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ABSTRACT. We reconsider here the following related pcf questions and make
some advances:

(Q1)  concerning the ideal I;[A\] how much reflection do we have for the bad
set Sl)fii C {6 < X : cf(d) = k} assuming it is well defined, (for transparency
only)?

(Q2) are there somewhat free black boxes?

The advances in (Q2) will be used in subsequent for constructions of Abelian
groups and modules.
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§ 0. INTRODUCTION

§ 0(A). Background.

On Iy[\] for A > 6 regular see (Definition 0.12(3) and) [?], [?], [?]. So we know
that in many cases there is set SY4 C S := {6 < A : cf(§) = 0} such that
dual(Ig[A]) = Zx +(55\S%) and so 53 is unique (0.12(4)) modulo the club filter,
Dy; for definitions see §(0C).

We know that consistently, starting with a supercompact we can force that; e.g.
GCH and SRSHJ*” (0.12(4)) is stationary for n = 1 but we do not know it for
n > 1. Still in this model de ..x, reflects in no N,,, however we use G.C.H. or just
R, > 2% More generally, 1f 1 is strong limit of cofinality Ry and S = Sb+ ®, we
do not know if S can reflect in stationarily many d’s of cofinality N,, > N1 when
R, < 2% Similarly for u strong limit of cofinality x < u, (see 0.1, 0.2).

By [?, §1] for regular ), & such that A > % there is S € I,,[\] which is stationary,
in fact reflect in stationarily many 6 < A of cofinality, e.g. ™™ < X for n > 1.
Related subsets are the good/bad/chaotic sets of scales ({fo : @ < A), fo € "), see
[?, Ch.II], [?], [?] and 0.18 here.

The proof in [?, Ch.IX,§2] of pp(X,,) < N, in particular continue these ideas.

Recall that if f = (f, : @ < A) is <j-increasing, <j-cofinal in [] Ai, \; =

<K
cf(\i) > 0 > kT then SE(f) := {0 < A : cf(6) = 6 and f[§ is flat (see 0.18)}
has complement orthogonal to Iy[A\] modulo the non-stationary ideal, (i.e. have a
non-stationary intersection with any A € Ip[)]).

Combining the proofs of [?, §1] and [?, Ch.IX,§2] it follows that Sagd(f) =9
mod Dy when 0 = k1", n > 4 but we have not looked at it. On this see Sharon-
Viale [?, footnote 5], referring to Abraham-Magidor [?, 2.12,2.19] which contains a
representation of pcf theory. We made this work after hearing on Kojman-Milovich-
Spadaro [?].

We start by continuing [?, §1], [?, Ch.IX,§2], to re-examine some of those prob-
lems; see §(0B). More spec1ﬁcally, we shed some light on question (Q1) in 0.1, 0.2
proved in §(1A).

What about (Q2)? This was a central issue of [?] which deal with one dimensional
black boxes. The n-dimensional black boxes are from [?]. See more applications
to Abelian groups and modules in Gébel-Shelah [?], Gébel-Shelah-Stringman [?],
Gobel-Herden-Shelah [?]; and lately [?], which relies on the results here; see 0.6,
0.4, 0.7 which are proved in §(1B).

Much earlier Solovay proved that above a compact cardinal, the singular cardinal
hypothesis holds; it follows that the so called strong hypothesis (p > cf(u) =
pp(u) = pt) holds; so pef becomes trivial. Moreover, by [?, Ch.IT] if pp,(u) > XA =
cf(A) > p > cf(p) = ( where J D [k]<" is an ideal on k) then there is a sequence
(fo : @ < A) with f, € " which is < j-increasing and is u‘*‘ free even as a sequence,
so f[6 is flat when k < cf(6) < u, (i.e. the good set of f,gd(f) is large).

But if & = cf () < p, the consistency result on I,.+ [u*] from [?] can be strength-
ened; we know that consistently there are strong reflection properties, say if GCH,
consistently the case of Chang conjecture holds from (R,11,8,) — (Ny,8y), by
Levinski-Magidor-Shelah [?] and (Ry4w11, Rotw) = Reyt1,Re). We can manipu-
late 2" for x regular.
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§ 0(B). Results.

What do we accomplish here? First, assume A > k > Xy and for transparency
assume S§f19 is well defined. How much can it reflect? Assume A = pt, cf(u) =
0 < p,p strong limit. We knew that ([?]) if, e.g. 6 = (27)*"*! then S}, does

not reflect in S). Here 0.2 gives more: assuming (Vn)(2% " < A) we have, e.g. for

n>2m>n+2:if S'/{’i reflects in Séﬂ this reflection does not reflect in S;\+m;
moreover does not reflect in any S, ,6 € Reg N A\\xT"*2. See more in 0.2.
Second, turning to “if f is <j-increasing cofinal in [[ \;/J and i < k = \; =
<K
cf(N;) > k; how large is Segd[f, J|”? We knew Sagd[f, J] is large; here we prove in
0.1(1) that: if § € [&T4, kTeomP()) (Vi) (0 < \;) and @ is regular < X then S&[f,.J]
contains S (modulo the club filter of course). Hence, e.g. f is (T°0mP(/) g+4 J)-
free when x < 6,0+°™P(/) < min{); : i < K}, see Definition 1.10(2). So if A\, =
pp(e) > pif s pe > Vo = cf (ue) for £ = 1,2 and pif* < A < Ao then (Ao, o) =
(A1, p1).
But this is not enough to prove what we need for Q2, i.e. 0.4 which is (62,61)-
freeness; (the problem being for (§; : ¢ < 6) increasing continuous, for ¢ of cofinality
< k) but 1.11 tells us more, in particular, enough for Theorem 0.4.
More specifically, we shall show (the proofs are given later, the definitions appear
in §(0C) and 1.10 below):

Theorem 0.1. Assume A > o > 9 > 07 > 0 > Ny are reqular.

1) Some S € I[N reflect in every 6 € S2, see Definition 0.14(1).

2) Moreover, if § € S2 then {61 < & : cf(61) = O and S reflects in 61} is a stationary
subset of 4.

3) Moreover, for any (9,0, < o)-system P7*, see Definition 0.9, for any ordinal
§ € 82, for any increasing continuous sequence (8; : i < o) of ordinals with limit §
(clearly exists) for some Sy € I3%(0,0), see Definition 0.13(2) we have:

(x) if j € SZ\S1 then there is Sy € I;5(2*); see 0.13(1)(x)2 such that for
some increasing continuous sequence (ic : € < J) with limit j we have
£ € 89\ Sy = 0;. € goody ().

With stronger assumptions on cardinal arithmetic we get more:

Theorem 0.2. Assume A > 0% and A\, 0 are reqular uncountable and 207" < A
for every n.

1) If S"jfig is (well defined and) stationary then there are n and stationary S C Sp,.,
which reflects in no ordinal § of cofinality € [0,07%).

2) There is S € fg[)\] such that for every n > 2, either Sy = S§‘+n Nrefl(A\S) is not
stationary (in \) or Sy is stationary but is the union of < 20" sets each of which
reflect in no & of cofinality € [0"+2,67%).

3) In part (2) in the second possibility some stationary Sa C S1(C Sg:rn) etther
reflect in no ordinal of cofinality < 7% or S; = {§ € Sg:rnﬂ : So N4 is stationary
in d} is a stationary subset of S’g‘ﬂﬂ which reflect in no § < X\ of cofinality < 6+ .

4) If S) ¢ Ip[\] and m > 2 then there are n € {m, m + 1} and stationary S C S;
such that S reflects in no § < X of cofinality € [§F"+1, §F).




Paper Sh:1008, version 2015-05-07_11.

