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Abstract. Let C be a finite connected graph for which there is a count-
able universal C-free graph, and whose tree of blocks is a path. Then
the blocks of C are complete. This generalizes a result of Füredi and
Komjáth, and fits naturally into a set of conjectures regarding the exis-
tence of countable C-free graphs, with C an arbitrary finite connected
graph.

Introduction

The main theorem. The general problem to be considered here is the
following.

Problem 1 (Universality with 1 Forbidden Subgraph). Let C be a finite
connected graph. When is there a universal C-free graph?

We anticipate that the problem as posed has an explicit solution, but not
a very simple one. The present paper is devoted toward the proof of one
concrete result which is part of a general plan of attack on the problem.
That result reads as follows.

Theorem 1 (Main Theorem). Let C be a finite connected block path, and
suppose there is a (weakly) universal C-free graph. Then the blocks of C are
complete.

The terminology will need to be explained in detail, but we first lay out
the context for the result. The general plan of attack referred to consists
mainly of the following two conjectures.

Conjecture 1. Let C be a finite connected graph allowing a countable uni-
versal C-free graph. Then
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2 G. CHERLIN AND S. SHELAH

• (Solidity Conjecture) The blocks of C are complete;
• (Pathlike Conjecture) C may be obtained from a block path by ad-

joining paths to some of the vertices, with at most one path joined
to each vertex.

Our main theorem may be phrased as follows: the second conjecture
implies the first. Given both conjectures, what then remains is to analyze
the graphs referred to as “pathlike” here, under the assumption that all
blocks are complete.

Recall that the blocks of a graph are its maximal 2-connected subgraphs,
and that there is associated to any connected graph a “tree of blocks” whose
vertices are the blocks and cut vertices of the original graph, with edges
corresponding to incidence. By a block path we mean a graph whose tree of
blocks forms a path. Such graphs are certainly pathlike, but we also will
need to consider block paths with “whiskers,” as described in the second
conjecture.

Now we review the terminology relating to universality.

Definition (Universality). With C a given forbidden subgraph, a graph Γ
is C-free if Γ contains no subgraph isomorphic to C.

If Γ is countable and C-free, then Γ is

• strongly universal if every countable C-free graph is isomorphic to
an induced subgraph of Γ;
• weakly universal if every countable C-free graph is isomorphic to a

subgraph of Γ (such an isomorphism will be called an embedding, or
more explicitly, an embedding as a subgraph).

The most natural notion of universality is the strong version. In proving
the existence of universal graphs we always aim at strong universality. But
when proving nonexistence it is more satisfactory to prove the nonexistence
of a weakly universal graph, and as the marginal cost of this refinement tends
to be low, this is what we usually aim at. In particular, we have stated the
main theorem in this sharper form. We also stress that we work with the
class of countable C-free graphs throughout. Other cases are of interest but
involve different issues and a broad range of techniques (cf. [KP91, Dž05]).

The proof of the main theorem is not very complicated. We use two
techniques: the hypergraph method of Füredi and Komjáth [FK97], and two
pruning techniques, one of which has made an appearance in [CS05] in a more
specialized form. The pruning techniques allow a certain kind of inductive
argument to be carried out, typically reducing a riot of uncontrollable cases
to a menagerie of manageable cases. We expect to make substantial further
use of the pruning method again in more complicated situations, so one of
our goals here is to set this up for future reference.

We view the explicit classification of all finite connected constraint graphs
C allowing a universal C-free graph as an ambitious classification project.
But what really interests us is the following more qualitative question.
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BLOCK PATH SOLIDITY 3

Problem 2 (Universality with finitely many Forbidden Subgraphs). Is there
an algorithm which will decide, for any finite set C of finitely many connected
graphs, whether there is a universal C-free graph?

This problem can be approached from many sides. It can be shown that
if one forbids not just subgraphs, but induced subgraphs, then one arrives
at a still more general question, but one for which there is a direct proof of
algorithmic undecidability by encoding Wang’s domino problem [Ch11]. On
the other hand if one restricts attention to graphs of bounded degree—that
is, one allows a finite set of forbidden connected graphs, one of which is a
star—then the problem becomes decidable, though one would not expect a
completely explicit classification at that level of generality.

Some prior work. For the purposes of the present article, the outstand-
ing prior result is due to Füredi and Komjáth.

