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MAD SPECTRA

SAHARON SHELAH AND OTMAR SPINAS

Abstract. The mad spectrum is the set of all cardinalities of infinite maximal almost

disjoint families on ω. We treat the problem to characterize those sets A which, in some

forcing extension of the universe, can be the mad spectrum. We give a complete solution

to this problem under the assumption ϑ<ϑ = ϑ, where ϑ = min(A).

§0. Introduction. Recall that A ⊆ [ω]ω is called almost disjoint (a. d.
for short), if a ∩ b is finite for all a, b ∈ A, a 6= b. Such A is called maximal
almost disjoint (mad for short), if it is maximal with respect to ⊆ among
a. d. families. An easy diagonalization shows that every infinite mad family
is uncountable. The well-known cardinal invariant a is defined as the minimal
cardinality of an infinite mad family. Over the past decades, much work has been
done to understand this cardinal. We only mention [Sh700] and [Br]. In the first
one, the consistency of d < a with ZFC was proved, in the second one, which
further develops the ideas of [Sh700], it was shown that consistently a = ℵω.

It is natural to study mad families in more general ways, e. g. investigate the
mad spectrum, i. e. the set A of all infinite cardinals that are the cardinality
of some mad family. This problem has been attacked already in the early period
of forcing by Hechler [H]. There are two obvious restrictions A must satisfy.
Firstly, A has 2ℵ0 as its maximum, and, secondly, A is closed under singular
limits (see [H, Theorem 3.1]). For the first one, notice that there are always a.
d. and hence mad families of size 2ℵ0 . For the second one, if µ is a singular
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2 SAHARON SHELAH AND OTMAR SPINAS

limit of A, say µ = Σ
i<cf(µ)

µi with cf(µ) 6 µi < µ and µi ∈ A for all i < cf(µ),

choose mad families Bi with |Bi| = µi. Let B0 = {bν : ν < µ0} and fix bijections
πν : ω → bν , ν < µ0. For i < cf(µ) let B′1+i = {πi[b] : b ∈ B1+i}. Then
(B0 \ {bν : ν < cf(µ)}) ∪

⋃
i<cf(µ)

B′1+i is a mad family of size µ.

It is natural to try to characterize those sets C ⊆ Card which are the mad
spectrum of some forcing extension of V. Under the assumption V |= GCH
Hechler has constructed some c. c. c. forcing notion P, such that P C = A˜ (A˜is a P-name for the mad spectrum), provided that:

(a) C is a set of uncountable cardinals;
(b) C is closed under singular limits;
(c) if µ ∈ C has cf(µ) = ℵ0, then µ = sup(C ∩ µ);
(d) max(C) exists and max(C)ℵ0 = max(C);
(e) ℵ1 ∈ C;
(f) if µ ∈ Card and ℵ1 < µ 6 |C|, then µ ∈ C;
(g) if µ ∈ C, cf(µ) = ℵ0, then µ+ ∈ C.

The question remained open whether (c), (e), (f), (g) are necessary assump-
tions. In particular, Raghavan has asked whether consistently ℵω ∈ A but
ℵω+1 /∈ A.

In this paper we show that for every C ⊆ Card with properties (a), (b), (d)
there exists some c. c. c. forcing PC with PC C = A˜ , provided that ϑ := min(C)

satisfies ϑ = ϑ<ϑ (hence ϑ regular) and max(C)<ϑ = max(C). In particular, we
answer Raghavan’s question positively. By Brendle’s result mentioned above this
is not a complete characterization of the possible mad spectra. What remains
open is the characterization of those potential mad spectra whose minimum is
singular.

§1. The obvious Forcing.

Definition 1.1. We say C is a potential mad spectrum (p.m.s. for short),
if the following hold:

(a) C is a set of cardinals;
(b) min(C) > ℵ1;
(c) max(C) exists;
(d) max(C)ℵ0 = max(C);
(e) if µ is singular and µ = sup(C ∩ µ), then µ ∈ C;
(f) as a technical assumption we ask that C has max(C) as a member max(C)

times, and we write them as 〈Υi : i < max(C)〉.

Definition 1.2. For any uncountable cardinal µ let Qµ be the following forc-
ing notion:

(A) p ∈ Qµ iff for some unique u = dom(p) and n = np < ω we have
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(a) u ⊆ µ is finite;
(b) p : u→ n2;

(B) Qµ |= p 6 q iff
(a) p, q ∈ Qµ;
(b) dom(p) ⊆ dom(q);
(c) if α ∈ dom(p), then p(α) � q(α) (hence np 6 nq);
(d) if α, β ∈ dom(p), α 6= β and n ∈ [np, nq), then q(α)(n) = 0 or

q(β)(n) = 0.

Remark Note that if p, q ∈ Qµ with np 6 nq are incompatible, then there
exist α ∈ up∩uq and n < np, so that p(α)(n) 6= q(α)(n), or else np < nq and there
exist α, β ∈ up ∩ uq and n ∈ [np, nq) so that α 6= β and q(α)(n) = q(β)(n) = 1.

Recall that a forcing has the Knaster property, if every uncountable subset
has an uncountable subset such that any two of its elements are compatible.
Applying the ∆-system lemma we easily get:

Claim 1.3. Forcing Qµ has the Knaster property, hence is c.c.c.

Definition 1.4. 1) For u ⊆ µ let Qµ,u be the forcing Qµ restricted to {p ∈
Qµ : dom(p) ⊆ u}. 2) If x = (µ1, u1, µ2, u2, h) is such that ul ⊆ µl for l =
1, 2 and h is a one-to-one function from u1 onto u2, then πx is the natural
isomorphism between Qµ1,u1

and Qµ2,u2
induced by h, i.e. if p ∈ Qµ1,u1

then
πx(p) is q with dom(q) = h[dom(p)] and q(h(α)) = p(α) for α ∈ dom(p).

Claim 1.5. If u ⊆ µ, then Qµ,u is a complete subforcing of Qµ, Qµ,u6·Qµ for
short. More exactly, if p ∈ Qµ then

(a) if p � u := p � (u ∩ dom(p)), then p � u ∈ Qµ,u and p � u 6Qµ p;
(b) if q ∈ Qµ,u and p � u 6 q, then p and q are compatible in Qµ.

Proof of Claim 1.5 (a) is clear. For (b), we have np 6 nq. Define r ∈ Qµ
with nr = nq,dom(r) = dom(p) ∪ dom(q), r � u = q so that for every α ∈
dom(p) \ u, p(α) E r(α) and r(α)(n) = 0 for every n ∈ [np, nq). Then p 6 r and
q 6 r hold. 2

Remark This implies that for every filter G that is Qµ-generic over some
model, G � Qµ,u := {p � u : p ∈ G} is Qµ,u-generic.

Definition 1.6. For C a p.m.s. we define Q = QC as the finite support
product of 〈Qµ : µ ∈ C〉.

Forcing Q has many natural complete subforcings. In order to talk about them
we introduce the following notations:

Definition 1.7. Let C be a p.m.s.

1) For C ⊆ C we let parC = {u : u = 〈uµ : µ ∈ C〉 and ∀µ ∈ C uµ ⊆ µ} and
then parC =

⋃
{parC : C ⊆ C}
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4 SAHARON SHELAH AND OTMAR SPINAS

2) For u ∈ parC let Qu = QC,u be QC restricted to {p ∈ QC : dom (p) ⊆
dom (u) and ∀µ ∈ dom (p) p(µ) ∈ Qµ,uµ}.