NON-REFLECTION OF THE BAD SET FOR [s[\] AND pcf SH1008 5

In [?] we consider another version of freeness, note that being (6, o)-free follows
from 6-free and is stronger than stable in every x € [0,0). We do not get it fully
but enough to get “quite free k-combinatorial parameters” which is enough for
applications in [?].

Remark 0.3. 1) Recall that for regular 0 > Ry, 4 € Cy means just that u is strong
limit singular of cofinality 9.

2) For 0 = Nq the class Cp is almost equal to (and is contained in) the class
{p : pu > Vg strong limit of cofinality Ny}, more specifically, the difference does not
reflect in any singular cardinal.

3) Having two possibilities in 0.4, make us prefer the non-tree version of the black
box, (see [?]).

Theorem 0.4. Assume o < k are reqular, i € Cy, i.e. p is strong limit singular
of cofinality k.
At last one of the following holds:

(A) there is a ut-free F C "u of cardinality X := 2", this is called “u has a
1-solution”

(B) A =2 is reqular and there is a (A, u, 0, k) — 5-solution, see Definition 0.6.

Claim 0.5. If p > r = cf(u) > o = cf(0) and we let A\ = p* then there is 7
satisfying clauses (a)-(f) of Definition 0.6.

Definition 0.6. Assume p € Cy, A = 2# = cf(N),0 = cf(0) < k; we say x is a
(A, p, K, 0) — 5-solution when it consists of:

(a) 1= (ns:0€5)

(b) S C S is stationary in A (and € I,[\])

(€) ns = (s, : (i,)) € 0 x k) and (as,4,0 : 4 < 0) is increasing with limit §
and a5, € [@s,i,0, 50,0 + 1) increasing with j and ag,0 + 1 < @s,i+1,0;
and let Cs = {as,;: (i,7) € 0 X K}

(d) [treeness] if o, 4, j, = Qsy.ip,5, then (i1,71) = (i2,J2) and i < i1 Aj < jo =
Q40,5 = Adz,4,5

(e) [freeness] 77 is (0T"FL O+4, J,)-free, see 1.10(4) when k < 6 < p and J, =
Jbd . ={u C o x k: for some (i, j.) € o X k we have u C {(i,j) € o X K :
1<y orj<ju«}

(f) [freeness] 7 is (kT J.)-free

(9) [black box] for every x < u and F = (F5 : § € S) such that Fs : (C5)§ — y
there is @ = (a5 : § € S) € Sy such that (Vn € *)\) (I € S)(as =
F(nlCs)), e-g.

(g) for every relational vocabulary 7 of cardinality < u there is a sequence
M = (M;s € S), M5 a 7-model with universe Cs := Rang(ns) = {as,; :
i < 0,j < K} such that for every 7-model M with universe A we have

(Ftat5 € S)(Ms = M|Cy).

Discussion 0.7. 1) It may be helpful to use this to prove results by cases. First,
find a proof using a 1-solution, that is with p*-freeness using (A) of 0.4 or at
least O.-free, F C *u,|F| = 2,0, large enough so in [?] terms using x with
kx = 1. Second, use n cases of a 5-solution (see 0.4(B) and Definition 0.6) so have

See https://shelah.logic.at/papers/1008/ for possible updates.
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X = Xo X X] X ... X Xp, X is as above so have enough cases of (6%, 07*)-freeness.
This is done in [?] which uses Theorem 0.4.

2) We may use a different division to cases then 0.4, dividing case (B) as in [?]. Let
T = min{0d : 29 > 2#}; and ask whether T = X or T < ).

2A) If T = X then A = A< hence we have better statements on \, e.g. if A is a
successor cardinal then we have { s, OF & =y by [?].

2B) If T < A, by [?, §2], we can construct a (one dimensional) black box for T by
7, §2].

§ 0(C). Quoting Definitions.
We try to make this work reasonably self-contained.

Notation 0.8. 1) For regular uncountable cardinal A let &\ be the filter generated
by the clubs of .

2) () is the set of x with transitive closure of cardinality < x.

3) Let < will denote a well ordering of J#(x).

4) For regular x and cardinal (or ordinal) A > & let S} = {§ < X : cf(§) = k}.
5) For an ideal J on & let comp(J) be max{6 : J is f-complete}, it is well defined.

Definition 0.9. 1) We say & is a (9,0, < u1)-system when :

(a) 6 <0 and 0 is regular uncountable, usually € is regular

Beae Py=anpePg
P, has cardinality < p.

(e

2) If p = 0 we may write (0, 6)-system. Instead “< u*” we may write p. If
Py ={ay} fora < dso P a(d,< 0,1)-system, and we may write a = (a, : @ < 9)
instead of Z. Instead of § we may write < @ when = 0+.

3) We say & is closed when each a € 2, is a closed subset of a.

Remark 0.10. Concerning Definition 0.9(1) note that we allow p > 9; in fact, this

case was used in [?, Ch.II], in proving: if A = tef([] A, <u), A\i = cf(N;) > k and
<K

pwo=lmy(\; 1 i < k) < Ay = cf(A) < A then there are A} = cf(\}) < A; with

p = limy(\f : i < k) such that A, = tef( [] Af, <s) exemplified by some u*-free

1<K
(fo 1 < A).

Fact 0.11. For every regular 6 and stationary S C {§ < 6% : cf(§) < 0} there is a
(67,0, 1)-system so satisfying ((a)-(d) and also) clause (e); also there is a satisfying
(a)-(d),(f),(g) where:
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(f) if E is a club of 7 and ¢ < 6 then there is a such that a, € EAa =
sup(aq) A otp(aa) = ¢

(g9) if E is a club of 7 and ¢ < 6, then for some § € SN E we have as C
E A6 = sup(as) and ¢ divides otp(as).

Proof. See [?, Ch.III] + correction in [?]. As of guessing clubs for clause (f), it is
like [?, §1]. We just are more explicit in what we get. Oo.11

Recall ([?] = [?],[?, §1]), (there we vary )

Definition 0.12. Let A > 6 with A regular.
1) For a (A, 0, < p)-system & = (P, : a < A) let

e good_,(P) = {6 < A: 4§ is a limit ordinal of cofinality < # and there is an
unbounded u C § of order type < § such that @ € u = uNa € £}

e good” () is defined similarly but otp(u) = cf(d).
2A) For a (), 0, < p)-system 2, we define good ,(Z), good. () naturally; we
defined good’_,(2), good” ; () similarly but demand cf(6) = 6.
3) Ip[)] is the set of S C S) := {6 < X\ : cf(§) = 0} such that for some (),6,1)-
system @ and club E of A we have SN E C goody(a), equivalently for some
(A, < 6,1)-system @ and club E of \, SN E C goody (a); equivalently, we may use
P a (\ A, < \)-system or (), 0, < \)-system; abusing notation for S C \, S € 5[]
means S N S € Iy[\]; the “equivalently” holds by [?, §1] or see [?].
3A) Let I[\] = {A C \: if § = cf(f) < A then AN Sy € Ip[N].
4) If Iy[\] = (the non-stationary ideal on S;') +S, then we call S, the good set on
A for cofinality 6; it will be denoted Sf?g; its complement Slf,de = Sg‘\S* is called
the bad set; of course, as only S,/%), is unique this notation pedentically is not
justified.
4A) We define 54, S8 similarly.
5) Let I-[\] = {S C S): if Sy € I[\] then S; N S is not stationary (in A)}.
6) Let I[\] = {S C \: if = cf(f) < A then SN S) € Iy[\]}.
Definition 0.13. Let A > 0 be regular.
1) Let I8\, u] be the set of S C S such that (cg stands for club guessing) there
is no (\, 0, < p)-system & witnessing S € (I;8[\, u])™ which means S C S; A S ¢

I,5(2) that is:

()1 P =(P,:a<N)isa(\0,< p)-system
()2 for P, as above let I;%(2) be the set of S C Sj such that

e for some club E of A for no § € S and a € P5 do we have a C
E Asup(a) = 0.

