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Abstract. Answering a question of Juhász, Soukup and Szentmiklóssy, we

show that it is consistent that some first countable space of uncountable weight
does not contain an uncountable subspace which has an irreducible base.
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§ 0. Introduction

For a topological spaceX,w(X) is the minimal cardinality of a base forX,χ(p,X) =
min{|u| : u is a neighbourhood base of p}, and χ(X) = sup{χ(p,X) : p ∈ X}.

In [?] the following problem was investigated: What makes a space have weight
larger than its character? The notion of irreducible base was introduced, and it was
proved [?, Lemma 2.6] that if a topological space X has an irreducible base then
w(X) = |X| · χ(X).
The following question was formulated:

Problem 0.1. Does every first countable space of uncountable weight contain an
uncountable subspace which has an irreducible base?

We show that the answer is consistently NO. We thank Lajos Soukup for actually
writing the paper.

Definition 0.2. Let X be a topological space. A base U of X is called irreducible
if it has an irreducible decomposition U =

⋃
{Ux : x ∈ X}, i.e, (i) and (ii) below

hold:

(i) Ux is a neighbourhood base of x in X for each x ∈ X
(ii) for each x ∈ X the family U −x =

⋃
y 6=x

Uy is not a base of X.
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§ 1. The Theorem

Theorem 1.1. There is a c.c.c. poset P = 〈P,≤〉 of size ℵ1 such that in VP there
is a first countable space X = 〈ℵ1, τ〉 of uncountable weight which does not contain
an uncountable subspace which has an irreducible base.

Proof. The elements of the poset P will be finite “approximations” of a base {U(α, n) :
α < ω1, n < ω} of X.

We define the poset P = 〈P,≤〉 as follows. The underlying set of P consists of
the triples 〈A,n, U〉 satisfying (P1)–(P3) below:

(P1) A ∈ [ω1]ℵ0 , n ∈ ω and U is a function, U : A× n→P(A),

(P2) α ∈ U (α, j) and U(α, i) ⊆ U(α, i− 1) for each α ∈ A and j < n, 0 < i < n,

(P3) if β ∈ U(α, i) ⊆ U(β, 0) for some i < n, then β ≤ α.

For p ∈ P write p = 〈Ap, np, Up〉. Let us remark that property (P3) will guarantee
that w(X) = ω1.

Define the order ≤ on P as follows. For p, q ∈ P we put q stronger than p, or q
extends p, q ≤ p if:

(a) Ap ⊆ Aq,
(b) np ≤ nq,
(c) Up(α, i) = Uq(α, i) ∩Ap for each 〈α, i〉 ∈ Ap × np,
(d) for each 〈α, i〉, 〈β, j〉 ∈ Ap × np,

(d1) if Up(α, i) ∩ Up(β, j) = ∅ then Uq(α, i) ∩ Uq(β, j) = ∅,
(d2) if Up(α, i) ⊆ Up(β, j) then Uq(α, i) ⊆ Uq(β, j).

We say that the conditions p0 = 〈A0, n0, U0〉 and p1 = 〈A1, n1, U1〉 are twins iff n0 =
n1, |A0| = |A1| and denoting by σ the unique <On-preserving bijection between A0

and A1 we have

(I1) σ � (A0 ∩A1) = idA0∩A1 ,

(I2) σ is an isomorphism between p0 and p1, i.e. for each α ∈ A0 and i < n0 we
have U1(σ(α), i) = σ′′U0(α, i).

We say that σ is the twin function between p0 and p1. Define the smashing function
σ of p0 and p1 as follows: σ = σ−1 ∪ idA0

. The function σ∗ defined by the formula
σ∗ = σ ∪ σ−1 is called the exchange function of p0 and p1. The rest of the proof is
broken into a series of claims. �

The burden of the proof is to verify the next lemma.

