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PCF AND ABELIAN GROUPS
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SAHARON SHELAH

ABSTRACT. We deal with some pcf (possible cofinality theory) investigations
mostly motivated by questions in abelian group theory. We concentrate on ap-
plications to test problems but we expect the combinatorics will have reason-
ably wide applications. The main test problem is the “trivial dual conjecture”
which says that there is a quite free abelian group with trivial dual. The “quite
free” stands for “u-free” for a suitable cardinal p, the first open case is p = R,.
We almost always answer it positively, that is, prove the existence of R,,-free
Abelian groups with trivial dual, i.e., with no non-trivial homomorphisms to
the integers. Combinatorially, we prove that “almost always” there are 7 C ®\
which are quite free and have a relevant black box. The qualification “almost
always” means except when we have strong restrictions on cardinal arithmetic,
in fact restrictions which hold “everywhere”. The nicest combinatorial result
is probably the so called “Black Box Trichotomy Theorem” proved in ZFC.
Also we may replace abelian groups by R-modules. Part of our motivation
(in dealing with modules) is that in some sense the improvement over earlier
results becomes clearer in this context.
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Annotated Content

Introduction, pg. 3

[We formulate the trivial dual conjecture for p, TDU,, and relate it to
pcf statements and black box principles. Similarly we state the trivial
endomorphism conjecture for 4, TED,,, but postpone its treatment.]

Preliminaries, pg. 11
[We quote some definitions and results we shall use and state a major
conclusion of this work: the Black Box Trichotomy Theorem.]

Cases of weak G.C.H., pg. 22
[Assume p € Cu,p < A < 28 < 2) moreover A = min{y : 2X > 2~}
Then for any 6 < u, a black box called BB(X, u™, 6, k) holds, which for our
purpose is very satisfactory.]

Getting large put-free F C *u, pg. 30

[The point is to give sufficient conditions for BB: see 0.9(2). Let u € C, and
A = 2#. We give sufficient conditions for the existence of uT-free F C *p
of cardinality A, which is quite helpful for our purposes, as it implies the
existence of suitable black boxes. One such condition is (see 3.6): the
existence of § < x and y < X such that x? = . Recall that by §2 assuming
A < A<* suffices (for the black box). Now assuming there is no @ as above
so A = A<A, by older results if § = cf(§) < K A x < A = x> < ) then
(DE)’;Q, hence (DY)g for every stationary S C S).

In 3.1 we consider 6 € (k, )N Reg and x € (i, A) such that <> = \.
Here the results are less sharp. Also if A = xT, where y is regular, then
this holds; see 3.12. We finish by indicating some obvious connections.

On the p-free trivial dual conjecture for R-modules, pg. 46
[We deduce what we can on the conjecture TDU,, ]

See https://shelah.logic.at/papers/898/ for possible updates.
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§ 0. INTRODUCTION
§ 0(A). Background.

We prove some black boxes, most notably the Black Box Trichotomy Theorem.
Our original question is whether provably in ZFC the conjecture TDUy  holds and
even whether TEDy , holds where:

Definition 0.1. 1) Let TDU,, the trivial dual conjecture for p > Ry, mean:
there is a p-free abelian group G, necessarily of cardinality > p, such that G has a
trivial dual (i.e., Hom(G,Z) = {0}).

2) Let TED,,, the trivial endomorphism conjecture for ; mean: there is a p-free
abelian group with no non-trivial endomorphism, i.e., End(G) is trivial (that is,
End(G) 2 7).

Much is known for g = Ry (see, e.g., [?]). Note that each of the cases of 0.1
implies that G is N;-free, not free, and much is known on the existence of pu-free,
non-free abelian groups of cardinality p (see , e.g., [?]). Also, positive answers are
known for arbitrary p under, e.g., V.= L, see pg. 461 of [?].

Note that by singular compactness, for singular p there are no counterexamples
of cardinality pu.

By [?], if p = X,,, then the answer to TDU,, is yes, for the cardinality A\ = 3,,.
It was hoped that the method would apply to many other related problems and to
some extent this has been vindicated by Gébel-Shelah [?]; Gébel-Shelah-Striingman
[?] and (on TED,, u = X,,) by Gobel-Herden-Shelah [?]. But we do not know the
answer for © = N,,. Note that even if we succeed this will not cover the results of
[?], [?], [?], [?]; e.g. because there the cardinality of G is < J,, when p < X, and
probably even more so when we deal with larger cardinals.