1A) We define I98[\, 1], I98(2?) similarly except that in e of (x)o we demand only
a € Py

2) Assume A = cf(\) > 0 = cf(0),\ > p and pt > 0. Let I3°(\, ) be the set of
S C S) such that there are Y > A+ and z € #(x) for which there is no sequence
N = (N, : ¢ < ) satisfying:

(a) Ne < (A (x),0,<})
(b) (N¢:(¢ < 0) is increasing continuous
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(¢) (Ne:C<e)€Neps
(d) ||Ne|| < pand Ng Ny is an ordinal
(6) {33, A?M’ 9} € NO

(f) UUN.NX:e< B} es.
Definition 0.14. For A regular uncountable and unbounded S C X let refl(S) =
{6 < A:cf(d) > Ry and S reflects in §} where “S reflects in 6” means SNJ is a
stationary subset of ¢.
2) We say S C X reflects in S) if {6 € S : SN ¢ is stationary in §} is a stationary
subset of \. We may replace S; by any stationary subset of \.

Definition 0.15. For a regular cardinal 0, let Cy be the class of strong limit
singular cardinals p of cofinality @ such that pp*(u) =T 2#.

Discussion 0.16. 1) For the equivalence of the two versions in Definition 0.12(3),

see [?, §1].
2) When does S5, exist?
See [?]=[7], S §d9 exists under quite weak cardinal arithmetic assumptions (much

weaker than GCH).

3) Trivially, if a < A = |a|<% < X then S‘/\a,d@ = 0.

4) Tt is proved there for A, e.g. successor of strong limit singular x and 6 € (cf(u), 1)
that S exists and does not reflect in cofinality (2¢)™ and in cofinality & when
(Vo < 9)[|al? < 3]

5) Also it is proved ([?, Ch.II]) that if A is a successor of regular Xy < 6 = cf(9)
and 0% < X then S¥9 is 0; (i.e. not stationary), see 0.17(1).

Fact 0.17. 1) Assume A is regular and A = c¢f(\) > g and A = ™ A = cf(p), then
0 = cf(0) < p= S, € Iy[)\], moreover, there is a closed (), i1, < \)-system & such
that: § < AAcf(d) < p= (Fa € Ps)(sup(a) = & Aotp(a) = cf(d)).

1A) In part (1) instead of “A = p™Ap = cf()” we can demand o < X = cf ([a] <+, C
) < A

2) 13°(\, ) N Ig[\] is the non-stationary ideal when well defined.

3) If A > 6 and )\, 0 are regular and S € Ig[)\] is stationary, then there is a
(A, < 0, < A)-system & such that S ¢ I;*(#) and a < AAa € P, = otp(a) = 0.

Proof. 1) By [?, §4] or [?] as corrected in [?].

1A) By Dzamonja-Shelah [?].

2) See 1.3.

3) By part (1) the proof of “club guessing”, see [?, Ch.ITI], i.e. let 2 = (2, : a < \)
be a (A, 0, < A)-system such that S C good,(Z?). Without loss of generality 22,
is increasing with o and shows that for some club E of A the sequence Pp =
(ZPra : @ < A) is as required where gf(a,E) := {sup(a N E) : a € a} and
P ={gla,E):a e Ps for some § € [sup(E N «),min(E\(a + 1))} O

In §(1B) we shall use [?, Ch.II].

Definition 0.18. Let f be < j-increasing in *Ord, J an ideal on 1.

1) We say f is flat in 6 or § € Sealf,J] = S’%d[f] when 6 < £g(f),cf(6) > & and
there is a <j-eub g to f[§ such that (Vi < x)(cf(g(i)) = cf(8)), equivalently there
are increasing sequences (a; . : € < cf(d)) for i < k such that (Vo < 6)(Fe <
cf(0))(fa < {aie i< k)) and (Ve < cf(0))(Fa < 0) (e 17 < K) <j fa)-
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2) We say § is strongly chaotic for f or § € Ssen[f,J] = S5B[f] when there is a
sequence (u; : i < k),u; € Ord,|u;| < k and (Vo < §)(3g € [[uwi) (38 < 0)(fa <

9<s fp)

2A) We say § is chaotic for f or § € SP[f] = Sen[f, J] when there is @ as above
such that for every a < § for some 3 € (a, ) the set A, 5 = Aq gla, f] belongs to
Jt where A, g = {i < £ : min(u; U {oo}\ fo(i)) < min(u; U {oo}\ f5(i))}

2B) We define S§M[f,J] = S5B[f], Ss"[f, J] = Sghe[f] similarly but restricting
ourselves to § of cofinality 6. 7

3) We say § is bad for f or 6 € Spa[f,J] = SH4[f] when § < £g(f),cf(5) > k and

f10 has < -eub g but is not flat.
Claim 0.19. Let J, f be as in 0.18.

1) If § < Lg(f) and cf(8) > kT then & satisfies exactly one of good, bad or chaotic.

2) In other words {6 : 6 < Lg(f) and cf(6) > kT} is included in the disjoint union

of Sgalf1, Svalf]; Sen[f]-
Proof. By [?, Ch.I1,§2]. Uo.1s

Claim 0.20. Let f,J,x be as in 0.18 and X = Lg(f).

1) If 6 € SP[f] then for some club e of §, we have a € e Acf(a) > k = a € SP[f].
1A) Similarly for Ssen|[f].

2) If § € S5°(f] then for some club e of § we have a € e Act(a) > k = a € S5°[f].
3) If 6 < \, 6 € SB[f] then cf(5) > wHoomp()+1,

4) If 6 € S%4(f],g an <j-eub of f1d,0 = cf(c) and {i < Kk : cf(g(i)) > o} € JT
then {01 <& :cf(01) =0 but 61 ¢ Sid[f]} N SS is not stationary in J.

Proof. 1),2),3) By [7].
4) Should be clear. Do.20

By [?, Ch.I,1.2].

Claim 0.21. Assume (\ ), J,k) is a pcf case, f a witness_for it, see Definition
1.6. If k < o <min{); : i < K} or just k < o < lim—inf;(\) and S € I,[)\] then

ENS C Sgalf] for some club E of .
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§ 1. ON SYSTEMS
§ 1(A). Existence of large members of Ip[\].

Claim 1.1. Assume X\ > Ry is regular and M. < (J€()\), €) has cardinality < A
and {\,0} C M, and M. N\ € X\. Then we can find a pair (E,2?) which is
(A, M,.)-suitable, which means:

B (a) FEisa club of \; we may add o € ENa > sup(aNE) = cf(a) =Ny

(b) P =(P,:a< isa(\)\<\)-system and 0 = cf(0) < AN M, =
goody (P) D S)\E

(¢c) if o> 0 are reqular € AN M, and
P = (P a< )€ M, is a(0,0,< o)-system and
(0; 11 < o) is an increasing continuous sequence of members
from E, then there are f,e such that:

(o) e isa club of D

(8) [ is an increasing continuous function from O into {§; :i < o}

(v) ife<0,ae PF anda Ce then {f(§): € € a and otp(ané)
is a successor ordinal} € Py(41)

(c)™  like (c) but we replace () by

(V)" ife<d,ae PF andaCe and (7, : L < otp(a)) list a
in increasing order then in addition to the conclusion of ()
e we can choose B, € [v,,V.+1) for ¢ < otp(a) such that
{Bj 5 <1} € Pp,,, for every 1 < otp(a)
e if a has no last member then sup(a) € goody ()

(d) if {6; : i < o) is an increasing continuous sequence of members of E
and o > 0 > 0 are reqular € A\N M, and P* = (P* :¢ < 0) € M,
is a (0,< 6, < o)-system then for some e, f satisfying
clauses (), (8), (v), () we have

(0)  the following set belongs to Igg(@*), recalling 0.13(14)
{Ce Sg: there is no a C e,a € P~ such that a C ¢ = sup(a)
and otp(a) = 0}

(e)  the following set belongs to I3°(a,0), see Definition 0.13(2)
{i € S§: there are no e, f satisfying sup(e) =i and
clauses (a), (B), (7), (7)™, (6) above}.