3) For u ∈ parC and p ∈ QC let p � u be q ∈ Qu defined by: dom (q) =
dom (p) ∩ dom (u) and ∀µ ∈ dom (q) q(µ) = p(µ) � uµ ∩ dom (p(µ)).

4) We consider partial automorphisms of QC, i.e. ones between subforcings of
the form Qu for u ∈ parC. We let pautC be the set of all x of the form
〈g, h, C1, u1, C2, u2〉 = 〈gx, hx, Cx,1, ux,1, Cx,2, ux,2〉 such that
(a) C1, C2,⊆ C;
(b) g is a one-to-one function from C1 onto C2;
(c) ul = 〈ul,µ : µ ∈ Cl〉 ∈ parCl for l = 1, 2;

(d) h = 〈hµ : µ ∈ C1〉;
(e) if g(µ1) = µ2, then hµ1

is a one-to-one function from u1,µ1
onto u2,µ2

.
5) For x ∈ pautC let κx be the isomorphism between Qux,1 and Qux,2 which is

induced by x.

Generalizing claim 1.5, we easily see that Qu is a complete subforcing of QC:

Claim 1.8. If u ∈ parC then Qu6·QC. More exactly, if p ∈ QC, q ∈ Qu and
Qu |= p � u 6 q, then p and q are compatible in QC.

Definition 1.9. 1) Let G˜Qµ be the canonical name for the Qµ-generic filter,
and let η˜µ,α be the Qµ-name

⋃
{p(α) : p ∈ G˜Qµ}.

2) For α < µ let A˜µ,α be the Qµ-name {n : η˜µ,α(n) = 1} and A˜µ = 〈A˜µ,α : α <

µ〉.
3) We can consider all these names as QC-names, or as Qu-names, provided
that µ ∈ C or u ∈ parC, µ ∈ dom (u) and α ∈ uµ respectively.

Proposition 1.10. (1) QC has the Knaster property and is of cardinality
max(C) such that QC 2ℵ0 = max(C).

(2) Qµ
′′η˜µ,α ∈ ω2 and A˜µ is a mad family on ω′′, for every α < µ.

(2 A) QC
′′η˜µ,α ∈ ω2 and A˜µ is a mad family′′, for every µ ∈ C and α < µ.

(3) If Qµ ν˜ ∈ ω2, then there are αn < µ(n < ω) and a Borel function B :
ω(ω2)→ ω2, such that Qµ ν˜ = B(η˜α0 , . . . , η˜αn , . . . ).(3 A) If χ˜ is a Qµ-name for a subset of an ordinal γ, then there is u ⊆ µ such

that χ˜ is a Qµ,u-name and |u| 6 |γ|+ ℵ0.

(4) If QC ν˜ ∈ ω2, then there are µn ∈ C αn < µn(n < ω) and a Borel function
B : ω(ω2)→ ω2 such that QC ν˜ = B(η˜µ0,α0

, . . . , η˜µn,αn , . . . ).

(4 A) If χ˜ is a QC-name for a subset of some ordinal γ, then for some ordinal

u ∈ parC, χ˜ is a Qu-name and Σ
µ∈domu

|uµ|+ 1 6 |γ|+ ℵ0.

Proof: All arguments needed form part of the basic theory of forcing. There-
fore we only give some hints.

(1) The Knaster property is preserved by finite support products. By |QC| =
max(C), the c.c.c. and the assumption that max(C)ℵ0 = max(C) we con-
clude QC 2ℵ0 6 max(C). The converse follows from (2) below.
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(2) The proof that in (2) and (2 A) A˜µ is forced to be an a.d. family is an easy
genericity argument. Let us prove maximality. Suppose that p ∈ QC and a˜is a QC-name such that p QC

′′a˜ ∈ [ω]ω and a˜ /∈ A˜µ and A˜µ ∪ {a˜} is a. d.
′′. By the c.c.c. of QC we can find u ∈ parC such that Σ

ν∈dom (u)
|uν | + 1 6

ℵ0, p ∈ Qu and a˜ is a Qu-name. Fix α ∈ µ \ uµ and find q ∈ QC and
m < ω such that q > p and q PC a˜ ∩ a˜µ,α ⊆ m. By our assumptions
we can choose k > m and p1 ∈ Qu such that k > nq(µ), p1 > q � u and
p1 Qu

′′k ∈ a˜\a˜µ,β ′′ for all β ∈ uµ∩dom (q(µ)). Note that then np1(µ) > k.
We define q1 ∈ QC as follows: q1 � Qu = p1, q1(ν) = q(ν) for all ν ∈
dom (q)\dom (p1) (µ ∈ dom (p1) clearly), q1(µ)(β) � nq(µ) = q(µ)(β) for all
β ∈ dom (q(µ)), q1(µ)(β)(n) = 0 for all β ∈ dom (q(µ))\(dom (p1(µ))∪{α})
and n ∈ [nq(µ), np1(µ)) and finally (the crucial point) q1(µ)(α)(k) = 1 and
q1(µ)(α)(n) = 0 for all n ∈ [nq(µ), np1(µ)) \ {k}. Note that q1 > q, q1 > p1

and q1 QC k ∈ a˜ ∩ a˜µ,α. This contradicts our choice of q,m and k. This
finishes the proof of (2) and (2 A).

(3) We can choose maximal antichains An ⊆ Qµ and functions fn : An →
n+12 (n < ω) such that An+1 refines An and ∀n∀ p ∈ An p Qµ ν˜ � n+ 1 =
fn(p). Let u =

⋃
{dom (p) : p ∈ An, n < ω}. By the c.c.c. we have |u| 6 ℵ0.

We can consider ν˜ as a Qµ,u-name, and for every Qµ-generic filter G we
have ν˜[G] = ν˜[G∩Qµ,u]. Each p ∈ Qµ,u obviously determines a basic open
set Up in the product topology on u(ω2).

By the remark after Definition 1.2 we need not have Up ∩ Uq = ∅ for
p, q ∈ An, p 6= q. That is why for n < ω and p ∈ An we let Vp = Up \

⋃
{Uq :

q ∈ An & p 6= q}. Clearly, Vp is Gδ, and Vp ∩ Vq = ∅ for any distinct
p, q ∈ An.

If we let Wn =
⋃
{Vp : p ∈ An}, we have Wn+1 ⊆Wn for all n,

⋂
n<ω

Wn is

Gδσδ, and for every x ∈
⋂
n<ω

Wn and n < ω there exists a unique p ∈ An with

x ∈ Vp. Therefore the functions fn induce a function B′ :
⋂
n<ω

Wn → ω2.

Note that its preimage of any basic open set in ω2 is Gδσ. Hence, if we
define B′ to be constantly zero on ω2 \

⋂
n<ω

Wn, then B′ : u(ω2) → ω2 is

Borel.
If 〈αn : n < ω〉 is an enumeration of u and g : ω(ω2)→ u(ω2), (xn) 7→ (yα)

where yαn = xn, then B := B′ ◦ g is the desired Borel function. The
remaining clauses can be proved by arguments similar to the ones we used
so far. 2

§2. Eliminating
⋃
C ∩ Card ⊆ C.

