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Abstract. We show the consistency of “there is a nice σ–ideal I on
the reals with add(I) = ℵ1 which cannot be represented as the union of
a strictly increasing sequence of length ω1 of σ-subideals”. This answers
Borodulin–Nadzieja and Głąb [3, Problem 6.2(ii)].

1. Introduction

Borodulin–Nadzieja and Głąb [3] studied generalizations of the Moko-
bodzki ideal and they showed that those σ–ideals do not have Borel bases of
bounded Borel complexity. In [3, Section 5] they noticed that the unbounded
Borel complexity of bases implies that the additivity of the σ–ideal under
consideration is ℵ1. This observation exposed the heart of a result of Ci-
choń and Pawlikowski [5, Corollary 2.4] and showed the importance of the
existence of a strictly increasing ω1–sequence of σ–subideals which add up
to the whole ideal.

Therefore Borodulin–Nadzieja and Głąb introduced a new cardinal in-
variant cofin(I) associated with non-trivial σ–ideals I: the minimal length
of a strictly increasing sequence of σ–subideals with union I (see Definition
2.1). They showed that the additivity of the σ–ideal I is not larger than
cofin(I) (see [3, Proposition 5.2] or Theorem 2.2 here) and in [3, Problem
6.2(ii)] they asked if the two invariants can be different. In the present paper
we answer this question in positive.

In the second section we define the relevant cardinal invariants and we
point out situations when cofin(I) < cof(I) for the meager and the null
ideals. In Section 3 we introduce a nicely definable σ–ideal If with a Borel
bases consisting of Π0

2 sets. Then we show that, consistently, add(If ) = ℵ1

while cofin(If ) = ℵ2 (Corollary 3.15).

Notation Most of our notation is standard and compatible with that
of classical textbooks (like Bartoszyński and Judah [1]). However, in forcing
we keep the older convention that a stronger condition is the larger one.

• Ordinals will be denoted with initial letters of the Greek alphabet (α–
ζ) and integers (finite ordinals) will be denoted by i, j, k, `,m, n. Letters
κ, λ, µ will denote uncountable cardinals.
• By a sequence we mean a function whose domain is a set of ordinals.

Sequences will be denoted by letters η, ν, ρ, σ, ς, ϕ, ψ (with possible indices).
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2 A. ROSŁANOWSKI AND S. SHELAH

For two sequences η, ν we write ν C η whenever ν is a proper initial
segment of η, and ν E η when either ν C η or ν = η. The length of a
sequence η is the order type of its domain and it is denoted by `g(η).
• The power set of a set X is denoted by P(X) and the collection of all

subsets of X of size m is called [X]m and the collection of all finite subsets
of X is denoted by [X]<ℵ0 .
• The Cantor space ω2 is the space of all functions from ω to 2, equipped

with the product topology generated by sets of the form {η ∈ ω2 : ν C η}
for ν ∈ ω>2.
• A family I of subsets of X which is closed under finite unions and

taking subsets is called an ideal on X. It is a proper ideal if X /∈ I (i.e.,
I 6= P(X)) and it is a σ–ideal if it is closed under countable unions. The σ–
ideal of meager subsets of the Cantor space ω2 is calledM and the σ–ideal
of Lebesgue null sets is N .
• For a forcing notion P, all P–names for objects in the extension via P

will be denoted with a tilde below (e.g. A
˜
, η
˜
). The canonical name for a P–

generic filter over V is denoted G
˜

P. The Cohen forcing for adding κ many
Cohen reals in ω2 is called Cκ (so a condition in Cκ is a finite function
p : dom(p) −→ 2 with dom(p) ⊆ κ×ω and the order of Cκ is the inclusion).
The forcing C is C1.

2. cofin and M, N

Definition 2.1. Let I be an ideal on X. We define the following cardinal
characteristics of I:

(1) add(I) = min{|A| : A ⊆ I &
⋃
A /∈ I};

(2) cof(I) = min{|B| : B ⊆ I & (∀A ∈ I)(∃B ∈ B)(A ⊆ B)};
(3) cofin(I) is the minimal limit ordinal γ for which there exists a se-

quence Ī = 〈Iα : α < γ〉 such that
(a) I =

⋃
α<γ

Iα and

(b) Iα ( Iβ for α < β < γ, and
(c) each Iα is a σ–ideal,
(or ∞ if there is no sequence Ī as above);

(4) cofin−(I) and cofin∗(I) are defined similarly to cofin(I), but clause
(c) is replaced by (c)− and (c)∗, respectively, where
(c)− each Iα is an ideal;
(c)∗ each Iα is closed under taking subsets (i.e., B ⊆ A ∈ Iα implies

B ∈ Iα);
(5) cofin+(I) is the minimal limit ordinal γ for which there exists a

sequence 〈Iα : α < γ〉 such that clauses (a),(b) and (c) of (3) above
are satisfied and
(d) all singletons belong to I0.

If I is a non-principal ideal (i.e., cof(I) ≥ ℵ0), then cofin−(I) is a well
defined cardinal and cofin−(I) ≤ cof(I). To see this, pick a basis {Bζ : ζ <
cof(I)} ⊆ I for I. Let ζ0 be the first ordinal ζ ≤ cof(I) such that for some
set B ∈ I every member of I can be covered by finitely many elements of
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AROUND COFIN 3

{Bε : ε < ζ} ∪ {B}. Necessarily, ζ0 is a limit ordinal. Let B∗ ∈ I be such
that {Bε : ε < ζ0} ∪ {B∗} generates I, i.e., every set in I can be covered
by B∗ and finitely many sets Bε with ε < ζ0. For ζ < ζ0 let Iζ be the ideal
generated by {Bε : ε < ζ} ∪ {B∗}. Then I =

⋃
ζ<ζ0

Iζ and, by the minimality

of ζ0, the sequence 〈Iζ : ζ < ζ0〉 does not stabilize. Consequently, we may
choose an increasing sequence 〈ζα : α < cf(ζ0)〉 cofinal in ζ0 and such that
〈Iζα : α<cf(ζ0)〉 is a strictly increasing sequence of ideals with the union I.

