ(a∗v) then ψ(xv) ∈ q.
(b) for any finite {α0, . . . , αn} ⊆ u, ∃x

∧
i≤n ϕα(x, a∗α) ∈ q.

(4) r = r(x, xw) is a complete type in the variables x, xw, extending

q(xw) ∪ {ϕα(x, xα) : α ∈ u}.

(5) if b
∗
w realizes q(xw) in CT and α < clM(∅) =⇒ b∗α = a∗α, then

(a) r(x, b
∗
w) is a type which does not fork over M∗ and extends p �M∗.

(b) if w′ ⊆ w is M-closed, CT � {b∗α : α ∈ w′} � CT and r(x, b
∗
w) � b

∗
w′ is

a complete type over this elementary submodel.
(c) if w′ ⊆ w is M-closed and α ∈ w′ then tp(b∗α, {b∗β : β ∈ w ∩ α}) dnf

over {b∗β : β ∈ w′ ∩ α}.

Note that for tuples in R, the type r is like p in the sense of being a nonfork-
ing extension of p � M∗ to a set including the domain of Nu, however this type
is not guaranteed to be “correct” on all of w. Since the definition Rm is fairly
unconstrained, in comparing elements of this set we will be most interested in cases
which avoid trivial inconsistency.

Definition 3.10. Suppose we are given r = 〈rt = (ut, wt, qt, rt) : t < t∗ < σ〉 from

Rm. Say that b
∗

= 〈b∗α : α ∈
⋃
t wt〉, with each b∗α ∈ C (possibly imaginary), is a

good instantiation of r when the following conditions hold.
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(1) α ∈ clM(∅) =⇒ b∗α = a∗α.

(2) for each t < t∗, b
∗
�wt realizes qt(xwt).

(3) for each t < t′ < t∗, if v ⊆ wt ∩ wt′ is finite, then:

(a) for each formula ψ(xv), ψ(b
∗
v) ∈ qt ⇐⇒ ψ(b

∗
v) ∈ qt′ .

(b) for each formula ψ(x, xv), ψ(x, b
∗
v) ∈ rt ⇐⇒ ψ(x, b

∗
v) ∈ rt′ .

(4) if β ∈ wt for some t < t∗ then

tp(b∗β , {b∗γ : γ ∈
⋃
s≤t

ws and γ < β}) dnf over {b∗γ : γ ∈ wt ∩ β}.

(5) for each t < t∗, if w′ ⊆ w and clM(w′) = w′ then CT � {b∗α : α ∈ w′} � CT
and rt(x, b

∗
w′) is a complete type over this elementary submodel which does

not fork over M∗ (noting that the domain of M∗ is {b∗α : α ∈ clM(∅)} by
the first item).

Now we arrive at the key point, coloring Rm with few (µ < λ) colors to capture
consistency.

Definition 3.11. Let m be a (λ, θ, σ)-presentation and R = Rm be from 3.9. Call
G : Rm → µ an intrinsic coloring of Rm if: whenever

r = 〈rt = (ut, wt, qt, rt) : t < t∗ < σ〉

is a sequence of elements of Rm and b
∗

= 〈b∗α : α ∈
⋃
t<t∗

wt〉 is a good instantiation
of r,

if G � {rt : t < t∗} is constant,
then the set of formulas

{ϕα(x, b∗α) : α ∈ ut, ϕα ∈ rt, t < t∗}
is a consistent partial type which does not fork over M∗.

Note that in 3.11, we ask for 〈b∗α : α ∈
⋃
t wt〉 when we only aim for consistency

of {ϕα(x, b∗α) : α ∈ ut, ϕα ∈ rt, t < t∗}, however meeting the requirements of the
larger type will affect the choice of b̄∗ thus of b̄∗ �

⋃
t ut.

We have now defined all terms necessary for ‘explictly simple,’ so the reader may
wish to re-read Definition 3.2. In the next section, we will use this definition to
characterize simplicity. 11

11Our proof in the next section will also work for the following slightly different definition,
by 4.2.2, which we include for interest. Note it entails that any reasonable enumeration may be

extended to a presentation, making explicit what is proved in 4.2, but does not say that every
presentation may be refined to one which works.

Definition 3.2A. Assume (λ, µ, θ, σ) are suitable. We might alternatively have said that T is
(λ, µ, θ, σ)-explicitly simple if T is simple and whenever we are given:

(i) N |= T , ||N || = λ, p ∈ S(N) nonalgebraic,
(ii) an enumeration 〈ϕα(x, a∗α) : α < λ〉 of p, where each a∗α is a singleton, possibly imagi-

nary, {a∗α : α < λ} = Dom(N), and
(iii) for some cardinal δm ≤ |T |, {a∗α : α < δm} is the domain of an elementary submodel of

N over which p does not fork, and {ϕα(x, a∗α) : α < δm} is a complete type over this

submodel

(iv) S is an algebra on λ with < σ functions, with {α : α < δm} closed under S,

there exist

(a) an algebra M ⊇ S of functions on λ such that clM(∅) = clS(∅) and (〈ϕα : α < λ〉,M)

form a (λ, θ, σ)-presentation m of p (thus the set of type fragments Rm associated to m

is well defined)
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Discussion 3.12. Why is simplicity of T assumed in 3.2? Suppose we were to
drop the assumption “|T | < σ” from 3.1 and also to drop the assumption “T is
simple” from Definition 3.2; call this modified definition 3.2∗. It would continue to
make sense to ask whether 3.2∗ holds for a given T and a given tuple of cardinals
(λ, µ, θ, σ). If e.g. |T | > λ, then it may be that there are no models of T of size λ and
so the hypotheses of 3.2∗ are trivially satisfied, even when T is not simple. However,
under our present hypotheses, existence of presentations for every nonalgebraic type
over every model N of T of size λ necessarily implies T is simple:

Observation 3.13. When λ ≥ θ ≥ σ > |T | and θ is regular (as holds by our
hypotheses 3.1 and 1.1), the statement that “for every N |= T , ||N || = λ, p ∈ S(N)
nonalgebraic, there exists a presentation m of p” implies “T is simple.”

Proof. This is because the definition of presentation, 3.3, requires that the type p
not fork over some N ′ ≺ N of size < σ ≤ λ. As any theory which is not simple has
a formula with the 2-tree property, Definition 2.16, we may build a model N |= T
of size λ as the union of an increasing continuous elementary chain 〈Mα : α < θ〉
and a nonalgebraic type p ∈ S(N) such that p forks over Mα for any α < θ. Since
θ is regular and θ ≥ σ > |T |, if A ⊆ N is any set of size < σ, and in particular if
A is an elementary submodel of N of size < σ, then A must be contained in some
Mα and so p will fork over A. �

Thus, to conclude Discussion 3.12, our current assumption “|T | < σ” implies that
the hypothesis “T is simple” in Definition 3.2 is redundant. However, since the
definition makes sense without the global hypothesis on σ, we prefer to leave this
hypothesis to emphasize that Definition 3.2 is meant to be a strengthening of sim-
plicity, even in contexts beyond that of this section.

Discussion 3.14 (A classification program). In the case of the random graph,
any function G will work. In the case of an arbitrary simple theory, it will be
shown in the next section that a suitable algebra and coloring can always be found
assuming µ+ = λ. This outlines a program of stratifying the simple theories by
determining which intermediate classes exist: that is, determine model-theoretic
conditions which will characterize explicit simplicity for arbitrary µ, or just e.g.
µ = ℵ0 or µ+ < λ. This work begins in [38].

(b) and a function G : Rm → µ

such that G is an intrinsic coloring of Rm.
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4. Proof that simple theories are explicitly simple

Theorem 4.10 in this section will prove that all simple theories T with |T | < σ
are explicitly simple for suitable (λ, µ, θ, σ), when λ = µ+, by judicious use of
Skolem functions, κ(T ), and the independence theorem. Recall that the a∗α may be
imaginaries. In cases where we have more information about the theory T , it is to
be expected that more direct arguments may be given. Is there a simple theory for
which µ+ = λ is necessary? See Section 10.

Context 4.1. In this section we assume:

(1) T is a simple theory with infinite models, T = T eq, in the signature τ .
(2) (λ, µ, θ, σ) are suitable in the sense of 1.1.
(3) |T | < σ ≤ θ, so in particular ℵ0 < σ.
(4) µ+ = λ.
(5) N |= T , |N | = λ.
(6) p ∈ S(N) is nonalgebraic, and p = p(x).

The main ingredient in the proof that every simple theory is explicitly simple
is the next Lemma 4.2. By essentially the same proof, we will show that under
our present hypotheses: presentations exist, moreover any reasonable enumeration
of a type given with some basic algebra may be extended to a presentation, and
moreover that any presentation may be extended to one whose set of type fragments
admits an intrinsic coloring.

Lemma 4.2. Let (λ, µ, θ, σ), T , N , p be as in 4.1, so µ+ = λ and T is simple.

(1) Whenever ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉 is an enumeration of p satisfying
(a) each a∗α is a singleton, possibly imaginary;
(b) {a∗α : α < λ} = Dom(N);
(c) for some cardinal δ ≤ |T |, {a∗α : α < δ} is the domain of an elementary

submodel M∗ of N over which p does not fork, and {ϕα(x, a∗α) : α < δ}
is a complete type over this submodel.

there exist an algebra M on λ and a function G such that m = (ϕ̄,M) is a
presentation, and G : Rm → µ is an intrinsic coloring.

(2) Suppose that in addition to ϕ̄ from (1) we are given an algebra S on λ with
< θ functions, such that {α : α < δ} is closed under the functions of S and
u ∈ [λ]<σ implies clS(u) ∈ [λ]<σ. Then there exist an algebra M⊇ S on λ
and a function G such that m = (ϕ̄,M) is a presentation, clM(∅) = δ, and
G : Rm → µ is an intrinsic coloring.

(3) Suppose that in addition to ϕ̄ from (1) we are given an algebra S on λ
such that (ϕ̄,S) is a (λ, θ, σ)-presentation, and δ = clS(∅). Then there
exist an algebra M ⊇ S on λ and a function G such that m = (ϕ̄,M)
is a presentation, clM(∅) = clS(∅) = δ, and G : Rm → µ is an intrinsic
coloring.

Proof. It will suffice to prove (2). Since T is simple, recall that κ(T ) exists and
κ(T ) ≤ |T |+, Fact 3.8. For clarity, rename δ as δm for the entirety of this proof.
(Our construction will ensure that clM(∅) = δ = δm.)

The construction will take several steps and include some intermediate definitions
and claims. First, we build a presentation by specifying an algebra M. Let

(4.1) X0 = { δ < λ : δ ≥ δm and N �{a∗α:α<δ}� N}.
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As λ is regular, X0 is a club of λ. We will construct M to satisfy the following
additional properties:

(1) clM(∅) = {α : α < clM(∅)} = {α : α < δm}, so in particular clM(∅) is a
cardinal ≤ |T |.

(2) if u ∈ [λ]<ℵ0 then | clM(u)| < σ, and if u ∈ [λ]<σ then also | clM(u)| < σ.
(3) for each v ∈ [λ]<θ, clM(v) ∈ Y0 where

Y0 ={ w ⊆ λ : |w| < θ, {α : α < clM(∅)} ⊆ w,
(∀δ ∈ X0)

(
N �{a∗α : α∈w∩δ}� N

)
,

(α ∈ w) =⇒ tp(a∗α, {a∗β : β < α}, N) dnf over {a∗β : β ∈ w ∩ α} }.

(4) if w ∈ [λ]<θ and w = clM(w) then, writing Z0 = {α : α < clM(∅)} ∪X0:
(i) α ∈ w ⇐⇒ α+ 1 ∈ w
(ii) α ∈ w =⇒ min(Z0 \ α) ∈ w ∧ sup(Z0 ∩ (α+ 1)) ∈ w
(iii) α ∈ w =⇒ α ∩ w ⊆ clM({α} ∪ (w ∩ µ))
(iv) if v ∈ [w]<ℵ0 then (∃α ∈ w)({a∗β : β ∈ v} ⊆ a∗α).

(5) M contains functions Fi : λ× λ→ λ, i = 1, 2 such that:
(i) if α ≥ µ then 〈F1(α, β) : β < α〉 lists µ without repetition; otherwise,

it lists |α|.
(ii) 〈F2(α, β) : β < |α| ≤ µ〉 lists {γ : γ < α} without repetition.

(iii) β < α =⇒ F2(α, F1(α, β)) = β.
(6) M⊇ S.

In our construction of such an M we will do a little more than is necessary. The
first collection of functions we add to the algebra are:

(A) Let δm = δ be as in (1)(c) of the Lemma. For each ε < δm, let Fε : λ → λ
be the constant function equal to ε. This will ensure that12 {α : α < δm} ⊆
clM(∅).

(B) Recalling κ(T ) ≤ |T |+, for each ε ≤ |T | add functions F 0
ε : λ→ λ such that

F 0
ε (α) ≤ α and tp(a∗α, Aα) dnf over {a∗F 0

ε (α) : ε < |T |}.
(C) For each ε < |T | choose functions F 1

ε : λ → λ such that 〈F 1
ε (α) : ε < |T |〉

enumerates the elements of acleq(a∗α), possibly with repetition.
(D) We include all functions from S, which, without loss of generality, are

denoted by symbols distinct from all other functions we add to M.
(E) It will be useful to add a family of Skolem functions which are guaranteed

to choose the minimum witness with respect to our given enumeration 〈a∗α :
α < λ〉. Fix some enumeration 〈ϕε : ε < |T |〉 of the L-formulas. For each
ε < |T | choose functions F 2

ε : λ→ λ such that F 2
ε (α) is the minimal β such

that a∗β is a witness to ϕε(x, a
∗
α), if this is well defined and nonempty, and

0 otherwise. (Alternately, we could consider F 2
ε as a kε-place function, but

this is not necessary as we have coded finite sets in condition 4.(iv).)
(F) For each ε < |T |, define F 3

ε : λ → λ so that F 3
ε (α) = β if ϕε = ϕ(x, y, a∗α)

is an equivalence relation with finitely many classes and ϕ(x, a∗β , a
∗
α) ∈ p,

and F 3
ε (α) = 0 otherwise.

12The reader may prefer to also add a single constant, 0.
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(G) We’d like to ensure that the type restricted to closed sets is complete.13 For
each formula ψ(x, ȳ) in the signature τ , let Gψ be a new function of arity
`(ȳ) defined so that: Gψ(αi0 , . . . , αik−1

) = β if β < λ is the least ordinal
such that ϕβ(x, a∗β) is equivalent mod T to either ψ(x, a∗αi0 , . . . , a

∗
αik−1

) or

its negation. Since N is a model and p is complete, this is well defined.

Next we add some families of functions which will help in partitioning our even-
tual Rm into equivalence classes which are sufficiently tree-like to allow inductive
amalgamation, since we have made no particular assumptions about the theory
(beyond simplicity) which would otherwise guarantee such a coherence of patterns.
The functions in family (I) use λ = µ+ in an essential way.

(H) Ji : λ → λ, i = 1, 2, 3 where J1(α) = α + 1 and J2(α) = min(Z0 \ α) and
J3(α) = sup(Z0 ∩ (α+ 1)).

(I) (recalling λ = µ+) Fi : λ× λ, i = 1, 2 such that:
(1) if α ≥ µ then 〈F1(α, β) : β < α〉 lists µ without repetition; otherwise,

let it list |α|.
(2) 〈F2(α, β) : β < |α| ≤ µ〉 lists {γ : γ < α} without repetition.
(3) β < α =⇒ F2(α, F1(α, β)) = β.

So for each w ∈ [λ]<θ, α ∈ w and β ∈ α ∩ w implies F1(α, β) ∈ w ∩ µ and
β = F2(α, F1(α, β)).