A natural approach is to prove in ZFC appropriate set-theoretic principles, and
this is the method we try here. This raises combinatorial questions which seem
interesting in their own right; our main result in this direction is the Black Box
Trichotomy Theorem 1.22. But the original algebraic question has bothered me
and the results are irritating: it is “very hard” not to answer yes in the following
sense (later we say more on the set theory involved):

(a) Failure implies strong demands on cardinal arithmetic in many Js, (e.g. if
Cf(é) = Ny then :5+1 = Cf(35+1) = (35+1)<3‘5+1 and X < :5+1 = XNO <
Js11 - see details below),

(b) If we weaken “N,-freeness” to (so called “stability” or “softness” and even)
“Ny-free and constructible from a ladder system (C5:d € S C S§‘0>”, then
we can prove existence,

(¢) Replacing abelian groups by R-modules, the parallel question depends on
a set of regular cardinals related to the ring, sp(R), see Definition 4.2 (so
the case of abelian groups is R = Z). If sp(R) is empty, there is nothing
to be done. By [?], if sp(R) is unbounded below some strong limit singular
cardinal p of cofinality Ro then TDU,, see 4.16. Moreover, by [?], if
sp(R) is infinite, say K, < kpt1 € sp(R) then by 4.16 again TDU, for
every u (by the quotation 1.18). Furthermore: (see 3.17), we prove that: if
Ng, N1, Ny € sp(R) then the answer for R-modules is positive.

See https://shelah.logic.at/papers/898/ for possible updates.
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(d) Even if the negation of TDUy, is consistent with ZFC its consistency
strength is large, to some extent this follows by clause (a) above but by
82 we have more.

Obviously, e.g. clause (c) clearly seems informative for abelian groups; at first
sight it seems helpful that for every n there is an N,,-free non-free abelian group of
cardinality W,,, but this is not enough. More specifically this method does not at
present resolve the problem because for R = Z we only know that sp(R) includes
{Ro, N1}, (and under MA it has no other member < 2%0).

Still we get some information: a reasonably striking set-theoretic result is the
Black Box Trichotomy Theorem 1.22 below; some abelian group theory conse-
quences are given in §4.

A sufficient condition (see 4.12) for a positive answer to TDU,, is :

®y TDU, if BB(A, p,6,J) when J is J}E’j or Jz?fx&w see 0.3, cf(\) > Ny and
0 =214

This work will be continued in [?] and also in [?] which originally was part of the
present paper.
Before we state the results we give some basic definitions.

§ 0(B). Basic Definitions.

Recall that

Definition 0.2. y<?> is the O-tree power of , i.e., the supremum of the number
of 0-branches of a tree with < y nodes and 0 levels.

Notation 0.3. 1) For a set S of ordinals with no greatest member (e.g. a limit
ordinal §) let J&4 be the ideal {u : u is a bounded subset of S}.

2) For limit ordinals 81,85 let JP9 5 = {u C 61 x by : {a < 61 : {B < b2 : (o, B) €
ul ¢ 51} € b0,

3) For limit ordinals 61,8, let d3 = d - & and J§<%s be the following ideal on
03 : {UQ(SS : {(a,ﬁ) € X(SQZ(SQ-Oé-i-BEU} S Jg)ldx%}.

Definition 0.4. 1) A sequence of non-empty sets C = (C, : o € S) is p-free
if for every u € [S]<# there exists A = (A, C C, : a € u) so that the sets
(Ca\Ay : a € u) are pairwise disjoint and each A, is bounded in C, with respect
to a given order on C,; in the default case “every C,, is a set of ordinals with the
natural order”.

2) We may replace u by a pair (i, J), where J = (J, : @ € S) and J,, is an ideal
on otp(Cy) so now “A, bounded” is replaced by “{otp(e NC,) : € € An} € J,.
If C, is a set of ordinals of a fixed order type v(x) and J, = J for every o € S
where .J is an ideal on 7(*) then we may replace the pair (u,J) by the pair (u,J).
In other words, instead of the demand “A, is bounded in C,” we require A, :=

{otp(CoNy) : v € Ay} € J.