Amalgamation Lemma 1.2. Assume that p0 = 〈A0, n0, U0〉 and p1 = 〈A1, n1, U1〉
are twins, A0∩A1 < A0\A1 < A1\A0, ξ0 ∈ A0\A1, ξ1 = σ(ξ0), where σ is the twin
function between p0 and p1, and let k < m < n0. Then p0 and p1 have a common
extension p = 〈A,n, U〉 in P such that:

(∗) ξ0 ∈ U(ξ1,m) ⊆ U(ξ1, k) ⊆ U(ξ0, k).
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Proof. Write n = n0 = n1, D = A0 ∩A1 and A∗ = A0 ∪A1. Unfortunately we can
not assume that A = A∗ because in this case we can not guarantee (P3) for p. So
we need to add further elements to A∗ to get a large enough A as follows. Choose a
set B ⊆ ω1 \A∗ of cardinality |A∗×n| and fix a bijection ρ between A∗×n and B.
We will take A = A∗ ∪ B. To simplify the notation we will write 〈α, i〉 for ρ(α, i),
for all α ∈ A∗ and i < n, i.e. we identify the elements of B and of A∗ × n.

The idea of the proof is the following: for each 〈α, i〉 ∈ A∗ × n we put the
element 〈α, i〉 into U(α, i). On the other hand, we try to keep U(α, i) small, so we
put 〈β, j〉 into U(α, i) if and only if we can “derive” from the property (d2) that
U(β, j) ⊆ U(α, i) should hold in any condition p = 〈A,n, U〉 which is a common
extension of p0 and p1 and which satisfies (∗).

The condition p will be constructed in two steps. First we construct a condi-
tion p′ = 〈A,n, U ′〉 extending both p0 and p1. This p′ can be considered as the
minimal amalgamation of p0 and p1. Then, in the second step, we carry out small
modifications on the function U ′, namely we increase its value on certain places to
guarantee (∗).

Now we carry out our construction. For ε < 2 and 〈β, j〉 ∈ Aε × n let

(0.1) Vε(β, j) = {〈α, i〉 ∈ Aε × n : Uε(α, i) ⊆ Uε(β, j)}

and

(0.2)
Wε(β, j) = {〈α, i〉 ∈ A1−ε × n : ∃〈γ, l〉 ∈ D × n

U1−ε(α, i) ⊆ U1−ε(γ, l) ∧ Uε(γ, l) ⊆ Uε(β, j)}.

If we want to define p′ in such a way that p′ extends p0, p1, then (d2) implies that
U ′(α, i) ⊆ U ′(β, j) should hold whenever 〈α, i〉 ∈ V (β, j) ∪W (β, j).

Now we are ready to define the function U ′. For ε < 2, β ∈ Aε and j < n let

(0.3) U ′(β, j) = Uε(β, j) ∪ U1−ε(σ
∗(β), j) ∪ Vε(β, j) ∪Wε(β, j).

For 〈α, i〉 ∈ A∗ × n and j < n let

(0.4) U ′(〈α, i〉, j) = {〈α, i〉}.

Let us remark that U ′(δ, j) is well-defined even for δ ∈ A0 ∩ A1. Indeed, in this

case σ∗(δ) = δ and Vε(δ, j) = W1−ε(δ, j), and so

U ′(δ, j) = U0(δ, j) ∪ U1(δ, j) ∪ V0(δ, j) ∪ V1(δ, j).

Now put

p′ = 〈A,n, U ′〉.

Claim 1.3. If α ∈ U ′(β, j) so α ∈ A∗ then σ(α) ∈ U0(σ(β), j).

Indeed, if β ∈ Aε and j < n then U ′(β, j) ∩A∗ = Uε(β, j) ∪ U1−ε(σ(β), j).

Claim 1.4. If 〈α, i〉 ∈ U ′(β, j) then σ(α) ∈ U0(σ(β), j).
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Proof of the Claim. Assume that β ∈ Aε. If 〈α, i〉 ∈ Vε(β, j) then α ∈ Uε(α, i) ⊆
Uε(β, j) and Uε(β, j) ⊆ U ′(β, j). So we have α ∈ U ′(β, j) which implies σ(α) ∈
U0(σ(β), j) by Claim 1.3.