The cardinal invariant cofin was introduced by Borodulin–Nadzieja and
Głąb in [3, Section 5]. It has the flavour of the altitude of Boolean alge-
bras (see van Douwen, Monk and Rubin [9, p. 236]), but the two cardinal
coefficients seem to be unrelated.

Theorem 2.2 (Borodulin–Nadzieja and Głąb [3, Section 5]). Let I be a
non-principal ideal of subsets of X. Then

add(I) ≤ cofin∗(I) ≤ cofin−(I) ≤ cof(I) and
cofin−(I) ≤ cofin(I) ≤ cofin+(I).

Proposition 2.3. Let κ = κℵ0 be an uncountable cardinal.
(1) The Cohen algebra Cκ for adding κ many Cohen reals forces that

add(M) = cofin(M) = cofin+(M) = ℵ1 ≤ cof(M) = κ = 2ℵ0 .

(2) The Solovay algebra Bκ for adding κ many random reals forces that

add(N ) = cofin(N ) = cofin+(N ) = ℵ1 ≤ cof(N ) = κ = 2ℵ0 .

Proof. (2) In both cases the proof is essentially the same, so let us argue
for the Solovay algebra only. Represent κ as the disjoint union κ =

⋃
ε<ω1

Kε

where each Kε is of size κ. For ε < ω1 set αε = min(Kε) and Aε =
⋃
ζ<ε

Kζ .

Suppose that r̄ = 〈rα : α < κ〉 is a Bκ–generic over V, so rα ∈ ω2
are random reals, and let us argue in V[r̄]. For each ε < ω1 let Iε be the
σ–ideal generated by singletons and the family of all Borel null sets coded
in V[rα : α ∈ Aε]. Then 〈Iε : ε < ω1〉 is an increasing sequence of σ–ideals,
I0 contains all singletons and N =

⋃
ε<ω1

Iε. Moreover, for each ε < ω1,

B
def
=
{
x ∈ ω2 : (∀n < ω)(x(2n) = rαε(2n))

}
∈ Iε+1 \ Iε.

Why? Clearly, B is a Borel null set coded in V[rα : α ∈ Aε+1], so B ∈ Iε+1.
Suppose Bi are Borel null sets coded in V[rα : α ∈ Aε] and xi ∈ (ω2)V[r̄] (for
i < ω). Choose x∗ ∈ {x ∈ ω2∩V : (∀n < ω)(x(2n) = 0)}\{xi+rαε : i < ω}.
Then x∗+rαε is a random real over V[rα : α ∈ Aε], so x∗+rαε ∈ B\(

⋃
i<ω

Bi∪

{xi : i < ω}). Thus we may conclude that B /∈ Iε. �

Definition 2.4 (Rosłanowski and Shelah [6, Definition 3.4]). Let I be an
ideal of subsets of a space X and α∗, β∗ be limit ordinals. An α∗ × β∗–base
for I is an indexed family B = {Bα,β : α < α∗ & β < β∗} of sets from I
such that
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4 A. ROSŁANOWSKI AND S. SHELAH

(i) B is a basis for I, i.e., (∀A ∈ I)(∃B ∈ B)(A ⊆ B), and
(ii) for each α0, α1 < α∗, β0, β1 < β∗ we have

Bα0,β0 ⊆ Bα1,β1 ⇔ α0 ≤ α1 & β0 ≤ β1.

If follows from results of Bartoszyński and Kada [2] (for the meager ideal)
and Burke and Kada [4] (for the null ideal) that for any cardinals κ and λ
of uncountable cofinality we may force thatM has a κ × λ–basis, and we
may also force that N has a κ×λ–basis. In [6, Theorem 3.7] we constructed
a model in which both ideals have κ× λ–bases.

Proposition 2.5. Let κ, λ be regular uncountable cardinals, κ ≤ λ,
(1) If I is a σ–ideal on a space X and I has a κ× λ–base, then

κ = add(I) = cofin(I) and cof(I) = λ.

(2) There is a ccc forcing notion P forcing that 2ℵ0 = λℵ0 and
(i) the σ–ideal N has a κ× λ–base {Aα,β : α < κ, β < λ} with the

property that

α0 > α1 ∨ β0 > β1 ⇒ |Aα0,β0 \ Aα1,β1| = 2ℵ0 ,

and
(ii) the σ–idealM has a κ×λ–base {Bα,β : α < κ, β < λ} with the

property that

α0 > α1 ∨ β0 > β1 ⇒ |Bα0,β0 \Bα1,β1| = 2ℵ0 .

In particular,


P “ add(M) = add(N ) = cofin+(M) = cofin+(N ) = κ and
cof(M) = cof(N ) = λ. ”

Proof. (1) Assume that {Bα,β : α < κ, β < κ} is a κ × λ–base for I. It
should be clear that then κ = add(I) and cof(I) = λ.

Let us argue that cofin(I) ≤ κ. For ζ < κ let Iζ be the σ–ideal generated
by the family {Bα,β : α ≤ ζ & β < λ}. Plainly, 〈Iζ : ζ < κ〉 is an increasing
sequence of σ–ideals such that I =

⋃
ζ<κ

Iζ . We claim that Bζ+1,0 ∈ Iζ+1 \Iζ .

Suppose that I ⊆ (ζ+1)×λ is countable. Then we may choose β∗ < λ such
that I ⊆ (ζ + 1) × β∗ and consequently

⋃
{Bα,β : (α, β) ∈ I} ⊆ Bζ,β∗ . But

Bζ+1,0 * Bζ,β∗ and so Bζ+1,0 *
⋃
{Bα,β : (α, β) ∈ I}. Now we may conclude

now that Bζ+1,0 /∈ Iζ .