Fact (2-Connected Constraints, [FK97]). Let C be a finite 2-connected graph
for which there is a weakly universal C-free graph. Then C is complete.

Conversely, it is very well known that when C is complete, there is indeed
a universal C-free graph [He71].

We will present the Füredi–Komjáth hypergraph technique in detail, and
make further use of it, in §1. This technique uses a certain hypergraph with
good properties as a template for a construction.

Füredi and Komjáth stated a more general result. Call a block of C
distinguished if it embeds as a subgraph in no other block (in particular it
may not be isomorphic to another block). They show that the existence of a
C-free universal graph forces the distinguished blocks of C to be complete.
As it turns out, we need a different variation on their theme.

A result whose relevance to our current concerns is less obvious is the
following.

Fact (Tree constraints, [CT07, CS05]). Let C be a finite tree for which there
is a universal C-free graph. Then C is either a path, or may be obtained
from a path by adjoining one further edge.

The point here is the method of proof used, rather than the result ob-
tained. The analysis made use of a form of what we will refer to as corner
pruning below. We also introduce a second pruning technique we call sym-
metric local pruning, which has not previously seen the light of day.

The pruning method supports an inductive analysis, which in the case
of one forbidden tree led us to consider 14 possible cases as the base of
the induction. One may wonder whether one can deal with an arbitrary
constraint graph by such a method. We believe this is feasible.

A larger view of the wide range of problems connected with universal
graphs may be found in the surveys [KP91, Dž05]. From the point of view
of those surveys, the restriction to countable universal graphs determined by
a finite set of constraints covers many cases of interest, but by no means all.
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4 G. CHERLIN AND S. SHELAH

The article [Ch11] is in large part a survey of the universality problem re-
stricted to the countable setting, allowing only a finite number of constraints.
By restricting to this narrower context we reach a clear algorithmic problem
which seems to us to raise a fundamental issue about the subject: namely,
is it an art or a science?

1. The Füredi–Komjáth Hypergraph Construction

The proof of the main theorem will be given in three stages, where at
each stage we first introduce a general technique, then apply that technique
to analyze a hypothetical minimal counterexample to our main theorem.

In the present section we will discuss the Füredi–Komjáth hypergraph
construction and apply it to obtain the following special case of our main
theorem. Since Füredi and Komjáth alread used their method to treat the
case of a single block, this amounts to finishing the base case of an inductive
analysis to be taken up further in succeeding sections.

Lemma 1.1. Let C be a finite connected graph with exactly two blocks
(B1, B2), and with

|B1| ≤ |B2|
Suppose that there is a weakly universal C-free graph. Then B1 is a complete
graph.

We first present the hypergraph construction of Füredi and Komjáth
[FK97].

1.1. The Hypergraph construction.

Definition 2.
A cycle in a hypergraph is a sequence of distinct vertices and edges

(v0, E0, v1, . . . , vn−1, En−1) with vi, vi+1 ∈ Ei—here we take (i + 1) mod
n, and n ≥ 2.

The girth of a hypergraph is the length n of the shortest cycle (or ∞).
A hypergraph is k-uniform if its hyperedges consist of k points.

Note that if the girth of a hypergraph is greater than 2 then distinct
hyperedges meet in at most one vertex. The following is a slight variation
on a result of [FK97].

Lemma 1.2. For any k, g with k ≥ 2 there is some N = N(k, g) and a
k-uniform hypergraph of girth at least g on the vertex set N, with hyperedges
Ei (i ∈ N) satisfying

N + (i− 1), N + i ∈ Ei ⊆ [0, . . . , N + i]

for all i.

Proof. We will impose an additional condition on the hypergraph:

No vertex belongs to more than k hyperedges
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We proceed inductively. For the moment, let N be arbitrary, and suppose
we have constructed a k-uniform hypergraph on Ii = [0, . . . , N + i− 1] with
hyperedges E0, . . . , Ei−1 satisfying all relevant conditions up to this point.
We wish to select Ei.

Let Vi be the set of vertices in Ii belonging to exactly k of the hyperedges
Ej for j < i. By counting all pairs (u,Ej) with u ∈ Ii, j < i, and u ∈ Ej

we find |Vi| ≤ i. Letting V ′i = Ii \ Vi we have |V ′i | ≥ N . Notice that
N + i− 1 ∈ V ′i since this vertex belongs only to Ei−1.