If 〈α, i〉 ∈ W1−ε(β, j) then for some 〈γ, l〉 ∈ D × n we have U1−ε(α, i) ⊆
U1−ε(γ, l) ∧ Uε(γ, l) ⊆ Uε(β, j). Thus α ∈ Uε(β, j) ⊆ U ′(β, j), which implies
σ(α) ∈ U0(σ(β), j) by Claim 1.3. �

Claim 1.5. p′ ∈ P .

Proof of claim 1.5. Proof of the claim 1.5. (P1) and (P2) clearly hold, so we need
to check only (P3).

Assume on the contrary that (P3) fails for p′. Since U ′(〈ν, s〉, j) = {〈ν, s〉} by
(0.4) for each 〈ν, s〉 ∈ B and j < n, we can assume that some α < β from A∗ and i <
n witness that (P3) fails, i.e. β ∈ U ′(α, i) ⊆ U ′(β, 0). Then σ(β) ∈ U0(σ(α), i) ⊆
U ′(σ(β), 0) by Claim 1.3. Since p0 satisfies (P3) it follows that σ(β) ≤ σ(α), and
so α ∈ A0 \ A1 and β ∈ A1 \ A0. Consider the element u = 〈α, i〉 ∈ A \ A∗. Then
u ∈ U ′(α, i) and so u ∈ U ′(β, 0) as well. By the definition of U ′(β, 0) this means
that 〈α, i〉 ∈ W1(β, 0), that is, there is 〈γ, l〉 ∈ D × n such that U0(α, i) ⊆ U0(γ, l)
and U1(γ, l) ⊆ U1(β, j). Thus

(0.5) σ(β) ∈ U0(α, i) ⊆ U0(γ, l) ⊆ U0(σ(β), 0)

by Claim 1.3. Thus σ(β) ∈ U0(γ, l) ⊆ U0(σ(β), 0) and so σ(β) ≤ γ because p0
satisfies (P3). But this is a contradiction because γ ∈ D = A0 ∩A1, σ(β) ∈ A0 \A1

and we assumed that (A0 ∩A1) < (A0 \A1). �

Claim 1.6. p′ is stronger than p0, p1.

Proof of claim 1.6. Proof of claim 1.6. Conditions (a) and (b) are clear.
To check (c) assume that α ∈ Aε and i ∈ n. By (0.3),

U ′(α, i) ∩Aε = (Uε(α, i) ∪ U1−ε(σ
∗(α), i)) ∩Aε =

Uε(α, i) ∪ (U1−ε(σ
∗(α), i) ∩Aε) = Uε(α, i)

because U1−ε(σ
∗(α), i) = σ[Uε(α, i)].

To check (d1) assume that β, γ ∈ Aε and j, k < n such that U ′(β, j)∩U ′(γ, k) 6=
∅. Fix x ∈ U ′(β, j) ∩ U ′(γ, k).

Then

σ(α) ∈ U0(σ(β), j) ∩ U0(σ(γ), k)

by Claim 1.3 if x = α ∈ A∗, and by Claim 1.4 if x = 〈α, i〉 ∈ A \A∗.
If ε = 0 then σ(β) = β and σ(γ) = γ, so σ(α) ∈ Uε(β, j) ∩ Uε(γ, k).
If ε = 1 then σ(β) = σ(β) and σ(γ) = σ(γ), and so σ∗(σ(α)) ∈ Uε(β, j)∩Uε(γ, k).
Finally to check (d2) assume that β, γ ∈ Aε and j, k < n such that Uε(β, j) ⊆

Uε(γ, k).
Then clearly

U1−ε(β, j) = σ[Uε(β, j)] ⊆ σ[Uε(γ, k)] = U1−ε(γ, k),
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moreover, Vε(β, j) ⊆ Vε(γ, k) by (0.1), and Wε(β, j) ⊆ Wε(γ, k) by (0.2), and so
U ′(β, j) ⊆ U ′ε(γ, k) by (3). �

Now carry out the promised modification of U ′ to obtain U as follows, recall-
ing that ξ0 ∈ U0(ξ0, j) = U0(σ∗(ξ1), j) ⊆ U ′(ξ1, j), so the “problem” is about
“U (ξ1, k) ⊆ U (ξ0, k)”.