(2) The forcing notion Qκ,λ constructed in the proof of [6, Theorem 3.7]
has the desired properties, see [6, Remark 3.8]. �

3. cofin and If
We introduce here a nicely definable Borel ideal If for which, consis-

tently, add(If ) < cofin(If ). The proof of the consistency will resemble She-
lah [8, Chapter II, Theorem 4.6] (and thus also [7]). The respective forcing
notion is obtained by means of FS iteration of ccc forcing notions, however
the iteration itself is forced too.
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Context 3.1. Let us fix two strictly increasing functions f, g : ω −→ ω such
that for each n < ω we have

2 < g(n) < f(n) and
g(n)

f(n)
≤ 1

n+ 1
.

Definition 3.2. (1) A null slalom below f is a function ϕ ∈
∏
n<ω

P
(
f(n)

)
such that lim

n→∞
|ϕ(n)|
f(n)

= 0.
(2) Let Sf be the collection of all null slaloms below f and let Xf =∏

n<ω

f(n) be equipped with the natural product topology (so Xf is a

Polish space).
(3) For ϕ ∈ Sf we define

[ϕ] =
{
x ∈ Xf :

(
∃∞n < ω

)(
x(n) ∈ ϕ(n)

)}
.

Observation 3.3. Let ϕi ∈ Sf (for i < ω).
(1) [ϕ0] ⊆ [ϕ1] if and only if

(
∀∞n < ω

)(
ϕ0(n) ⊆ ϕ1(n)

)
.

(2) There is ψ ∈ Sf such that
⋃
i<ω

[ϕi] ⊆ [ψ].

Definition 3.4. Let If be the σ–ideal of subsets of Xf generated by all sets
[ϕ] for ϕ ∈ Sf . Thus, by Observation 3.3,

If =
{
A ⊆ Xf :

(
∃ϕ ∈ Sf

)(
A ⊆ [ϕ]

)}
.

We will construct a forcing notion P forcing that add(If ) < cofin(If ),
but first we need several technical ingredients.

Definition 3.5. For a cardinal κ we define a forcing notion Qκ
0 :

A condition p in Qκ
0 is a finite function such that dom(p) ⊆ κ and for some

n = np < ω, for all ε ∈ dom(p) we have p(ε) ∈
∏
i<n

[f(i)]g(i).

The order ≤=≤Qκ0 of Qκ
0 is defined by letting p ≤ q if and only if

dom(p) ⊆ dom(q) and (∀ε ∈ dom(p))(p(ε) E q(ε)).

For ε < κ, a Qκ
0–name ν

˜
(ε) is defined by


Qκ0 ν˜
(ε) =

⋃{
p(ε) : ε ∈ dom(p) & p ∈ G

˜
Qκ0

}
.

Observation 3.6. (1) The forcing notion Qκ
0 is equivalent to Cκ, the

forcing adding κ many Cohen reals.
(2) 
Qκ0 “ for every ε < κ we have ν

˜
(ε) ∈

∏
i<ω

[f(i)]g(i) ⊆ Sf ”.

Definition 3.7. Let µ be an infinite cardinal and ϕ̄ = 〈ϕζ : ζ < µ〉 be a
sequence of null slaloms below f (so ϕζ ∈ Sf for ζ < µ). We define a forcing
notion Q∗µ(ϕ̄).
A condition in Q∗µ(ϕ̄) is a tuple p = (kp,mp, up, σp) = (k,m, u, σ) such that

(a) k,m < ω, ∅ 6= u ∈ [µ]<ℵ0 , σ ∈
∏
i<k

P(f(i)), and

(b) for each ` ≥ k and ζ ∈ u we have |ϕζ(`)| < f(`)
m·|u| .
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6 A. ROSŁANOWSKI AND S. SHELAH

The order ≤=≤Q∗µ(ϕ̄) of Q∗µ(ϕ̄) is defined by
p ≤ q if and only if (p, q ∈ Q∗µ(ϕ̄) and) kp ≤ kq, mp ≤ mq, up ⊆ uq, σp E σq

and for each ` ∈ [kp, kq) we have

|σq(`)| ≤ f(`)

mp
and

⋃{
ϕζ(`) : ζ ∈ up

}
⊆ σq(`).

We also define a Q∗µ(ϕ̄)–name ς
˜
by


Q∗µ(ϕ̄) ς
˜

=
⋃{

σp : p ∈ G
˜

Q∗µ(ϕ̄)

}
.

Proposition 3.8. Let µ be an infinite cardinal and ϕ̄ = 〈ϕζ : ζ < µ〉 ⊆ Sf .
Then Q∗µ(ϕ̄) is a well defined ccc forcing notion of size µ and


Q∗µ(ϕ̄) “ ς
˜
∈ Sf &

⋃
ζ<µ

[ϕζ ] ⊆ [ς
˜

] ∈ If ”.

Proof. First note that if p ∈ Q∗µ(ϕ̄) and m = mp, k = kp + 1, u = up and
σ = σp_〈

⋃
ζ∈u

ϕζ(k
p)〉, then (k,m, u, σ) ∈ Q∗µ(ϕ̄) is a condition stronger than

p. Hence we may conclude that 
Q∗µ(ϕ̄) ς
˜
∈
∏
i<ω

P(f(i)).

Also, if p ∈ Q∗µ(ϕ̄) and m > mp, then we may find k > kp such that
|ϕζ(`)| < f(`)

m·|up| for all ζ ∈ up and ` ≥ k. Let u = up and σ ∈
∏
i<k

P(f(i))

be such that σ(`) = σp(`) for ` < kp and σ(`) =
⋃
ζ∈u

ϕζ(`) for ` ∈ [kp, k).

Then (k,m, u, σ) ∈ Q∗µ(ϕ̄) is a condition stronger than p and it forces that
|ς
˜

(`)| ≤ f(`)
m

for all ` ≥ k. Hence we may conclude that 
Q∗µ(ϕ̄) ς
˜
∈ Sf .

It follows from the definition of the order of Q∗µ(ϕ̄) that

p 
Q∗µ(ϕ̄)

(
∀` ≥ kp

)(
∀ζ ∈ up

)(
ϕζ(`) ⊆ ς

˜
(`)
)
,

and hence easily 
Q∗µ(ϕ̄)

⋃
ζ<µ

[ϕζ ] ⊆ [ς
˜

].