Note that 〈F1(α, β) : β < α〉 maps α into µ, whereas 〈F2(α, β) : β < α〉 maps a
subset of µ to α, so the third condition is natural. Note also that by choice of J1,
J2 and unions of elementary chains we have that w ∈ Y0 implies sup(w) ∈ X0.

Let M be the algebra including the functions from (A) through (I) above. Let
us check that the numbered conditions of the claim are satisfied:

1. We ensured with family (A) that {α : α < δm} ⊆ clM(∅). Let us check
that equality holds by examining the functions of M. The functions in
family (B) are nonincreasing so will not change an initial segment. The
functions in families (C) and (F) will map tuples from {α : α < δm} back
to this set as M∗ � N and T = T eq. As for family (D), we required that
{α : α < δm} be closed under the functions of S. The new Skolem functions
in (E) were chosen to give the least witness in the ordering inherited from
the enumeration, and M∗ � N . As for the functions of (G), we assumed to
begin with that p � M∗ is complete. Recalling the definition of Z0 in item
(2) of the claim, the functions J1 and J2 are equal on clM(∅) and act by
α 7→ α+ 1. Since clM(∅) is a limit ordinal, indeed a cardinal this poses no
problem. Finally, as | clM(∅)| < σ ≤ µ, the functions Fi on clM(∅)×clM(∅)
will just list ordinals less than clM(∅). This proves that clM(∅) = δm.

2. Immediate, as u ∈ [λ]<σ implies clS(u) ∈ [λ]<σ and |M \ S| ≤ |T | < σ.
3. Given v ∈ [λ]<θ, we need to check that w = clM(v) ∈ Y0. We know |w| < θ,

and {α : α < clM(∅)} ⊆ w by the addition of constant functions in item
(A). The nonforking condition

(α ∈ w) =⇒ tp(a∗α, {a∗β : β < α}, N) dnf over {a∗β : β ∈ w ∩ α}

13Up to this point, if α ∈ w, our restricted type will include ϕα(x, a∗α) but won’t necessarily
decide the value of some other formula ψ(x, a∗α) with the same parameter unless there is β ∈ w
such that ϕβ = ψ or ¬ψ and a∗β = a∗α.
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is guaranteed by the functions in item (B). Finally, why should

δ ∈ X0 =⇒
(
N �{a∗α : α∈w∩δ}� N

)
?

Suppose we don’t get an elementary submodel, i.e. there is a formula with
parameters in {a∗α : α ∈ w ∩ δ} which has a solution in N but not in
this submodel. However, we chose the Skolem functions in (E) to select the
minimum possible witness. Since δ ∈ X0, the minimal witness must be of
index β < δ, contradiction.

4. Conditions (i)-(ii) are ensured by the functions in family (H). For item (iii),
recall from family (I) that for each w ∈ [λ]<θ, α ∈ w and β ∈ α∩w implies
F1(α, β) ∈ w ∩ µ and β = F2(α, F1(α, β)). For (iv) remember that we
assumed that T eliminates imaginaries; in fact, in item (F) we have coded
all finite sets.

5. Ensured by the functions of family (I).
6. We assumed M⊇ S.

Let us check that (ϕ̄,M) is a presentation, by checking the requirements of
Definition 3.3. 3.3.1 was assumed in the claim. 3.3.2-3 were just verified in item 2.
For 3.3.4, the first line was verified in item 1. M∗ follows by the hypothesis 1(c) of
the Lemma and the fact that clM(∅) = δm. 3.3.5 was ensured by the functions of
families (E), (G) respectively. Finally, 3.3.6 follows by the functions in (B). This
shows that m = (ϕ̄,M) is indeed a presentation.

(4.2) Fix this presentation m for the remainder of the proof.

Let Rm be the associated set of quadruples given by 3.9. We now work towards
the definition of the coloring G. In particular, we look for underlying trees. This
will require several definitions. Since we are assuming |T | < σ ≤ θ, we have θ ≥ ℵ1

always. We could avoid referencing the order topology by assuming θ > ℵ1.

Definition 4.3. For α an ordinal and w ⊆ α, write w for its topological closure,
i.e. closure with respect to the order topology.

Definition 4.4. Recalling Y0 from condition 1. on the algebra above14 define Υ1 ⊆
Y0 to be the set

{w ∈ [λ]<θ : w = clM(w) and if v ∈ [w]<ℵ0 then (∃α ∈ w)({a∗β : β ∈ v} ⊆ a∗α)}.

By regularity of λ > ℵ1, Υ1 is cofinal in the natural partial order, and moreover
is stationary. Since we constructedM so that the closure of a set clM(u) ∈ Y0, and
in addition we have coding of finite sets, clM(u) ∈ Υ1 for each u ∈ Ω.

Definition 4.5. Define an equivalence relation E on Υ1 by w1 E w2 when:

(1) {w1, w2} ⊆ Υ1.
(2) otp(w1) = otp(w2) and otp(w1) = otp(w2).
(3) w1 ∩ µ = w2 ∩ µ.
(4) (a) if h : w1 → w2 is order preserving onto then the map a∗α 7→ a∗h(α) is

elementary.
(b) if h : w1 → w2 is order preserving onto then the map a∗α 7→ a∗h(α) is

elementary.
(5) If α ∈ w1 \ µ and β ∈ w1 ∩ µ then F1(α, β) = F1(h(α), h(β)).

14and the fact that the a∗α may be imaginary, so code finite sets.
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Observation 4.6. E is an equivalence relation with µ classes.

Proof. There are ≤ θ ≤ µ choices of order type in both clauses of (2). For (3),
recall by 1.1(b) that µ<θ = µ. Then for (4), let ρ = |w| or = |w|, so ρ < θ since
θ is regular. Let v be otp(w) and fix an order preserving bijection π : v → w.
As an upper bound, we count the v-indexed sequences of types 〈pi : i ∈ v〉 where
pi = pi(xπ(i), {a∗j : j ∈ w ∩ π(i)}). For each i ∈ v (without loss of generality

i ≥ |T |), suitability 1.1(c) implies that i < θ =⇒ 2|i| < µ, so there are < µ choices
for pi thus no more than θ · µ ≤ µ such sequences. The case where v = otp(w) is
analogous. Finally, for (5): if α ∈ w1 \ µ then 〈F1(α, β) : β < α〉 lists µ without
repetition. So for each α ∈ w1 (of which there are < θ) and each β ∈ w1 ∩ µ (of
which there are < θ) we need to know the value of F1(α, β) ∈ µ. Since µ<θ = µ,
(5) requires no more than µ classes. This completes the proof. �

Claim 4.7 (“Treeness”). Whenever wEv (so w, v are clM-closed), we have:

(1) w ∩ v is clM-closed.
(2) (“treeness”) w ∩ v E w (and w ∩ v E v).

Proof. By definition of E, w∩µ = v∩µ. Suppose we have µ ≤ β < α with α ∈ w∩v
and β ∈ w. Recalling the functions from family (I), β′ := F1(α, β) ∈ w ∩ µ
and so β′ ∈ v since w and v agree on µ. As v = clM(v), F2(α, β′) ∈ v and
F2(α, β′) = F2(α, F1(α, β)) = β by definition of F1, F2. This shows (2.): w∩v E w,
and E v. Finally, closure (1.) is immediate because the algebra consists of functions
and so the nonempty intersection of two clM-closed sets will be closed under these
functions. �

We will refer to 4.7(2) as “by treeness” in the rest of the proof. We now define
the coloring G : Rm → µ.

Claim 4.8. There is G : Rm → µ so that G(u,w, q, r) = G(u′, w′, q′, r′) implies:

(i) w/E = w′/E, where E is the equivalence relation from 4.5.
(ii) β ∈ w ∩ w′ =⇒ otp(β ∩ w) = otp(β ∩ w′).

(iii) if h : w → w′ is order preserving onto then h maps u to u′.
(iv) if h : w → w′ is order preserving onto then h maps q to q′ and r to r′ in

the obvious way.
(v) Range(G) ⊆ µ.

Proof. For (i), recall that E has µ equivalence classes. Now (ii) will follow by the
“treeness” condition 4.7. Recall µ = µ<θ by 1.1(b). So for (iii), there are indeed
no more than µ ways to choose a sequence of ordinal length α < σ ≤ θ from
a sequence of length < θ. For (iv), as in 4.6, there are likewise (relatively) few
equivalence classes of types recalling α < θ =⇒ 2|α| ≤ µ by 1.1(c). (Note that q
need not be the type of {a∗α : α ∈ w}.) So each condition requires no more than µ
classes, and then (v) follows. �

For the rest of the proof, fix G satisfying 4.8. Fix r̄ = 〈rt = (ut, wt, pt, rt) : t <
t∗ < σ〉 from Rm. Let w =

⋃
t wt. Suppose that G � r̄ is constant and that b̄∗w is a

good instantiation of r̄ in the sense of 3.10. Recall that this definition ensures that
{b∗α : α < clM(∅)} = Dom(M∗), and that if β ∈ wt then

(4.3) tp(b∗γ , {aβ : β ∈
⋃
ξ wξ ∩ γ}) dnf over {b∗β : β ∈ wt ∩ γ}.

Prior to the main amalgamation, let us record a case of good behavior.
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Claim 4.9. Suppose γ ∈
⋂
t<t∗

ut. Then the set

{ϕ(x, b
∗
v) : there is t < t∗ s.t. v ∈ [wt ∩ β]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt)}

is a partial type which does not fork over M∗.

Proof. This is simply because the treeness condition 4.7 along with conditions (i)-
(iv) from the definition of G in 4.8 guarantee that for any t < t′ < t∗, there is
an order preserving map h : wt → wt′ , and this map is constant on the common
initial segment of the wt’s. Thus for some, equivalently every, t < t∗ the type in
the statement of the claim is simply the partial type

{ϕ(x, b
∗
v) : v ∈ [wt ∩ β]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt)}

which is consistent and does not fork over M∗ by definition of R. �

It remains to show that the set of formulas

(4.4) {ϕα(x, b∗α) : t < t∗, α ∈ ut}
is consistent. Let u =

⋃
t ut and recall w =

⋃
t wt, so {α : α < clM(∅)} ⊆ w. For

each γ ≤ λ, define:

(4.5) r∗γ = {ϕ(x, b
∗
v) : there is t < t∗ s.t. v ∈ [wt∩γ]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt)}

We prove by induction on γ ≤ λ that r∗γ is a consistent partial type which does
not fork over {a∗α : α < clM(∅)} = {b∗α : α < clM(∅)}. Clearly this will imply that
equation (4.4) is consistent.15

γ = 0: Trivial.
γ limit: Consistency is by compactness, and nonforking is by the finite character

of nonforking in simple theories.
γ = β + 1: If β /∈

⋃
t wt, there is nothing to show.

Suppose then that β ∈ wt for at least one t. We can write t∗ as the disjoint
union of two sets

Z0 := {t < t∗ : β /∈ wt}, Z1 := {t < t∗ : β ∈ wt}
where, by assumption, Z1 is nonempty. For i ∈ {0, 1} we define:

riγ := {ϕ(x, b
∗
v) : there is t ∈ Zi s.t. v ∈ [wt ∩ γ]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt)}

Now both r0
γ , r1

γ are consistent partial types which moreover do not fork over M∗:

the case of r0
γ is by inductive hypothesis (it is contained in r∗β by definition of Z0),

and the case of r1
γ is 4.9. If Z0 is empty, there is nothing to amalgamate, so we are

finished. If not, define W ⊆ β to be:

W := W0 ∩W1 where W0 :=
⋃
{wt : t ∈ Z0} ∩ γ, W1 :=

⋃
{wt : t ∈ Z1} ∩ γ.

Let us show that

C � {b∗γ : γ ∈W} � C.(4.6)

By 3.10.5, to prove equation (4.6) it will suffice to prove

W = clM(W ).(4.7)

15We are actually proving something stronger than explicit simplicity as we will have consis-
tency over all the w’s, not just the u’s.
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Suppose equation (4.7) did not hold. Then for some finite tuple of elements
β0, . . . , βn ∈ W (of an appropriate length) and one of the functions of the alge-
bra, call it X, X(β0, . . . , βn) = β∗ /∈ W . As t < t∗ =⇒ wt = clM(wt), β∗ ∈ wt
for each t < t∗. Now for any ws, wt with s ∈ Z0 6= ∅, t ∈ Z1 6= ∅, we have that
β∗ ∈ ws ∩ wt while by assumption, β ∈ wt and β /∈ ws ∩ wt. If β∗ > β, this
contradicts treeness, 4.7. However, if β∗ ≤ β and β∗ ∈

⋃
t<t∗

wt then necessarily

β∗ ∈W , also a contradiction. This completes the verification of equation (4.7) and
so also of equation (4.6).

We now check nonforking. By 4.7, W1 = wt ∩ γ for some, equivalently every,
t ∈ Z1 6= ∅. So by equation (4.3), B1 = {b∗α : α ∈ W1} is independent from
B0 = {b∗α : α ∈ W0} over B = {b∗α : α ∈ W}. B is the domain of an elementary
submodel of C by equation (4.6).

Let δ = sup(W ). From equations (4.7) and (4.6) and Definition 3.10(5), px :=
r∗δ � B is a complete type over a model, which does not fork over M∗. By inductive
hypothesis, r0

γ and r1
γ are consistent extensions of px to B0, B1 respectively, which

do not fork over M∗. If necessary, we can complete r0
γ , r

1
γ . Apply the independence

theorem (Theorem G p. 13) to complete the induction.
This proves that m, G satisfy 3.11 and completes the proof of Lemma 4.2. �

We arrive at the first main theorem of the paper:

Theorem 4.10 (Simple is explicitly simple). Suppose that T is a complete first
order theory. Suppose that (λ, µ, θ, σ) are suitable cardinals in the sense of 1.1 and
in addition:

(a) |T | < σ
(b) µ+ = λ.

Then T is simple if and only if T is (λ, µ, θ, σ)-explicitly simple.

Proof. If T is simple, apply Lemma 4.2. In the other direction, by Observation 3.13
and hypothesis (a), if T is (λ, µ, θ, σ)-explicitly simple then it is simple. �

Note that by the remarks after Definition 1.1, this gives a characterization of
simplicity in ZFC:

Corollary 4.11. T is simple iff T is (λ, µ, θ, σ)-explicitly simple for some (every)
suitable tuple (λ, µ, θ, σ) satisfying |T | < σ and µ+ = λ.

Proof. The existence of such suitable tuples is provable in ZFC, consider e.g. σ = θ
regular and > |T |, µ = (2θ)+, and µ+ = λ. �

What did we use in the characterization of Theorem 4.10?
First, note that to apply the independence theorem in the inductive step in

Lemma 4.2 we needed that C � {bγ : γ ∈ X} � C; the addition of clM ensured
that this would happen. More precisely, we used that given {rt : t < t∗ < σ} and
β + 1 = γ < λ,

(1) for each rt = (ut, wt, qt, rt), wt = clM(wt).
(2) for each β < λ, really β ∈

⋃
t wt, C � {bγ : γ ∈ W} � C where W is the

intersection of W0 :=
⋃
{wt : t < t∗, β /∈ wt} ∩ γ, W1 :=

⋃
{wt : t < t∗, β ∈

wt} ∩ γ.

For some theories no problem would arise, e.g. when every type is stationary, so
no algebra would be necessary.
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Second, it is natural to ask about Theorem 4.10 when the hypothesis (a) µ+ = λ
is replaced by µ = λ. If |T | < σ, one can satisfy the definition of presentation
by simply choosing the algebra to contain Skolem functions and functions to cover
nonforking (a small part of what was done in the argument above). Provided
the cardinals λ, µ, θ, σ are such that the corresponding Rm has cardinality λ, the
existence of the required G with range λ = µ may then be trivially satisfied by
assigning each element of R its own color. Thus Theorem 4.10 remains true when
“µ+ = λ” is replaced by µ = λ and Rm has cardinality λ.