Remark 1.2. 1) Note that for goody (), only (2, N [a]<? : a < \) matters.

2) For M as in @ in the proof and a < A essentially & satisfies the conclusion
with M, replaced by M,; the essentially because we should ignore the ordinals < «,
i.e. in clauses (), (c)T, (d) demand &y > a.

Proof. Let x > X and let M be such that:
®1 (@) M = (M, :a < \) be a <-increasing continuous sequence
(0) Mo < (H(x), € <)
@ 1Ml <A
(@) Mi(a+1)€ My

See https://shelah.logic.at/papers/1008/ for possible updates.



Paper Sh:1008, version 2015-05-07_11. See https://shelah.logic.at/papers/1008/ for possible updates.

NON-REFLECTION OF THE BAD SET FOR fg[A] AND pecf SH1008 11

() ManNAefor every a < A
(f) if @ < A is non-limit, then M, N A has cofinality N
(9) M. € My hence M, C M.

Let E' = {a: M, N\ = a}. Clearly E is a club of A, hence clause (a) of B holds.
Let & = (P, : a < \) be defined by:

Oy Py ={a€ Myy1:aCasolal] <Xand f €a=anpf e Mgi1} so

P = (P a<A)isa (A < A)-system, moreover, H(b) holds.

[Why does B(b) hold? Let § € Sp\E be a limit ordinal, so for some o < & we have
d € M, hence there is an unbounded (and even closed) subset a of § in M, of order
type cf(4) so B € (a\a) = (a\a)N B € M, C Mg = (a\a) N B € Ma. So indeed
goody(2) 2 Sy\E.]

So we arrive to the main point, that is to prove clauses (c), (c)™ and later com-
ment on its relative (d). So let 0 < o € M, N\ be regular and #* € M, be a
(0,0, < o)-system and let 6 = (J; : i < o) be an increasing continuous sequence of
ordinals from F and let §, := U{d; : i < o} so also (4; : i < o) is an increasing
continuous sequence of ordinals from F.

We choose N by induction on € < @ such that:

©3 (a) Ne < (H(x),€,<3)
IN.J| <o
(Ne: €< ()€ N, when ¢ <e¢
d) (N¢:(¢ <e¢g) is <-increasing continuous
e) X\o0,0,0,E M,§ and 2* belongs to N.
(f) 90+ 1C N. moreover (follows if c = 9%) N.No € (9,0).
This is easy. Let i(¢) := N. No for e < 9, hence i(e) < o is increasing continuous
with €. So d;) is an ordinal € E C X hence Ms, ., is well defined and d;.) €
Ms, . +1, also (J;c) : € < 0) is increasing continuous with limit ;). For e = 0
clearly cf(d;)) = cf(0;(9)) = cf(9) = O hence
@©1 (a) there is a club C of §;(5) of order type cf(d;)) = 9
(b)  mecessarily C' € #(x) and without loss of generality C' € Ms, , +1
(¢) let g be the unique increasing continuous function from 9@ onto C, so
necessarily g € Ms, , +1
(d) let e={e<0:6.) € C, moreover € = otp(C N ;(,)) and,
actually follows, ;) = g(e)}
(e) let f:0 — o be defined by f(e) = d;().

Now C is a club of 0 and both (g(¢) : € < 9) and (d;) : € < 0) are increasing
continuous sequences of ordinals with limit §;g), so clearly

@2 e is a club of 0.

So concerning clause (c) (of H) it suffices to prove that the pair (f,e) we have just

chosen is as required there. Now obviously e, f satisfy sub-clauses («), (8) of (c).

What about sub-clause () of clause (¢) and subclause (v)" of clause (c)*?
Clearly
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®3 fle = gle, see the definition of e.
Now we shall prove
®©4 if € <0 and a € P; satisfies a C e, then {g(¢): ( € a} € My(-41).

The proof of @4 is done in (*)4.1 — (*)4.7.
Note

(¥)a1 P2 C NoN My C Neyr N Msgy41 € Neyr N M,

[Why? For the first inclusion, obviously £* € M,,0 = (g(£*) € M, N X but
M.NAC MyNA € Xhence 9 C My so together Z2F € My. Now | ZF| < o < X and
c€M.NAXC MyNA€EAso P C MyC Ms, ., S Mgy CMs,. Also P* € Ny
and €,0 € N, and | 2|+ 0 < o and by ©3(f) we have N.No € o hence &7 C N,
so together we are done. The other inclusions are immediate as N is C-increasing
by ®3(d) and M is C-increasing by ®1(a).]

Also

(*)4.2 {Q(C) : C € a’} € Méi(a)_H = M§a~

[Why? As a and g belong to this model; why? For a because a € 2%, see the
assumption of @4 and &} C M, C M, © Ms by (*)4.1. For g, by the choice
of C and g, see ®1(a), (b), (c).]

(¥)as {9(Q): Cea} ={(fle)(() : C € a} € Ny

[Why? The equality holds by @3 as a C e A a C ¢ by the assumptions of @y
because fle = gle by @3. Why the membership “€ N.y1” holds? On the one hand
a Ce,a € P hence by (x)41 also a € No41. On the other hand fle € N.11 < Np
because (N¢ : ¢ < &) € Ney1 by @s(c) hence (i(¢) : ¢ < ¢e) € N.y1 by the choice
i(¢) = sup(IN¢ N o) after ®3 and 5 € Ny by ®3(e) hence (9ic) : ¢ <€) € Neyq s0
fl(e+1) € Ney1 by @1(e).] B

As 6 € Ng < Nj(s) by @3(e) we have 6 = (0; : i < o) € Ng < N.41 so necessarily
8o € Ny < N.11 and recalling M € Ny by ©3(e) it follows that Ms, = U{M, : a <
§o} € Noyq and M6, € Noyq < ((x), €, <;) hence

i(8)+1

(*)4.4 Még N N€+1 c Msup(N€+1r‘|5<,)
but (by (x)a2 + (*)a.3)
(#)as {9(¢) : ¢ € a} € M5, N Neya.

Now as M, 8 € Ny and o € Ny by ®3(e), clearly Ms_ € No and as N.y1No = i(e+1)
by the choice of i(e + 1) after ®3 and || N.y1|| < o by ©3(b) clearly

(*)a6 Nex1 N Ms, € Ms, .-
But f(e 4+ 1) = d;(c41) by @1(e) hence by ()45 4 (*)a.6 we have
(¥)ar {9(¢): C € a} € My yy).

So we have proved @®g4.