Let us argue now that Q∗µ(ϕ̄) satisfies the ccc. Suppose 〈pε : ε < ω1〉 ⊆
Q∗µ(ϕ̄). For each ε < ω1, we may find Kε > kpε such that

(⊕)1

(
∀` ≥ Kε

)(
∀ζ ∈ upε

)(
|ϕζ(`)| < f(`)

2·|upε |·mpε
)

and define ρε ∈
∏
i<Kε

P(f(i)) so that ρε(`) = σpε(`) for ` < kpε and ρε(`) =⋃
ζ∈upε

ϕζ(`) for ` ∈ [kpε , Kε). Then we may find an uncountable set S ⊆ ω1

and K∗,m∗, ρ∗, `∗ such that for all ε ∈ S:
(⊕)2 K

∗ = Kε, m∗ = mpε , ρ∗ = ρε and |uε| = `∗.
Consider distinct ε0, ε1 ∈ S: letting u∗ = uε0 ∪ uε1 we get a condition
(K∗,m∗, u∗, ρ∗) ∈ Q∗µ(ϕ̄) stronger than both pε0 and pε1 . �

Definition 3.9. Let κ < λ be uncountable regular cardinals.
(1) A Y–iteration for κ, λ is a finite support iteration 〈Pβ,Q

˜
β : β < α〉

of ccc forcing notions such that the following demands (⊗)1–(⊗)3

are satisfied.
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(⊗)1 0 < α ≤ λ and Q
˜

0 = Qκ
0 is the forcing notion adding κ Cohen

reals as represented in Definition 3.5 with Qκ
0–names ν

˜
(ε) (for

ε < κ) as defined there.
(⊗)2 For each β < α we have 
Pβ |Q

˜
β| ≤ λ.

(⊗)3 Let n < ω. Suppose that 〈pζ : ζ < κ〉 ⊆ Pα and 〈δζ : ζ < κ〉 ⊆ κ
and δζ 6= δζ′ for ζ < ζ ′ < κ. Then there are q ∈ Pα, m > n,
v ⊆ κ, and Aζ (for ζ ∈ v) such that

(i) |v| ≥ f(m)
2·g(m)

,
(ii) pζ ≤ q for all ζ ∈ v,
(iii) Aζ ∈ [f(m)]g(m) (for ζ ∈ v) are pairwise disjoint sets,
(iv) q 
Pα “

(
∀ζ ∈ v

)(
ν
˜

(δζ)(m) = Aζ
)
”.

(2) The collection of all (dense subsets of) Y–iterations for κ, λ of length
<λ which belong to H(i+

λ ) is denoted by Yλ
κ. It is ordered by the

end-extension of iterations E.

The condition 3.9(1)(⊗)3 implies that the null slaloms added at the first
step of a Y–iteration provide a family of sets whose union is not included
in any null slalom. Note that in 3.9(1)(⊗)3 necessarily |v| ≤ f(m)

g(m)
.

Lemma 3.10. Assume κ < λ are regular uncountable cardinals. Suppose
that 〈Pβ,Q

˜
β : β < α〉 is a Y–iteration for κ, λ. Then 
Pα add(If ) ≤ κ.

Proof. We know that for each ε < κ we have 
Pα ν
˜

(ε) ∈ Sf (remember
Observation 3.6) and therefore 
Pα {[ν

˜
(ε)] : ε < κ} ⊆ If . We are going to

argue that

Pα

⋃{
[ν
˜

(ε)] : ε < κ
}
/∈ If .

Suppose towards contradiction that this is not the case. Then we may pick
p ∈ Pα and a Pα–name ϕ

˜
such that

p 
Pα ϕ
˜
∈ Sf &

(
∀ε < κ

)(
∀∞n < ω

)(
ν
˜

(ε)(n) ⊆ ϕ
˜

(n)
)

(remember Observation 3.3). Now for each ε < κ we pick a condition pε ≥ p
and an integer nε < ω such that

pε 
Pα
(
∀n ≥ nε

)(
ν
˜

(ε)(n) ⊆ ϕ
˜

(n) &
|ϕ
˜

(n)|
f(n)

< 1/4
)
.

For some n∗ < ω the set S = {ε < κ : nε = n∗} is of size κ. Apply 3.9(1)(⊗)3

to 〈pε : ε ∈ S〉 ⊆ Pα and 〈ε : ε ∈ S〉 ⊆ κ and n = n∗ to find q ∈ Pα, m > n∗,
v ⊆ S, and Aε (for ε ∈ v) such that conditions (i)–(iv) there hold. Then

q 
Pα “
⋃
ε∈v

Aε =
⋃
ε∈v

ν
˜

(ε)(m) ⊆ ϕ
˜

(m) & |ϕ
˜

(m)| < f(m)

4
”.

But |
⋃
ε∈v

Aε| = |v| · g(m) ≥ f(m)
2

, a contradiction. �

Context 3.11. For the rest of this section we fix uncountable regular cardi-
nals κ < λ such that λκ = λ. Also, instead of “Y–iteration for κ, λ” we will
just say “Y–iteration”.

Lemma 3.12. (1) 〈P0,Qκ
0〉 is a Y–iteration (of length 1).
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8 A. ROSŁANOWSKI AND S. SHELAH

(2) Assume that 〈Pβ,Q
˜
β : β < α〉 is a Y–iteration of length α < λ and Q

˜is a Pα–name for a ccc forcing notion of size <κ (i.e., 
Pα |Q
˜
| < κ).

Then 〈Pβ,Q
˜
β : β < α〉_〈Pα,Q〉 is a Y–iteration of length α + 1. In

particular, 〈Pβ,Q
˜
β : β < α〉_〈Pα,C〉 is a Y–iteration.

(3) If 〈Pβ,Q
˜
β : β < α〉 is a Y–iteration and Q

˜
is a Pα–name for a

σ–centered forcing, then 〈Pβ,Q
˜
β : β < α〉_〈Pα,Q〉 is a Y–iteration.