The definition of the assertion BB(A, i, 0, J) is as follows. (BB stands for black
box). The following is a relative of [?] (and see on the history there).
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Definition 0.5. Assume we are given a quadruple (A, p, 6, k) of cardinals [but
we may replace A by an ideal I on S C A = sup(S) so writing A\ means S = X;
also we may replace k by an ideal J on x and writing x means J = JP4]. Let
BB~ (A, 1,0, k) mean that some pair (C, €) satisfies the clauses (A) and (B) below;
we call the pair (C,¢) a witness for BB™(\, i1, 0, ). Let BB(A, 11,6, k) mean that
some witness (C,¢) satisfies clause (A) below and for some sequence (S; : i < \)
of pairwise disjoint subsets of A (or of S), each (C | S;,¢ | S;) satisfies clause (B)
below, (thus replacing S, ¢ by S;,¢€[S;) where:

(A) (a) C=(Cy:a€S)and S=5(C)C\=sup(S)
(b) C4 C « has order type
(c) Cis p-free (see 0.4): B
[but when we replace k by J then we say “C'is (u, J)-free”]
(B) (d) ¢={cq:a€S)
(e) cq is a function from C,, to 0
(f) ifc: |J Cqy— 0, thenc, =c [ C, for some a € S

a€ES
[but when we replace A by I an ideal on S, then we demand that

the set {a& € S : cq = c[C,} is not in IJ.

Remark 0.6. The reader may recall that if S is a stationary subset of {§ < X :
cf(8) = k} for a regular cardinal A and S is non-reflecting and C' = (C,, : a € S)
satisfies Cs C 6 = sup(Cs), otp(Cs) = k, then $g implies BB(A\ A\, A, k). So if
V = L then for every regular k < A, A a non-weakly compact cardinal we have
BB\ A A k).

So the consistency of (more than) having many cases of BB is known, but we
prefer to get results in ZFC, when possible.

Variants are:

Definition 0.7. In Definition 0.5: B
1) We may replace 6 by (x, ) which means there are S, C' satisfying clause (A) of
Definition 0.5 and

(B) if F=(F,:a¢cS)andF, is a function from (“~)y to 6, then for some €
we have:

(d) c={c,:a€eSf)
(e) ca <0
(f) if c: A — x, then ¢, = F,(c [ Cp) for some a € S [or if we replace A

by I then the set {a € S : ¢, = Fo(c [ Cy)} does not belong to the
ideal I].

2) Replacing (x, ) by (x, 1/6) abusing notation or (x, 8), means that in clause (f)
we replace “c, = Fo(c | C)” by “cq # Folc | Cy)”.

3) We may replace u by C and thus waive the freeness demand, i.e. C is not nec-
essarily p-free. Alternatively, we may replace p by a set F of one-to-one functions
from & to A when C lists {Rang(f) : f € F}.

4) Replacing k by “< x1” means that in (A)(b) we require just C, C aA|Cy| < K1
(and not necessarily otp(Cy,) = ). Replacing x by % means “< \”.

5) We may replace 6 by “< 6;” meaning “for every 6 < 6,”.
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Remark 0.8. 1) Note that BB(A, i, 0, k) is somewhat related to NPT(A, k) from [?,
ChII], i.e. BB(A\ A, 0, k) = NPT(A, k), but NPT has no “predictive” part.
2) We shall use freely the obvious implications concerning the black boxes, e.g.

(*) BB’()\l,pl,Ql,m) 1mphes BBi()\Q,MQ,027/€2) when Ay = )\1,#2 < Ml,og <
91,#&2 = K1.

Of course

Observation 0.9. 1) If C' = (Cy : & € [, \)), Co C p non-empty and 2# = X (e.g.
A= p" Ap € Cy), then BB(A, O, A *), see 0.7(4).
2) If in addition otp(Cy) = k and C' is p;-free, then BB(A, u1, A, &).