@5 if ¢ < 0,a € P a C eand £ € a A (anN& has a last member) then
{9(¢) : Ceant} € My
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[Why? Let ¢(*) = max(ang), it is well defined by the assumption on £. But £2* is a
(0,0, < o)-system by the assumption of clause (c) (so of clause (¢)™) of H, hence by
clause (d) of Definition 0.9(1) we have aN((x) € &7, and, of course, aN((x) C e
hence we can apply @4 with ({(*),aN{(x)) here standing for (e, a) there, so we can

deduce {g(C) : ¢ € aN((x)} € My(¢(xy41)- But ((x)+1 < & hence f(((x)+1) < f(§)
hence My (¢(s)41) € My(e). So {g(¢) : { € an((*)} € My, hence by the obvious

closure properties of M) N [f(£)]=% also {g(¢) : ¢ € aN&} € Mye).]

@ if € < 0,a € ZF and a C e then the set b= {f({) : ¢ € a and otp(aN () is
a successor ordinal} belongs to Py(.41).

[Why? By @4 + @5, the definition of &1y in ®2 and the obvious closure prop-
erties of each M,.]

So we are done proving clause (c)(y) of B hence clause (c). Clause (¢)*(y)" is
proved similarly. Say let h, be chosen by induction on o < A such that (hg: 5 < )
is C-increasing continuous and h, is a one-to-one function from M, onto some
ordinal v < « and h, is <}-minimal under those restrictions; now (h(f[(aN()) :
¢ € ¢) will be as required.

We are left with proving clause (d) of B, let z = {\,0,0,60, 2* E, M} and let
Sy = {j € S3: there is N as in ®3 such that j = sup(U{N. : £ < 8} No)}. Now by
the definition 0.13(2) of 13°(c, o) we know that S§\S; € I3%(c, o).

Next, for each j € S; let (N. : ¢ < 9) witness that j € S;. Now choose C, g, ¢, f
as in @;. So by the definition of Igg(,@*) in 0.13(1A) the set S\ S belongs to
Igg(@*) where Sy = {¢ € SJ: there is a € 9%, such that otp(a) = 6, sup(a) = ¢
and a C e hence ¢ € e}.

For each ( € S, let a € &%, witness ( € Sz, as in the proof of clause (c)(v) we
get that ¢ € goody(Z). Clearly this suffices for proving clauses (d)(8), (¢). O

Claim 1.3. Leto > 0 > 0.

1) S§ ¢ 13°(0, ) moreover I3°(0,c) is a normal ideal on S§.
2)IfS; e Iy [o] and Sz € jgc<a, 0) then S1 NSy is non-stationary.

Remark 1.4. If o0 = 07, see 0.17.

Proof. 1) Easy.
2) Let &' = (P, : e < g) be a (0,0, < 0)-system witnessing S; € Iy[o].

Now instead of choosing N, for ¢ < 0 we choose N. and N, by induction on
€ < o such that:

®(A4) (a) Ne = (H(x), € <))

(b) ||INel<oand N.No€o
() (Ne: (<& eN foré<e
(B) (a) Ne = <Ne,a tac ,@9
() New= (#(),6 <)
(© [Newll <
(d) if a € Z. then (N¢one 1 € € aU {e}) is <-increasing and

EeaU{C}NE=sup(anN§) = Ne¢ane = U{N¢anc : € € a}
and{€a=E&Nac Neg

(e) E,M,8,0,0,0,2* and &' belongs to N.,
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(f) (Nep:¢ <& be P)and (Ne: (<€) belongs to Ne , and to Ne
when £ < e, <o

(99 ONN., €0.
The rest should be clear. Ui

Proof. Proof of 0.1 1) As 0,6 are regular cardinals and 9 > 6% let 2% := (2% .
a < ) be a (9,< 0,< 0)-system satisfying S§ ¢ I;8(2?*), see 0.17(3). Let x, M.
be as in 1.1 for our A such that £2* € M.,. Let F, 2 be as constructed in 1.1 for
our \, M, and recall a € nacc(E) = cf(a) = Ng. Soif § € ENS2 then § € acc(E)
and so there is an increasing continuous sequence (J; : i < o) of members of E with
limit §; hence by clauses (¢)*(y) we have (3%t < §)[i € goody (2)].

As we have started with any § € EN Sy clearly goody(Z?) reflects in any § €
E N S2, but goodjy (P) € Is[\]. Now by B(b) of 1.1 § € S)\E = 6 € goodjj (P) so
goody (P) € Iy[)] is as required.
2) Same proof.
3) Similarly using clause (d)(e) of 1.1. Coa

Proof. Proof of 0.2:
1) Let x, A, M, be as the assumption of 1.1 such that in addition 2™ < M.NA\
for every n. Let E and & = (#, : a < \) be as in the conclusion of 1.1.
Recalling Definition 0.12(2A), let S, = goodj () C S, so obviously S, € Iy[\]
and for every n let S, = {6 : ¢f(d) =0T andn =0=§ ¢ S, and [n > 1 =
5N Sy\S, is a stationary subset of 6]}.
Note that by the assumption of part of the theorem

H; Sy is a stationary subset of A.

For n > 1 and § € S,, we choose {75, : € < cf(d)), an increasing continuous
sequence with limit § and let s5 = {& < cf(d) : cf(e) = 0 and 5. ¢ Si}, so as
§ € S, necessary s; is a stationary subset of 677,

For every stationary s C Sg+n let S, s = {0 € S, : ss = s}, the sequence
(Sp,s s C Sgw is stationary) is a partition of \S,, and for some club E,, s C E of
A we have [S, s NE, ; =0 < S, s is not stationary] for every such s.

Let B, =n{E,s; :n >1and s C 67" is stationary}, so as we are assuming
207" < A, clearly E, is a club of \.

Clearly if “n > 2 A (s C ng stationary) = S, s C A is not stationary” then let
k < n be maximal such that Sy, is stationary (well defined because we are assuming
that Sy is stationary), so S = Sy satisfy the desired conclusion. So assume that
n > 2 and s C 01" is stationary and S, s is stationary. If S, s reflects in no
S(;\+m, m > n we are done, and also if refl(S, 5) N Sg‘+n+1 is stationary but reflect in
no Sg‘+m,m > n+ 1, we are done.

Hence it suffices to prove

By ifn>2s5C Sg+n is stationary and S, s C A is stationary, m > n + 2 then
Sp,s does not reflect in any ¢, € Sg;m Nacc(Ey).

Toward this let o = 7™ and § = (§; : i < ¢) be an increasing continuous sequence
of ordinals from E, with limit 6;;) := d.. As s C Sgﬂ is stationary and n > 2,
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let & = 0™ by 0.11, 0.17(3) there is * = (2¢:(<0) a(0,0)-system such that
s ¢ I;5(2%).
Note that &* € M, because 20" < X and M, N ). So our & satisfies the

conclusion of 1.1, so H holds indeed hence we are done.
2),3),4) The proof is really included in the proof of part (1). oo

Remark 1.5. In the proof of 1.1, for regular x € (6, A) and s a stationary subset of
St we can let Sy, s = {0 € S): for some increasing continuous sequence (q; : i < k)
of ordinals with limit 4, the set {i € S§ : i € s iff a; € S.} is not stationary}.
Let E, s be a club of A, disjoint to S s if Sk s is not stationary. Let k., < A and
E,=n{Ey;: K € (0,ks) is regular and s C k}. We can then continue as above.

§ 1(B). Quite free witnesses of pcf-cases exist.