(4) If γ ≤ λ is a limit ordinal and 〈Pβ,Q
˜
β : β < γ〉 is an FS iteration

such that 〈Pβ,Q
˜
β : β < α〉 is a Y–iteration for every α < γ, then

〈Pβ,Q
˜
β : β < γ〉 is a Y–iteration.

(5) (Yλ
κ,E) is a <λ–complete forcing notion (i.e., all chains of length

<λ have an upper bound in Yλ
κ).

Proof. In all cases the only demand of Definition 3.9(1) that needs to be
verified is (⊗)3.

(1) Let Qκ
0 be the forcing notion adding κ Cohen reals as described in

Definition 3.5. Let n < ω, δζ ∈ κ and pζ ∈ Qκ
0 (for ζ < κ) satisfy the

assumptions of 3.9(1)(⊗)3. By making conditions pζ stronger and possibly
passing to a subsequence, we may assume also that:

(∗)1 δζ ∈ dom(pζ) for all ζ < κ,
(∗)2 for some m > n + 2, for all ζ < κ, we have npζ = m (so pζ(ε) ∈∏

i<m

[f(i)]g(i) for ε ∈ dom(pζ)),

(∗)3 the family {dom(pζ) : ζ < κ} forms a ∆–system of finite sets and
for all ζ, ζ ′ < κ the conditions pζ , pζ′ are compatible.

Pick any v ⊆ κ of size d f(m)
2·g(m)

e. Since

d f(m)

2 · g(m)
e · g(m) ≤ f(m)

2
+ g(m) ≤ f(m)

2
+
f(m)

m+ 1
< f(m),

we may choose pairwise disjoint sets Aζ ∈ [f(m)]g(m) (for ζ ∈ v). Now
define a condition q ∈ Qκ

0 so that dom(q) =
⋃
{dom(pζ) : ζ ∈ v}, nq = m+1

and for ε ∈ dom(pζ) the sequence q(ε) extends pζ(ε) and q(δζ)(m) = Aζ (for
ζ ∈ v).

(2) Without loss of generality, for some ordinal γ∗ < κ we have 
Pα“ the
set of conditions in Q

˜
is γ∗ ”. Let n < ω and pζ ∈ Pα+1, δζ ∈ κ (for ζ < κ)

satisfy the assumptions of 3.9(1)(⊗)3. We may make our conditions stronger
and we may pass to a subsequence, so we may assume that α ∈ dom(pζ)
and pζ(α) = γ < γ∗ is an actual object, not a name (for ζ < κ). Apply the
assumption of 3.9(1)(⊗)3 for 〈Pβ,Q

˜
β : β < α〉 to n, pζ�α, δζ (for ζ < κ) and

choose m > n, q∗ ∈ Pα, v ⊆ κ and pairwise disjoint sets Aζ ⊆ f(m) each of
size g(m) (for ζ ∈ v) such that

• |v| ≥ f(m)
2·g(m)

and
• q∗ is stronger than all pζ�α for ζ ∈ v and it forces that ν

˜
(δζ)(m) = Aζ

(for ζ ∈ v).
Let q ∈ Pα+1 be such that q�α = q∗ and q(α) = γ.
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(3) Assume that 
Pα“ Q
˜
is a σ–centered forcing notion ” and fix a Pα–name

F
˜

such that


P “ F
˜

: Q
˜
−→ ω is a function satisfying:

if x0, . . . , xk ∈ Q
˜
, k < ω, and F

˜
(x0) = . . . = F

˜
(xk) = m,

then the conditions x0, . . . , xk have a common upper bound in Q
˜

”.

Suppose that n < ω and pζ ∈ Pα+1, δζ ∈ κ (for ζ < κ) satisfy the assump-
tions of 3.9(1)(⊗)3. By making the conditions stronger and passing to a
subsequence we may demand that α ∈ dom(pζ) and for some M < ω we
also have pζ�α 
Pα“F

˜
(pζ(α)) = M ”. Use the assumption of 3.9(1)(⊗)3 for

〈Pβ,Q
˜
β : β < α〉 for n, pζ�α, δζ (for ζ < κ) to find m > n, q∗ ∈ Pα, v ⊆ κ

and pairwise disjoint sets Aζ ∈ [f(m)]g(m) (for ζ ∈ v) such that

• |v| ≥ f(m)
2·g(m)

and
• q∗ is stronger than all pζ�α for ζ ∈ v and it forces that ν

˜
(δζ)(m) = Aζ

(for ζ ∈ v).
Then also the condition q∗ forces that F

˜
(pζ(α)) = M for all ζ ∈ v, and thus

we may pick a Pα–name q
˜
α such that q∗ 
 “ q

˜
α is a condition stronger than

all pζ(α) for ζ ∈ v ”. Define q ∈ Pα+1 by q�α = q∗ and q(α) = q
˜
α.

(4) Let n, pζ , δζ (for ζ < κ) be as in the assumptions of 3.9(1)(⊗)3. By
passing to a subsequence we may also demand that {dom(pζ) : ζ < κ} is a
∆–system of finite subsets of γ with root D. Pick α < γ such that D ⊆ α.
Since 〈Pβ,Q

˜
β : β < α〉 is a Y–iteration, we may apply 3.9(1)(⊗)3 to n, δζ

and pζ�α (for ζ < κ). This will give us q∗, v and Aζ (for ζ ∈ v) satisfying
(i)–(iv) there (with pζ�α in place of pζ and q∗ in place of q). Let q ∈ Pγ
be such that dom(q) = dom(q∗) ∪

⋃
{dom(pζ) : ζ ∈ v} and q�α = q∗ and

q(β) = pζ(β) whenever ζ ∈ v, β ∈ dom(pζ) \ α.