The choices for how to present the parameters 〈a∗α : α < λ〉 have different
advantages. Listing imaginaries, as we currently do, makes the presentation of
formulas much more compact but introduces a lot of redundancy: each singleton
c ∈ Dom(N) appears in cofinally many tuples. This doesn’t interfere with the
nonforking condition in 3.11, as we assumed µ+ = λ. To show (λ, µ, θ, σ)-explicitly
simple for µ+ < λ, however, would require addressing this, perhaps by listing the
domain of N in terms of actual singletons.

Discussion 4.12. We have stated Theorem 4.10 as “T simple iff T explictly sim-
ple,” not “T simple iff T eq explicitly simple,” reflecting our claim that using imag-
inary elements is purely presentational. To see this, notice that throughout the
entire proof of this theorem we could have considered each a∗α (or b∗α) as a finite set
with respect to some fixed background enumeration of the singletons of Dom(N),
and considered the corresponding variable xα as the corresponding finite sequence
of variables. In this setup the only essential addition would be an additional coding
function, i.e. an enumeration, translating between the finite set coded by index α
and vice versa, so as to be able to define and apply the functions of the algebra M.
Such a coding function could alternately be subsumed into the basic algebra S, much
as we subsume Skolem functions in 6.1.

Finally, as this discussion reflects, Theorem 4.10 raises the question of the nature
of an intrinsic coloring in certain examples, since we have given only a proof of its
existence. One central example, the generic k-ary hypergraphs omitting complete
sub-hypergraphs on n vertices [15], will be developed in our paper [38].
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5. Existence of optimal ultrafilters

Convention 5.1. In this section we assume:

• λ, µ, θ, σ are suitable cardinals.
• B = B1

2λ,µ,θ.

• σ is ℵ0 or is uncountable and supercompact, see 5.2.
• All ultrafilters D∗ on B mentioned in this section are σ-complete; we may

repeat this for emphasis.
• When V ⊆ 2λ, we write B � V to mean the subalgebra generated by {xf :
f ∈ FIµ,θ(V)}.

Readers familiar with normal ultrafilters may wish to skip 5.2, 5.3 and 5.4, starting
again with 5.5.

Definition 5.2. (see e.g. Jech p. 137)

(1) Call the uncountable cardinal σ supercompact if for any A, |A| ≥ σ there
exists an ultrafilter E on I = [A]<σ which is:
(a) σ-complete.
(b) fine, meaning that in addition for any a ∈ A, {X ∈ I : a ∈ X} ∈ E.
(c) normal, meaning that in addition E is closed under diagonal intersec-

tions: if {Xa : a ∈ A} ⊆ E then {X ∈ I : X ∈
⋂
a∈X Xa} ∈ E.

(2) If in 1. A = σ and E is normal on I = [σ]<σ, the set {X ∈ I : X is an
ordinal < σ} ∈ E, so we may say “E is an ultrafilter on σ.”

Fact 5.3. If E is a normal ultrafilter on κ, then E contains every closed unbounded
subset of κ. Moreover any f : κ → κ which is regressive on a set in E must be
constant on a set in E.

Observation 5.4. Let χ be large enough. Fix A = (H(χ), ε) and let A = H(χ).
Let J be the set [A]<σ and let E be a normal ultrafilter on J . Then the set I :=
{X ∈ J : X is an elementary submodel of A} ∈ E.

Proof. Let 〈aα : α < κ〉 be an enumeration of A and expand A to A∗ by Skolem
functions which choose the least witness according to this enumeration. Th(A∗)
eliminates imaginaries and has Skolem functions. For each of the countably many
Skolem functions g, define fg : A → A by: fg(X) is the least β such that bβ ∈ X
but g(bβ) /∈ X, if this exists, and otherwise fg(X) = X. If fg(X) 6= X on an E-large
set, then it is regressive on an E-large set, and so by normality constant and equal
to some b ∈ A on an E-large set, contradicting the fact that E is fine. So it must
be that fg(X) = X on an E-large set Yg for each of the countably many Skolem
functions g, and since E is σ-complete,

⋂
g Yg ∈ E is the desired set of elementary

submodels. �

Definition 5.5 (Continuous sequence). Let b̄ = 〈bu : u ∈ [λ]<σ〉 be a sequence
of elements of B+. We call b̄ continuous when it is monotonic, meaning u ⊆ v
implies bu ≥ bv, and in addition for all infinite u ∈ [λ]<σ,

bu =
⋂
{bv : v ⊆ u, |v| < ℵ0}.

So if σ = ℵ0 then “continuous” is just “monotonic.”

Definition 5.6 (Support of a sequence). Let b = 〈bu : u ∈ [λ]<σ〉 be a sequence
of elements of B = B1

2λ,µ,θ.
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(1) We say X is a support of b in B when X ⊆ {xf : f ∈ FIµ,θ(α)} and for
each u ∈ [λ]<ℵ0 there is a maximal antichain of B consisting of elements of
X all of which are either ≤ bu or ≤ 1− bu. Though there is no canonical
choice of support we will write supp(b̄) to mean some support.

(2) When a support supp(b̄) is given, write

B+
supp(b̄),µ,θ

to mean B+
α∗,µ,θ

where α∗ < 2λ is minimal such that
⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α∗.

(3) When V ⊆ 2λ, we say “b̄ is supported by B � V” to mean that there is a
support for b̄ contained in B � V, recalling the notation from 5.1.

We emphasize that the support need not be unique. In the next definition, λ, µ, θ
come from the Boolean algebra B and σ comes from the sequence b̄.

Definition 5.7 (Key Property). Let (λ, µ, θ, σ) be suitable, and B = B1
2λ,µ,θ. Let

b̄ = 〈bu : u ∈ [λ]<σ〉 be a continuous sequence of elements of B+. We say b̄ has
the (λ, µ, θ, σ)-Key Property when there exist

(a) V ⊆ 2λ, |V| ≤ λ, such that a support of b̄ is contained in B � V
(b) a closed unbounded Ω∗ ⊆ [λ]<σ

such that for every α < 2λ with V ⊆ α, there is a sequence

b̄′ = b̄′(α) = 〈b′α,{i} : i < λ〉

of elements of B+ which generates a multiplicative refinement 〈b′α,u : u ∈ [λ]<σ〉
of b̄ such that for each f ∈ FIµ,θ(α), and each u ∈ Ω∗, if xf ≤ bu then we may
extend f ⊆ f ′ ∈ FIµ,θ(2

λ) so that xf ′ ≤ b′u.

Definition 5.8. Assume λ, µ, θ, σ are suitable. D∗ is (λ, µ, θ, σ)-optimal if:

• D∗ is a σ-complete ultrafilter on B = B1
2λ,µ,θ, and

• whenever b̄ = 〈bu : u ∈ [λ]<σ〉 is a continuous sequence of elements of
D∗ with the (λ, µ, θ, σ)-Key Property there is a multiplicative sequence b̄′ =
〈b′u : u ∈ [λ]<σ〉 of elements of D∗ which refines b̄.

Theorem 5.9. Suppose (λ, µ, θ, σ) are suitable, σ > ℵ0 is supercompact, and B =
B1

2λ,µ,θ.

(1) There exists a (λ, µ, θ, σ)-optimal ultrafilter D∗ on B.
(2) Let D∗0 be a σ-complete filter on B generated by < 2λ sets, or16 just gen-

erated by a set supported by B � V, V ⊆ 2λ, |V| < 2λ. Then there exists a
(λ, µ, θ, σ)-optimal ultrafilter D∗ on B which extends D∗0.

Proof. Clearly it suffices to prove the second. Let D∗0 be given. Fix a set X∗ ⊆ D∗0 of
generators for this filter, with |X∗| < 2λ. Choose V∗ ⊆ 2λ, |V∗| < 2λ which contains
a support for X∗. Without loss of generality, V∗ = α∗ < 2λ (i.e. if necessary, use a
permutation of 2λ mapping the relevant support into an ordinal < 2λ). We will use
X∗, α∗ in our inductive construction. If no D∗0 is given, let X∗ = ∅ and let α∗ = 0.

There are at most 2λ = |λB| sequences b̄ with the Key Property. For each such
b̄, fix V ∈ [2λ]≤λ and Ω∗ ⊆ [λ]<σ satisfying 5.7(a)-(b). Choose an enumeration of
these tuples

s̄ = 〈(b̄δ,Vδ,Ωδ) : δ ∈ S〉
which satisfies

16Note that if µ < λ then µ+ < 2λ, a case we will use.
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• S ⊆ {δ < 2λ : δ > α∗ and δ is divisible by λ}.
• Vδ ⊆ δ for δ ∈ S.

For each δ ∈ S, let b̄′δ be a multiplicative refinement of b̄δ as guaranteed by
Definition 5.7 in the case where α of 5.7 is replaced by δ. Without loss of generality17

b̄′δ is supported by B � (δ + λ).
Let A, I0, E be given by 5.4, so each N ∈ I0 is an elementary submodel of A of

size < σ. Since E is fine, we may assume that on an E-large set I ⊆ I0 the elements
λ, µ, θ, σ,B, s̄ belong to N . When N ∈ I and λ, σ, δ,Ωδ ∈ N , N |= “Ωδ is closed
and unbounded in [λ]<σ”, so from our external point of view, N ∈ I and δ ∈ S ∩N
implies λ ∩N ∈ Ωδ.

Since each N is small it will (from an external point of view) only contain a
small part of each of these objects. Both λ ∩ N and S ∩ N are of size < σ.
Given N and δ ∈ S ∩N , bδ,λ∩N is (from an external point of view) an element of
〈bδ,u : u ∈ [λ]<σ〉, which we may call the “canonical element” for the sequence b̄δ
as seen by N .

Fix for awhile N ∈ I. Let dN = ∩{d : d ∈ N ∩X∗}, so dN ∈ D∗0 is supported
by B � α∗.

Enumerate S ∩N = 〈δε : ε < εN 〉 in increasing order, for some limit ordinal
εN < σ. Working in the large background model, by induction on ε ≤ εN we will
build an increasing continuous sequence 〈fε = fN,δε : ε ≤ εN 〉 such that:

(a) each fε ∈ FIµ,θ(δε), so necessarily xfε ∈ B+.
(b) if γ < ε ≤ εN then fγ ⊆ fε, and if ε ≤ εN is a nonzero limit ordinal, then

fε =
⋃
{fγ : γ < ε}, i.e. the sequence is continuous and increasing.

(c) if ε = γ + 1 < εN then either

xfε ≤ bδγ ,λ∩N

or else xfε is disjoint to some bδγ ,v where v ∈ [λ ∩N ]<ℵ0 .
(d) if ε = γ + 1 < εN and xfε ≤ bδγ ,λ∩N , then in addition xfε ≤ b′δγ ,λ∩N .

(e) xf0 ≤ dN .

If ε = 0, choose f0 to satisfy (a) and (e), recalling that all elements of S are ≥ α∗.
Otherwise, arriving to ε, let g =

⋃
γ<ε fε. If ε = εN or a nonzero limit ordinal, this

suffices, so let fε = g. Otherwise, suppose ε = γ + 1, so g = fγ ∈ FIµ,θ(δγ) by
hypothesis (b). As observed above, working in B we see that the canonical object
for the sequence bδγ in N , bδγ ,λ∩N , is an element c of B which is, by choice of S,
supported by B � δγ . So we may extend g to g′ ∈ FIµ,θ(δγ) such that either xg′ ≤ c
or xg′ ∩ c = 0. (Either xg ∩ c = 0 already, or not, and if not we can find g′ so that
xg′ ≤ c using the fact that b̄δγ is continuous; so clause (c) holds.) Since we had

chosen b̄′δγ to satisfy the Key Property and to be supported by B � (δγ + λ), and

δγ + λ ≤ δε by choice of S, the Key Property ensures that if xg′ ≤ c = bδε,λ∩N ,
then we may extend g′ to g′′ ∈ FIµ,θ(δε) so that

xg′′ ≤ b′δε,λ∩N .

Let fε = g′′. This completes the inductive successor step and therefore the con-
struction. Let fN = fεN .

Having constructed fN for each N ∈ I, we now consider the Boolean algebra
B. Each fN corresponds to the nonzero element xfN ∈ B+. Observe that for

17We may always appeal to an automorphism of B which is the identity on B � δ to find a

sequence of appropriate support, as e.g. in Observation 9.2 below.
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each N ∈ I we may choose a σ-complete ultrafilter DN on B which contains xfN .
Moreover for each N , the choice of xf0 in condition (e) above ensures that DN

contains {d : d ∈ N ∩X∗}.
In the remainder of the proof, we will build the optimal ultrafilter D on B by

averaging these ultrafilters. Recalling Fact 5.2, let E be an ultrafilter on I which is
σ-complete and normal. Define

(5.1) D∗ = AvE(〈DN : N ∈ I〉) = {a ∈ B : {N ∈ I : a ∈ DN} ∈ E}.

Let us verify that D∗ is σ-complete. Given a sequence 〈ai : i < i∗ < σ〉 of
elements of D∗, by definition, for each i the set Xi := {N ∈ I : ai ∈ DN} ∈ E .
Since E is σ-complete, X :=

⋂
{Xi : i < i∗} ∈ E . N ∈ X means that {ai : i <

i∗} ⊆ DN , so by the σ-completeness of DN we have that a :=
⋂
{ai : i < i∗} ∈ DN .

Then {N ∈ I : a ∈ DN} ⊇ X ∈ E , so a ∈ D∗ by definition of D∗. Clearly
D∗ ⊇ D∗0 because d ∈ X∗ implies that {N ∈ I : d ∈ N} ∈ E which implies that
{N ∈ I : dN ≤ d} ∈ E which implies that {N : xfN ≤ d} ∈ X∗ which implies that
d ∈ D∗. This suffices recalling that X∗ generates D∗0 .

Now suppose b̄ has the (λ, µ, θ, σ)-Key Property. Let δ ∈ S be such that b̄ = b̄δ
in the enumeration above. Let b̄′ be its canonical multiplicative refinement b̄′δ,
chosen at the beginning of the proof. It will suffice to show that if bδ,u ∈ D∗ for
each u ∈ [λ]<ℵ0 , then for each i < λ,

b′{i} ∈ D∗.

Fix for awhile such an i. Consider any u ∈ [λ]<σ. By our present assumptions,
bu ∈ D∗. By definition of D∗, this means that

{N ∈ I : bu ∈ DN} ∈ E

and moreover that bu occurs E-a.a. in models N such that {δ, i} ⊆ N , i.e. models
which consider bu to be part of the correct problem and contain the index i:

{N ∈ I : {δ, i} ∈ N and if u ∈ ([λ]<σ) ∩N then bu ∈ DN} ∈ E .

For any N in this set, δ ∈ S ∩N and so by construction (see clause (d) )

xfN,δ ≤
⋂
{bu : u ∈ [λ]<σ ∩N}.

So by clause (d) above, xfN ≤ b′{i}. This shows that b′{i} ∈ D∗, and as i < λ was

arbitrary, this completes the proof. �

Remark 5.10. Regarding the case σ = ℵ0, we will prove existence of a (λ, µ,ℵ0,ℵ0)-
optimal ultrafilter in Corollary 9.7 below.

Our next task is to build a useful choice for D∗0 mentioned in the proof of The-
orem 5.9, with the aim that any D built from (D0,B,D∗) where D0 is regular
and excellent and D∗ is from Theorem 5.9 and this given D∗0 will not saturate
any non-simple theory. The following fact is well known; we include a proof for
completeness.