Proof. The proof is easy, but we shall give details.
1) Let S = [u, A) and let (S : € < ) be a partition of S into sets each of cardinality
A, each stationary if A is regular. Recalling Definitions 0.5, 0.7 it suffices to prove
BB(\, C1S., \, *) for each € < \; fix € now. Clause (A) in Definition 0.5 is obvious,
so we shall prove clause (B)’, so let (F,, : a € S.) and F,, : (“2)\ — X be given and
we should choose ¢ € (52)9.

Let f = (fo : @ € S.) list #), each appearing unboundedly often (and even
stationarily often if A is regular), and choose ¢, := Fo(fo [ Cq). Now check.
2) Look at the definitions. Oo.g

Discussion 0.10. We use 0.9, e.g. in 1.32.
Recall:

Definition 0.11. 1) If <, is a partial order on a set I let A = tcf(I, <.) mean that
A is a regular cardinal and there is an <.-increasing sequence (t, : & < A) which is
cofinal, that is (Vs € I)(3i < A)[s <, t].

2) For I, <, as above let c¢f(I, <,) = min{|P|: P C I is cofinal}.

Definition 0.12. Assume p > 60 > o = cf(o) > cf(p).
For J an ideal on € (or just on a set A, of cardinality §) such that there is a
C-increasing sequence of members of J of length cf(x) with union 6 (or A,).
1) We define pp;(p) = sup{tcf([] Ai,<s) : i = cf(N;) € (6, p) for i < 6 and
i<

= limy(N\; 1 i < 0)} where p = limy(\; : ¢ < ) means that pu; < p = {i < 6 :

Ai & [pi, pl} € .

2) We define ppy , (1) = sup{tcf([] \i,<s) : J a o-complete ideal on 6 with \; =
i<0

cf(A;) € (0, p) such that p = lim;(\; : 4 < 6).

3) Let pp; (1) =1 x mean that pp;(x) = x and x is regular and in the supremum

in part (1) is attained; similarly in parts (2),(3).

4) Let ppF (1) be (pp, ()T if pp(p) is regular and the supremum in part (1) is

obtained and be pp (1) otherwise.

Definition 0.13. For cardinals A > u > 6 > o let cov(\, p,0,0) = min{|P|: P C
[A]<# and every u € [A]<Y is included in the union of < ¢ members of P}.
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§ 0(C). What is Done.

In this work we shall show that it is “hard” for V not to give a positive answer
(i.e. existence) for 0.1 via a case of 0.5 or variants; we review below the “evidence”
for this assertion. By 4.12(1) we know that (actually 2(™) can be weakened):

®p a sufficient condition for TDU,, is, e.g., BB(A, p, 2(2N1)+7J), where cf(A) >
Ny and J is J;@S or Jgfx Ro (hence also J = ngd suffices; noting that here k
is Ny or Ny together BB(\, p, 22" k) suffice).

Recall that C, is the class of strong limit singular cardinals of cofinality x when
Kk > Vo, and “most” of them when x = Ry (see Definition 1.1 and Claim 1.3).

Now the first piece of the evidence given here that a failure of G.C.H. near
u € C, helps is the following fact:

®1 BB\, ut,0,k)if0 <€ C,and p < A <20 <2,

[Why? By Conclusion 2.7(1); it is a consequence of the Black Box Trichotomy
Theorem 1.22.]
Note: another formulation is

[, if @ < u € C, but BB\, ut, 0, k) fails then (2#)<?" = 2~

[Why? Let A\; = min{x : 2X > 2"}, so necessarily p < Ay; if A} < 2* then
BB(A1, 4T, 0, k) holds by ®1, so by our assumption A\; = 2¥, so p < x < 2/ =
2X = oM = (2M)X = 2HX = 2X = 2/ but this means (24)<?" = 2/ as stated.]
SO by @0 + Ell
(O} if TDUNW fails, then
(a) a large class of cardinals satisfies a weak form of G.C.H.
(b) more specifically, (1 € Cx, UCy,) AX =2t = A = A<A.

For T C 72 x a tree with < y nodes and < ¢ levels we let lim,(7) = {n € 7x : (Ve <
o)(nle € T)}, and recall that the tree power x <>t is sup{|lim,(7T)| : T C 77y is
a tree with < y nodes and < o levels}.