Definition 1.6. 1) We say (A, )\, J, k) is a pcf-case (may omit J in the case J =
[£]<") when :

(@) A= (\; :i < k) is a sequence of regular cardinals > x
(b) J is an ideal on &

(¢) A=tct(I] My <i)-
<K
2) We say f witnesses a pcf-case (A, ), J, k) or is a witness for it when f is <j-
increasing and < j-cofinal in ([ A, <J).
1<K
3) We say f obeys (A, A, J, &, k) when for some g the sequence f obeys (A, X\ J, Kk, P)
as witnessed by g, see part (4) below and f witnesses the pcf-case (A, A, J, k). Not
mentioning g means for some g.
4) We say that f obeys (\, @i, J, k, &) as witnessed by g when :

(@) f=(fara<A)

(b) Jis an ideal on k and 1 = (u; : ¢ < K)

(¢) fo €"0rd

(d) f is < j-increasing

() P =(Py:a <N isa ()< 2V)-system (normally a (A, A, < A)-system)
SO Wlthout loss of generality C-increasing

(f) §=(9a:aeUPa)

(g) ga € "Ord

(h) ga(i) < gp(¢) when a<b are from Py and |b| < p; where P, = U{Ps:
B <a}

(1) if a € P, then g, <J fa

(j) if peae Py,i<kand |a| < p; then fz(i) < gq (7).

e

Convention 1.7. We may allow f = (f, : @ € S) where S C A = sup(9), that is,
say f obeys (A, fi, J, k, &) as witnessed by some g when (f/ : a < A) satisfies the
demands there where o € S = f'tp (Sna) = = fa-
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Claim 1.8. Assume (\, )\, J, k) is a pcf-case, p = liminf ;(X) and & is a (\, p, <
A)-system.

1) There is f obeying (\,\, J, K, P).

2) For every f witnessing (\, A, J, k), for some unbounded S C \, f|S obeys (\, A, J, k, 2).
3) If f obeys (\, A, J, K, 2) and 6 = cf(0) < liminf ;(A\) then Sga[f] 2 goody(2).

Remark 1.9. The proof is like the ones in [?, Ch.I], [?].

Proof. 1) Follows by (2). B
2) Let f = (fo : @ < A) witness the pcf-case (A, A, J, k), trivially exists.
By induction on 8 < A we choose (g, : a € &) and () such that

B (a) g, €l
(b) ifi<k,b<aand {a,b} C P and |a| < A; then ¢,(7) < gq(7)
(o) a(B)<Xand 8 < B = a(f1) < a(f)

(d) ifi<k,pre€ac Pgandlal <\ then fop,)(7) < gali)

(e) ifac P<p then g, <y fa(ﬁ).

In stage 8 we first choose g, for a € g\ P, note that this means that for every
i < k, we have to choose g,(7) as an ordinal < \;, which is a regular cardinal and
if la| < A; it should be bigger than < |a| ordinals < \;, so this is easy.

As for a(p) for each a € P<p, as f is cofinal in (IIX, <) there is 75 < A such
that g, < fy.. So a(f) should be an ordinal < A and > sup{a(f1); 51 < 8} which
is an ordinal < A, as X is regular and it also should be > sup{v, : @« € <3} which
is < A as A is regular > | &2, ].

3) Stralght D1.8

Definition 1.10. Let J be an ideal on x, we may omit it below when J = JPd.
1) A set F C ®Ord is J-free when there is a sequence (ay : f € F) of members of
J such that f; 7é fa N {fl,fg} CFANie /-@\afl\an = fl(l) 7é fz(l)

2) A set . C ®Ord is (0, J)-free when F#' is J-free whenever %’ C Z has cardi-
nality < 6.

3) A sequence (fy : o < ay) of members of *Ord is a (6, J)-free sequence when,
for every u € [a.,]<? there is a sequence (a, : @ € u) of members of J such that: if
a < f are from u then i € k\an\ag = fo(i) < fa(7).

4) A set # C "Ord (we may use a sequence listing it) is called (6s,0;,J)*-free!
when for every .Z#’ C .Z of cardinality < 63, we can find a partition (%, : e < g(x))
of .Z’ such that:

e cach %/ has cardinality < 6;

e we can find a sequence (sy : f € #’) of members of J such that f; €

ﬁ;’l A fo € yg/z NeyF egNi € K\Sfl\sz = fl(l) #* fQ(Z)

4A) A set # C “Ord is called (63, 0;, J)-free when for every .#’ C .7 of cardinality
02, there is a J-free F" C .F' of cardinality 6;.

4B) Similarly to 4), 4A) for a sequence (f, : a € u) of members of “Ord where
u C Ord means that it is with no repetitions and {f, : @ € wu} satisfies the
requirement.

Un Definition [?, 1.2(1)], a variant (2, 61)-free is defined, when 6; = cf(61) > & = [Dom(.J)]
the two versions are equivalent.
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5) A set & C *Ord is called (65, 61, J)-stable when for every u C Ord of cardinality
< 0 the set {f € .Z :itheset {i < x: f(i) € u} is not in J} has cardinality < 5.
5A) A set # C "Ord is (0, J)-stable when it is (6,6, J)-stable.

5B) A set .# C “Ord is (62,61, J)-stable when for every 6 € [f2,0;) is (0, J)-stable.

Toward proving Theorem 0.4 we prove
Claim 1.11. If (A) then (B) where:
(A) (a) (M, J,K) is a pcf-case
(b) M, < (H(N\T),0,<}) has cardinality < X\, M.NX € X and (A, J, k) €

M,; (clearly exists and by 1.1 and 1.8 there are 2, E, f, as required
below)

(¢) P,E are as in 1.1 for our \, M,

(c) f' obeys (AN, J, K, P)

(d) w is a limit uncountable cardinal

() p=liminf;(\), i.e. u=min{x: the set {i < k:\; < x} is not

from J}
(f) 0 =cf(d) <k,J is T -complete
(9) S CS) is stationary such that § € S = (u? divide §)
(h) a={as;:0€S,i<09) where as = (a5, : 1 < 0) is increasing
continuous with limit § such that os; is divisible by p
(i) f=f*=(f2:5€8) is where f}:0 x k — 0§ is defined by f2(i,j) =
asi+ f5(7)
() Je=J84x J={uCdxk: for every i < 0 large enough, {j < r :
(i,7) € u} € J}; of course, we can translate J, to an ideal
on kK, that is {v Ck:{(i,j) €O xKk:0 -j+i€v}e .}
(B) (a)(e) if 0 € [k, p) then the sequence f? is (9T<OmP(NFL g+ ) free
recalling 0 < comp(J) < k, see 1.13 and 0.8(5)
(B)  f? is (comp(J), J,)-free
(v) if 0 € [k, p) is a limit cardinal and cf(0) ¢ [comp(J), k™)
then f? is (@FcomP(N+1 g+ ) free
(b) if o is reqular and § € S) and o < u then, see Definition 0.18:
(@) Kt <o=6§¢SPf]
(B) KT <o < kgteomp)Hl o 5 ¢ Ghd[f]
(7) K<OANOTE <o < greomp(NHL = 5 ¢ ghd[f].
Remark 1.12. This continues [?] and [?]; note that here < x. This helps; there
are relatives with ¢ > k but not needed at present.

Proof. Note that
Mo if 0 = cf(#) € p\x* then Sea[f] N Sy 2 goody[Z].
[Why? By 1.8(3).]

M if 0,0 are regular cardinals from (k, u) and 612 < o then Sgq[f]N S} reflect
in every § € S2.
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[Why? Let T = 672, hence by 0.17(3) there is a (1,0, < T)-system such that
St ¢ I38[Y], see Definition 0.13(1) hence by 1.1, that is by the choice of &, the
set goody () C S reflect in every ¢ € S2, and so by H; we are done.]

My if 0 = cf(f) € [T, \) then refl(goody[Z?]) includes S, hence Sgd [f,J] is

non-stationary.
[Why? As in the proof of Hj, only simpler.]
By S59[f] include {5 < A : 674 < cf(8) < greomP()+1} when 0 € [k, ).