If z ∈ A and j < n let

U(z, j) =

{
U ′(z, j) ∪ U ′(ξ1, k) if U0(ξ0, k) ⊆ U0(z, j) so z ∈ A0,

U ′(z, j) otherwise.

Put

p = 〈A,n, U〉.

If U0(ξ0, k) ⊆ U0(z, j) then U1(ξ1, k) ⊆ U1(σ(z), j) ⊆ U ′(z, j) and W1(ξ1, k) ⊆
V0(ξ0, k) ⊆ U ′(z, j).

So

(0.6) U(z, j) \ U ′(z, j) ⊆ V1(ξ1, k).

Hence

(0.7) U(z, j) =

{
U ′(z, j) ∪ V1(ξ1, k) if U0(ξ0, k) ⊆ U0(z, j) so z ∈ A0,

U ′(z, j) otherwise.

Claim 1.7. If 〈α, i〉 ∈ U(β, j) then σ(α) ∈ U0(σ(β), j).

Indeed, if 〈α, i〉 ∈ U(β, j) then by (6), (7) we have 〈α, i〉 ∈ U ′(β, j) or 〈α, i〉 ∈
U ′(σ(β), j), and now apply Claim 1.4.

Claim 1.8. p ∈ P .

Proof of claim 1.8. Proof of claim 1.8. (P1) and (P2) clearly hold, so we need to
check (P3) only.

Assume on the contrary that (P3) fails for p. Since U(〈ν, s〉, j) = {〈ν, s〉} for
each 〈ν, s〉 ∈ A \ A∗ and j < n we can assume that there are α < β from A∗ and
i < n witness that (P3) fails, i.e.

(0.8) β ∈ U(α, i) ⊆ U(β, 0).

Then by 1.8 and the definitions of U0,U we have σ(β) ∈ U0(σ(α), i) ⊆ U(σ(β), 0).
But p0 satisfies (P3) so σ(β) ≤ σ(α), and so α ∈ A0 \A1 and β ∈ A1 \A0. Thus

U0(β, j) is undefined, and so

(0.9) U(β, 0) = U ′(β, 0) and U(α, i) \ U ′(α, i) ⊆ A \A∗.
by (0.7). So (0.8) yields

β ∈ U ′(α, i) ⊆ U ′(β, 0).

However this is a contradiction because p′ satisfies (P3). �
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Claim 1.9. p is stronger than p0, p1.

Proof. Clauses (a) and (b) are trivial. Clause (c) also holds because p′ is stronger
than pε and (U(α, i) \ U ′(α, i)) ∩Aε = ∅ by (0.6).

To check (d1) assume that β, γ ∈ Aε and j, k < n such that U(β, j)∩U(γ, k) 6= ∅.
Pick x ∈ U(β, j) ∩ U(γ, k).

Then

σ(α) ∈ U0(σ(β), j) ∩ U0(σ(γ), k)

by Claim 1.3 if x = α ∈ A∗, and by Claim 1.7 if x = 〈α, i〉 ∈ A \A∗.
If ε = 0 then σ(β) = β and σ(γ) = γ, so σ(α) ∈ Uε(β, j) ∩ Uε(γ, k) hence

Uε(β, j) ∩Uε(γ, k) 6= ∅ as promised in (d1).
If ε = 1 then σ(β) = σ∗(β) and σ(γ) = σ∗(γ), and so σ∗(σ(α)) ∈ Uε(β, j) ∩

Uε(γ, k) hence Uε(β, j) ∩Uε(γ, k) 6= ∅ as promised in (d1).
Finally to check (d2) assume that β, γ ∈ Aε and i, j < n such that Uε(β, i) ⊆

Uε(γ, j). Since p′ ≤ pε we have U ′(β, i) ⊆ U ′(γ, j). If U(β, i) = U ′(β, i), we are
done. So we can assume that (β ∈ A0 and) U(β, i) = U ′(β, i) ∪ V (ξ1, k) hence
U0(ξ0, k) ⊆ U0(β, i).