Consider the ordinary graph Gi induced on Ii by taking edges (u, v) when-
ever u, v ∈ Ej for some j < i. This has vertex degree bounded by k(k − 1).
Hence in the graph metric we have a bound on the order of balls of radius
g, and for N sufficiently large we may select a subset X ⊆ V ′i of cardinality
k − 1, with N + i − 1 ∈ X, and with d(u, v) > g in Gi for u, v ∈ X. Set
Ei = X ∪ {N + i}. Then our conditions are all preserved. �

1.2. Application: Lemma 1.1.

Proof of Lemma 1.1. We have C = (B1, B2), where B1, B2 are blocks meet-
ing at the unique cut vertex v∗ of C. Let ni = |Bi|. We have assumed
that

n1 ≤ n2

We will suppose that the block B1 is not complete, and we aim to show
that there is no weakly universal C-free graph. As B1 is not complete we
have

n1 ≥ 4

Let k = n1 + 1, let g be greater than the maximum order of a block of
C, and let Γ be a k-hypergraph of girth at least g with the properties of
Lemma 1.2. We will label the vertices of Γ as (ui : i ∈ N) (so in fact ui = i).

Divide each hyperedge E of Γ into

E = E1 t E2 with |E1| = n1 − 1, |E2| = 2, and (maxE) ∈ E1

Let G0 denote the graph on Γ in which the induced graphs on each set
E1 are cliques of order n1 − 1, and there are no additional edges. Let G1

be the graph obtained from G0 by attaching one clique Kv of order n2 + 1
freely to each vertex v of G0.

It is clear that G1 is C-free; we will need a sharper statement given as
Claim 2 below.

Claim 1. Let G be a C-free graph, let n ∈ N, and let f1, f2 : G1 ↪→ G be
embeddings of G1 into G which agree on ui for i < n. Suppose there is a
hyperedge E with un = maxE. Then f1, f2 agree on un.

We let u = f1(un) and u′ = f2(un), which we suppose distinct. Let
B′ = f1[E1 \ {un}] = f2[E1 \ {un}] and B = B′ ∪ {u, u′}. Then the induced
graph on B in G contains all edges except possibly (u, u′). As B1 is not
complete, there is an embedding j : B1 → B as a subgraph. Let v = j(v∗).
Then v = fi(u) for some u ∈ E1 and some i = 1 or 2 (or both). Thus
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6 G. CHERLIN AND S. SHELAH

K = fi[Ku] is a clique of order n2 + 1 containing v and meeting B in at
most one other vertex. Let K ′ ⊆ K be a clique of order n2 meeting B in
{v} alone. Then (B,K ′) contains a copy of C, so C embeds into G, and we
have a contradiction. This proves our claim.

Now we extend the graph G1 in a variety of ways.
Fix an edge e of B1 containing the cut vertex v∗ of C, and let B′1 = B1\e.

Let E be the set of hyperedges of Γ. For ε : E → {0, 1} arbitrary, we will
extend G1 to a graph Gε as follows.

For each hyperedge E of Γ
(1) If ε(E) = 1 then attach an edge to E2;
(2) If ε(E) = 0 then attach a copy of B′1 to E2 with the ends of the

deleted edge e corresponding to the vertices of E2.

Claim 2. Each of the graphs Gε is C-free.

For E a hyperedge of Γ, let Ê be the portion of Gε supported by E,
namely the induced graph on the union of E together with all the attached
cliques Kv (v ∈ E), and also (when ε(E) = 0) the attached copy of B′1. By
the choice of the girth g, if f : C → Gε, then the image of either block f [Bi]

must lie in one of the sets Ê (not necessarily unique, since the attached

cliques Kv are shared by several of the Ê).
As neither block B1, B2 can be mapped into a copy of B′1, or into a clique

of order n1−1, or into a single edge (on E2), these blocks must both go into
an attached clique Kv. But then they must go into the same clique Kv, and
as n1 > 2 this is impossible.

Now the concluding argument follows a well worn path: namely, we have
constructed uncountably many suitably incompatible C-free graphs, and
therefore no countable C-free graph can be weakly universal. We give this
final argument in detail.

Suppose there is a countable weakly universal C-free graph G, and choose
embeddings fε : Gε → G of each Gε as a subgraph of G. Let N be the
parameter associated with the hypergraph Γ, with the property:

For any n ≥ N , there is a hyperedge E of Γ with maxE = un

As C is countable, there will be a pair of distinct ε1, ε2 for which the
corresponding embeddings agree on ui for i < N , and hence agree for all i
in view of Claim 1.