Fact 5.11. Assume µ = µ<σ. Then there is 〈uαε : ε < µ, α < µ+〉 such that:

(1) uαε ∈ [α]<σ

(2) β ∈ uαε =⇒ uβε = uαε ∩ β
(3) if u ∈ [µ+]<σ then for some ε < µ we have that (∀β ∈ u)(u ∩ β ⊆ uβε ).
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Proof. To begin, fix a sequence 〈fα : α < µ+〉 where each fα : α → µ is injective
and in addition is surjective whenever |α| ≥ µ. Define a symmetric binary relation
E on u1, u2 ∈ [µ+]<σ by: E(u1, u2) if (a) otp(u1) = otp(u2), and (b) if h : u1 → u2

is order-preserving and onto, and β < α are from u1, then fα(β) = fh(α)(h(β)).
Then E is an equivalence relation with ≤ µ classes. [To see this, note the number
of its classes is bounded by the following count: for each set u, we first choose an
order type (≤ σ options), and then for each α ∈ u (of which there are < σ), there
are ≤ µ<σ possible choices for the values of fα on u ∩ α. As we assumed µ<σ = µ,
E is therefore an equivalence relation with σ · (µ<σ)<σ = µ equivalence classes.]
Let 〈Eε : ε < µ〉 list these classes.

Now for each u ∈ [α]<σ, let uαε = u iff for some w ∈ Eε and γ ∈ w
(w ∩ (γ + 1))E(u ∪ {α})

Otherwise, uαε is empty. This sequence will satisfy (1) by construction. To see that
(2) is satisfied, suppose we are given u = uαε , w, γ satisfying the previous equation,
and β ∈ uαε . Then letting w′ = uαε ∩ β and γ′ = h−1(β) suffices. Finally, condition
(3) follows from condition (2) and the fact that for each α and at least one ε, uαε is
well defined (non-empty). �

Claim 5.12. Let (λ, µ, θ, σ) be suitable, µ = µ<θ, σ uncountable and compact.18

There exists a σ-complete filter D∗0 on B1
2λ,µ,θ generated by µ+ sets such that:

if D is a regular ultrafilter on λ built from (D0,B,D∗, j) where
B = B1

2λ,µ,θ and D∗ is a σ-complete ultrafilter on B extending

D∗0, then D is not µ++-good for any non-simple theory.

Proof. Let 〈uαε : ε < µ, α < µ+〉 be given by Fact 5.11. Let 〈cγ : γ < µ〉 be a
maximal antichain of B. Define

D∗0 = {
⋃
γ∈A

cγ : for some u ∈ [µ+]<σ, A ⊇ {ε : (∀α ∈ u)(u ∩ α ⊆ uαε )}}.

D∗0 is a σ-complete filter on µ by Fact 5.11. It is supported by B � V when it
supports all the cγ ’s, and so satisfies the requirement in 5.9.2.

Let C be the monster model of a non simple theory. We now look for an omitted
type in CI/D. Let ϕ(x; y) have the tree property in C (so without loss of generality
it will have TP1 or TP2; we observe this distinction, but ultimately don’t really use
it). We choose aη ∈ `(y)C for η ∈ σ>µ+ so that:

(1) if η ∈ σ(µ+) then {ϕ(x; aη|i+1
) : i < σ} is a 1-type.

(2) if ϕ has TP1 then for η, ν incomparable elements of σ>(µ+), the set

{ϕ(x; aη), ϕ(x; aν)}
is inconsistent,

(3) if ϕ has TP2 then for i ∈ σ and η, ν incomparable (or equivalently, not
equal) elements of i(µ+), the set {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

Now we use 5.11 to pick a proposed path through the tree. For ε < µ, α < µ+ let
ηε,α list uαε ∪ {α} in increasing order, so ηε,α ∈ σ>µ+. Fix a partition 〈Cγ : γ < µ〉
of I such that j(Cγ) = cγ for each γ < µ. For each α < λ, define the function fα
from I to `(y)C by: if t ∈ Cε then fα(t) = aηε,α .

18The assumption that “σ is compact” is just used to ensure that there exists some σ-complete
ultrafilter D∗ extending D∗0 is nonempty, so that a D as described by the Claim actually exists.
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Let p = {ϕ(x, fα/D) : α < µ+}. Then p is a set of formulas of the language of
T with parameters from CI/D. Let us check that p is a consistent partial 1-type.
Since consistency depends on comparability in the partial ordering, it suffices to
check all pairs. If β < α < µ+, let A1 = {ε < µ : β ∈ uαε }. By construction,⋃
γ∈A1

cγ ∈ D∗0 , so we may choose X1 ∈ D in the j-preimage of this set. Unraveling
the construction, this shows that p is indeed a consistent partial ϕ-type.

Assume for a contradiction that we have f ∈ IC such that f/D realizes p in
CI/D. For each α < µ+, let

Aα = {t ∈ I : C |= ϕ(f(t), fα(t))} ∈ D

Let aα = Aα/D be the corresponding member of B.
As 〈cγ : γ < µ〉 is an antichain of B, for each α < µ+ there is γ(α) < µ such

that bα = aα ∩ cγ(α) ∈ B+. By the pigeonhole principle, there is ζ < µ such that

|U1| = µ+, where

U1 = {α < µ+ : γ(α) = ζ}.

As {otp(uα) : α ∈ U1} has cardinality ≤ σ < µ+, there is ρ < σ such that |U2| = µ+,
where

U2 = {α ∈ U1 : otp(uα) = ρ}

However, B has the µ+-c.c. So for some α 6= β ∈ U2, we have that b := bα ∩ bβ is
positive. Let B ⊆ I be such that j(B) = b, so B 6= ∅ mod D0. Since B is contained
in each of Aα, Aβ , and Cζ mod D0, we may choose t ∈ B ∩ (Aα ∩Aβ ∩ Cζ).

Recall that ηε,α lists uαε ∪ {α} in increasing order, and Aα = {t ∈ I : C |=
ϕ(f(t), fα(t))}. Thus by our choice of t and ζ, f(t) realizes

{ϕ(x, fα(t)), ϕ(x, fβ(t))} = {ϕ(x, aηζ,α), ϕ(x, aηζ,β )}

But ηζ,α, ηζ,β are distinct members of σ>(µ+) of the same length. Thus by our
choice of parameters in the tree, the set {ϕ(x, aηζ,α), ϕ(x, aηζ,β )} is inconsistent.
[Note that this does not depend on whether we are in the case of TP1 or of TP2.]
This contradiction shows that p is not realized, and so completes the proof. �

Conclusion 5.13. Let (λ, µ, θ, σ) be suitable, µ < λ, and suppose σ is uncountable
and supercompact. Let B = B1

2λ,µ,θ. Then there is an ultrafilter D∗ on B such

that:

(a) D∗ is (λ, µ, θ, σ)-optimal.
(b) whenever D is a regular ultrafilter built from (D0,B,D∗) then D is not

µ++-good for any non-simple theory, thus not µ++-good.

Proof. Use the filter D∗0 from Claim 5.12 in Theorem 5.9(2). �

Definition 5.14. Let (λ, µ, θ, σ) be suitable and suppose that σ is uncountable and
that a (λ, µ, θ, σ)-optimal ultrafilter exists. We say the ultrafilter D on I, |I| = λ
is (λ, µ, θ, σ)-optimized when there exists a regular excellent filter D0 on I and a
(λ, µ, θ, σ)-optimal ultrafilter D∗ on B1

2λ,µ,θ such that D is built from (D0,B,D∗).
Note that any such D will be regular.

We now record the following connection. On the relevance of this property, see
section 2.2, “Why a large cardinal?”

Paper Sh:1030, version 2015-11-25 10. See https://shelah.logic.at/papers/1030/ for possible updates.



36 M. MALLIARIS AND S. SHELAH

Definition 5.15. (Flexible filters, Malliaris [29]) We say that the filter D on a set
I is λ-flexible if for any f ∈ IN with n ∈ N =⇒ n <D f , we can find Xα ∈ D for
α < λ such that for all t ∈ I

f(t) ≥ |{α : t ∈ Xα}|
Informally, we can find a λ-regularizing family below any given nonstandard integer.

Observation 5.16. Let (λ, µ, θ, σ) be suitable and σ > ℵ0 supercompact. Let D be
a (λ, µ, θ, σ)-optimized ultrafilter. Then D is flexible.

Proof. It was proved in [29] Section 8 that any regular ultrafilter which is good
for some non-low simple theory must be flexible. So this Observation will be an
immediate corollary of the theorem, proved in the next section, that any such
optimized ultrafilter is good for any countable simple theory.

One can also give a direct proof, which we only sketch as it is not central for
our arguments. We know D is built from some (D0,B,D∗) where D0 is excellent
(therefore good, therefore flexible) and D∗ is σ-complete for σ > ℵ0. Then the ar-
gument is exactly that worked out in Malliaris-Shelah [33] Claim 7.8. In particular,
nothing about optimality of D∗ is used, only its σ-completeness on a completion of
a free Boolean algebra. �

This gives a new solution to an old question of Dow [8], which we had also
answered in an earlier paper [32] assuming a measurable cardinal.

Question 5.17 (Dow 1985, in our language). Does there exist a regular ultrafilter
which is κ+-flexible and not κ+-good?

Conclusion 5.18. Let (λ, µ, θ, σ) be suitable and σ > ℵ0 supercompact. Then there
is a regular ultrafilter D on λ which is λ-flexible and not µ++-good.

Proof. An optimized ultrafilter will fit the bill by 5.13 and 5.16. �

Our final claim shows that “not µ++-good” in 5.13(b) is best possible.

Claim 5.19. Let (λ, µ, θ, σ) be suitable. If D∗ is a (λ, µ, θ, σ)-optimal ultrafilter on
B = B1

2λ,µ,θ then:

(1) D∗ is µ+-good.
(2) if D is a (λ, µ, θ, σ)-optimized ultrafilter built from some regular excellent
D0 along with D∗ and B, then D is µ+-good.

Proof. For (1) it will suffice to show that if 〈b1
u : u ∈ Ω = [µ]<σ〉 is a continuous

sequence of elements of D then it has a multiplicative refinement. Define b̄2 = 〈b2
u :

u ∈ [λ]<σ〉 by: b2
u = b1

u∩µ. It suffices to show that b̄2 has the Key Property 5.7, and

therefore has a multiplicative refinement by optimality. Choose V ⊆ 2λ, |V| ≤ µ
as in 5.7(a). Let α < 2λ be any ordinal such that α ⊇ V. Define a new maximal
antichain of B by 〈cε : ε < µ〉 where cε = xfε and fε is the function with domain
{α} and range ε. Let 〈uε : ε < µ〉 list Ω = [µ]<σ. Define b′{i} for i < λ by: if i ≥ µ,

then b′{i} = 1B, and if i < µ then b′{i} =
⋂
{b2

uε ∩ cε : i ∈ uε}. Let 〈b′u : u ∈ [λ]<σ〉
be the multiplicative sequence generated by 〈b′{i} : i < λ〉. It remains to check

that 5.7(b) holds. Fix u ∈ [λ]<σ and let ε∗ be such that u ∩ µ = uε∗ . If xf ≤ b2
u,

then xf ∩ cε∗ ∩ b2
uε∗

> 0, and cε∗ ∩ b2
uε∗
≤ b′{i} for each i ∈ u = uε∗ . So as b̄′ is

multiplicative, xf ∩ cε∗ ∩ b2
uε∗
≤ b′u as desired. This completes the proof that b̄2

has the Key Property, and so the proof of (1).
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(2) follows from (1) by Theorem F page 10. �

In Claim 5.19, it would be natural to consider adding a monotonicity clause of the
form “D∗ is (λ, µ, θ, σ)-optimal and λ′ ∈ [µ, λ) implies D∗ is (λ′, µ, θ, σ)-optimal.”
This would require a slight change in the definition, since we have tied λ to the size
of the underlying Boolean algebra 2λ, so we omit it. If we were to add an additional
parameter so as to separate these two uses of λ, the size of the Boolean algebra and
the length of the sequence b̄, then we have monotonicity in the second.

6. Presentations in ultrapowers

In this section we prove a lemma saying that presentations for types in ultra-
powers can be arranged to interact with a choice of lifting of the parameters in a
nice way. This lemma will proceed by building an algebra S which is the optional
input to Lemma 4.2.2 above.

Lemma 6.1. Suppose (λ, µ, θ, σ) are suitable, T is (λ, µ, θ, σ)-explicitly simple, T
eliminates imaginaries, T is complete and simple with infinite models, and |T | < σ.
Suppose we are given:

(1) D a regular ultrafilter on I, |I| = λ.
(2) M |= T is λ+-saturated, and admits an expansion M+ by new Skolem

functions for formulas of T . Let T+ = Th(M+).
(3) N � M I/D, ||N || = λ, N admits an expansion to N+ |= T+ such that

N+ ⊆ (M+)I/D, and p ∈ S(N).

Then there exist

• a (λ, θ, σ)-presentation m = (〈ϕα(x, a∗α) : α < λ〉,M) of p
• an intrinsic coloring G : Rm → µ, which we may assume has range = µ
• and a choice of lifting {a∗α : α < λ} →M I

such that identifying each a∗α with its image under this lifting, we have that for any
w = clM(w) ⊆ λ,

(a) for every t ∈ I,
CT � {a∗α[t] : α ∈ w} � CT .

(b) for each finite sequence 〈αi0 , . . . , αik−1
〉 of elements of w, and each formula

ϕ(x, ȳ) of T with `(ȳ) = k, there is β ∈ w such that for all t ∈ I,

M |= (∃x)ϕ(x, a∗αi0 [t], . . . , a∗ik−1
[t]) =⇒ ϕ(a∗β [t], a∗αi0 [t], . . . , a∗ik−1

[t]).

Before proving Lemma 6.1, we record that such types are enough.

Observation 6.2. Let T , D be as in Lemma 6.1. To prove that D is good for T it
would suffice to show that every p arising in the form 6.1.3 is realized.

Proof. Since the ultrafilter D is regular, we are free to choose any infinite model
M |= T as the index model, in particular we may choose it to be sufficiently
saturated. Fix any A ⊆ M I/D, |A| ≤ λ, and p0 a type over A. Let M+ be any
expansion of M by Skolem functions and let T+ = Th(M). We may assume |T+| =
|T | < σ. Since ultrapowers commute with reducts, there is an expansion of the
ultrapower M I/D to a model of T+. In particular there is an elementary submodel
N+ of the ultrapower (in the expanded language) such that A ⊆ Dom(N+) and
||N+|| = λ. Let N be the reduct of N+ to τ(T ) and let p ∈ S(N) be any type
extending p0. Clearly to realize p0 it suffices to realize p. Finally, regarding the
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range of the function G: if G is an intrinsic coloring of some presentation m, let EG
be the equivalence relation on elements of Rm given by EG(r, r′) iff G(r) = G(r′).
Then any function G′ : Rm → µ such that EG′ refines EG will also be an intrinsic
coloring of Rm, so we may assume the range of G is exactly µ.

This completes the proof. �

Proof of Lemma 6.1. Let τ+ denote the signature of N+ and τ that of N , and let
C denote CT , the monster model for T . Let E ⊆ λ denote the set of even ordinals
less than λ. To begin, let

(6.1) 〈ϕα(x, a∗α) : α ∈ E〉

be an enumeration of p which satisfies:

(a) each a∗β is a singleton, possibly imaginary;

(b) {a∗β : α ∈ E} = Dom(N);

(c) {a∗β : α ∈ |T | ∩E} is the domain of an elementary submodel M∗ of N over

which p does not fork, and {ϕα(x, a∗β) : α ∈ |T | ∩ E} is a complete type
over this submodel.

For each α ∈ E, choose gα ∈ IM such that first, a∗α = gα/D, and second, if
α, α′ ∈ E and a∗α = a∗α′ , then gα = gα′ .