Theorem 2.1. Suppose that C is a p.m.s. such that

(a) min(C) = ℵ1 and 2ℵ0 = ℵ1, and
(b) max(C)ℵ0 = max(C).
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There exists a forcing QC with the Knaster condition such that, letting A˜ a

QC-name for the mad spectrum in VQC , we have QC A˜ = C.

Proof: Let Q = QC as in Definition 1.6. By Proposition 1.10 (1) we have
Q 2ℵ0 = max(C). Let λ /∈ C, λ < max(C) be an uncountable cardinal in VQ,
hence by the c.c.c. of Q also in V. By property (e) of a p.m.s. there exists a
minimal regular uncountable cardinal σ 6 λ such that [σ, λ] ∩ C = ∅. Letting
χ = min{µ : µℵ0 > σ}, we have either

Case A: χ = σ, or

Case B: χ > ℵ1 and cf(χ) = ℵ0.

Indeed, if χ < σ, then certainly χ > ℵ1, as ℵℵ01 = ℵ1 ∈ C by assumption. If
we had cf(χ) > ℵ1, then χℵ0 = Σ

α<χ
|α|ℵ0 < σ, a contradiction to the definition

of χ.

We shall prove Case B and then indicate how the proof can be simplified to
treat Case A.

Assume p Q
′′〈B˜α : α < λ〉 is an a.d. family′′. We have to define a Q-name

B˜λ so that for every α < λ

p Q
′′B˜λ ∈ [ω]ω and B˜α, B˜λ are a.d.′′.

For this we shall construct B˜λ with the property that for every α < λ we can

find β ∈ σ \ {α} and y = 〈g, h, C1, u1, C2, u2〉 ∈ pautC (see Definition 1.6 (4)) so
that

(∗)1 (a) B˜α, B˜β are Qu1
-names;

(b) B˜α, B˜λ are Qu2
-names;

(c) p ∈ Qu1 ∩Qu2 and κy(p) = p;
(d) κy maps B˜α to B˜α and B˜β to B˜λ.

Since κy respects the forcing relation, this will suffice. We have to find B˜λ as
desired.

By applying Proposition 1.10 (4), for every α < λ we can find µ(α, n) ∈
C, ξ(α, n,m) < µ(α, n) for n,m < ω and Borel functions Bα such that Q
′′B˜α = Bα(. . . , η˜µ(α,n),ξ(α,n,m), . . . )n,m

′′.

For notational simplicity we may assume that all families 〈µ(α, n) : n < ω〉(α <
λ) and 〈ξ(α, n,m) : m < ω〉(α < λ, n < ω) are with no repetition. For each α < λ
we assemble these ordinals into one sequence ζα = 〈ζ(α, ν) : ν < ω ·ω〉 by letting
ζ(α, n) = µ(α, n) for n < ω and ζ(α, ω · (n+ 1) +m) = ξ(α, n,m) for n,m < ω.
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We claim that we can find an unbounded set Y ⊆ σ, a Borel function B∗, a

partition ω ·ω = w0 ∪̇w1 ∪̇w2 and an ordinal function β
∗

= 〈β∗(i) : i ∈ w0 ∪ w1〉
such that

(∗)2 (a) Bα = B∗ for every α ∈ Y ;
(b) cf(β∗(i)) > ℵ1 for every i ∈ w1;
(c) for every α ∈ Y

(α) ζα � w0 = β
∗
� w0,

(β) ζ(α, i) < β∗(i) for every i ∈ w1;

(d) if γ ∈
∏
β
∗
� w1, then for σ many α ∈ Y we have γ < ζα � w1 (i.e.

γi < ζ(α, i) for every i ∈ w1);
(e) for every α ∈ Y and i ∈ w2

ζ(α, i) /∈ {ζ(β, j) : β < α, j < ω · ω}.

In Case A we shall have w1 = ∅, hence only (a), (c) (α) and (e) are relevant. We
prove (∗)2: As there are only 2ℵ0 Borel functions and we assume 2ℵ0 = ℵ1 < σ,
without loss of generality we may assume that Bα = B∗ for some B∗ and every
α < σ. Let Zα = {ζ(β, ν) : β < α, ν < ω · ω} and define a function h on σ
by h(α) = min{β 6 α : ∀ν < ω · ω (ζ(α, ν) ∈ Zα ⇒ ζ(α, ν) ∈ Zβ)} and let
vα = {ν < ω · ω : ζ(α, ν) ∈ Zα}.

Clearly h(α) < α for α of uncountable cofinality. By Fodor’s Lemma there
exist a stationary S0 ⊆ σ and γ < σ such that h � S0 is constant with value γ.
Since there are only ℵ1 many possibilities for vα and σ is regular, there exist a
stationary S1 ⊆ S0 and v∗ ⊆ ω · ω such that vα = v∗ for every α ∈ S1. We let
w2 = ω · ω \ v∗. Then clearly (e) holds with S1 in place of Y . As for α ∈ S1

and ν ∈ v∗ we have ζ(α, ν) ∈ Zγ and |Zγ | 6 |γ| · ℵ0 < σ, in Case A we have

|Zγ |ℵ0 < σ and hence we can let w0 = v∗ and find β
∗

= 〈β∗(i) : i ∈ w0〉 and
stationary Y ⊆ S1 such that (c)(α) holds.

However, in Case B it may be impossible to make ζα � v∗ constant for σ
many α, as possibly |Zγ |ℵ0 > σ. In this case we can apply [Sh620, 7.1 (0),
(1)] in a straightforward manner with λ, κ, µ,D, 〈fα : α < λ〉 there standing for
our S1, v∗,ℵ2,Dcbσ , 〈ζ � v∗ : α ∈ S1〉, where Dcbσ is the filter generated by all

cobounded subsets of σ. This gives us Y ⊆ S1, v∗ = w0 ∪̇w1 and β
∗

as desired.

We are now ready to define the Q-name B˜λ as outlined at the beginning of
this proof, so that (∗)1 will hold. We do it in the Case B, which includes Case
A by deleting everything which refers to i ∈ w1. We shall define

B˜λ = B∗(. . . , η˜µ(λ,n),ξ(λ,n,m), . . . )n,m

for certain µ(λ, n), ξ(λ, n,m) which are defined as follows:

(∗)3 (a) If n ∈ w0, then µ(λ, n) = β∗(n)(= µ(α, n) for every α ∈ Y );
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(b) if n /∈ w0, then µ(λ, n) = Υi(λ,n), where i(λ, n) is the n-th member of
{i < max(C) : Υi /∈ {µ(α, k) : α < λ, k < ω}};

(c) if ω ·(n+1)+m ∈ w0, then ξ(λ, n,m) = β∗(ω ·(n+1)+m)(= ξ(α,m, n)
for every α ∈ Y );

(d) if n ∈ w0 and ω · (n+ 1) +m /∈ w0, then ξ(λ, n,m) is the m-th member
of µ(λ, n) \ {ξ(β, n1,m1) : β < λ, n1,m1 < ω} (Note that this choice is
possible, as by (∗)2 (d), (e) in this case we must have µ(λ, n) > σ and
hence µ(λ, n) > λ.);

(e) if n /∈ w0 and ω · (n+ 1) +m /∈ w0, then ξ(λ, n,m) = m.