Now consider a hyperedge E with ε1(E) 6= ε2(E). We may suppose

ε1(E) = 0; ε2(E) = 1

Then the image of E2 in G contains an edge. Now consider the copy B∗1 of
B′1 attached to E2 in Gε1 , and the vertex v∗ of B∗1 corresponding to the cut
vertex of C. Write f for fε1 . Then f [B∗1∪Kv∗ ] contains a copy of C\e where
e, the deleted edge of B1, corresponds to the edge on f [E2] in G. That is,
we have now embedded C into G, arriving at a contradiction. �
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BLOCK PATH SOLIDITY 7

2. Corner Pruning

We now aim at the following reduction of our main theorem.
The length of a block path will be defined as the number of blocks.

Lemma 2.1. Suppose that C = (B1, . . . , B`) is a block path of length `
allowing a weakly universal graph, and having a block which is not complete.
Suppose further that the length ` is minimal, that |B1| ≤ |B`|, and that if B`

is isomorphic to a subgraph of B1, then B` is isomorphic to B1. For i < `,
let vi be the cut vertex between Bi and Bi+1. Then the following hold.

(1) B1 is not complete
(2) ` ≥ 3
(3) Bi is complete for 1 < i < `
(4) If B` does not embed in B1, then B` is complete
(5) The induced subgraph (B1, B2 \ {v2}) of C embeds into the induced

subgraph (B2 \ {v1}, B3, . . . , B`).

We view the last of these conditions is a weak form of symmetry. One case
to keep in mind is that in which the length is 3 and B1, B3 are isomorphic.

2.1. The method of corner pruning.

Definition 3.
1. A segment of a graph C is a connected subgraph which is a union of

blocks.
2. A corner Cv of a graph C is a segment of the form {v} ∪ C ′ where v

is a cut vertex and C ′ is one of the connected components of C \ {v}. Note
that Cv contains a unique block B of C with v ∈ B, and that the pair (v,B)
determines the corner. We call v the root of Cv, and B its root block. Note
that a corner will frequently be treated as a graph with base point v (or
briefly: a pointed graph). For pointed graphs we use the notation

(v, C)

In particular, we may consider embeddings of one corner into another either
as a subgraph, or as a pointed subgraph.

Definition 4 (Pruning). Let Σ be a set of pointed graphs, C a graph, and
C a finite set of graphs.

1. A corner Cv of C is pruned by a pointed graph (u, S) if there is an
embedding of (v, C) into (u, S) as a pointed subgraph.

2. The Σ-pruned graph CΣ is the graph obtained from C by deleting the
set of vertices in ⋃

(u,S)∈Σ

{Cv \ {v} | (v, Cv) is pruned by (u, S)}

Thus we do not delete the base point of a pruned corner, only the remain-
der.

3. CΣ = {CΣ |C ∈ C}
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8 G. CHERLIN AND S. SHELAH

4. Generally we write C ′ and C′ for the pruned graph or set of graphs,
after specifying the set Σ.

We focus here on single constraints C and we prune by a single minimal
corner. But there is a distinction even in simple cases between pruning by a
set of corners taken together, and pruning by a sequence of corners individ-
ually and consecutively. We will not require the notion in full generality for
our present purposes, but this is likely to come into play in more elaborate
analyses.

In [CS05], we dealt with the case of one forbidden tree, and we pruned
only leaves. The simplest case of a corner would be a block occurring as a
leaf in the tree of blocks. The proof of the next result is much the same as
in [CS05].

Lemma 2.2 (Pruning Induction). Let C be a set of graphs, and Σ a set of
pointed graphs. If there is a countable universal C-free graph (in either the
weak or strong sense) then there is a countable universal CΣ-free graph.

Proof. If G is any graph, define G+(Σ) as the graph obtained by freely
adjoining infinitely many copies of each pointed graph (u, S) in Σ to each
vertex v of G, identifying u and v. (In particular for v a single vertex,
viewing v as a trivial graph, we have the notation v+(Σ).)

If G is CΣ-free, then G+(Σ) is C-free: if C ∈ C embeds as a subgraph into
G+(Σ), then the part of C lying in G would contain CΣ.