Let Terms be the set of all terms built up inductively from function symbols of
τ+ and the free variables {xα : α ∈ E}. Choose a map ρ : Terms→ λ such that:

(i) ρ is one-to-one and onto.
(ii) for each α ∈ E, xα 7→ α ∈ E.
(iii) ρ−1({α : α < |T |} consists precisely of the elements of Terms whose free

variables are among {xα : α < |T |}.
Now we define functions {gα : α ∈ λ \ E} ⊆ IM , i.e. we need to define the

value of gα when α is odd. Fix for awhile α ∈ λ \ E. Then ρ−1(α) is a term, say
t = t(xi0 , . . . , xik−1

) ∈ Terms, where k is finite and depends on t and this notation
means that the free variables of t are precisely xi0 , . . . , xik−1

(in particular t is not
necessarily a term arising as a single function applied to a series of variables). Fix
t ∈ I. Since M+ |= T+, there is a unique a ∈ Dom(M+) such that

M+ |= “a = t[gi0(t), · · · , gik−1(t)]”

where the expression in quotations means that the term t evaluates in M+, on the
given sequence of values, to a. Assign gα(t) = a. As α ∈ λ \ E and t ∈ I were
arbitrary, this completes the definition of {gα : α < λ\E}. Note that this definition
applied to gα for α even would just return gα.

Before continuing, let us prove that if N and {a∗α : α < |T |} are closed under
the functions of (M+)I/D then {gα/D : α ∈ X} = {gα/D : α ∈ E ∩ X} = X
where X ∈ {|T |, λ}. In other words, we have not actually added new elements
to either Dom(M∗) or Dom(N), but have simply repeated existing elements in a
larger enumeration. Note that the second equality was ensured by (b)-(c) above
and the right to left inclusions are obvious. We prove the remaining inclusion,
{gα/D : α ∈ X} ⊆ {gα/D : α ∈ E ∩ X}, by induction on the complexity of the
term ρ−1(α). If ρ−1(α) is a single variable xβ with β ∈ X, then by our construction
we know that 2β = α and so α ∈ E ∩ X. Suppose then that ρ−1(α) is a term of
the form fϕ(ti0 , . . . , ti`−1

), where in slight abuse of notation, we write this to mean
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that fϕ is an `-place function symbol from τ+ \ τ applied to the terms ti0 , . . . , ti`−1
.

By inductive hypothesis, for each j < ` there is αj ∈ E ∩X such that

gρ(tij )/D = gαij /D.

Then as both M∗ and N were expanded to models of T+, writing “C+ � X” for the
appropriate expansion, there is some β ∈ E ∩X such that

C+ � X |= f(gαi0 /D, . . . , gαi`−1
/D) = gβ/D

and then unraveling the definition of gα in the previous paragraph, clearly gα/D =
gβ/D.

For α ∈ λ \ E, let ϕα be the formula “x 6= y”, recalling that p is nonalgebraic
(of course even simpler formulas would work e.g. “x = x”). For each α < λ, let
a∗α = gα/D. Then the enumeration

ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉
will satisfy the hypotheses of Lemma 4.2. So we have our enumeration and our
lifting a∗α 7→ gα (for α < λ), and it remains to translate these Skolem functions in
the natural way into an algebra S on λ and to prove this algebra has the desired
properties.

For each function symbol fϕ ∈ τ+ \ τ , of arity k = kϕ, add a function Fϕ of the
same arity to the algebra defined as follows. Although similar to the argument just
given, this definition will have an important additional uniqueness property. For
each 〈αi0 , . . . , αik−1

〉 ∈ kλ, in slight abuse of notation, define

Fϕ(αi0 , . . . , αik−1
) = ρ( “fϕ(ρ−1(αi0), · · · , ρ−1(αik−1

))” )

where the expression in quotation denotes the element of Terms formed by applying
the k-place function symbol fϕ to the sequence of terms ρ−1(αi0), · · · , ρ−1(αik−1

).
As ρ was a bijection, this value is unique and well defined. Let S be the algebra
given by the functions {Fϕ : fϕ ∈ τ+ \ τ}, so clearly |S| = |τ+ \ τ | ≤ |T | < σ.
We now make several observations about how the algebra S interacts with the
enumeration ϕ̄ and the functions of τ+ \ τ . First, our construction has guaranteed
that:

(1) For each Skolem function fϕ ∈ τ+ \ τ , say of arity k, and every distinct
αi0 , . . . , αik−1

from λ, there exists β < λ such that for all t ∈ I, M+ |=
“fϕ(a∗[t]αi0 , . . . , a

∗
αik−1

[t]) = a∗β [t].”

This is more than would be guaranteed a priori by  Loś’ theorem:  Loś would say
that if we fix an enumeration and a lifting, then for any such sequence of α’s we
may find a β which works almost everywhere. Here we have a single β, namely the
value of Fϕ(αi0 , . . . , αik−1

), which works everywhere.19

(2) For each k < ω and each fϕ ∈ τ+ \ τ of arity k, there is a function Fϕ ∈ S
of arity k such that whenever αi0 , . . . , αik−1

, β satisfy condition (a),

FSϕ (αi0 , . . . , αik−1
) = β.

This says that the Fϕ translate the action of the Skolem functions in the natural
way. Finally, let us prove that:

(3) For any nonempty w = clS(w) ⊆ λ and t ∈ I, C � {a∗α[t] : α ∈ w} � C.

19Note that we accomplished this by “padding” our original enumeration so that 〈a∗α : α < λ〉
may contain many repetitions.
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Since we have fixed a lifting, a∗α[t] = gα(t), so we will use these interchangeably.
Fix some such w = clS(w) ⊆ λ and some t ∈ I. Since this set is a subset of the
index model M , it will suffice to prove that M � {gα(t) : α ∈ w} � M . Suppose
for a contradiction that {gα(t) : α ∈ w} = {a∗α[t] : α ∈ w} is not the domain
of an elementary submodel of M . Then there are a formula ϕ = ϕ(x, ȳ) and
αi0 , . . . , αi`(ȳ)−1

∈ w such that

M |= (∃x)ϕ(x, a∗αi0 [t], . . . , a∗i`(ȳ)−1
[t])

but there does not exist γ ∈ w such that

M |= ϕ[a∗γ [t], a∗αi0 [t], . . . , a∗i`(ȳ)−1
[t]].

Let fϕ ∈ τ+ be the function symbol whose interpretation in T+ corresponds to the
Skolem function for ϕ. Then

M+ |=(∃x)ϕ(x, a∗αi0 [t], . . . , a∗i`(ȳ)−1
[t]) =⇒

ϕ(fϕ(a∗αi0 [t], . . . , a∗i`(ȳ)−1
[t]), a∗αi0 [t], . . . , a∗i`(ȳ)−1

[t]).

Moreover, by observation (1), there is β < λ such that for all elements of I, and in
particular for the t we have chosen,

M+ |= fϕ(a∗[t]αi0 , . . . , a
∗
αik−1

[t]) = a∗β [t].

By observation (2), w = clS(w) means that necessarily β ∈ w. This contradiction
completes the proof of (3).

Notice that if M⊇ S is any larger algebra and w = clM(w) ⊆ λ, then a fortiori
w = clS(w) so (3) remains true.

Then the enumeration ϕ̄ and the algebra S satisfy the hypotheses of Definition
3.2. As we have assumed that T is (λ, µ, θ, σ)-explicitly simple, we may apply
that Definition to obtain a presentation m = (ϕ̄,M) and an intrinsic coloring
G : Rm → µ, with M ⊇ S. This presentation m, the coloring G, and the lifting
〈gα : α < λ〉 are as desired. Note that by definition of presentation, any clM-closed
set is nonempty, so we no longer need the proviso “nonempty” when applying (3)
in the context of a presentation, Definition 3.3.

This completes the proof of the claim. �
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7. Ultrapower types in simple theories

In this section we assume the following:

• (λ, µ, θ, σ) are suitable.
• σ > ℵ0 is strongly inaccessible.20

• B = B1
2λ,µ,θ.

• T is complete, countable, first-order, and (λ, µ, θ, σ)-explicitly simple.

In the next Theorem, we have assumed existence of an optimal ultrafilter rather
than “σ is uncountable and supercompact”. This is because supercompactness
was used for expediency to construct an optimal ultrafilter but nothing about the
definition of optimal or optimized (Definition 5.14) seems to suggest its necessity,
and supercompactness is not otherwise used in the proof.

Theorem 7.3. Suppose (λ, µ, θ, σ) are suitable. Suppose a (λ, µ, θ, σ)-optimal ul-
trafilter exists. Let T be a complete, countable theory which is (λ, µ, θ, σ)-explictly
simple, let M |= T , and let D be a (λ, µ, θ, σ)-optimized ultrafilter on I, |I| = λ.
Then M I/D is λ+-saturated.

Proof. As ultraproducts commute with reducts, we may assume T eliminates imag-
inaries (if not, work in T eq throughout). To begin, quoting Lemma 6.1 and Obser-
vation 6.2, let us fix:

(1) D0, D∗, j witnessing that D is optimized.
(2) N �M I/D, ||N || = λ, and p ∈ S(N) nonalgebraic, for which there exist:

(a) a (λ, θ, σ)-presentation m = (〈ϕα(x, a∗α) : α < λ〉,M) of p
(b) an intrinsic coloring G : Rm → µ, with range exactly µ
(c) and a choice of lifting {a∗α : α < λ} →M I

[i.e. let F : M I/D →M I be a choice function, meaning that F (a/D) ∈
a/D, and in the rest of the proof we allow ourselves to write a∗α instead
of F (a∗α) when this is clear from the context, so for α < λ and t ∈ I
the value “a∗α[t]” is well defined]

we have that for any w = clM(w) ⊆ λ,
(d) for any t ∈ I,

CT � {a∗α[t] : α ∈ w} � CT .

(e) for each finite sequence 〈αi0 , . . . , αik−1
〉 of elements of w and formula

ϕ(x, ȳ) of T with `(ȳ) = k, there is β ∈ w s.t. for all t ∈ I,
M |= (∃x)ϕ(x, a∗αi0 [t], . . . , a∗αik−1

[t]) =⇒ ϕ(a∗β [t], a∗αi0 [t], . . . , a∗αik−1
[t]).

(3) Recall that the properties ensured by the presentation m include:
(a) 〈a∗α : α < λ〉 is an enumeration of N = Neq (note that the next few

conditions put some restrictions on this enumeration). We write Aα
for the set {aβ : β < α}.

(b) ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉, corresponding enumeration of the type p.
(c) M is an algebra on λ with ≤ θ functions such that for each u ∈ λ, if
|u| < θ then | clM(u)| < θ, and if |u| < σ then | clM(u)| < σ.

(d) {α : α ∈ clM(∅)} is a cardinal ≤ |T |.

20What we use in this section is first, that there is an optimal, thus σ-complete, ultrafilter

on B, and second, we use that σ is strongly inaccessible in Claim 7.6. As σ will be strongly
inaccessible in our cases of interest (e.g. σ compact or strongly compact) there is no present cost

to using this in Claim 7.6; however, that Claim could likely be circumvented.
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(e) N � {a∗α : α ∈ clM(∅)} = M∗ � N , where ||M∗|| ≤ |T | < σ and p does
not fork over M∗.

(f) for each u ∈ [λ]<σ, N � {a∗α : α ∈ clM(u)} is the domain of an
elementary submodel Nu � N , and if in addition u = clM(u) then the
partial type {ϕα(x, a∗α) : α ∈ u} implies the elementary diagram of Nu
(and is an element of S(Nu) which does not fork over M∗).

(g) for each u ∈ [λ]<σ and β ≤ α ∈ clM(u), we have that tp(a∗α, Aβ ∪M∗)
does not fork over {a∗γ : γ ∈ clM(u) ∩ β} ∪M∗.

(4) Ω = [λ]<σ.

With the stage set, our first task is to build a continuous sequence 〈bu : u ∈ Ω〉
of elements of B which form a possibility pattern corresponding to the type p.
Towards this, we shall describe N by a type in λ variables in the natural way.
Let 〈xα : α < λ〉 be a sequence of singleton variables (possibly they will be filled
by imaginaries) and as before, for v a sequence of elements of λ, let x̄v denote
〈xα : α ∈ v〉. [If v was defined to be a set, interpret x̄v by considering v as a
sequence listing its elements in increasing order. The main set Γ1 of formulas, in
the language L of T , is closed under permuting the variables.] Define

(7.1) Γ1 = {ψ(x̄v) : v ∈ ω>λ, ψ an L-formula in |v| free variables }.

For each finite u ⊆ λ, define

(7.2) ϕu = ϕu(x, x̄u) =
∧
α∈u

ϕα(x, xα).

These are collected in the set

(7.3) Γ2 = {ϕu : u ∈ [λ]<ℵ0}.

Note that since p ∈ S(N), (∃x)ϕu(x, x̄u) ∈ Γ1 for each ϕu ∈ Γ2. Now we invoke
 Loś’ map. For each ψ(x̄v) ∈ Γ1, define

(7.4) aψ(x̄v) = j(Aψ(x̄v)) where Aψ(x̄v) = {t ∈ I : M |= ψ[āv[t]]}.

It will be useful to name the element of B recording that “M∗ appears correctly”:

(7.5) aclM(∅) :=
⋂
{aψ(x̄v) : v ∈ [clM(∅)]<ω ∧ ψ(x̄v) ∈ Γ1 ∧ |= ψ[āv]} ∈ D∗.

Note that in equation (7.5) we make essential use of σ > |T |. Likewise, for each
ϕu ∈ Γ2, define

(7.6) bϕu = j(Bϕu) where Bϕu = {t ∈ I : M |= (∃x)ϕu(x, āu[t])}.

By  Loś’ theorem, each bϕu(x,x̄u) belongs to D∗ and a fortiori to B+. As D∗ is
σ-complete, we may define bu for all u ∈ Ω by setting bu = bϕu(x,x̄u) when u is

finite and bu =
⋂
{bv : v ∈ [u]<ℵ0} when u is infinite. Then

(7.7) b̄ = 〈bu : u ∈ Ω〉

is a continuous sequence of elements of D∗ in the sense of 5.5 above, and is a
possibility pattern 2.12 (for the formulas in the sequence ϕ̄) by  Loś’ theorem. So
by Theorem F, showing b̄ has a multiplicative refinement 〈b′u : u ∈ [λ]<σ〉 in D∗
will suffice to realize the type p.

Notice at this point that for any u ⊆ λ,

(7.8) bclM(u) ≤ aclM(∅).
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This follows from condition 3.(f) from the beginning of the proof: “for each u ∈
[λ]<σ, N � {a∗α : α ∈ clM(u)} is the domain of an elementary submodel Nu � N ,
and if in addition u = clM(u) then the partial type {ϕα(x, a∗α) : α ∈ u} implies the
elementary diagram of Nu.”

Our next task is to define a family of supporting sequences for b̄, recalling
Definition 5.6. We will set the stage by defining several progressively more refined
families

F ⊆ FIµ,θ(2
λ)× [λ]<θ.

In each case, ≤F is the natural partial order on elements of F given by

(f, w) ≤F (f ′, w′) when f ⊆ f ′, w ⊆ w′

where recall f ⊆ f ′ implies xf ′ ≤ xf , as befits having more information. In each
case, the family F will be defined as

⋃
{Fu : u ∈ Ω}.

For each u ∈ Ω, we define F0
u to be the set of pairs (f, w) such that

(i) f ∈ FIµ,θ(2
λ), w ∈ [λ]<θ.

(ii) u ⊆ w = clM(w), so w is closed and contains the closure of u.

For each u ∈ Ω we define F1
u ⊆ F0

u to be the set of pairs (f, w) which are, in
addition, decisive “on w”:

(iii) xf ≤ bϕv(x,xv) or xf ≤ 1− bϕv(x,xv) when v ∈ [w]<ℵ0 and ϕv ∈ Γ2.