Let α < λ be arbitrary. By (∗)2 we can choose β ∈ Y \ {α} such that

(∗)4 (a) if n /∈ w0, then µ(β, n) /∈ {µ(α, k) : k < ω} ∪ dom (p);
(b) if ω · (n + 1) + m /∈ w0, then ξ(β, n,m) /∈ {ξ(α, n1,m1) : n1,m1 <

ω} ∪
⋃
{dom (p(µ)) : µ ∈ dom (p)}.

Now we are going to define a partial automorphism of Q y ∈ pautC so that
(∗)1 will hold.

Let the function g be defined by

(∗)5 (a) dom (g) = {µ(α, n) : n < ω} ∪ {µ(β, n) : n < ω} ∪ dom (p);
(b) g(µ(α, n)) = µ(α, n);
(c) g(µ(β, n)) = µ(λ, n), thus

(α) g(µ(β, n)) = µ(β, n) if n ∈ w0,

(β) g(µ(β, n)) = Υi(λ,n) if n /∈ w0;

(d) g(µ) = µ for µ ∈ dom (p).

Note that by the choice of β in (∗)4, g is well-defined, i.e. if µ(α, n1) = µ(β, n2)
then the demands in (b) and (c) agree, similarly for µ(β, n2) = µ ∈ dom (p).
Indeed, in this case we must have n2 ∈ w0 and g(µ(β, n2)) = µ(β, n2).

Let C1 := dom (g) and C2 := ran (g). By definition and by (∗)3 (b), g is
one-to-one.

For each µ ∈ dom (g) we define a function hµ as follows:

(∗)6 (a) (α) If µ = µ(α, n) /∈ {µ(β,m) : m < ω}, then dom (hµ) = {ξ(α, n,m) :
m < ω} ∪ dom (p(µ)) (dom (p(µ)) = ∅ if µ /∈ dom(p));

(β) if µ = µ(β, n) /∈ {µ(α,m) : m < ω}, then dom (hµ) = {ξ(β, n,m) :
m < ω} ∪ dom (p(µ));

(γ) if µ = µ(α, n1) = µ(β, n2), then dom (hµ) = {ξ(α, n1,m) : m <
ω} ∪ {ξ(β, n2,m) : m < ω} ∪ dom (p(µ));

(δ) if µ ∈ dom (p) \ {µ(ν, n) : ν ∈ {α, β}, n < ω}, then dom (hµ) =
dom (p(µ));

(b) if µ = µ(α, n), then hµ(ξ(α, n,m)) = ξ(α, n,m);

Paper Sh:1038, version 2015-01-29 10. See https://shelah.logic.at/papers/1038/ for possible updates.



MAD SPECTRA 9

(c) if µ = µ(β, n), then hµ(ξ(β, n,m)) = ξ(λ,m, n);

(d) if µ ∈ dom (p) and ξ ∈ dom (p(µ)), then hµ(ξ) = ξ.

Again hµ is well defined: E.g. if µ = µ(α, n1) = µ(β, n2) and ξ(α, n1,m1) =
ξ(β, n2,m2), as before we must have n2 ∈ w0, but also ω · (n2 + 1) + m2 ∈
w0 by (∗)4 (b), and hence hµ(ξ(β, n2,m2)) = ξ(λ, n2,m2) = ξ(β, n2,m2) =
ξ(α, n1,m1) = hµ(ξ(α, n1,m1)). The other cases are similar. Moreover, hµ is
one-to-one by (∗)3 (d), (e).

Let u1,µ := dom (hµ), u2,g(µ) := ran (hµ), h := 〈hµ : µ ∈ C1〉, u1 := 〈u1,µ : µ ∈
C1〉, u2 := 〈u2,µ : µ ∈ C2〉,y = 〈g, h, C1, u1, C2, u2〉. Then y ∈ pautC.

We conclude that κy is an isomorphism between Qu1
and Qu2

. By construction
we can now easily verify (∗)1. Hence Theorem 2.1 is proved. 2

§3. Eliminating ℵ1 ∈ C. In this section we extend the method of §2 to con-
struct a forcing PC, for a given p.m.s. C, so that in addition to Theorem 2.1 we
can show that in a PC-extension the minimum of the madness spectrum equals
min(C). For this we first force with QC from §2 and then force a weak from of
MA<ϑ, where ϑ = min(C), that rules out mad families of size < ϑ. More pre-
cisely, we shall force MA<ϑ for all forcings with the Knaster condition. Hence
PC will be the limit of a finite support iteration 〈Pα,Q˜β : α 6 ϑ, β < ϑ〉, so

PC = Pϑ, where Q0 = QC and Pϑ/Q0 forces MA<ϑ (Knaster).

Let us recall that by a well-known reflection argument, for forcing MA<ϑ
(Knaster) it suffices to take care of posets of size < ϑ only. However, after forcing
with Q0 = QC we have 2ℵ0 = max(C) (for this we need that max(C) exists and
max(C)ℵ0 = max(C)) (see Definition 1.1). Therefore, forcings Q˜β , 1 6 β < ϑ,

will be finite support products of length max(C) of forcings of size < ϑ with
the Knaster property. Note that the forcing that kills a mad family of size
< ϑ has this property. For all this to work we have to assume ϑ<ϑ = ϑ and
max (C)<ϑ = max (C).

Moreover we want to preserve what we have obtained in Theorem 2.1. In
fact we want to be able to repeat essentially the same arguments using partial
automorphisms as in §2. For this goal, simultaneously to defining the iteration we
define (many) names for parameters of partial automorphisms and for complete
subforcings of Pα,Q˜β(α 6 ϑ, β < ϑ). In this way we shall prove the following

Theorem:

Theorem 3.1. Assume that C is a p.m.s., ϑ := min(C) satisfies ϑ = ϑ<ϑ and
max(C)<ϑ = max(C). Then we can find PC such that, letting A˜ be a PC-name

for the mad spectrum in VPC , we have:

(a) PC is a c.c.c. forcing notion of cardinality max(C);
(b) PC C = A˜ .
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Proof: Recursively we construct the following objects:

• Partial orders Pα, Iα, J ′α, Jα,Pα,f for α 6 ϑ, f ∈ Jα;
• Pβ-names for partial orders Q˜β ,Q˜β,ε,Q˜β,t for β < ϑ, ε < max(C), t ∈ Iβ ;

• elements of Jα gα,ε for ε < max(C);
• ordinals γβ,ε for β < ϑ, ε < max(C);
• names ν˜β,ε for subsets of γβ,ε, for β < ϑ, ε < max(C).