(5) Follows from (4). �

Lemma 3.13. Assume that
(a) ℵ0 ≤ µ ≤ κ is a regular cardinal, α < λ is a limit ordinal of cofinality

µ and 〈α(ζ) : ζ < µ〉 is a strictly increasing sequence cofinal in α,
(b) 〈Pβ,Q

˜
β : β < α〉 is a Y–iteration,

(c) ϕ̄
˜

= 〈ϕ
˜
ζ : ζ < µ〉 is a Pα(0)–name for a µ–sequence of null slaloms

below f (so 
 ϕ
˜
ζ ∈ Sf),

(d) for each ζ < µ we have 
Pα(ζ) Q
˜
α(ζ) = C with c

˜
ζ being the Pα(ζ)+1–

name for the Cohen real in ω2 added by Q
˜
α(ζ),

(e) τ
˜
ζ is a Pα–name for an element of 2 (for ζ < µ),

(f) for ζ < µ, ψ
˜
ζ is a Pα–name for a null slalom below f such that


Pα “ ψ
˜
ζ(i) =

{
ϕ
˜
ζ(i) if c

˜
ζ(i) = τ

˜
ζ ,

∅ if c
˜
ζ(i) = 1− τ

˜
ζ

for each i < ω ”,

and ψ̄
˜

= 〈ψ
˜
ζ : ζ < µ〉 is the resulting Pα–name for a µ–sequence of

null slaloms below f .
Then 〈Pβ,Q

˜
β : β < α〉_〈Pα,Q∗µ(ψ̄

˜
)〉 is a Y–iteration of length α + 1.
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Proof. First we consider the case when µ = κ and let us argue that condi-
tions 3.9(1)(⊗)3 holds for Pα+1.

Let n < ω, pζ ∈ Pα+1 and δζ < κ (for ζ < κ) be such that δζ 6= δζ′ for
ζ < ζ ′ < κ. For each ζ < κ pick a condition p′ζ ∈ Pα+1 stronger than pζ and
such that

(∗)1 α ∈ dom(p′ζ) and for some kζ ,mζ , uζ and σζ (objects, not names) we
have p′ζ�α 
Pα “ p′ζ(α) = (kζ ,mζ , uζ , σζ) ”.

Choose conditions p′′ζ ∈ Pα+1 stronger than p′ζ (so also p′′ζ ≥ pζ) and such
that p′′ζ (α) = p′ζ(α) and for all ζ:

(∗)2 for some (objects, not names) tζε for ε ∈ uζ we have p′′ζ�α 
Pα “ τ
˜
ε =

tζε ”,
(∗)3 for some iζ < ω for all ε ∈ uζ we have that

α(ε) ∈ dom(p′′ζ ) and p′′ζ (α(ε)) ∈ i
ζ
2 are actual objects, not names.

Since each ϕ
˜
ε is a Pα(0)–name, we may decide the initial segments of ϕ

˜
ε by

strengthening p′′ζ�α(0) only (i.e., without changing p′′ζ�[α(0), α]). Therefore,
after using a procedure similar to that in the proof of 3.8, for each ζ < κ
we may find a condition p∗ζ ∈ Pα+1, Kζ > kζ + iζ and a sequence ρζ ∈∏
i<Kζ

P(f(i)) such that

(∗)4 pζ ≤ p′′ζ ≤ p∗ζ , and p′′ζ�[α(0), α) = p∗ζ�[α(0), α), and
(∗)5 p

∗
ζ 
Pα“ p∗ζ(α) = (Kζ ,mζ , uζ , ρζ) ”.

Next we may find a set S ⊆ κ of size κ and K∗,m∗, ρ∗, i∗ and `∗ such that
(∗)6 K

∗ = Kζ , m∗ = mζ , ρ∗ = ρζ , |uζ | = `∗ and iζ = i∗ for all ζ ∈ S,
(∗)7 {uζ : ζ ∈ S} is a ∆–system of finite subsets of κ with root U ,
(∗)8 {dom(p∗ζ) : ζ ∈ S} is a ∆–system of finite subsets of α+ 1 with root

D,
(∗)9 for some ε∗ < κ we have D \ {α} ⊆ α(ε∗) and U = uζ ∩ ε∗ for all

ζ ∈ S.
Since 〈Pβ,Q

˜
β : β < α(ε∗)〉 is a Y–iteration, we may apply 3.9(1)(⊗)3 to

〈p∗ζ�α(ε∗), δζ : ζ ∈ S〉 and n. This will give us v ⊆ S, q0 ∈ Pα(ε∗), m > n and

Aζ ∈ [f(m)]g(m) for ζ ∈ v such that

(∗)10 • |v| ≥ f(m)
2·g(m)

and p∗ζ�α(ε∗) ≤ q0 for all ζ ∈ v, and
• Aζ ∩ Aζ′ = ∅ for distinct ζ, ζ ′ ∈ v, and
• q0 
Pα(ε∗) “

(
∀ζ ∈ v

)(
ν
˜

(δζ)(m) = Aζ
)
”.

Next, since ϕ
˜
ε are Pα(0)–names, we may we pick q1 ∈ Pα(ε∗), q1 ≥ q0, K >

K∗ ≥ i∗ and ρε ∈
∏
i<K

P(f(i)) (for ε ∈ U) such that q1 
Pα(ε∗) “ (∀ε ∈

U)(ϕ
˜
ε�K = ρε) ” and

q1 
Pα(ε∗) “
(
∀j ≥ K

)(
∀ζ ∈ v

)(
∀ε ∈ uζ

)(
|ϕ
˜
ε(j)| <

f(j)

|v| · `∗ ·m∗
)
”

Define q ∈ Pα+1 so that
• dom(q) = dom(q1) ∪

⋃
{dom(p∗ζ) : ζ ∈ v},

Paper Sh:1022, version 2013-12-11 10. See https://shelah.logic.at/papers/1022/ for possible updates.