We have:

@y BB(2#, kT 0,2 Vif 6 < pe C, and (Vx)(x < 2% = x<F >0 < 20),

Kt XK
[Why? See 1.36.]
So we have
®q if TDUy,, fails, then for every pu € Cy, there is x such that p < x <
x<Ni>e = 21 (see Definition 0.2), hence p < x < 2* and without loss of
generality cf(x) = Ry, hence pt*1 < x < 2#, and so G.C.H. fails quite
strongly (putting us in some sense in the opposite direction to ®1)

and also

@3 if p € Ck,0 < p, A = 2* and some set F C "p is p;-free of cardinality
2 (= p*), then BB(A, 1,6, k).

[Why? See 0.9(2).]
In §3 we shall give various sufficient conditions for the satisfaction of the hy-
potheses of ®3. Another piece of evidence is
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®4 BB(}\7 M1, 0, J) m:
(a) 9 <peC,and A =2#=1*and d < y,
(b) J is an ideal on 0 = cf(9d) extending JE4, and S C S} (see 0.16(3)),
C =(Cs:d € S) are such that § € S = C5 C 6 = sup(Cs) Ak =
otp(Cg),
(c) Cis pi-free, uy < A, see Definition 1.2(1A),(2), it is closed to 0.4,
(d o (Ma<A)(A>N{Csna:6eSAaeCsH)A
(VX < A (X< < A) or
o (D{)s (see Definition 1.13).

[Why? This follows from [?].]
A consequence for the present work is:

®s BB(A, k1,0, JP¢ ) when:

(a) 0 <p€Cpy X =21 =)\A
(b) SC 82, ,6€S5=CsCd=sup(Cs)Aotp(Cs) = kT,
(c) (Cs5:6€8)is kT-free and k¥ < X\ which actually follows,
(d) (Df)g or the first possibility of ®4(d) for 9 = &.
[Why? By ®4.]
The point of @5 is that we can find C' as in clause (b) of ®5 with S C S, “quite
large” so we ignore the difference (in the introduction) - see 1.26. In particular

Oy if A= put = 2# and p > Ny is a strong limit cardinal of cofinality x = Ry,
then for some C, S clauses (a)-(d) of ®; hold.

[Why? As in @®,.]
Moreover

[ if kK < X, s is a regular cardinal, A = x* = 2X and x # cf(x), then {g for
every stationary S C 52 = {§ < A: cf(6) = k}.
[Why? By [?] - see 1.17.]
We can conclude

©3 if TDUy, fails and p € Cy,, then 2# is not u™, moreover, 2* is not of the
form xT, cf(x) # V1.

[Why? Note that (D¢)%, holds by [s.]

Sy

®g BB(24,u",0,K)if0 < p € C, and x° = 2# for some o = cf(0) < K, x < 21.
[Why? The assumptions (a) - (f) of claim 3.6 hold for J = J> and o here standing
for 6 there. E.g. clause (d) there, “a < p = |a|? < u” holds as p is a strong limit.
So the first assumption of conclusion 3.8 holds, and the second (u" = 2#) holds as
i € Cg. So the conclusion of 3.8 holds which implies by 0.9 that ®g holds.]

®7 BB(2#,0,0,k) if < p € C,, and 0 = sup{cf(x) : cf(x) < p < x < 2* and

ppcf(x)—comp(X) =" 2“}

[Why? By 3.1 and 0.9.]
So (by ®o, ®¢, ®7)
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©4 if TDUy,, fails, then for every p € Cy, we have
(a) a <2t = |aff < 2¢
(b) for some n, R, < cf(x) < A X < 2" = PPeg(y)comp(X) # 1 28

By the end of §4

©s if TDUy, fails and n > 3, then
(A) no N,-free (abelian) group G of cardinality X,, is Whitehead
(B) if 4 € Cy, UCy, and A = 2" then (Df)gy .

Generally in [?] we suggest cardinal arithmetic assumptions as good “semi-
axioms”.

We have used cases of WGCH (the Weak Generalized Continuum Hypothesis,
ie., 2% < 2*" for every A); in [?], [?], [?], also in [?] and see [?], [?]. Influenced
also by this, Baldwin suggested adopting WGCH as an extra axiom (to ZFC)
giving arguments parallel to the ones for large cardinals (but with no problem
of consistency). So it seems reasonable to see what we can say in our context.