[Why? By H;, 0.19(2), 0.20(1),(2),(3),(4).]
So we have proved (b) of (B);

My f?is (wteomp(D+L 4] T)-free, see Definition 1.10(4), that is as a set.
[Why? By Hg proved below using Hs.]

M5 if 6 € [k, p) then f2 is (TeomP(N+1 g+4 ) free.
[Why? By Hg below using Hs.]

B if 62 > ) = cf(6)) > x and § < AA6; < cf(8) < 0y = § € S5°[f] then f?
is (02, 01, J.)-free.

Toward this we consider for 6 € [01, 63) the statement

@ ifu C S, recalling S C S5, |u| = 6 then we can find 5 = (s, : @ € u) € “(J,)
such that in the graph (u, Rs) every node has valency < 6; where:
e for u C X and § € “J, let (u, Rs) be the following graph: aR;f iff
a # [ € u and for some (i,7) € o X k, we have (3,j) ¢ sq U sg and
f2(i,3) = f30.5).
Why this suffice? As then let (u; : ¢ € I) list the components of the graph (u, Rs),
o0 necessarily each component has cardinality < 6y, recalling 6, is regular, so ({f, :

a € u}:t € I) is a partition as required in Definition 1.10(4).
Why this is true? We prove this by induction on otp(u).

Case 1: otp(u) < 64
Let s, = 0 € J, for a € u, clearly as required.

Case 2: otp(u) =(¢+1

Let a = max(u), let 5* € “"*(J,) be as promised for u N o and let 5> = (s7 :
B € a) be defined by s% ={(4,j) €O x K : fg(i,j) = fali,5)}, sO s% € Ji.

Lastly, define 5 € *(J,) by: sg is sé N s% if 3 < a and is () if 8 = «, now check.

Case 3: § = otp(u) is a limit ordinal of cofinality < 6,

Let o := cf(d) and (ae : € < ) be increasing continuous with limit sup(u) such
that ap = 0. For ¢ < o let ue = uN [ae, ac11) and let 5. = (s4 : @ € uc) be as
required for u,, exists as otp(ues) < otp(u). So 5 = (s4 : @ € u) is well defined. Now
for each B € u, (i, jx) € O x k and € the set wg i, ;. = {7y € ue : (44, jx) ¢ 54 and
S2(iw, Ji) = f;(z*,j*)} has cardinality < 61 because 1,72 € W e, 5. = ((ix,74) €
O X K\(Sy, U8y,)) A f2 (i, 42) = f2,(ix, j+); hence wg := U{wpge;; : € < o and
i < 0,j < k} has cardinality < 0; and § is as required.
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Case 4: ¢ = otp(u) has cofinality > 6;.
We choose 3,a' such that:

(x)6.1 (a) B = (B :e<cf(§)) is increasing continuous

b) Bo=0

) U{Be:i<cf(d)} =sup(u)

d) a' = (al:e < cf(6) non-limit)

e) aleld

f) ife> 0 then 8. =sup(un Be)

g9) ife,¢ < cf(d) are non-limit and j € w\at\a¢ then f§ (j) < f5.(j)

)
h) B. €S} iff cf(e) = 0.

o~~~ o~ o~ o~ o~ o~

[Why such a, a exist? First, sup(u) € S’%d [f1] holds by an assumption of B because
01 < cf(sup(u)) by the case assumption and cf(sup(u)) < 2 as |u| < f3. Second,
use Definition 0.18(1) recalling clause (d) of (*)g.1.]

(*)6.2 we can find a such that:
(a) a={ac:e <cf(d))

(b) ac =al if € is non-limit

(¢c) aceJ

(d) ife<¢<cf(d) and cf(¢) < comp(J) or cf(¢) > k then
J € r\ac\a¢c = fp.(j) < fs.(4)-

[Why? For non-limit € < cf(§) let a. = al.

If e < cf(d) and Ny < cf(e) < comp(J) then let e. be an unbounded subset of € of
order type cf(¢) and let a. = w\{i < & : 7 ¢ U{ag,,, : ¢ € e} and fj (i) < fésﬂ (1)
and ( € e, = fﬁlcﬂ(i) < fég(z)}

As J is comp(.J)-complete ideal on x and f! is < j-increasing clearly a. € J.

If ¢ < cf(0) and cf(e) > & then let a. = {i < k: the set {{ < e :4 ¢ ac41 and
JBesa (1) < fa.(i)} is a bounded subset of €}.

Toward proving a. € J, first we find £(¢) < e such that: if ¢ < k and the set
{¢ <e:i€r\agr and f5., (4) < f5 (i)} is bounded below ¢ then it is < &(¢);
this is possible as cf(e) > &.

So k\ae 2 {i < Kk : fég(s)ﬂ < f5.(i) and i ¢ ag(e)+1} and the latter set is = &
mod J because (age)41 € J) A (fp.,,, <7 f3.); it follows that a. € J.

In the remaining cases cf(e) € [comp(J), k] let a. = k\{i < K : f3_(i) < fa.,, (i)
and @ ¢ ac11}. Actually only the a. for € € ng(é) are used later.

Let us check that (a. : € < cf(9)) is as required in (x)g.2 so assume € < ¢ < cf(0)
and i € k\a.\a¢. First, without loss of generality ¢ is a successor ordinal, otherwise
we know that fs_ (i) < fs. (i) and i € a.4, by the choice of a.. Second, if ¢ is
non-limit then i € w\al\a; hence f (i) < fg (i). Third, if ¢f(¢) < comp(J) then
we can find § € e which is > ¢, 504 ¢ ag,,, as ag,, C ap, hence fg_(i) < fs,,, (7)
and by the choice of a,, also fg, (i) < fg. (i), together fg_ (i) < fs (i). Fourth,
if ¢f(¢) > &, let £ € e be such that ¢ < § and i & agq1 and fp,,, (i) < féc (i). As
i¢ap.,, and i ¢ ag, and € <+ 1 by the “second” we have fg_(i) < fg,,, (i), so
recalling the previous sentence fs_(i) < fs.(i). So we have proved (*)e.2.]
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Now for each € < cf(0) let ue = wN [Be, Betr1) hence otp(u.) < otp(u) = § hence

there is a sequence (s, : @ € u.) of members of J, as required. For each € < cf(0)

and 8 € uc\{B:} hence 8 € S, let i(8) < @ be such that {ag,; : i € [i(8),0)}NB =0
and if € < cf(d), 8 = B. € S s0 B € S} let i(a) = 0.
Lastly, let us define 5§ = (sg : § € u):

(%)6.3 if B € ue then sg:=s5U{(i,j) € 0 x ki <i(B)}U{(i,j) €I xr:j€E
acUac1} U{(i,5) € 0 x k1 =(f5.(5) < f30) < f3.,, ()}

Let 8 € u and let wg = {y € u: there is (i, ) € 9 x r\sg\s, satisfying f2(i,j) =
f3(4,4)} and we have to prove that ws has cardinality < 6;. Let ¢ < cf(d) be such
that 8 € u. that is 8 € [Be, Be+1), clearly € exists and is unique. As sg D sg clearly
wg N [Be, B+1) have cardinality < 6;. Now if v € uNf: A > B¢ then by the choice
of sg we have sg 2 i(f) x k and by the choice of i(8) we have v ¢ wg recalling
{ayj 1§ <0} CBe. If y €unpBe AB = then necessarily 8. € S5 so cf(B:) = 9
and let § < cf(6) be such that v € [B¢, Beq1), now if (i,7) € 9 x k\sg\s, then by
(*)6.2(d) we have f1(i) < féﬁl(i) < fa_(i) so v ¢ wg. Together wg Nz =0

Next, assume v € u\Bey1 say v € ug,§ > e if cf(§) # OV vy > [ we use
i(y) x K C s, and if cf(§) = O Ay = B¢ we use the chocies of ag,a.; hence
wﬂ\/BE-‘rl = (.