AROUND COFIN 11

• q�α(ε∗) = q1,
• if ζ ∈ v and β ∈ dom(p∗ζ) \ (α(ε∗) ∪ {α(ε) : ε ∈ uζ}), then q(β) =
p∗ζ(β),
• if ζ ∈ v and ε ∈ uζ \ ε∗, then q(α(ε)) ∈ K2 is such that p′′ζ (α(ε)) =

p∗ζ(α(ε)) C q(α(ε)) and for i ∈ [i∗, K) we have q(α(ε))(i) = 1− tζε,
• q(α) = (K,m∗, u+, σ+), where u+ =

⋃
{uζ : ζ ∈ v} and σ+ ∈∏

i<K

P(f(i)) is such that ρ∗ C σ+ and σ+(i) =
⋃
ε∈U

ρε(i) for i ∈

[K∗, K).
The rest, when µ = κ, should be clear.

Let us assume now that µ < κ and again, to argue for 3.9(1)(⊗)3, suppose
that n < ω, pζ ∈ Pα+1 and δζ < κ (for ζ < κ) are such that δζ 6= δζ′ for
ζ < ζ ′ < κ. Passing to stronger conditions we may assume that, for each
ζ < κ,

α ∈ dom(pζ) and pζ�α 
Pα “ pζ(α) = (kζ ,mζ , uζ , σζ) ”

(where kζ ,mζ , uζ , σζ are actual objects). For some ε∗ < µ and k,m, u, σ the
set

S =
{
ζ < κ : dom(pζ) ⊆ α(ε∗) ∪ {α} & (kζ ,mζ , uζ , σζ) = (k,m, u, σ)

}
is of size κ. Like before, 〈Pβ,Q

˜
β : β < α(ε∗)〉 is a Y–iteration, so we may

find v ⊆ S, q0 ∈ Pα(ε∗), m > n and Aζ ∈ [f(m)]g(m) for ζ ∈ v such that
demands listed in (∗)10 are satisfied. Let q ∈ Pα+1 be such that dom(q) =
dom(q0) ∪ {α} and q�α 
 q(α) = (k,m, u, σ). �

Theorem 3.14. Assume κ < λ are uncountable regular cardinals such that
λκ = λ. Let H ⊆ Yλ

κ be generic over V and let Q̄ = 〈Pα,Q
˜
α : α < λ〉 =⋃

H ∈ V[H] and Pλ = lim(Q̄). Then Pλ is a ccc forcing notion with a dense
subset of size λ and


Pλ “ MA<κ(ccc) and MA(σ–centered) and
add(If ) = κ and cofin−(If ) ≥ κ+ and 2ℵ0 = λ ”.

Proof. First note that the forcing with Yλ
κ does not add sequences of ordinals

of length <λ (by Lemma 3.12(5)). Hence in V[H] we still have that κ, λ are
regular cardinals and λκ = λ.

Let us work in V[H].
Clearly Q̄ is a Y–iteration for κ, λ of length λ. Hence Pλ is a ccc forcing

notion, it has a dense subset of size λ and forces that 2ℵ0 = λ (remember
3.9(1)(⊗)2, 3.12(2)). A canonical Pλ–name η

˜
for a real in

∏
n<ω

Zn (where

〈Zn : n < ω〉 ∈ V, Zn 6= ∅) is a sequence 〈An, πn : n < ω〉 such that each
An is a maximal antichain in Pλ, πn : An −→ Zn and q 
Pλ“ η

˜
(n) = πn(q) ”

for q ∈ An, n < ω. For every Pλ–name ρ
˜
for an element of

∏
n<ω

Zn there is a

canonical name η
˜
such that 
 η

˜
= ρ

˜
. Also, if η

˜
is a canonical Pλ–name for

a real, then it is a Pα–name for some α < λ.
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Let us argue that 
Pλ cofin−(If ) ≥ κ+. If not, then for some infinite
regular cardinal µ ≤ κ and Pλ–names I

˜
ζ , ϕ

˜
ζ (for ζ < µ) we have

(~)1 
Pλ “ ϕ
˜
ζ ∈ Sf and I

˜
ζ ⊆ If is an ideal ”,

and for some p ∈ Pλ
(~)2 p 
Pλ “

⋃
ζ<µ

I
˜
ζ = If and (∀ζ < µ)([ϕ

˜
ζ ] /∈ I

˜
ζ) ”.

We may assume that all ϕ
˜
ζ are canonical Pα0–names for some α0 < λ.

Suppose now that ζ < µ and c
˜
ζ is a canonical Pλ–name for a real in ω2.

Let ψ
˜

0
ζ , ψ

˜

1
ζ be Pλ–names for elements of Sf such that for each n < ω, i < 2

we have


Pλ “ ψ
˜

i
ζ(n) =

{
ϕ
˜
ζ(n) if c

˜
ζ(n) = i,

∅ if c
˜
ζ(n) = 1− i for each n < ω ”.

Then 
Pλ [ϕ
˜
ζ ] = [ψ

˜

0
ζ ] ∪ [ψ

˜

1
ζ ], so p 
Pλ“[ψ

˜

0
ζ ] /∈ I

˜
ζ or [ψ

˜

1
ζ ] /∈ I

˜
ζ ”. Let τ

˜
=

τ(ζ, c
˜
ζ) be a canonical Pλ–name for a member of {0, 1} such that p 
“[ψ

˜

τ
ζ̃ ] /∈

I
˜
ζ”.

Claim 3.14.1. For some sequence 〈α(ζ), c
˜
ζ , ψ

˜
ζ : ζ < µ〉 we have

(i) 〈α(ζ) : ζ < µ〉 ⊆ λ is strictly increasing with α0 ≤ α(0), and for
each ζ < µ:

(ii) 
Pα(ζ) Q
˜
α(ζ) = C and c

˜
ζ is the canonical Pα(ζ)+1–name for the Cohen

real in ω2 added by Q
˜
α(ζ), and τ(ζ, c

˜
ζ) is a Pα(ζ+1)–name (for a

member of {0, 1}),
(iii) ψ

˜
ζ is a Pα(ζ+1)–name for an element of Sf such that


Pα(ζ+1)
“ ψ

˜
ζ(n) =

{
ϕ
˜
ζ(n) if c

˜
ζ(n) = τ(ζ, c

˜
ζ),

∅ if c
˜
ζ(n) = 1− τ(ζ, c

˜
ζ)

for all n < ω ”,

(iv) if α∗ = sup(α(ζ) : ζ < µ), then 
Pα∗ Q
˜
α∗ = Q∗µ(ψ̄

˜
), where ψ̄

˜
= 〈ψ

˜
ζ :

ζ < µ〉.