(iv) xf ≤ aψ(xv) or xf ≤ 1− aψ(xv)when v ∈ [w]<ℵ0 and ψ(xv) ∈ Γ1.

The family F1
u is dense in F0

u, that is, for any (f, w) ∈ F0
u there is (f ′, w′) ∈ F1

u

with (f, w) ≤F0
u

(f ′, w′). This is because the generators 〈xf : f ∈ FIµ,θ(2
λ)〉 are

dense in B. Notice also that both families are closed under limits which are not too
large, i.e. if α < θ is a limit ordinal and 〈(fβ , wβ) : β < α〉 is a strictly increasing
sequence of elements of F1

u, then (
⋃
β<α fβ ,

⋃
β<α wβ) ∈ F1

u. To prove this we need

to check that the limit
⋃
β<α wβ remains closed, which is true because each wβ is

closed.
Following an idea from [37], we now settle collisions. For α, β ∈ λ, write

(7.9) Aaα=aβ = {t ∈ I : M |= aα[t] = aβ [t]} and aaα=aβ = j(Aaα=aβ ).

Clearly for any f ∈ FIµ,θ(2
λ) and α < λ, xf ≤ aaα=aα . For each u ∈ Ω, let

F2
u ⊆ F1

u be the set of pairs (f, w) such that, in addition,

(v) for each α ∈ w, f decides equality for α, meaning that there is β ≤ α, β ∈ w
such that: xf ≤ aaα=aβ and for no f ′ ⊇ f and γ < β (not necessarily from
w) do we have

xf ′ ≤ aaα=aγ .

To prove that F2
u is dense in F1

u, it suffices to show that for each (f, w) ∈ F1
u and

α ∈ w there is (fα, wα) with (f, w) ≤F1
u

(fα, wα) in which this condition is met for

α. Suppose we are given (f, w) ∈ F1
u and α ∈ w. Let β0 = α, f0 = f . Arriving

to i, xf ≤ aaα=aβi
and if in addition xf ∩ aaα=aβ = 0 for all β < βi, then the

condition is satisfied for α. Otherwise, let βi+1 < βi be a counterexample and as
the generators are dense, we may choose fi+1 ⊇ fi so that xfi+1

≤ aaα=aβi+1
. Since

the ordinals are well ordered, this process stops at some finite stage n = n(α). Let
wn be the closure of w ∪ {βn}. Fix (fα, wα) ∈ F1

u such that (fn, wn) ≤F1
u

(fα, wα).

Then (fα, wα) is as required. As F1
u is closed under limits of cofinality less than θ,

we may build the desired (f∗, w∗) ∈ F2
u as a limit of the elements (fα, wα), indexing

suitably to handle the new βs added along the way.
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Note that whenever (f, w) ∈ F2
u and α ∈ w we may define

(7.10) ρα(f) = min{β ≤ α : xf ≤ aaα=aβ and for all γ < β xf ∩ aaα=aγ = 0}.

Moreover, ρα(f) ∈ w and also ρα(f ′) = ρα(f) for any f ⊆ f ′ ∈ FIµ,θ(2
λ), so this

value is robustly defined.21

We now record how elements of F2
u naturally induce types. The key families F3

u,
F4
u ⊆ F2

u will be defined in terms of conditions on these types. In what follows q(. . . )
is a type of parameters, and r(x, . . . ) may or may not correspond to a fragment of
p; the notation is meant to invoke 3.9. For each u ∈ Ω and each (f, w) ∈ F2

u,

(7.11) define qf,w to be the type in the variables x̄w given by:

qf,w(x̄w) = {ψ(xv) : xf ≤ aψ(xv), ψ(xv) ∈ Γ1}
∪ {¬ψ(xv) : xf ≤ 1− aψ(xv), ψ(xv) ∈ Γ1}.

Notice that if xf ≤ aclM(∅), then the restriction of qf,w to the variables x̄clM(∅) =

x̄δm is realized by 〈a∗α : α < δm〉. Next, for each u ∈ Ω and each (f, w) ∈ F2
u,

(7.12) choose rf,w = rf,w(x, x̄w) ⊇ qf,w to be a complete type such that:

(a) if bw realizes q in C then r(x, bw) dnf over {bα : α < clM(∅)}.
(b) if consistent, choose r so that in addition

r ⊇ {ϕα(x, xα) : α ∈ u} ∪ {ϕα(x, xα) : α ∈ clM(∅)}.
The choice of each rf,w will be fixed for the rest of the proof. Note in particular

that if b̄w satisfies α < clM(∅) =⇒ bα = a∗α then r(x, bw) dnf over M∗.

Let F3
u ⊆ F2

u be the set of (f, w) such that in addition:

(vi) whenever b̄w is a sequence of elements of the monster model realizing qf,w,
then for any v ⊆ w, v = clM(v) we have that {bα : α ∈ v} is the domain of
an elementary submodel.

Let us prove that F3
u = F2

u for all u ∈ Ω. Suppose for a contradiction that (vi) fails
for some qf,w and b̄w. Then there is a finite v ⊆ w and a formula ϕ(x, ȳ) of T with
`(ȳ) = |v| witnessing the failure, i.e. C |= ∃xϕ(x, b̄v) but there does not exist γ ∈ w
such that C |= ϕ(bγ , b̄v). Since qf,w is a complete type, ψ(x̄v) = ∃xϕ(x, b̄v) ∈ qf,w.
By definition of qf,w, it must be that

xf ≤ aψ(x̄v) i.e. xf ≤ j(Aψ(x̄v) = {t ∈ I : M |= ∃xϕ(x, ā∗v[t])}).
By assumption (2)(e) at the beginning of the proof, there exists β ∈ w such that
for all t ∈ I,

(7.13) M |= (∃x)ϕ(x, ā∗v[t]) =⇒ ϕ(a∗β [t], ā∗v[t]).

We will show xf ≤ aϕ(xβ ,x̄v). If not, aψ(x̄v) ∩ (1− aϕ(xβ ,x̄v)) > xf > 0, thus

Aψ(x̄v) \Aϕ(xβ ,x̄v) 6= ∅.

Let t be any element of this supposedly nonempty set. Then M |= (∃x)ϕ(x, ā∗v[t])
but it is not the case that M |= ϕ(a∗β [t], ā∗v[t]), contradicting (7.13). This contra-
diction proves that xf ≤ aϕ(xβ ,x̄v). So by the definition of qf,w, it must be that

21In some sense we have found a small region where the elements aα, aρα(f) move ‘in lockstep’.
Note that we are simply tying them to each other, not to any particular values in the monster

model.
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ϕ(xβ , x̄v) ∈ qf,w. This contradiction proves that (vi) will always hold, i.e. Lemma
6.1 has arranged that F2

u = F3
u for each u ∈ Ω.

There is one more family to define, F4
u. First, let us record that the “if consistent”

clause in the defintion of rf,w, (7.12)(b), is often activated.

Observation 7.4. Suppose u ∈ Ω, (f, w) ∈ F3
u, and xf ≤ bclM(u). Then rf,w will

always contain {ϕα(x, xα) : α ∈ u} ∪ {ϕα(x, xα) : α ∈ clM(∅)}.

Proof. In other words, we will show the “if consistent” from the definition of rf,w
is consistent. Denote by Nu the elementary submodel C � {a∗α : α ∈ clM(u)}.
(By our conditions on the algebra this is an elementary submodel, which includes
M∗.) The hypothesis on xf means that q � x̄clM(u) is realized by Nu, under an
appropriate enumeration. Since nonforking is invariant under automorphism and
all the types in question are complete, suppose without loss of generality that we
are given b̄w realizing qf,w such that b̄clM(u) enumerates Dom(M), and α < clM(∅)
implies bα = a∗α. By the definition of presentation, p � Nu is a type which includes
{ϕα(x, a∗α) : α ∈ u} ∪ {ϕα(x, a∗α) : α < clM(∅)} and does not fork over M∗. We
may choose r∗(x, b̄w) to be any nonforking extension of p � Nu to the elementary
submodel C � b̄w. Let r(x, x̄w) be the translation of r∗ to a type over the empty
set in the variables x, x̄w. This shows that “if consistent” indeed is, so we may
assume rf,w has the stated properties, though it need not have arisen in this way.
Observation 7.4 �

To motivate our remaining step in the construction of a support, consider for a
moment a sequence of four-tuples induced by the same f , say

〈(vt, wt, qft,wt , rft,wt) : t < t∗ < σ〉

where (vt, wt, qft,wt , rft,wt) arises from (ft, wt) ∈ F3
ut and vt ⊆ ut, and there is a

single f with ft ⊆ f for all t. A priori, this four-tuple need not be from Rm (e.g. if
xf ∩aclM(∅) = 0) nonetheless we may begin to analyze its properties. By definition
of qf,w, existence of such an f means the union

⋃
t<t∗

qft,wt will always be a partial

type in the variables x̄w, where w =
⋃
{wt : t < t∗}. Let b̄∗w be any sequence

realizing this type. Then the types rft,wt(x, b̄
∗
wt) may be explicitly contradictory as

their definition allowed for arbitrary choices. Going forwards, our strategy will be
to handle the issue of explicit inconsistency in the r’s with the construction of b̄′;
before that, we ensure the necessary nonforking with the following definition.

Recall D-rank from 2.17 above. In the following, we do not require that D-rank
is definable, only that the value is constant in the sense described.

Let F4
u be the set of pairs (f, w) ∈ F3

u such that in addition:

(vii) for every (f ′, w′) ∈ F3
u with (f, w) ≤F0

u
(f ′, w′), and every sequence 〈bα :

α ∈ w′〉 of elements of the monster model which realizes qf ′,w′(xw′), and
every α ∈ w,
• tp(bα, {bγ : γ ∈ w′ ∩ α}) dnf over {bγ : γ ∈ w ∩ α}.
• for any formula ϕ and k < ω,

D(tp(bα, {bγ : γ ∈ w′ ∩ α}), ϕ, k) = D(tp(bα, {bγ : γ ∈ w ∩ α}), ϕ, k).

Claim 7.5. As T is simple and θ is regular, F4
u is ≤F0

u
-dense in (F1

u,≤F1
u
).

Proof. It suffices to prove it is dense in F3
u. Suppose for a contradiction that F4

u is
not dense. By induction on α < θ we choose bα, qα, fα, wα such that:
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• (fα, wα) ∈ F3
u

• β < α implies (f, w) ≤F1
u

(fβ , wβ) ≤F1
u

(fα, wα)
• if α is a limit then (fα, wα) = (

⋃
β<α fβ ,

⋃
β<α wβ)

• qα = qfα,wα , so β < α =⇒ qβ ⊆ qα
• 〈bβ : β < α〉 realizes qα � {xγ : γ ∈ wα ∩ α}
• if α = β + 1 then for some i ∈ wβ

(α) tp(bi, {bγ : γ ∈ wα ∩ i}) forks over {bγ : γ ∈ wβ ∩ i}
(β) for some ϕ ∈ L(τT ) and finite k,

D(tp(bi, {bγ : γ ∈ wα ∩ i}), ϕ, k) < D(tp(bi, {bγ : γ ∈ wβ ∩ i}), ϕ, k).

As θ = cof(θ) > |T |, by Fodor’s lemma this contradicts the assumption that T is a
simple theory. Claim 7.5 �

We are ready to choose partitions supporting each bu, u ∈ Ω. The next claim
states our requirements, and adds a coherence condition.

Claim 7.6. There exists

f = 〈fu : u ∈ Ω〉 = 〈 〈(fu,ζ , wu,ζ) : ζ < µ〉 : u ∈ Ω〉

which is a good choice of partitions for b̄, where this means

(1) for each u ∈ Ω, f̄u = 〈(fu,ζ , wu,ζ) : ζ < µ〉 is a sequence of elements of F4
u

such that 〈xfu,ζ : ζ < µ〉 is a maximal antichain of B and for each ζ < µ,
either xfu,ζ ≤ bu or xfu,ζ ≤ 1− bu.

(2) (coherence) Writing V =
⋃
{Dom(fu,ζ) : u ∈ Ω, ζ < µ},

if v0 ∈ [V]<θ and u1 ∈ Ω, then for some u∗ we have: u1 ⊆ u∗ ∈ Ω and
ζ < µ =⇒ v0 ⊆ Dom(fu∗,ζ) and f̄u∗ refines f̄u1

.

Proof. B satisfies the µ+-c.c. and has maximal antichains of cardinality µ, so for
any u ∈ Ω we may choose f

x

u = {(fu,ε, wu,ε) : ε < µ} ⊆ F4
u, such that:

〈xfu,ζ : ζ < µ〉 is a maximal antichain of B, so ε 6= ζ < µ =⇒ fu,ε 6= fu,ζ .

[We build such a partition by induction on ζ, using the density of F4
u. In doing so

we may assume, without loss of generality, that 0 ∈ Dom(f) for each f used in this
partition; then the partition will have size at least µ, and since B has the µ+-c.c.,
the construction will stop at some ordinal < µ+. Renumbering, we may assume
the sequence is indexed by ζ < µ.]

Say that fui refines fuj if for each ε < µ, fui,ε extends fuk,ζ for some ζ < µ. To

ensure coherence across the family, 1.1 ensures that we may enumerate Ω × [λ]<θ

as 〈(ui, vi) : i < λ〉. Build fui by induction on i < λ as follows. Arriving to i,

(a) if (∃j < i)
(
(ui ⊆ uj) ∧ (ζ < µ =⇒ vi ⊆ Dom(fuj ,ζ))

)
then let j(i) be the least such j and let fui be a common refinement of f

x

u

and fuj .

(b) if there is no such j, choose fui such that it refines f
x

ui and fuk whenever
k < i and uk ⊆ ui and ζ < µ =⇒ Dom(fui,ζ) ⊇ vi. We can do this

because there are ≤ 2|ui| < θ such k, recalling that σ ≤ θ and σ is (by our
hypotheses in this section) compact, thus strongly inaccessible.

For each u ∈ Ω, let fu = 〈(fu,ζ , w′u,ζ) : ζ < µ〉 be the resulting family. This
completes the construction. Claim 7.6 �
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For the remainder of the proof, fix the support just built as well as

(7.14) V ⊆ 2λ, |V | = λ such that
⋃
{Dom(fu,ζ) : u ∈ Ω, ζ < µ} ⊆ V.

Having built a support for the sequence b̄, our next task is to define the proposed
multiplicative refinement b̄′. Towards this, let us take stock. For each u ∈ Ω and
ζ < µ, we may henceforth unambiguously write

(7.15) qu,ζ for qfu,ζ ,wu,ζ , ru,ζ for rfu,ζ ,wu,ζ .

Claim 7.7. For each u ∈ Ω and ζ < µ,

if xfu,ζ ≤ bclM(u) then (u,wu,ζ , qu,ζ , ru,ζ) ∈ Rm.