The following properties shall be satisfied:

(A) 〈Pα,Q˜β : α 6 ϑ, β < ϑ〉 is a finite support iteration of forcing notions with

the Knaster condition such that Pα |Q˜α| = max(C) for every α < ϑ;

(B) Q0 = Q˜0 = QC (see defintion 1.6);

(C) (α) I0 = {u ∈ parC : Σ
µ∈dom (u)

|uµ|+ 1 < ϑ} partially ordered by u1 6I0 u2

iff dom (u1) ⊆ dom (u2) and u1,µ ⊆ u2,µ for all µ ∈ dom (u1) (see
Definition 1.7.1) I1+α = [max(C)]<ϑ from V partially ordered by ⊆,
for every α < ϑ;

(β) Iα is ϑ-directed for every α;
(D) (α) J ′α = {f : dom (f) ∈ ([α]<ϑ)V and if β ∈ dom (f), then f(β) ∈ Iβ};

(β) f 6J′α g iff dom (f) ⊆ dom (g) and if β ∈ dom (f), then f(α) 6Iα g(α);
(γ) Jα = {f ∈ J ′α : if β ∈ dom (f), β 6= 0 and ε ∈ f(β), then gβ,ε 6J′α f �

β} equipped with the induced partial order 6J′α� Jα;
(δ) Jα is a cofinal subset of J ′α;
(ε) if β < α then Jβ = {f ∈ Jα : dom (f) ⊆ β} and 6Jβ=6Jα� Jβ ;
(ζ) Jα and J ′α are ϑ-directed partial orders of cardinality max(C);

(E) (α) Q˜α,t 6·Q˜α increase with t ∈ Iα (i.e. s <Iα t ⇒Pα Q˜α,s 6·Q˜α,t6·Q˜α);

(β) Pα Q˜α =
⋃
{Q˜α,t : t ∈ Iα},

(F) (α) Pα,f 6·Pα increase with f ∈ Jα (i.e. f <Jα g ⇒ Pα,f 6·Pα,g6·Pα);
(β) Pα =

⋃
{Pα,f : f ∈ Jα};

(γ) 〈Pβ,f�β ,Q˜γ,f(γ) : β ∈ dom (f) ∪ {α}, γ ∈ dom (f)〉 is a finite support

iteration, for every f ∈ Jα;
(δ) Pα,f has density < ϑ;

(G) Q0,u = QC,u for u ∈ I0 (see Definition 1.7.2);
(H) (α) for α > 0, 〈(Q˜α,ε, gα,ε) : ε < max(C)〉 is a sequence of pairs from

Xα := {(Q˜ , f) : f ∈ Jα,Q˜ is a Pα,f -name of a forcing notion satisfying

the Knaster condition with set of elements an ordinal < ϑ (not only a
Pα-name!)};

(β) let γα,ε be the set of elements of Q˜α,ε;(γ) each pair from Xα appears max(C) times in the sequence from (α);
(δ) Pα,gα,ε ν˜α,ε ∈ γα,ε2 is Q˜α,ε-generic;

(I) (α) Pα Q˜α is the finite support product of 〈Q˜α,ε : ε < max(C)〉;
(β) for t ∈ Iα,Pα Q˜α,t is the finite support product of 〈Q˜α,ε : ε ∈ t〉;
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(J) letting P′α be the set of all p ∈ Pα such that for every β ∈ dom (p), p(β)
is an object and not only a Pβ-name, and hence p(β) is a finite partial
function from max(C) to ϑ and p(β)(ε) < γβ,ε for ε ∈ dom (p(β)), then P′α
is a dense subset of Pα; similarly, letting P′α,f = P′α ∩ Pα,f for f ∈ Jα,P′α,f
is a dense subset of Pα,f of size < ϑ;

(K) for α 6 ϑ, f ∈ Jα and p ∈ P′α
(α) let p � f be defined as the function q such that dom (q) = dom (p) ∩

dom (f), and if β ∈ dom (q), then q(β) = p(β) � f(β);
(β) then p � f ∈ P′α,f and p � f 6Pα p;

(γ) moreover, if r ∈ P′α,f and p � f 6Pα,f r, then p and r are compatible
in Pα.

Verifying inductively that this recursion is well-defined and all relevant claims
hold is essentially the same thing as reading and understanding it carefully,
thereby using our assumptions and well-known facts about finite-support itera-
tions. Therefore we shortly sketch the order of this recursive construction.

The partial orders Iα and I ′α for α < ϑ are defined directly in (C), (D) (α),
(β). Clearly they are all ϑ-directed.

Case 1: α = 0. We just have to define P0 as the empty forcing notion,
J0 = {∅}Q˜0,u = Q0,u is defined in (G) and P0,∅ = P0. All relevant claims can

be checked.

Case 2: α = 1. P1 is defined by (A) and (B), so P1
∼= Q0; we have J1 = J ′1

which is essentially I0. P1,f for f ∈ J1 is defined in (F) (γ), hence P1,f
∼=

Q0,f(0) = Qu where u = f(0). Q˜1,Q˜1,ε,Q˜1,t for ε < max (C), t ∈ I1 are defined

in (H), (I). Finally g1,ε, γ1,ε, ν˜1,ε for ε < max (C) are defined in (H). All relevant
claims can be checked. Note that Q˜1 and Q˜1,t are forced to satisfy the Knaster

condition, as the Knaster property is preserved by finite support products.

Case 3: α is a limit ordinal. Pα is defined by (A), Jα is defined by (D) (γ),
it is ϑ-directed by the induction hypothesis. Pα,f is defined in (F) (γ) as the limit
of a finite support iteration of forcings with the Knaster condition. Q˜α,Q˜α,ε,Qα,tfor ε < max (C), t ∈ Iα are defined in (H), (I). Finally gα,ε, γα,ε, ν˜α,ε are defined
in (H). All relevant claims can be checked.

Case 4: α = β + 1. All relevant objects are defined in the same order and by
the same clauses as in the limit case.

In order to prove Theorem 3.1 we shall essentially repeat the arguments from
§ 2. For this we need a notation for partial isomorphisms of Pϑ. This will extend
Definition 1.7.

Definition 3.2. 1) For 0 < α 6 δ we define ppautα (for preliminary partial
automorphism) to be the set of all s = (f1, f2,x, k) such that

(a) f1, f2 ∈ Jα satisfy 0 ∈ dom (f1) = dom (f2);
(b) x ∈ pautC, ux,1 = f1(0), ux,2 = f2(0) (see Definition 1.7.4);

Paper Sh:1038, version 2015-01-29 10. See https://shelah.logic.at/papers/1038/ for possible updates.



12 SAHARON SHELAH AND OTMAR SPINAS

(c) k = 〈kβ : β ∈ dom (f1) \ {0}〉 and kβ is a bijection from f1(β) onto f2(β);
(d) if β ∈ dom (f1), ε1 ∈ f1(β) and ε2 = kβ(ε1) (hence gβ,ε1 6J

α

f1), then gβ,ε1

is mapped to gβ,ε2 by s, which means
(α) dom (gβ,ε1) = dom (gβ,ε2),
(β) if γ ∈ dom (gβ,ε1), then kγ [gβ,ε1(γ)] = gβ,ε2(γ).

Then we write s = (fs,1, fs,2,xs, ks), kβ = ks,β , uxs,1 = us,1, uxs,2 = us,2.

2) For 1 6 α < β 6 δ, s ∈ ppautβ , t ∈ ppautα we define t = s � α by

t = (fs,1 � dom (fs,1) ∩ α, fs,1 � dom (fs,2) ∩ α,xs, ks � (dom (fs,1) ∩ α \ {0}).