Together wg has cardinality < 6; as required. So we are done proving Case 4,
hence proving Hg.

M7 the sequence f? is (comp(J)™, J.)-free; this is clause (a)(3) of (B).

[Why? Let uw C A have cardinality < comp(J), let (8. : ¢ < |ul) list v and
a. = {i < k: for some ¢ < £ we have fég(z) = f5.(i)}, so as J is |u|*-complete
by the assumption clearly a. € J. Let sg, = 0 X a. for € < |ul, recalls that for
each ( <e,{i <k: féc (1) = f5,(1)} € J by clause (A)(c) of the assumption and so
(sg : B € u) is as required.|

Mg if 6 € [k, p) then f2 is (gFeomP(N)+1 g+4 T ) free.
Why? By Hg and (B)(b which we have proved in Hs.
v

My if 6 € [x,p) is a limit cardinal and cf(f) ¢ [comp(J),x) then f? is
[gFeomp(N)+1 g T )-free. This is clause (B)(a)(y) of the desired conclusion.

Why? Clearly 6 # r hence recalling 6 is a limit ordinal > x we have § > kT4
Again by g it suffices to prove that if § < X and cf(8) € [0, #TeomP())+1) then
5 ¢ S(7) and 6 ¢ S,

If cf(6) > 07 this holds by Hs, so we can assume cf(5) € {6+ : ¢ < 3}. Now
§ ¢ SSM[f] as otherwise there is a club e of ¢ such that a € e Acf(a) > kK = a €

S<h[f], contradicting B3 applied to k4.
Bo.1 6 ¢ SHLf].
[Why? Otherwise cf(d) = (][] 04, <s) for some o; = cf(o;) € (k,cf(0)). Now if

<K
m < £, clearly {i < k : o; = 7™} belongs to J hence without loss of generality
(Vi)(o; < 6). Also limy{o; : i < k) = 0, otherwise we contradict Hj, hence
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necessarily cf(f) € [comp(J), k) but this contradicts the assumption of Hg, e.g.

(B)(a)(7) ]

Together we are done proving Hg. U111

Proof. Proof of 0.4:
The proof is by cases.

Case 1: A is singular.

In this case there is a T -free # C *p of cardinality 2¢ = A by [?, 3.10(3)=1£.28(3)];
more fully by [?, Ch.I1,2.3,pg.53] for every x € (i, A) there is a p*-free F, C " of
cardinality x; by letting ¥ = (x. : € < ¢f(\)) be increasing with limit A, combining
the .#,,’s and Z¢(\) we are done. So clause (A) of 0.4 holds and we are done.

Case 2: A is regular and |o|<" = X for some o < .
In this case by [?, 3.6=1f.21] there is a pT-free .F C *u of cardinality 2 = X so

again clause (A) of 0.4 holds and we are done.

Case 3: A is regular and a < A = |a<" < A

Let E={0 <A:a< A= |a|<" < §and § is divisible by u -}, clearly a club
of A.

Let S C E be any stationary subset of S2. We choose (as; : § € S) such that
a5 = (a5, : @ < o) is increasing with limit ¢ such that each as, is divisible by
p. By the case assumption we have S € I,[\], hence without loss of generality
A§1 i = Oy ig = 11 =12 A (Vi < il)(a(shi = 0452,1'). ~ ~

Now as it € C,, recalling [?, Ch.VIII] there is a sequence A such that (\, A, J*9, k)
is a pcf-case such that ) is an increasing sequence of regular cardinals with limit .
We can choose y, M, as in the assumption of 1.1 for A such that 7 (u) € M, and
the choose E, £ as in the conclusion of 1.1.

Hence by 1.8(1) we can find f! = (fL : a < ) obeying (\,\, JP9, k, ). Let
cd : "7 — p be one-to-one, we may assume that (Vi)\; > k and v € [[ A\j Ai <

i<k
Jj < k= cd(v|i) < cd(vlj). Define f* :x — pby f2(i) =cd(fol(i + 1)), so f*is
increasing.

Lastly, let as ;. ; = a4+ f5(j) and we should prove that (a5, ;:d € S,i < o0,j <
k) is as required in Definition 0.6, so s = (s : (4,4) € 0 x k). If we have used
f} instead of f* we just have to omit clause (d) of 0.6.

Clauses (a),(c) of 0.6 holds by our choice of ns. Clause (b) of 0.6 holds by the
choice of S noting that S € I,[\] as S C F N S) and the case assumption. Clause
(d) of 0.6 holds by the choices of the @;’s and of cd, f recalling fl € *u and s,
is divisible by u. Clause (e) holds by 1.11, that is (B)(a) there says f = f2 is
(0F1F1 0, J,)-free when 0 € [r, 1). Also clause (f) of 0.6 that is “f is (k¥ J,)-free”
holds by direct inspection or see clause (B)(a)(8) of 1.11 recalling J? is x-complete
ideal on &.

Lastly, clause (g)’ follows by clause (g) and clause (g) holds by [?]. Oo.4

Definition 1.13. Let J be an ideal on k.

1) We say .% C *Ord is strongly semi-(0s, 61, J)-stable when there are no f. € .#
for ¢ < 65 and u C Ord of cardinality < #; such that for ¢ < ¢ < 65 the following
set Acc = Apc(u,(fe e €u))is # 0 mod J

Ao i={i <k :min(u U {oo}\fo (7)) # min(u U {oo}\ fc (7))}
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2) For < j-increasing f = (f, : @ < au), fo € "Ord we say f is a strongly-semi-
(02, 0,1, J)-stable sequence when there are no v C a of cardinality 03 and u C Ord
of cardinality < 6; such that: if a < 8 are from v then the following set is # ()
mod J

{i <k :min(uU {oo}\ fa (7)) £ min(uU {co}\ f5(7)}.
3) In parts (1),(2) above, if §; = 02 we may write (0, J) instead of (61, 65).
4) In parts (1),(2) above writing (02,61, J) instead of (02,61, J) means: strongly-
semi- (6, J)-stable for every 6 € [0y, 05).
Claim 1.14. Assume f = (f, : a < \) witness the pcf-case (M, J, k) and is
strongly-semi-(0, 01, J)-stable, see 1.18(2),(4) and 02 < chom(‘]). Then S%d[f] 2
{5 <A Cf(5) S [91,92)}.
Proof. Straightforward. 0114

Note also

Observation 1.15. Let J be an ideal on k.

1) If fo € "Ord for a < au. and the sequence (fq : o < aw) is (0, J)-free then the
set {fo o < ay} is (0,J)-free and is with no repetitions.

2) Similarly for (02,01, J)-free.

24) Similarly for (02,01, J)-free.

3) If 0y > 0, > 01 > 0] then

(a) F is (0, J)-free implies F is (01, J)-free

(b) similarly for f

(¢) F is (0a,61,J)-stable implies F is (05,0}, J)-stable.
4) If F C *Ord is (0T, J)-free then it is (0, J)-stable.
5) If F C *0rd is (05,61, J)-free then F is (02,01, J)-free.
6) If # C ~Ord is (0o,01, J)-free then it is (65,01, J)-stable.

Remark 1.16. We also have obvious monotonicity in .# and f and other obvious
implications.

Claim 1.17. 1) Assume % C "Ord is semi-(0, J)-stable or just J is 0.-complete
and ¢ < 0. Then F is strongly semi-(07=t1 J)-stable.
2) Similarly without sems.
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