Note that above we get:

Claim 0.14. Assume p € C or just p1 is a cardinal of cofinality k (e.g. p > Kk =
cf(n). :

1) If pt < 2# < 2 and k € {Ng, Ry}, then there is a p*-free abelian group of
cardinality p* with Hom(G,Z) = 0; note that this is iterable, i.e., if oy € CIJ

for € < n, 2kt > ,LLZ' for € < n and po is like p above, then the conclusion applies
for puy,.

2) If u© = 2* and k € {No,Ny}, then there is an N,y 1-free abelian group of
cardinality p* such that Hom(G,Z) = 0.

Proof. 1) First assume u € C,.

By 1.22 there is a pT-free F C *u of cardinality pu™ (yes! not 2#) hence
BB(A, i1, A, k) by Conclusion 0.5(1). By 4.7, 4.10 there is G as required.

Similarly for iterations.

Second, assume cf(u) = k. We can find F as above if u is singular, use again
0(C) if pp = k it is easy. Then we get BB(A, i, 2, k) by 0.5(3). Check.
2) The proof is similar. Oo.14

Note that we can prove TDUy,_,, if the answer to the following is positive:

Conjecture 0.15. If A = A<* > x* and k = cf(k) and A # X, (or at least A > 3,
replacing the assumption A # X;) then (Df)g»x.

Related works are [?] and Gébel-Herden-Shelah ([?]).
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and for pointing out much needed corrections and clarifications and Maryanthe
Malliaris and another helper (found by the editor) for pointing out many English
corrections and misprints.
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Notation 0.16. 0) For sets let uq\uz\ug mean (uj\ug)\us.

1) Usually C' = (Cs : § € S) with S = S(C).

2) A club of a limit ordinal ¢ (e.g. usually a regular cardinal) is a closed unbounded
subset.

3) S2:={8 < A: cf(6) = K}

Definition 0.17. Let C = (Cs : § € S) and \ a regular cardinal.
1) C is a weak A-ladder system when S is a stationary subset of (the regular
cardinal) A and 6 € S = C5 C §.

2) C is a A-ladder system when A is regular, S is a stationary subset of A and
Cs C 6 =sup(Cs) for § € S.

3) C is a strict A-ladder system when in addition otp(Cs) = cf(9).

4) C is a strict (A, x)-ladder system when in addition S C S2.

5) C is shallow when « € U Cs = sup(S) > {CsNa:6 €S and a € Cs}.

6)
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¢ 1. PRELIMINARIES
Most of our results involve p € C where

Definition 1.1. Let C = {1 : p is a strong limit singular cardinal and pp(u) ="
2#}, recalling Definition 0.12 for =*.
2) C, ={pe€C:cf(u) =x}.

Note that 1.4(2) below which relies on 1.2(1),(1A) repeats 0.4.

Definition 1.2. 1) The set F C "y is called (6, 0, J)-free where J is an ideal on k
when [f1 # fae F={i<k: fi(i) = f2(¢)} € J] and every F' C F of cardinality
< 0 is [J, o]-free which means that:

e there is a sequence (uy : f € F') of members of J such that for every pair
(v,1) € uwx k the set {f € F': f(i) =y Ai ¢ us} has cardinality < 1+ o.

1A) We may replace “F C “u” by a sequence C = (Cs : § € S),Cs a set of order
type &, or even just such a set {Cs : § € S}; meaning that the definition applies to
{fs : 0 € S} where for § € S, fs is an increasing function from x onto Cs. Similarly
for the other parts.

2) If 0 = 1 we may omit it. If J = J”? we may omit it so we may say “F C "y is
O-free”. Lastly, “F is free” means F is |F|T-free.

3) If J is not an ideal on « but is a subset of P(k), then we replace “uy € J” by
“(up € J) & (0 € J)” and uy C &, of course.

4) We say a sequence (f, : o < o) of members of “u is (0, J)-free when: J C P(k)
and for every w C o* of cardinality < 6 the sequence f|w is J-free which means
that there is a sequence (uy, : a € w) of subsets of x such that: (uy € J) < (0 € J)
and a € wAB €wha < BN € r\uy, Ni € k\ug, = fo(i) < fp(i). Again if
J = JP4 then we may omit it.