3) For f ∈ Jα we let Jα,f = {g ∈ Jα : g 6Jα f}. For s ∈ ppautα we define an
isomorphism πs from Jα,fs,1 onto Jα,fs,2 by letting πs(g1) = g2 iff:

(a) gl ∈ Jα and gl 6Jα fs,l for l = 1, 2;
(b) dom (g1) = dom (g2);
(c) if 0 ∈ dom (g1) then xs naturally maps g1(0) to g2(0), i.e. letting hx =
〈hµ : µ ∈ dom (fs,1) and gl(0) = 〈ul,µ : µ ∈ dom (fs,l)〉 for l = 1, 2 (see
1.7.4), hµ is a one-to-one map from u1,µ onto u2,µ;

(d) if β ∈ dom (g1) \ {0} then {kβ(ε) : ε ∈ g1(β)} = g2(β).

4) For every s ∈ ppautα we can naturally define s−1 ∈ ppautα, so that πs−1 =
(πs)−1. Note that for g1 6 fs,1, if πs(g1) = g2 then s−1 � g2 = (s � g1)−1.

5) For s ∈ pautα and g 6 fs,1 we define s � g ∈ ppautα in the canonical way.

Definition 3.3. By recursion on α ∈ [1, ϑ] we define pautα ⊆ ppautα such
that ∀β∀s(1 6 β < α∧s ∈ pautα)→ s � β ∈ pautβ, and for s ∈ pautα we define
an isomorphism κs from Pα,fs,1 onto Pα,fs,2 with the property that if g ∈ Pα,fs,1
then κs � Pα,g = κs�g. For α = 1 we let pautα = ppautα and κs = κxs (see
Definition 1.7.5).

In case α = β+1 for some 1 6 β < ϑ we let pautα be the set of all s ∈ ppautα
such that s � β ∈ pautβ and if µ ∈ dom (fs,1), ε1 ∈ fs,1(µ) and ε2 = kµ(ε1)
(hence ε2 ∈ fs,2(µ)), then γµ,ε1 = γµ,ε2 (the domains of Q˜µ,ε1 ,Q˜µ,ε2) and the pair

κs�gβ,ε1 , idγµ,ε1 maps Q˜β,ε1 onto Q˜β,ε2 , i.e. for every p ∈ Pβ,gβ,ε1 and ν0, ν1 <

γµ,ε1 we have pPβ,gβ,ε1
′′ν0<Q˜β,ε1 ν1

′′ iff κs(p)Pβ,gβ,ε2
′′ν0<Q˜β,ε2 ν1

′′. In case

α ∈ [1, ϑ] is a limit ordinal let pautα = {s ∈ ppautα : ∀βs � β ∈ pautβ.

The following claim extends Proposition 1.10.4A.

Claim 3.4. If B˜ is a Pα-name (α 6 δ) for a bounded subset of δ, then for
some f ∈ Jα, B˜ is a Pα,f -name.

Proof of claim 3.4: By the ccc of Pα and our assumption ϑ = ϑ<ϑ there
exists γ < ϑ such that Pα B˜ ⊆ γ. Hence B˜ is determined by a γ-sequence
of maximal antichains of Pα. By properties (Dζ) and (J) it suffices to find for
given p ∈ P′α some f ∈ Jα with p ∈ Pα,f . This is trivial. 23.3
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Remark: Note that even if B˜ is a name for a real it is generally impossible
to obtain a countable f as in 3.4. The reason is our definition of Jα in (D)(γ).

We are now ready to prove Theorem 3.1.
3.1 (a) follows from (A) and our assumptions about ϑ(ϑ = min(C) and ϑ = ϑ<ϑ).
In order to prove Pϑ C ⊆ A˜ we use the notation from Definition 1.9 to denote
the objects added by Q0 = QC. Hence for µ ∈ C, A˜µ, A˜µ,α(α < µ) are also Pϑ-
names. By Proposition 1.10 (2) we have Pϑ

′′A˜µ is an a.d. family′′. In order
to prove maximality, and hence Pϑ µ ∈ A˜ , we proceed completely analogously
to Proposition 1.10 (2A):

Claim 3.5. Pϑ
′′A˜µ is a mad familiy ′′.

Proof of Claim 3.5: By contradiction assume that p ∈ Pϑ and a˜ is a Pϑ-
name such that p Pϑ

′′a˜ ∈ [ω]ω and a˜ /∈ A˜µ and A˜µ ∪ {a˜} is a.d.′′. By Claim
3.4 there is f ∈ Jϑ such that p ∈ Pϑ,f and a˜ is a Pϑ,f -name. W. l. o. g. we

may assume that µ ∈ dom (f(0)). As f(0)(µ) ∈ [µ]<ϑ and ϑ 6 µ, we can choose
α ∈ µ \ f(0)(µ). We can find q >Pϑ p and m < ω such that q Pϑ A˜µ,α ∩ a˜ ⊆ m.
Choose p1 ∈ Pϑ,f , p1 > q � f (see (K)), and k > nq(0)(µ) (see 1.2 (A)) such that
p1Pϑ,f

′′k ∈ a˜ \ a˜µ,β ′′ for all β ∈ f(0)(m) ∩ dom (q(0)(µ)). Similarly to 1.10
(2A) we can define q1 ∈ Pϑ such that q1 > q, q1 � f > p1 and q1 Pϑ k ∈ a˜∩a˜µ,α,
which is a contradiction. 23.5

To prove PC min(A˜ ) = min(C) we have to recall that Pϑ/Q0 forces MA<ϑ
(Knaster). Moreover, given an a. d. family A = 〈aα : α < µ〉, µ > ω, there
exists a standard σ-centered forcing notion QA which adds a ∈ [ω]ω such that
A ∪ {a} is a. d. Its conditions are pairs (x, F ) ∈ [ω]<ω × [A]<ω ordered by
(x, F ) 6 (y,H) iff x ⊆ y, F ⊆ H and y \ x∩ aα = ∅ for every aα ∈ F . Now if Pϑ
added some mad familiy A of size ω 6 µ < ϑ, it hat to be added by Pα for some
α < ϑ. But then one of the factors of Q˜α is an isomorphic copy of QA (see (H),

(I)), and hence A is not maximal after forcing with Pα+1.

It remains to prove that after forcing with Pϑ no cardinal λ ∈ [min(C),max(C)]\
C belongs to the mad spectrum. For this we shall generalize the arguments from
§ 2. Let σ be the minimal regular cardinal 6 λ such that [σ, λ] ∩ C = ∅.

Towards a contradiction assume pPϑ
′′〈B˜α : α < λ〉 is a m.a.d. family′′.

By Claim 3.4 for each α < λ we have the following:

(∗)7 (a) fα ∈ Jϑ such that 0 ∈ dom (fα), p ∈ Pϑ,fα and B˜α is a Pϑ,fα -name;
(b) Bα is a Borel function such that B˜α = Bα(. . . , η˜µ,(α,n),ξ(α,n,m), . . . ,

ν˜j(α,n),ε(α,n,m)(γ(α, n,m)) . . . )n,m, where
(c) 〈µ(α, n) : n < ω〉 is with no repetition, µ(α, n) ∈ dom (fα(0))(⊆ C);
(d) 〈ξ(α, n,m) : m < ω〉 is with no repetition, ξ(α, n,m) ∈ fα(0)(µ(α, n));
(e) 〈j(α, n) : n < ω〉 is with no repetition, j(α, n) ∈ dom (fα) \ {0} (⊆ ϑ);
(f) 〈ε(α, n,m) : m < ω〉 is with no repetition, ε(α, n,m) ∈ fα(j(α, n));
(g) γ(α, n,m) < γj(α,n),ε(α,n,m) (which is the domain of Q˜ j(α,n),ε(α,n,m)).
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Definition 3.6. We define a binary relation E on σ by letting (α, β) ∈ E iff

(a) there exists sα,β ∈ pautα such that sα,β = (fα, fβ ,xα,β , k
α,β

), hence dom (fα) =
dom (fβ) and κα,β := κsα,β is an isomorphism from Pϑ,fα onto Pϑ,fβ in par-

ticular, and kα,βi : fα(i) → fβ(i) for i ∈ dom fα \ {0} is order-preserving,
hence o. t. fα(i) = o.t. fβ(i), and

(b) the isomorphism κα,β from (a) maps the Pϑ,fα-name B˜α onto the Pϑ,fβ -
name B˜β.