Proof. We check Definition 3.9. For 3.9.1-2, u ∈ [λ]<σ, w ∈ [λ]<θ, and u ⊆
clM(u) ⊆ w = clM(w) by the definition of F0. Towards 3.9.3, qf,w is always
a complete type in the variables x̄w, and if xf ≤ bclM(u) then xf ≤ aclM(∅) by
equation (7.8). So 3.9.3(a), holds by definition of qf,w (really, of Γ1) and 3.9.3(b)
holds by the remark after equation (7.3). 3.9.4+5(a) follow from Observation 7.4.
3.9.5(b) is because rf,w is a complete type (notice that the condition “if w′ ⊆ w

is M-closed then CT � {b∗α : α ∈ w′} � CT and rf,w(x, b
∗
w′) is a complete type

over this elementary submodel” does not ask for a given enumeration to have any
closure properties, but simply that all formulas are decided). Finally 3.9.5(c) is by
the fact that (f, w) ∈ F4

u. Claim 7.7 �

The four-tuple from the statement of Claim 7.7 is therefore in the domain of
the function G giving the intrinsic coloring for m, which was fixed as part of the
presentation at the beginning of the proof. (We may trivially extend G to all four-
tuples arising from some (fu,ζ , wu,ζ) by setting G to be ∞ if it is not otherwise
defined.) We will want to amalgamate certain such tuples later in the proof, but
first we take advantage of the ultrapower setup to eliminate some extraneous noise.
Define E to be the equivalence relation on pairs (u, ζ) ∈ Ω× µ given by:

(7.16) (u1, ζ1)E(u2, ζ2) iff

(1) (u1, wu1,ζ) and (u2, wu2,ζ) satisfy:
(i) otp(u1) = otp(u2), otp(w1) = otp(w2)
(ii) if γ ∈ w1 ∩ w2 then otp(γ ∩ w1) = otp(γ ∩ w2)

(iii) if γ ∈ w1 ∩ w2 then γ ∈ u1 iff γ ∈ u2

(iv) the order preserving map from w1 to w2 carries u1 to u2.
(2) there is an order preserving function h from Dom(f1) onto Dom(f2), s.t.:

(i) (implied) otp(Dom(f1)) = otp(Dom(f2))
(ii) γ ∈ Dom(f1) =⇒ f2(h(γ)) = f1(γ)
(iii) γ ∈ Dom(f1) ∩Dom(f2) =⇒ h(γ) = γ.

(3) ζ1 = ζ2.
(4) G(u1, wu1,ζ1 , qu1,ζ1 , ru1,ζ1) = G(u2, wu2,ζ2 , qu2,ζ2 , ru2,ζ2), i.e the values are

both defined and equal or both ∞.

Claim 7.8. E from (7.16) is an equivalence relation with µ classes, which we will
list as

〈Eε : ε < µ〉.
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Proof. For counting purposes we may assume ζ < µ is fixed.
For the first condition, the equivalence class of (u,wu,ζ) is fixed if we determine

the ordinals γ = otp(wu,ζ), δ = otp(u), and determine which function from δ into
γ gives u. There are ≤ θ ≤ µ choices of γ, ≤ σ ≤ µ choices of δ, and for any given
γ < θ, δ < σ, we have by 1.1(c) that |δγ| < θ ≤ µ. So by 1.1(b), the total count is
bounded by µ · µ · µ = µ.

For the second condition, the equivalence class of fu,ζ is fixed if we first determine
the ordinal otp(Dom(fu,ζ)), call it β, and then determine which function from β
into µ determines the values of the function. Since otp(Dom(fu,ζ)) is an ordinal
< θ, the number of possible results is bounded by θ · µ<θ = θ · µ = µ.

This shows the number of equivalence classes is ≤ µ · µ = µ, and by our choice
of G it is exactly µ. Claim 7.8 �

Given 〈Eε : ε < µ〉 from Claim 7.8, fix also a choice of representatives by specifying
some function

(7.17) h : µ→ Ω× [λ]<θ × µ× µ.
We ask that h(ε) = (uh(ε), wh(ε), ζh(ε), ξh(ε)) satisfies: for some (u, ζ) ∈ Eε, u =
uh(ε), ζ = ζh(ε), wh(ε) = wu,ζ , and ξh(ε) = G(u,w, qu,ζ , ru,ζ) or ∞.

The crucial set for each α < λ, ε < µ will be

(7.18) Uα,ε = {u : u ∈ Ω and (u, ζh(ε)) ∈ Eε and xfu,ζh(ε)
≤ bclM(u)}.

Recall V from (7.14) above. Let

(7.19) α∗ < 2λ be such that U ⊆ α∗.
Let Codeλ denote some fixed coding function from ω>λ to λ, and let Codeµ denote
some fixed coding function from ω>µ to µ. Let 〈X0, . . . , X5〉 be a partition of λ
into six sets of cardinality λ. For γ < λ and n < 6, let ρ(γ,Xn) denote the image
of γ under a fixed one-to-one map of λ into Xn. Let tv denote the truth value of
an expression (either 0 or 1).

(7.20) For each u ∈ Ω, ζ < µ define f∗ = f∗u,ζ as follows.

(1) Dom(f∗) ⊆ α+λ is of cardinality < θ, Range(f∗) ⊆ µ, and f∗ is determined
by the remaining conditions.

(2) if γ ∈ Dom(fu,ζ) then

f∗(α+ ρ(γ,X0)) = Codeµ( 〈fu,ζ(γ), otp(γ ∩Dom(fu,ζ))〉 ).

(3) if γ ∈ wu,ζ , then

f∗(α+ ρ(γ,X1)) = Codeµ(tv(γ ∈ u), otp(γ ∩ u), otp(γ ∩ wu,ζ)).
(4) if β 6= α are from wu,ζ then

f∗(α+ ρ(γ,X2)) = tv( ρα(fu,ζ) = ρβ(fu,ζ) ).

(5) if v ⊆ u, v̄ is this set listed in increasing order, and Codeλ( v̄ ) = γ, then

f∗(α+ ρ(γ,X3)) = tv( xfu,ζ ≤ bv ).

(6) if v ∈ ω>(wu,ζ), ϕ is the k-th L-formula in |v| free variables under some
enumeration fixed in advance, and γ = Codeλ( 〈v, k〉 ), then

f∗(α+ ρ(γ,X4)) = tv(xfu,ζ ≤ aϕ(x̄v ) = tv( ϕ(x̄v) ∈ qu,ζ ).
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(7) if v ∈ ω>(wu,ζ), ϕ is the k-th L-formula in 1 + |v| free variables under some
enumeration fixed in advance, and γ = Codeλ( 〈v, k〉 ), then

f∗(α+ ρ(γ,X5)) = tv( ϕ(x, x̄v) ∈ ru,ζ ).

This completes the definition (7.20). Fix also a new maximal antichain:

(7.21) let c̄ = 〈cε : ε < µ〉 be given by cε = x{(α+λ,ε)}}.

We arrive at the definition of b̄′. For each α < λ, let

(7.22) b′{α} =
(⋃
{cε ∩ xf∗u,ζh(ε)

∩ xfu,ζh(ε)
: ε < µ, u ∈ Uα,ε}

)
∩ bclM({α}).

Why is (7.22) nonzero? For each ε < µ such that Uα,ε 6= ∅, and each u ∈ Uα,ε,
cε ∩ xf∗u,ζh(ε)

∩ xfu,ζh(ε)
∩ bclM(u) > 0.

since the domains of the functions corresponding to xfu,ζh(ε)
, cε and xf∗u,ζh(ε)

are

mutually disjoint, and adding bclM(u) is allowed by the definition of Uα,ε in (7.18).
By monotonicity, bclM(u) ≤ bclM({α}) for any u ∈ Uα,ε. This verifies that (7.22) is
nonzero.

For each u ∈ Ω \ ∅, define

b′u =
⋂
{b′{α} : α ∈ u}.(7.23)

Let b′∅ = 1B. This completes the definition of the sequence b̄′:

(7.24) b̄′ = 〈b′u : u ∈ Ω〉.
By construction, b̄′ is multiplicative, and if |u| = 1 then b′u ≤ bu.

An immediate consequence (as 〈cε : ε < µ〉 is a maximal antichain) of this
definition is that whenever c ∈ B+

α∗ and 0 < c ≤ cε ∩ b′{α},⋃
{c ∩ xf∗u,ζh(ε)

∩ xfu,ζh(ε)
: u ∈ Uα,ε} 6= 0(7.25)

so in particular there is u ∈ Uα,ε such that

(7.26) c ∩ xf∗u,ζh(ε)
∩ xfu,ζh(ε)

> 0 thus c ∩ xfu,ζh(ε)
∩ bclM(u) > 0

where again the conjunct “∩ bclM(u)” is by the definition of Uα,ε in equation (7.18).
We now work towards proving that:

Claim 7.9. b̄′ is a multiplicative refinement of b̄.

Proof. Suppose for a contradiction that there is some u∗ ∈ Ω such that

(7.27) 0 < c ≤
⋂
α∈u∗

b′{α} \ bu∗ .

By continuity of b̄, we may assume that u∗ is finite. Let f ∈ FIµ,θ(2
λ) be such that

xf ≤ c, and as 〈cε : ε < µ〉 is a maximal antichain, without loss of generality there
is some ε < µ such that xf ≤ cε. Since xf ≤ b′{α} by construction, necessarily

Uα,ε 6= ∅ for each α ∈ u∗. Enumerate u∗ as 〈αt : t < t∗〉. By induction on t ≤ t∗,
we will choose functions ft ∈ FIµ,θ(2

λ) and sets ut ∈ Uαt,ε such that for each t:

(i) ft ⊇ f , thus for each t, xft ≤
⋂
{b′{α} : α ∈ u∗} ∩ cε.

(ii) t′ < t =⇒ ft′ ⊆ ft
(iii) ft ⊇ fut,ζh(ε)

∪ f∗ut,ζh(ε)
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(iv) xft ≤ bclM(ut).

Let f−1 = f so that f0 is the case “−1 + 1.” Arriving to t+ 1, condition (i) implies
that xft ≤ b′{αt} ∩ cε. So adding the latter two onto a conjunction will not affect

whether or not we get 0. Apply (7.25)-(7.26) to choose ut ∈ Uαt,ε such that

xf` ∩ xfut,ζh(ε)
∩ xf∗ut,ζh(ε)

∩ bclM(u) > 0.

Let ft+1 = ft ∪ fut,ζh(ε)
∪ f∗ut,ζh(ε)

. This completes the induction. Note that (iv)

will be satisfied by the definition (7.18).
Let f∗ = ft∗ be the function so constructed.
Recalling the definition of Eε in 7.16, since ε is fixed all the ζh(ε)’s are the same,

so going forward we will write ζ for ζh(ε). Then by Claim 7.7 and the fact that
xf∗ ≤ bclM(ut) for each αt ∈ u∗, we have that for each t < t∗,

(7.28) rt := (ut, wut,ζ , qt = qut,ζ , rt = rut,ζ) ∈ Rm.

Let r̄ = 〈rt : t < t∗〉. Moreover, the pairs (ut, ζ) all belong to the Eε class of our
equivalence relation from (7.16). So equation (7.28) ensures that each rt is in the
domain of G and item 4 of the definition of E ensures that the value of G is fixed.
That is,

(7.29) G � 〈rt : t < t∗〉 is constant.

Thanks to the f∗ut,ζ from (7.20), we may now find a good instantiation of r̄:

Subclaim 7.10. Let w =
⋃
t wt. We can find 〈b∗α : α ∈ w〉 realizing

⋃
t qt such

that b̄∗w is a good instantiation for r̄ and

(7.30) C |= ¬(∃x)
∧
α∈u∗

ϕα(x, b∗α).

Proof. As the qt are all induced by the same f∗ = ft∗ the set q =
⋃
t<t∗

qt is

consistent. First we will show it is consistent with ¬ϕu∗ , recalling (7.2). Suppose
not, so let Σ0 = {ϕ0(x̄v0

), · · · , ϕk(x̄vk)} ⊆ q be finite such that Σ = Σ0 ∪ {¬ϕu∗}
is inconsistent. Let v = v0 ∪ · · · ∪ vk. Let θ be an arbitrary finite conjunction of
formulas from q � x̄clM(∅). Recalling notation (7.4), xf∗ witnesses that the set

Aθ ∩Aϕ0(x̄v0 ) ∩ · · · ∩Aϕk(x̄vk ) \Bϕu > 0.

Let t be any element of this set. Then {a∗α[t] : α ∈ v} realizes Σ, contradiction.
This proves we may find some sequence b̄∗w of elements of C, possibly imaginary,
realizing q such that b∗α = a∗α for α ∈ clM(∅) and |= ¬(∃x)

∧
α∈u∗ ϕα(x, b∗α). Finally,

let us check that this sequence is a good instantiation, 3.10. Conditions (1)-(2) of
that definition we’ve just checked. (3) is ensured by the fact that

xft∗ ≤ xf∗ut,ζ

for each ut, recalling (7.20)6+7. (4) was ensured by F4. (5) was ensured by F3,
and already checked by membership in Rm, 3.9(5). Subclaim 7.10 �

Let b̄∗w be given by Subclaim 7.10. By equation (7.29), we may apply Definition
3.11, “G is an intrinsic coloring of Rm”, to conclude that {ϕαt(x, b∗αt) : t < t∗} =

{ϕα(x, b∗α) : α ∈ u∗} is consistent. This contradicts the choice of b̄∗, specifically
equation (7.30). This contradiction shows that c from equation (7.27) cannot exist,
i.e. b̄′ must be a multiplicative refinement of b̄. This proves the Claim. Claim
7.9 �
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The last part of the argument is to verify that b̄ has the Key Property 5.7 using
V from (7.14), α∗ from (7.19), Ω∗ = {u ∈ [λ]<σ : u = clM(u)}, and b̄′. Suppose
u ∈ Ω∗ and f ∈ FIµ,θ(α∗) are such that xf ≤ bu. We hope to show

(7.31) xf ∩ b′u > 0.

As xf ≤ bu, by choice of u ∈ Ω∗,

(7.32) xf ≤ bclM(u).

Since fu is a partition, after possibly extending f we have

(7.33) xf ≤ xfu,ζ∗ for some ζ∗ < µ.

Choose ε < µ such that (u, ζ∗) ∈ Eε. Then h(ε) = (u,wh(ε), ζh(ε) = ζ∗, ξh(ε)). For
each α ∈ u, checking the definition (7.18) we have that

(7.34) u ∈ Uα,ε.
As b̄′ is a multiplicative sequence, b′u =

⋂
α∈u b′{α}. So to show (7.31) it would

suffice to show that

(7.35) xf ∩
⋂
α∈u

b′{α}.

Recalling the definitions (7.22), and equation (7.34), the expression

(7.36) cε ∩ xf∗u,ζh(ε)
∩ xfu,ζh(ε)

appears as a disjunct for each b′{α}, and by (7.18) has nonzero intersection with

bclM(u), so to show (7.35) it would suffice to show that

cε ∩ xf∗u,ζh(ε)
∩ xfu,ζh(ε)

∩ bclM(u) ∩ xf > 0.

This is true because on one hand, xf ≤ xfu,ζh(ε)
∩ bclM(u) by our above argument,

and on the other hand, the support of xf , cε, and xf∗u,ζh(ε)
are pairwise disjoint and

thus cannot cause inconsistency. This completes the proof that xf ∩ b′u > 0.

As b̄ has the (λ, µ, θ, σ)-Key Property, in our optimal ultrafilter D∗ it has a
multiplicative refinement. Thus by Theorem F, the original type p is realized in
the ultrapower M I/D. This completes the proof of Theorem 7.3. �
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8. The ultrapower characterization of simple theories

We state our main result in two different ways, the first to underline the structure
of the proof.

Theorem 8.1. Assume (λ, µ, θ, σ) are suitable and σ is an uncountable supercom-
pact cardinal. There exists a regular ultrafilter D over λ such that for every model
M in a countable signature, Mλ/D is λ+-saturated if Th(M) is (λ, µ, θ, σ)-explicitly
simple, and Mλ/D is not µ++-saturated if Th(M) is not simple.

Proof. As σ is uncountable and supercompact, Theorem 5.9 and Conclusion 5.13
prove existence of a regular ultrafilter D on I such that: D is built from (D0,B,D∗)
where D0 is regular and excellent on B = B1

2λ,µ,θ and D∗ is (λ, µ, θ, σ)-optimal,

and moreover D is not µ++-good for any non-simple theory. By Theorem 7.3, any
such D is good for any (λ, µ, θ, σ)-explicitly simple theory. �

Theorem 8.2 (The ultrapower characterization of simple theories). Assume (λ, µ, θ, σ)
are suitable, µ+ = λ and σ is an uncountable supercompact cardinal. Then there
is a regular ultrafilter D on λ such that for any model M in a countable signature,
Mλ/D is λ+-saturated whenever Th(M) is simple, and Mλ/D is not λ+-saturated
whenever Th(M) is not simple.