So now suppose there is a weakly or strongly universal C-free graph Γ,
and let ΓΣ be the induced graph on the set

{v ∈ Γ | v+(Σ) embeds into Γ over v}
We will check that ΓΣ is CΣ-free universal, in the same sense.

Certainly ΓΣ is CΣ-free, as otherwise we could reattach the pruned corners
in Γ.

So let G be CΣ-free, and embed G+(Σ) into Γ, either as a subgraph or as
an induced subgraph, as the case may be. Then G goes into ΓΣ. �

Remark 5. There is also some use for a more sensitive notion of pruning,
in which we prune only segments which embed into the given pointed graphs
as induced subgraphs. But this would be relevant only in proving the nonex-
istence of strongly universal graphs, while we aim at proving nonexistence
for weakly universal graphs.

The classification of forbidden trees C allowing a universal C-free graph
comes down to the following, by leaf pruning.

Fact ([CS05]). Let T be a tree which becomes either a path or a near path
on removal of its leaves. If there is a weakly universal T -free graph, then T
is a path or a near path.

This amounts to the base of an induction, and occupies the bulk of [CS05];
the rest of the induction is purely formal, as we have seen.
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BLOCK PATH SOLIDITY 9

We will now proceed similarly with the proof of our main theorem. Corner
pruning plus the hypergraph construction will not do everything, but will
leave a definite configuration suitable for further analysis by a third method.

It should be noted that the hypergraph construction could do a good deal
more than we have done with it—but only via partial overlap with cases
handled more thoroughly by pruning.

2.2. Application: Lemma 2.1.

Proof of Lemma 2.1. We are supposing that C is a block path with blocks
(B1, . . . , B`), allowing a countable weakly universal C-free graph, and having
some incomplete block, with the length ` minimal.

We may suppose further that

|B1| ≤ |B`|

and that if B` embeds into B1, then the two blocks are isomorphic.
By the result of Füredi and Komjáth, ` ≥ 2.
The block B1 is a corner of C and we may prune it. Our assumptions

on B1, B` imply that this pruning will remove only B1 and possibly B`, the
latter only if B1 and B` are isomorphic. What is left after pruning is a
shorter block path with similar properties, so by the minimality of ` all of
the remaining blocks are complete: that is, Bi is complete for 1 < i < `,
and also B` is complete if B1 and B` are not isomorphic.

Since C has some incomplete block, it follows that B1 is incomplete. So
at this point we have

B1 is incomplete
` ≥ 3 (Lemma 1.1)
Bi is complete for 1 < i < `; and for i = ` unless B1

∼= B`

So points (1− 4) of Lemma 2.1 have been verified.
Our final claim (5) is that we have an embedding of (B1, B2 \ {v2}) into

(B2\{v1}, B3, . . . , B`), where vi denotes the cut vertex between Bi and Bi+1.
It will be useful to bear in mind that the corners of C are its terminal

segments

Rj = (Bj , Bj+1, . . . , B`) with base point vj−1, and

Lj = (Bj , Bj−1, . . . , B1) with base point vj ,

where we write “R” and “L” to suggest “right” and “left”.
Now we prune the corner R3 = (B3, . . . , B`) with base point v2. If B1

remains after pruning, then by the minimality of the length `, B1 is complete,
a contradiction.

If B1 does not remain after pruning, then it meets, and hence lies within,
some corner pruned by R3, which must be of the form Lj = (Bj , . . . , B1)
with base point vj (taking the blocks in reverse order). So Lj embeds into
the corner R3, with vj corresponding to v2.
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10 G. CHERLIN AND S. SHELAH

Suppose first that j = 1. Then we have an embedding of B1 into B3 with
v1 going to v2. As B2 is complete, we may extend this to an embedding of
(B1, B2 \ {v2}) into (B2 \ {v1}, B3), taking v2 to v1, proving our claim.

Now suppose j > 1. Then our embedding takes (B2, B1) into (B3, . . . , B`)
with v2 fixed if j = 2, and with v2 not in the image if j > 2. So claim (5)
holds in either case. �

We will see in the next section that the weak symmetry condition (5)
allows another kind of pruning.

3. Local and symmetric Pruning

In this section we aim to complete the proof of the main theorem by deal-
ing with the configuration described in Lemma 2.1. We introduce another,
more subtle, pruning technique. At this point we will confine our theoretical
discussion to the case of a single constraint, though no doubt this tool is
useful in greater generality.