It is clear that E is an equivalence relation. Note that E has no more than
ϑ many equivalence classes. Indeed, for given α < σ we can recursively define
g ∈ Ji∗ , where i∗ = sup(dom (fα)), with dom (g) = dom (fα), some finite support
iteration 〈Pi,g,Q˜gj : i ∈ dom (g) ∪ {i∗}, j ∈ dom (g)〉 and 〈κi : i ∈ dom (g) ∪ {i∗}〉
such that

(a) g(0) = 〈uµ : µ ∈ dom (g(0))〉 for some dom (g(0)) ⊆ ϑ and uµ ⊆ ϑ with

Σ
µ∈dom (g(0))

|uµ| + 1 < ϑ such that, letting fα(0) = 〈vµ : µ ∈ dom (fα)〉,

we have |dom g(0)| = |dom (fα(0))| and some bijection π : dom (g(0)) →
dom (fα(0)) such that |uµ| = |vπ(µ)| for every µ ∈ dom (g),

(b) g(i) = o.t. (fα(i)) for i ∈ dom (g) \ {0},
(c) for every j ∈ dom (g) Pj,g

′′Q˜gj =
∏

ν<g(i)

Q˜gj,ν is a finite support product

where Q˜gj,ν has the Knaster property and dom (Q˜gj,ν) = γj,εν
′′, where εν is

the ν-th element of fα(j), and κj : Pj,g → Pj,fα is an isomorphism, such
that for every p ∈ Pj,g and ξ, ζ ∈ γi,ν we have that pPj,g

′′ξ <Q˜gj,ν ζ ′′ iff

κj(p)Pj,fα
′′ξ <Q˜j,ν ζ ′′. Hence κj can be extended in a natural way to an

isomorphism between Pj,g ∗Q˜gj and Pj,fα ∗Q˜ j .
Finally let C˜ be the Pi∗,g-name that by κi∗ is mapped to B˜α.

By our assumption ϑ = ϑ<ϑ and by property (J) it is clear that there are
at most ϑ many g, 〈Pi,g,Q˜gj : i ∈ dom (g) ∪ {i∗}, j ∈ dom (g)〉 and C˜ as above.

Moreover, if α, β < σ produce the same these objects, then αE β.

Therefore, without loss of generality we may assume αE β for all α, β < σ.
In particular Bα = B∗ and j(α, n) = j(n) for all α < σ, n < ω. Similarly to
the proof of 2.1 we shall now normalize the remaining relevant indices in the
computation (∗)7 (b) of B˜α. Actually it is more convenient to normalize the fα.

As we assume αE β for every α, β < σ, if fα(0) = 〈uαν : ν ∈ Cα〉, then
δ(0) := |Cα| and δ(1 + ν) := |uαν | for ν < δ(0) do not depend on α. Let
〈µ(α, ν) : ν < δ(0)〉 enumerate Cα and 〈ξ(α, ν, µ) : µ < δ(1 + ν)〉 enumerate
uαν . Similarly, d∗ := dom (fα) and oν := o.t. fα(ν) do not depend on α < σ for
ν ∈ d∗ \ {0}. Let 〈ε(α, ν, µ) : µ < oν〉 increasingly enumerate fα(ν). We let
δ(δ(0) + µ) = oν1+µ for every µ < o. t. (d∗) =: o∗, where νµ is the µ-th element
of d∗.
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Now for each α < σ we define ζα = 〈ζα(i) : i < Σ
ν<δ(0)+o∗

δ(ν)〉 (Without loss

of generality we assume that o∗ is a limit ordinal.), such that

(a) ζα(i) = µ(α, i) for i < δ(0),
(b) ζα(( Σ

µ<1+ν
δ(µ)) + i) = ξ(α, ν, i) for ν < δ(0) and i < δ(1 + ν),

(c) ζα(( Σ
µ<δ(0)+ν

δ(µ)) + i) = ε(α, ν, i) for ν < o∗ and i < δ(δ(0) + ν).

Analogously to 2.1 we distinguish Cases A and B, where now χ = min{µ :
µ<ϑ > σ} and

Case A: χ = σ,

Case B: χ < σ, hence χ > ϑ and cf(χ) < ϑ.

As there, applying the usual pigeon-hole principle in Case A, and [Sh620, 7.1
(0), (1)] in Case B with λ, κ, µ,D, 〈fα : α < λ〉 there standing for σ, Σ

ν<δ(0)+o∗
, ϑ+, Dcb

σ , 〈ζα :

α < σ〉 here, without loss of generality we may assume that for some parti-
tion Σ

ν<δ(0)+o∗
δ(ν) = w0 ∪̇w1 ∪̇w2 (w1 = ∅ in Case A) and ordinal function

β
∗

= 〈β∗(i) : i ∈ w0 ∪ w1〉 we have

(∗)8 (a) cf (β∗(i)) > ϑ for every i ∈ w1;
(b) for every α < σ

(α) ζα � w0 = β
∗
� w0,

(β) ζα � w1 < β
∗
� w1;

(c) if γ ∈
∏
β
∗
� w1, then for σ many α < σ we have γ < ζα � w1;

(d) for every α < σ and i ∈ w2 ζα(i) /∈ {ζβ(j) : β < α, j < Σ
ν<δ(0)+o∗

δ(ν)}.

Note that β∗ � w0 is essentially some f∗ ∈ Jϑ with f∗ 6 fα for all α < σ.
Indeed let dom f∗ contain 0 iff w0 ∩ δ(0) 6= ∅, and contain ν ∈ d∗ \ {0} iff w0 ∩
[ Σ
µ<δ(0)+ν

δ(µ), Σ
µ6δ(0)+ν

δ(µ)) 6= ∅. Note that if ε belongs to this last intersection,

then gν,ε 6Jϑ fα � ν, hence gν,ε(0) 6I0 fα(0) for all α and therefore 0 ∈ dom f∗.
If dom f∗ 6= ∅ and hence 0 ∈ dom f∗, we let dom f∗(0) = {β∗(i) : i ∈ δ(0) ∩ w0}
and for β∗(i) = µ ∈ dom f∗(0) we let f∗(0)(µ) = {β∗( Σ

ν6δ(0)+i
δ(ν)+j) : j < δ(1+

i), Σ
ν<δ(0)+i

+j ∈ w0}. For ν ∈ dom f∗\{0} we let f∗(ν) = {β∗(( Σ
µ<δ(0)+ν

δ(µ)+i) :

i < δ(δ(0) + ν), ( Σ
µ<δ(0)+ν

δ(µ)) + i ∈ w0}. The argument with gν,ε given above

shows that f∗ ∈ Jϑ. Clearly f∗ 6 fα, for all α < σ.