Proof of the Claim. We move back to V and we use a density argument in
Yλ
κ above P = 〈Pβ,Q

˜
β : β < α0 + 1〉 ∈ Yλ

κ. Let T
˜

be a Yλ
κ–name for the

function τ(·, ·) introduced (in V[H]) earlier. Note that if c
˜
is a canonical

P∗γ–name, Q∗ = 〈P∗β,Q
˜

∗
β : β < γ〉 ∈ Yλ

κ and ζ < µ, then Q∗ forces that (ζ, c
˜
)

belongs to the domain of T
˜

and T
˜

(ζ, c
˜
) is a Yλ

κ–name for an element of V.
Suppose that Q = 〈P′β,Q

˜

′
β : β < α〉 ∈ Yλ

κ is a condition stronger than P
(so α0 + 1 ≤ α and Q

˜

′
β = Q

˜
β for β ≤ α0).

By induction on ζ < µ we build a sequence 〈Qζ , α(ζ), c
˜
ζ : ζ < µ〉 such

that
(�)1 Qζ = 〈P′β,Q

˜

′
β : β ≤ α(ζ)〉 ∈ Yλ

κ (so `g(Qζ) = α(ζ) + 1 < λ),
(�)2 for ζ < ε < µ we have

Q ≤Yλκ Qζ ≤Yλκ Qε and α < α(ζ) < α(ε) < λ,

(�)3 
P′
α(ζ)

Q
˜

′
α(ζ) = C and c

˜
ζ is the canonical P′α(ζ)+1–name for the Cohen

real in ω2 added by Q
˜

′
α(ζ),
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(�)4 Qζ+1 decides the value of T
˜

(ζ, c
˜
ζ) and forces (in Yλ

κ) that it is a
P′α(ζ+1)–name.

The construction is clearly possible by Lemma 3.12(2,4). Then letting α∗ =
sup(α(ζ) : ζ < µ) we have that Qµ = 〈Pβ,Q

˜

′
β : β < α∗〉 ∈ Yλ

κ is a condition
stronger than allQζ (for ζ < µ); remember 3.12(4) again. Moreover, if names
ψ
˜
ζ are defined as in clause (iii), and τ

˜
ζ is the value forced to T

˜
(ζ, c

˜
ζ) by

Qζ+1 (see (�)4 above) and c
˜
ζ are as described in (�)3, then the assumptions

of Lemma 3.13 are satisfied. Therefore Q∗ = Qµ
_〈Pα∗ ,Q∗µ(ψ̄

˜
)〉 ∈ Yλ

κ is a
condition stronger than Q. This condition forces in Yλ

κ that 〈α(ζ), c
˜
ζ , ψ

˜
ζ :

ζ < µ〉 satisfies the demands (i)–(iv). �

Let α(ζ), c
˜
ζ , ψ

˜
ζ (for ζ < µ) and α∗ be in Claim 3.14.1(i–iv), so in partic-

ular 
Pα∗ Q
˜
α∗ = Q∗µ(ψ̄

˜
). Let ς

˜
be a Pα∗+1–name for the null slalom added

by Q
˜
α∗ (see Definition 3.7). It follows from Proposition 3.8 that


Pλ

⋃
ζ<µ

[ψ
˜
ζ ] ⊆ [ς

˜
] ∈ If ,

and hence, by (~)2, p 
Pλ
(
∃ε < µ

)( ⋃
ζ<µ

[ψ
˜
ζ ] ∈ I

˜
ε

)
. Pick ε∗ < µ and a

condition q ∈ Pλ stronger than p such that q 
Pλ
⋃
ζ<µ

[ψ
˜
ζ ] ∈ I

˜
ε∗ . Then also

q 
 [ψ
˜
ε∗ ] ∈ I

˜
ε∗ (remember (~)1), but this contradicts the choice of τ(ε∗, c

˜
ε∗)

and ψ
˜
ε∗ .

To argue that 
Pλ MA<κ(ccc) note that every Pλ–name Q
˜

for a ccc
forcing notion on some γ∗ < κ is actually a Pα–name for some α < λ.
Therefore by the standard density argument in Yλ

κ, for unboundedly many
β < λ we have 
Pβ Q

˜
β = Q

˜
(remember 3.12(2)). Similarly we may justify

that 
Pλ MA(σ–centered).

It follows from Lemma 3.10 that 
Pλ add(If ) ≤ κ. Since 
Pλ MA<κ(ccc)
we easily see that the equality is forced. �

Corollary 3.15. It is consistent that add(If ) = ℵ1 and cofin−(If ) =
cofin(If ) = ℵ2.

4. Open problems

Can we get a result parallel to Corollary 3.15 for the null and/or meager
ideals? Or even better:

Problem 4.1. Let I be either the meager idealM or the null ideal N . Is
it consistent that

add(I) < cofin(I) < cof(I) ?

The method used in the proof of 3.14, 3.15 gives the consistency of
add(If ) ≤ κ & κ+ ≤ cofin−(If ). Can the gap be bigger?

Problem 4.2. Is it consistent that add(If ) = ℵα < ℵα+ω ≤ cofin−(If ) ?
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The cardinal invariant cofin introduced by Borodulin–Nadzieja and Głąb
has several natural relatives (or variants), some were listed in Definition 2.1.
Are those coefficients distinct or they are equivalent within the realm of nice
σ–ideals?

Problem 4.3. Is it consistent that for some Borel σ–ideal I on ω2 we have
cofin∗(I) < cofin−(I)? Or cofin−(I) < cofin(I)? Or cofin(I) < cofin+(I)?
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