3.1. The method of local pruning. Local pruning is a way of removing
a single corner. We first give the definition in pragmatic terms, and then
look for reasonable conditions sufficient for its application.

Definition 6. Let (v, Cv) be a corner of the finite connected graph C. Let
C+
v be the union of the other corners of C rooted at v, and C−v = Cv \{v} =

C \ C+
v .

1. For any graph H, the graph Ĥ = H ∗v C+
v is the suspension of H with

an attached copy of C+
v , constructed as follows.

(a) Take the disjoint union H t C+
v

(b) Connect v to every vertex of H by an edge.

2. (v, C+
v ) is said to be detachable if the following holds.

Whenever H is C−v -free, then Ĥ is C-free.

Lemma 3.1. Let C be a finite connected graph, and (v, Cv) a corner with
(v, C+

v ) detachable. If there is a countable universal C-free graph, in either
the weak or strong sense, then there is a countable universal C−v -free graph,
in the same sense.

Proof. Let Γ be a universal C-free graph, in one of the two senses.
For each embedding h of (v, C+

v ) into Γ as a subgraph, let Γh be

{u ∈ Γ |u /∈ h[C+
v ] and (u, h(v)) is an edge}

Let Γ0 =
⊔

h Γh (a disjoint union) with h varying over weak embeddings
(as subgraphs) if we are in the weak case, or over strong embeddings (as in-
duced subgraphs) in the strong case. We claim that Γ0 is countable universal
C−v -free, in the corresponding sense.

As C−v is connected and the individual Γh are C−v -free, the graph Γ0 is
C−v -free. Now we check the universality.
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BLOCK PATH SOLIDITY 11

If H is any countable C−-free graph then we form the extension Ĥ =
H ∗v C+

v and by hypothesis Ĥ is C-free, hence embeds into Γ. Then this
embedding takes H into the corresponding induced subgraph Γh in Γ0. �

3.2. A special case: Symmetric Local Pruning. Now we become more
concrete, in the context of block paths. We continue to work with the
notation of the previous section.

In analyzing detachability, we must pay particular attention to “improb-
able” embeddings of a given graph C in some graph of the form Ĥ.

Lemma 3.2 (Symmetric Local Pruning). Let C be a block path, B a block
of C containing two cut vertices u, v, and let Lu, Ru, Lv, Rv be the corners
rooted at u and v respectively, with Ru and Lv the ones containing the block
B. Suppose that Lv \ {v} embeds into Ru \ {u}. Then (v,Rv) is detachable.

Remark 7. Here the block B is common to Lv and Ru, so one possible type
of embedding would involve a symmetry over B. In practice other types of
embedding will also occur, so the concept of “symmetry” used here is very
general.

In our notation, L and R stand for left and right. It is helpful to think of
the tree of blocks, which is a path, ordered so that u < B < v. Note that
Rv = L+

v . In particular detaching Rv leaves L−v = Lv \ {v}.

Proof of Lemma 3.2. We suppose that H is an L−v -free graph, and we set

Ĥ = H ∗v (v,Rv)

Our claim is that Ĥ is C-free.
We will write (v0, R0) for the copy of (v,Rv) in Ĥ, and fix an isomorphism

ι : (v0, R0) ∼= (v,Rv)

Suppose toward a contradiction that

f : C ∼= Ĉ ⊆ Ĥ
where the inclusion is as a subgraph.

If f [Rv] ⊆ R0 then f [Rv] = R0 and f [L−v ] ⊆ H, a contradiction. So

f [Rv] 6⊆ R0
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Case 1. Suppose first that v0 /∈ f [Rv].
In this case we must have f [Rv] contained either in R0 \ {v0} or in H,

and the first alternative is out of the question. Thus

f [Rv] ⊆ H

In particular, f(v) ∈ H and f [B] ⊆ H ∪ {v0}.
If f [B] ⊆ H then f [Ru] ⊆ H and L−v embeds into H, a contradiction.
So suppose v0 ∈ f [B] and v1 = f−1(v0). Then as v1 6= v and B is

complete, we have (Ru \ {u}) ∼= (Ru \ {v1}). But f [(Ru \ {v1})] ⊆ H and
thus L−v embeds into H, a contradiction.

Case 2. Suppose that v0 = f(v).
Then f [L−v ] is contained either in H or in R0\{v0}. As the first alternative

is excluded by hypothesis, we have

f [L−v ] ⊆ R0 \ {v0}

Since f [Rv] 6⊆ R0, we have

f [Rv] ⊆ H ∪ {v0}, with f(v) = v0

So fιf [L−v ] ⊆ H, a contradiction.