If γ ∈ A1\A0 then ε = 1 and U0(β, i) ⊆ U0(σ(γ), j) hence U0(ξ0, k) ⊆ U0(β, i) ⊆
U0(σ∗(γ), j) hence U1(ξ1, k) = U1(σ∗(ξ0), k) ⊆ U0(γ, j) hence V1(ξ1, k) ⊆ U ′(γ, j) =
U (γ, 1) as promised.

So without loss of generality γ ∈ A0, so recalling β ∈ A0 without loss of gener-
ality ε = 0. But then U0(ξ0, k) ⊆ U0(γ, j) and so U(γ, j) = U ′(γ, j)∪V (ξ1, k), and
so U(β, i) ⊆ U(γ, j). �

Since p satisfies (∗), the amalgamation lemma is proved.
Using the amalgamation lemma it is easy to complete the proof of the theorem.
By standard ∆-system argument, any uncountable set of conditions contains

two elements, p0 and p1, which are twins. So, by Lemma 1.2, they have a common
extension p. So P satisfies c.c.c.

If G is a generic filter, for α < ω1 and i < ω put

(0.10) U(α, i) = ∪{Up(α, i) : p ∈ G , α ∈ Ap, i < np},

and let Uα = {U(α, i) : i < ω} be the base of the point α in X = 〈ω1, τ〉.
For any countable set W of open sets for X there is γ < ω1 such that: if

k < m < ω,α < ω1, u ∈ W and U (α, k,m) ⊆ u ⊆ U (α, k) then for some β < α∗
we have U (β,m) ⊆ u ⊆ U (β, k) so by (P3), W is not a base of X. So w(X) = ℵ1.

Finally we show that X does not contain an uncountable subspace which has an
irreducible base.

Assume on the contrary that

r  the subspace Ẏ = {ẏξ : ξ < ω1} has an irreducible base B

and {Ḃyξ : ξ < ω1} is an irreducible decomposition of Ḃ”.

We can assume that r  “ẏξ ≥ ξ̌”.
For each ξ < ω1 pick a condition rξ and kξ ∈ ω such that
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(0.11) rξ  “ if V ∈ B with ẏξ ∈ V ⊆ U(ẏξ, ǩξ) then V ∈ Byξ”.

For each ξ < ω1 pick a condition pξ ≤ rξ, an ordinal αξ ≥ ξ, a name V̇ξ and a
natural number mξ < ω such that αξ ∈ Apξ and

(0.12) pξ  ẏξ = α̌ξ, V̇ξ ∈ Ḃαξ
and U(α̌ξ, m̌ξ) ⊆ V̇ξ ⊆ U(α̌ξ, ǩξ).

By standard argument find I ∈ [ω1]ℵ1 such that:

(i) mξ = m and kξ = k for each ξ ∈ I,

(ii) the sequence {αξ : ξ ∈ I} is strictly increasing,

(iii) the conditions {pξ : ξ ∈ I} are pairwise twins,

(iv) σξ,η(αξ) = αη for {ξ, η} ∈ [I]2, where σξ,η is the twin function for pξ, pζ .

Pick ξ < η from I. By the Amalgamation Lemma there is a common extension p
of pξ and pη such that

(0.13) αξ ∈ Up(αη,m) ∧ Up(αη, k) ⊆ Up(αξ, k).

Then, by (d2),

(0.14) p  “α̌ξ ∈ U(α̌η, m̌) ∧ U(α̌η, ǩ) ⊆ U(α̌ξ, ǩ)”.

Then, by (0.12),

(0.15) p  “V̇η ∈ Bαη and α̌ξ ∈ U(α̌η, m̌) ⊆ V̇η ⊆ U(α̌η, ǩ) ⊆ U(α̌ξ, ǩ)”

which contradicts (0.11).
This completes the proof of the Theorem. �
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