Recursively we shall define fλ ∈ Jϑ and sν,α ∈ pautν for ν ∈ dom (fλ) ∪
{sup dom (fλ)} and α < σ such that

(∗)9 (a) dom (fλ) = d∗,
(α) 〈µ(λ, ν) : ν < δ(0)〉 enumerates dom (fλ(0)) and 〈ξ(λ, ν, µ) : µ <

δ(1 + ν)〉 enumerates uλν := fλ(0)(ν) for ν < δ(0),
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(β) 〈ε(λ, ν, i) : i < oν〉 enumerates fλ(ν);
(b) letting κνα = κsν,α , we have that κνα is an isomorphism from Pϑ,fα onto

Pϑ,fλ such that κνα = κνβ ◦ κα,β for all α < β < σ (here κα,β is the

isomorphism from Pϑ,fα onto Pϑ,fβ witnessing αE β).

We define fλ(0) analogously to (∗)3:

(∗)10 (a) If ν ∈ δ(0) ∩ w0, then µ(λ, ν) = β∗(ν);
(b) if ν ∈ δ(0)\w0, then µ(λ, n) = Υi(λ,ν), where i(λ, ν) is the ν-th member

of {i < max(C) : Υi /∈ {µ(α, ν) : α < λ, ν < δ(0)}};
(c) if Σ

ρ<1+ν
δ(ρ) + µ ∈ w0, then ξ(λ, ν, µ) = β∗( Σ

ρ<1+ν
δ(ρ) + µ);

(d) if ν ∈ δ(0) ∩ w0 and Σ
ρ<1+ν

δ(ρ) + µ /∈ w0, then ξ(λ, ν, µ) is the µ-th

member of µ(λ, ν) \ {ξ(β, ν1, µ1) : β < λ, ν1 < δ(0), µ1 < δ(1 + ν)} (as
in (∗)3 (d) this choice is possible);

(e) if ν /∈ δ(0) ∩ w0 and Σ
ρ<1+ν

δ(ρ) + µ /∈ w0, then ξ(λ, ν, µ) = µ.

For each α < σ we have xα ∈ pautC such that xα = 〈gα, h
α
,dom (fα(0)), fα(0),

dom (fλ(0)), fλ(0)〉, gα(µ(α, ν)) = µ(λ, ν) for ν < δ(0), h
α

= 〈hαν : ν < δ(0)〉 and
hαν (ξ(α, ν, µ)) = ξ(λ, ν, µ) for µ < δ(1 + ν). Then κ1

α := κxα is an isomorphism
between Qfα(0) and Qfλ(0).

Similarly we have isomorphisms καβ between Qfα(0) and Qfβ(0) for α < β < σ

such that κ1
α = κ1

β ◦ καβ .

Now suppose that ν ∈ d∗ and we have constructed sν,α ∈ pautν with induced
isomorphism κνα := κsν,α from Pν,fα�ν onto Pν,fλ�ν for every α < σ such that
κνα = κνβ ◦ κα,β for all α < β < σ. Suppose ν = νµ is the µ-th element of d∗.

We shall define 〈ε(λ, ν, i) : i < oν〉 and let fλ(ν) = {ε(λ, ν, i) : i < oν}. Then we
define kαν (ε(α, ν, i)) = ε(λ, ν, i) for every α < σ and i < oν , so that kαν extends
sν,α as desired.

Suppose that ε(λ, ν, j) have been defined for all j < i. We have to define
ε := ε(λ, ν, i) in such a way that the two demands in Definition 3.3 are satisfied:
Firstly, gν,ε(α,ν,i) is mapped to gν,ε by κνα and, secondly, the pair κνα, idγν,ε(α,ν,i)
maps Q˜ν,ε(α,ν,i) onto Q˜ν,ε, for every α < σ. In case Σ

ρ<δ(0)+µ
δ(ρ) + i ∈ w0, we

let ε(λ, ν, i) = β∗( Σ
ρ<δ(0)+µ

δ(ρ) + i). Then clearly these demands are satisfied.

Now suppose Σ
ρ<δ(0)+µ

δ(ρ)+i /∈ w0. By construction we have that kα,βν (ε(α, ν, i))

= ε(β, ν, i), κα,β maps gν,ε(α,ν,i) to gν,ε(β,ν,i), γ := γν,ε(α,ν,i) = γν,ε(β,ν,i) and the
pair κα,β , idγ maps Q˜ν,ε(α,ν,i) to Q˜ν,ε(β,ν,i) for all α < β < σ.

Since κνα and κα,β commute, we have that, letting g := κνα(gν,ε(α,ν,i)) and
Q˜ the image of Q˜ν,ε(α,ν,i), g and Q˜ do not depend on α. Applying (H) (γ) we

choose ε minimal in max(C) \ (
⋃
{fα(ν) : α < λ} ∪ {ε(λ, ν, j) : j < i}) such
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that 〈Q˜ν,ε, gν,ε〉 = 〈Q, g〉. Defining ε(λ, ν, i) := ε, we can easily verify that all

demands are satisfied.

If ν ∈ d∗ is such that d∗ ∩ ν has no maximum or ν = sup d∗, we define
κνα =

⋃
µ∈d∗∩ν

κµα. Then (∗)9 holds. Let ν∗ = sup d∗. We define ζλ for fλ precisely

as we defined ζα for fα, α < σ above.

Fix α < σ and define B˜λ = κν
∗

α (B˜α). By the definition of the relation E and
by (∗)9 (b) we have that B˜λ does not depend on α.

Analogously to (∗)1 we can now show p Pϑ
′′〈B˜α : α 6 λ〉 is an a. d. family′′

and thus reach our desired contradiction. Indeed, let α < λ be arbitrary. By
(∗)8 we can find β ∈ σ \ {α} so that outside f∗, fβ and fα are disjoint, i. e. if
i ∈ Σ

ν<δ(0)+o∗
δ(ν) \ w0 then ζβ(i) /∈

⋃
{fα(ν) : ν ∈ dom (fα)} ∪

⋃
{fα(0)(µ) : µ ∈

dom fα(0)}.

Hence we can define a bijection π between

⋃
{fα(ν) ∪ fβ(ν) : ν ∈ dom (fα) ∪ dom (fβ)}∪⋃
{fα(0)(µ) ∪ fβ(0)(µ) : µ ∈ dom (fα(0)) ∪ dom (fβ(0))}

and

⋃
{fα(ν) ∪ fλ(ν) : ν ∈ dom (fα) ∪ dom (fλ)}∪⋃
{fα(0)(µ) ∪ fλ(0)(µ) : µ ∈ dom (fα(0)) ∪ dom (fλ(0))}

so that π is the identity except for π(ζβ(i)) = ζλ(i) in case i ∈ Σ
ν<δ(0)+o∗

δ(ν) \

w0. Then π induces an isomorphism κ between Pϑ,fα∪fβ and Pϑ,fα∪fλ which
fixes p and B˜α, but maps B˜β to B˜λ. As in (∗)1 this is a contradiction. 2
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