Case 3. Suppose v0 = f(v1) with v1 ∈ Rv \ {v}.
This is the most delicate case.
As v /∈ f [L−v ] we again have f [L−v ] contained in H or R0 \ {v0}, with the

first alternative ruled out by hypothesis. So we have

f [L−v ] ⊆ R0 \ {v0}

In particular

f(v) ∈ R0 \ {v0}
In what follows we are mainly concerned about the relation of ιf(v) to

v1.
Let S be the smallest segment of Rv containing v and ιf(v).
Suppose first that

f [S] = ι−1[S](1)

Then f [S] ⊆ R0, and v0 ∈ f [S], so since f [Rv] 6⊆ R0 we find f [Rv\S] ⊆ H.
Now f [Lv] ∩ ι−1[S] = f [Lv ∩ S] = {f(v)}, so ιf [Lv] ∩ S = {ιf(v)}. Thus

ιf [L−v ] ⊆ Rv\S, and so fιf [L−v ] ⊆ f [Rv\S] ⊆ H, and we have an embedding
of L−v into H, for a contradiction.

There remains the alternative

f [S] 6= ι−1[S](2)

and hence

f [S] 6⊆ ι−1[S]

Next we claim

f(ιf(v)) ∈ H
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BLOCK PATH SOLIDITY 13

Otherwise, we have f [S] ⊆ R0. But ιf(v) ∈ S ∩ ιf [S], ιf [S] 6⊆ S, so
ιf [S] contains the cut vertex between S and Rv \ S and the adjacent block
of Rv \ S. This then forces f [Rv] ⊆ R0, a contradiction. So ιf(v) ∈ H.

In particular, v0 is a cut vertex of f [S], and thus

v1 is a cut vertex of S.

Let S1 be the segment from v to v1 in Rv.
Now f [Rv \ S] ⊆ H, and f(v1) = v, so

f [Rv \ S1] ⊆ H

Now ι−1(v1) is a cut vertex of R0 lying between v0 and f(v). Hence
ι−1(v1) ∈ f [S], and v1 ∈ ιf [S]. As v1 6= v, we have

v1 /∈ ιf [L−v ]

But ιf(v) ∈ ιf [Lv], so ιf [L−v ] ⊆ Rv \ S1. So fιf [L−v ] ⊆ H and again we
have a contradiction. �

3.3. Application: The Main Theorem.

Proof of Theorem 1. We suppose toward a contradiction that

C = (B1, . . . , B`)

is a block path with at least one incomplete block, allowing a weakly uni-
versal C-free graph, and with the length ` minimized.

We may suppose

|B1| ≤ |B`|

We claim that we may also suppose that one of the following two condi-
tions applies

• B1
∼= B`

• B` is not isomorphic to a subgraph of B1

If |B1| < |B`| this is clear, while if |B1| = |B`|, we are free to switch the
roles of B1 and B`. So unless B1 and B` are isomorphic, we may suppose
that B` does not embed isomorphically into B1.

So we arrive at the conditions of Lemma 2.1, and in particular at the
conclusions that ` ≥ 3, B1 is not complete, and that L−2 = (B1, B2 \ {v2})
embeds into (B2 \{v1}, . . . , B`). Taking B = B2 in Lemma 3.2, we find that
R3 = (B3, . . . , B`) is detachable. Thus there is a weakly universal L−2 -free
graph. So by the case ` = 2 (or ` = 1 if |B2| = 2), the block B1 is complete.
This contradiction completes the proof. �
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[KP91] P. Komjáth and J. Pach, Universal elements and the complexity of certain classes
of infinite graphs. Discrete Math. 95 (1991), 255–270.

Paper Sh:1033, version 2014-01-19 10. See https://shelah.logic.at/papers/1033/ for possible updates.


	Introduction
	The main theorem
	Some prior work

	1. The Füredi–Komjáth Hypergraph Construction
	1.1. The Hypergraph construction
	1.2. Application: Lemma ??

	2. Corner Pruning
	2.1. The method of corner pruning
	2.2. Application: Lemma ??

	3. Local and symmetric Pruning
	3.1. The method of local pruning
	3.2. A special case: Symmetric Local Pruning
	3.3. Application: The Main Theorem

	References