Proof. Apply Theorem 8.1 assuming in addition that µ+ = λ. Then every countable
simple theory is (λ, µ, θ, σ)-explicitly simple by Theorem 4.10. �

Remark 8.3. In Theorem 8.2, ‘countable signature’ may clearly be weakened to
‘signature of size < σ.’

Assuming existence of an uncountable supercompact cardinal, Theorem 8.2 has
the following immediate consequence for the structure of Keisler’s order. Thanks
to the referee for suggesting the formulation.

Conclusion 8.4. Assume there exists an uncountable supercompact cardinal. If T ,
T ′ are countable theories, T is simple, and T ′ E T , then T ′ is simple.

9. Perfect ultrafilters

In this section we shall give a natural set-theoretic condition on ultrafilters,
called ‘perfect’, which essentially says that they solve as many problems as possible
modulo the cardinal constraints. We will use perfect ultrafilters in [38] in the case
σ = ℵ0 in applying the analysis of this paper to theories with trivial forking. Recall
the definition of support, 5.6 above.

Definition 9.1 (Perfect ultrafilters for the case σ = θ = ℵ0). Let (λ, µ,ℵ0,ℵ0) be
suitable. We say that an ultrafilter D∗ on B = B1

2λ,µ is (λ, µ)-perfect when (A)

implies (B):

(A) 〈bu : u ∈ [λ]<ℵ0〉 is a monotonic sequence of elements of D∗
and supp(b̄) is a support for b̄ of cardinality ≤ λ, see 5.6, such that
for every α < 2λ with

⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α,

there exists a multiplicative sequence

〈b′u : u ∈ [λ]<ℵ0〉
of elements of B+ such that
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(a) b′u ≤ bu for all u ∈ [λ]<ℵ0 ,
(b) for every c ∈ B+

α,µ ∩ D∗, no intersection of finitely many members of
{b′{i} ∪ (1− b{i}) : i < λ} is disjoint to c.

(B) there is a multiplicative sequence b̄′ = 〈b′u : u ∈ [λ]<ℵ0〉 of elements of D∗
which refines b̄.

Observation 9.2. Suppose α < 2λ is fixed, Dα is an ultrafilter on B1
α,µ ⊆ B =

B1
2λ,µ, and 〈bu : u ∈ [λ]<ℵ0〉 is a sequence of elements of Dα. Suppose that there

exists a multiplicative sequence 〈b′u : u ∈ [λ]<ℵ0〉 of elements of B+ such that

(a) b′u ≤ bu for all u ∈ [λ]<ℵ0 ,
(b) for every c ∈ B+

α,µ ∩ Dα, no intersection of finitely many members of
{b′{i} ∪ (1− b{i}) : i < λ} is disjoint to c.

Then there is a multiplicative sequence 〈b′′u : u ∈ [λ]<ℵ0〉 such that (a), (b) hold
with b′u, b′{i} replaced by b′′u, b′′{i} respectively, and such that some support of b̄′′

is contained in B1
α+λ,µ.

Remark 9.3. Note that in 9.2(b), omitting “1−b{i}” gives an equivalent condition.

Proof of Observation 9.2. Without loss of generality there is U of cardinality λ such
that some support of b̄′ is contained in {xf : f ∈ FIµ(U)}. Let π be a permutation of
2λ which is the identity on α and takes U into α+λ. This induces an automorphism
ρ of B which is the identity on B1

α,µ, so in particular is the identity on Dα and

thus on b̄. For each u ∈ [λ]<ℵ0 , let b′′u = ρ(b′u). Then clearly b̄′′ fits the bill. �

Theorem 9.4 (Existence of perfect ultrafilters). Let (λ, µ,ℵ0,ℵ0) be suitable. Let
B = B1

2λ,µ. Then there exists a (λ, µ,ℵ0,ℵ0)-perfect ultrafilter on B.

Proof. Begin by letting 〈b̄δ = 〈bδ,u : u ∈ [λ]<ℵ0〉 : δ < 2λ〉 be an enumeration
of the monotonic sequences of elements of B+, each occurring cofinally often. Let
z : 2λ → 2λ be an increasing continuous function which satisfies: z(0) ≥ 0 and for all
β < 2λ, z(β)+λ = z(β+1). By induction on δ < 2λ we will construct 〈Dδ : δ < 2λ〉,
an increasing continuous sequence of filters with each Dδ an ultrafilter on Bz(δ),µ,
to satisfy:

(*) if δ = β + 1, if it is the case that
〈bβ,u : u ∈ [λ]<ℵ0〉 is a monotonic sequence of elements of
Dβ and there exists a choice of supp(b̄) with

⋃
{Dom(f) :

xf ∈ supp(b)} ⊆ β and there exists a multiplicative se-
quence

〈b′u : u ∈ [λ]<ℵ0〉
of elements of B+ such that

(a) b′u ≤ bβ,u for all u ∈ [λ]<ℵ0 ,
(b) for every c ∈ B+

z(β),µ∩Dβ , no intersection of finitely

many members of {b′{i} ∪ (1 − bβ,{i}) : i < λ} is

disjoint to c.
then there is a sequence b̄′′ = 〈b′′u : u ∈ [λ]<ℵ0〉 of elements of B+ such

that:
(i) b′′u ≤ bβ,u for all u ∈ [λ]<ℵ0 ,
(ii) for every c ∈ B+

z(β),µ ∩ Dβ , no intersection of finitely many members

of {b′′{i} ∪ (1− bβ,{i}) : i < λ} is disjoint to c.

Paper Sh:1030, version 2015-11-25 10. See https://shelah.logic.at/papers/1030/ for possible updates.



54 M. MALLIARIS AND S. SHELAH

(iii) some support of b̄′′ is contained in Bz(δ),µ, and

(iiv) Dδ is an ultrafilter on Bz(δ),µ which extends Dβ ∪ {b′u : u ∈ [λ]<ℵ0}.
The induction may be carried out at limit stages because all of the Dδ are ultrafil-
ters. Suppose δ = β + 1. If b̄ satisfies the quoted condition, then let b̄′′ be given
by Observation 9.2, using z(β) here for α there. Then (i), (ii), (iii) are satisfied, so
we need to prove that

Dβ ∪ {b′′u : u ∈ [λ]<ℵ0}
has the finite intersection property. As Dβ is an ultrafilter on Bz(β),µ, and b̄′ is
a multiplicative sequence, it suffices to prove that for any c ∈ Dβ and any finite
u ⊆ λ,

c ∩
⋂
{b′′{i} : i ∈ u} > 0.

As b{i} ∈ Dβ for each i ∈ u, we may assume that c ∩ (1 − b{i}) = 0 for each
i ∈ u. Then we are finished by assumption (ii). This completes the induction. Let
D∗ =

⋃
δ<2λ Dδ.

Let us check that D∗ is indeed a perfect ultrafilter. If b̄ satisfies condition 9.1(A),
let U be as there, and let δ = β + 1 be an ordinal < 2λ such that b̄β = b̄ and
U ⊆ Bβ,µ, which is possible as we listed each sequence cofinally often. Then since
Dβ was an ultrafilter, D∗ � Bβ,µ = Dβ so at stage δ condition (*) of the inductive
hypothesis will be activated and we will have ensured that b̄ has a multiplicative
refinement in D∗. �

Corollary 9.5. Suppose (λ, µ,ℵ0,ℵ0) are suitable. and let D∗ be an ultrafilter on
B1

2λ,µ. If D∗ is (λ, µ)-perfect, then it is (λ, µ,ℵ0,ℵ0)-optimal.

Proof. We need to show that any sequence with the so-called Key Property 5.7
has a multiplicative refinement. Suppose then that b̄ = 〈bu : u ∈ [λ]<ℵ0〉 is a
monotonic sequence of elements of D∗ with the Key Property, and fix a support
supp(b̄) as given by that property. Let α be an ordinal < 2λ such that {bu : u ∈
[λ]<ℵ0} ⊆ Dα := D∗ � B1

α,µ and
⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α. Write Bα for

B1
α,µ for the remainder of this proof. The Key Property guarantees the existence

of a cofinal Ω ⊆ [λ]<ℵ0 and a sequence b̄′ = 〈b′{i} : i < λ〉 of elements of B+ which

generates a multiplicative refinement 〈b′u : u ∈ [λ]<ℵ0〉 of b̄ such that for each
f ∈ FIµ,ℵ0

(α), and each u ∈ Ω, if xf ≤ bu then we may extend f ⊆ f ′ ∈ FIµ,ℵ0
(2λ)

so that xf ′ ≤ b′u.
In order to guarantee that our perfect ultrafilter will have given b̄ a multiplicative

refinement, it will suffice to show that for every c ∈ B+
α ∩ Dα, no intersection of

finitely many members of {b′{i} ∪ (1 − b{i}) : i < λ} is disjoint to c. Let such an

c be given, let v ∈ [λ]<ℵ0 and choose any u with v ⊆ u ∈ Ω. As c ∈ Dα and
bu ∈ Dα, without loss of generality c ≤ bu. As the generators are dense in the
completion, we may choose xf with 0 < xf ≤ c and f ∈ FIµ,ℵ0

(α). Then xf ≤ bu
so by the Key Property, we may extend f ⊆ f ′ so that xf ′ ≤ b′u. This proves that
xf ∩

⋂
{b′{i} : i ∈ u} > 0, as desired.

Then b̄ contains a multiplicative refinement by the definition of ‘perfect,’ which
proves that the ultrafilter is indeed optimal. �

Conclusion 9.6. Let (λ, µ,ℵ0,ℵ0) be suitable. Let B = B1
2λ,µ. Then there is an

ultrafilter D∗ on B such that:

(a) D∗ is (λ, µ)-perfect, and indeed (λ, µ,ℵ0,ℵ0)-optimal.
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(b) if D is any regular ultrafilter built from (D0,B,D∗) where D0 is a regular
λ+-excellent filter on λ, we have that D is not good for any non-low or
non-simple theory.

Proof. It remains to justify clause (b) by quoting known results. [48] VI.3.23 p.
364 proves that any ultrafilter constructed by means of such an independent family
of functions where µ < λ will not be µ+-good, however the proof shows more: that
it will not be µ+-flexible. An alternate discussion is given in [36] Section 9.

The fact that an ultrafilter which is not flexible is not good for any non-low or
non-simple theory was proved by [29] and [34]. More precisely, in [29] Section 8 it
was proved that any regular ultrafilter which is good for a theory which has TP2

or is simple and non low, must be flexible. In [34] it was proved that any regular
ultrafilter which is good for a theory with SOP2 is good, therefore a fortiori flexible.
Since any non-simple theory has either TP2 or SOP2, this completes the proof. �

Corollary 9.7. Let (λ, µ,ℵ0,ℵ0) be suitable and let B = B1
2λ,µ. Then there exists

a (λ, µ,ℵ0,ℵ0)-optimal ultrafilter on B, and moreover we may arrange that the
non-saturation condition 9.6 holds.

10. Some further questions

The theorems in this paper suggest a broad classification program for simple the-
ories according to their “explicit simplicity”. We believe the most urgent questions
have to do with determining the identitity of the equivalence classes of simple the-
ories in Keisler’s order. The following specific natural questions also arise. Assume
(λ, µ, θ, σ) are suitable.

For the first question, recall that from the point of view of explicit simplicity, µ
bounds the range of the coloring functionG onRm. However, because we have asked
in 1.1 that µ ≥ θ ≥ σ, the value of µ may be larger than the actual number of colors
needed. The first question essentially asks if we can build a simple theory where
the range of this coloring function is truly uncountable but does not depend on λ.
(Without the negative condition, the random graph would be a trivial example.)

Question 10.1. Let σ = θ = ℵ1, µ = (2θ)++. Then whenever λ = λ<θ ≥ µ,
(λ, µ, θ, σ) is suitable and also (λ, κ, θ, σ) is suitable, where κ+ = µ. Does there
exist a countable simple theory T such that for all λ = λ<θ ≥ µ, T is (λ, µ, θ, σ)-
explicitly simple but not (λ, κ, θ, σ)-explicitly simple? What about other uncountable
constant values of µ?

Recall that by our arguments above the random graph requires only one color,
and it is not difficult to produce examples of essentially the same complexity re-
quiring finitely or countably many colors. We have just asked for a simple theory
requiring an uncountable (i.e. > |T |) but constant number of colors. The case
where µ+n = λ, for n finite and greater than 1, is studied in the forthcoming paper
[38]. The next question asks about n = 1:

Question 10.2 (A maximal simple theory). Suppose σ is uncountable. Is there a
countable simple theory which is (λ, µ, θ, σ)-explicitly simple if and only if µ+ = λ?
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Recall that in his paper [21] Keisler had developed the notion of a “versatile”
formula to describe when theories T were saturated precisely by good regular ul-
trafilters. The next question asks whether something analogous can be done inside
simplicity.

Question 10.3. For which, if any, values of (λ, µ, θ, σ) does there exist a simple
theory T which is saturated by a regular ultrafilter D on λ iff D is (λ, µ, θ, σ)-
optimized, or iff D is (λ, µ)-perfected in the sense of 9.1 above?

The ultrapower characterization of stable theories from [48] Chapter VI pro-
ceeded by proving that a model of a stable theory is λ+-saturated if and only if
it is κ(T ) saturated and every maximal indiscernible sequence has cardinality at
least λ+. It would be interesting to develop, perhaps from the arguments above,
an analogous characterization of saturation in simple theories.

Question 10.4. Give an analogous characterization of the saturated models of
simple theories.

Finally, we record the fundamental question of the minimum unstable Keisler
class. The regular ultrafilters which saturate this class are known; see, for example,
[32] Section 4.

Question 10.5. Give an internal model-theoretic characterization of the equiva-
lence class of the random graph in Keisler’s order.
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[14] F. Hausdorff, “Über zwei Sätze von G. Fichtenholz und L. Kantorovitch.” Studia Math. 6

(1936), 18–19.

[15] E. Hrushovski, “Pseudofinite fields and related structures.” Model Theory and Applications,
Quaderni di Matematica, vol. 11, Aracne, Rome, 2002, pp. 151–212.

Paper Sh:1030, version 2015-11-25 10. See https://shelah.logic.at/papers/1030/ for possible updates.



EXISTENCE OF OPTIMAL ULTRAFILTERS AND... 57

[16] A. Kanamori. The higher infinite. Second ed., Springer-Verlag, Berlin, 2009.

[17] H.J. Keisler, “Ultraproducts and elementary classes.” Indagationes Mathematicae, 23 (1961)

pp. 477–495
[18] H. J. Keisler, “Good ideals in fields of sets.” Annals of Math. (2) 79 (1964), 338–359.

[19] H. J. Keisler, “A survey of ultraproducts.” Logic, Methodology and Philosophy of Science, Y.

Bar-Hillel (Ed.), Proc. of the 1964 Int. Congress in Jerusalem, North-Holland, Amsterdam
(1965), pp. 112–126.

[20] H. J. Keisler, “Ideals with prescribed degree of goodness.” Annals of Mathematics, Second

Series, Vol. 81, No. 1 (Jan., 1965), pp. 112-116.
[21] H. J. Keisler, “Ultraproducts which are not saturated.” J. Symbolic Logic 32 (1967) 23–46.

[22] S. Kochen, “Ultraproducts in the theory of models.” Annals of Math. (2) 74, No. 2 (1961),

pp. 221–261.
[23] S. Koppelberg, “Cardinalities of ultraproducts of finite sets.” J. Symb Logic, Vol. 45, No. 3

(Sep., 1980), pp. 574–584.
[24] K. Kunen, “Ultrafilters and independent sets.” Trans. Amer. Math. Soc. 172 (1972), 299–306.
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