5) We say F C " is normal when f1,fo € F A fi(i1) = fa(iz) = i1 = ia. We
say F C "pu is tree-like when it is normal and moreover f; € F A fo € F1 ANi <
kA fi1(i) = f2(i) = fr [ i = fali.

6) For 7 C *u and an ideal J on & let (issp stands for instability spectrum)

issp;(F) = {(61,02) : & <01 <03 and for some u C 1 of cardinality < 6,
we have O < |[{n € F: {i <r:n(i) €cu} e JT}H}.

7) Let 0 € issp ;(F) means (< 6,0) € issp;(F) where (< 01,603) € issp;(F) means
that (0,0,) € issp;(F) for some 0} < 0;. For J = JP4 we may omit J.

8) If we write issp ;({(ns : s € I)) we mean issp ;({ns : s € I'}) but demand s # s2 €
I = s, #ns,-

Recall

Claim 1.3.
(a) we have p € C and moreover, PP ybd (1) =T 2¥ when p is a strong limit
singular cardinal of uncountable cofinality

(b) if p=s > cf(p) and 6 = wy or just cf(0) > Vo, then p € Cep(yy and for
a club of a < & we have 3, € C
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(c) if n € Cx and x € (1,2") or just k= cf(u) < pu and x € (11, PP Jua (1)),
see 0.12(5), then there is a p*-free F C ®u of cardinality x, even <Jba-
increasing pt-free sequence of length x; moreover if (I] Ai, <yva) is xF-

i<k )
directed and F, C ] A is such that F. is cofinal or (.F*,<Jsd) is well
<K
ordered of cardinality > x then we can demand F C F, (and there is such

sequence (A; 11 < KY).

Proof. Clause (a) holds by [?, ChII,§5], [?, ChVII,§1] and clause (b) by [?, ChIX,§5]
and clause (c¢) holds by [?, ChIL,2.3,pg.53 4+ 1.5A,pg.51]. O3

Observation 1.4. 1) If J is a o-complete ideal on k and F C " and 6y < 67 <
0, (01, 02) € issp;(F) and cov(y, 0, k", 0) < cf(f2) recalling Definition 0.13 (e.g.
0, < 05,0, < cf(hs)), then (< by, 0s) € issp,(F).

2) If in addition F is tree-like, JP? C J and & is regular, then cov(fy,60p, s, k) <
cf(62) suffices.

3) Assume J is an ideal on k and F C " is (0,0, J)-free. If 0 = cf(0) and k < o
then for every F' C F of cardinality < 6 we can find (us : f € F’) as in Definition
1.2(1) and a partition F' = (F. : e < e(x) < |F'|) of F’ into sets each of cardinality
< o such that ({f(i): for some i we have f € F.,i € k\uys} : € < g(x)) is a sequence
of pairwise disjoint subsets of u. If we waive “k < ¢” still for each ¢ < k there is
such an F* which can serve for this i.

4) If J is a s-complete ideal on k and F C *®pu is (0,7, J)-free hence f; # fo €
F={i<k:fi(i)= f2(0)} € J then F is (0, J)-free.

Proof. 1) This should be clear as in [?, ChII,§6], but we give details.

Let P exemplify cov (61, 6o, k1, ), i.e. P C [01]<% has cardinality cov(fy, 0o, kT, o)
and every u € [f;]=" is included in the union of < ¢ members of P.

By the assumption “(01,602) € issp;(F)” there is Y C p which has cardinality
< 0y such that 7' = F/,:={n e F:{i < k : n(i) € U} € J*} has cardinality > 5.

Let g be a one to one function from U into #; and fix for a while n € F'. Let
vy = {g(n(i)) : i < k and n(i) € U}, clearly it is € [61]=" hence there is P, C P
of cardinality < o such that v, € U{u : v € P,}. So {{i < k : n(i) € U and
g(n(i)) € u} : u € Py} is a family of < o subsets of x whose union belongs to J*.
But J is a o-complete ideal on x hence there is

® uy, € Py, such that {i < x:n(i) €U and g(n(i)) € u,} € JT.

So (uy : m € F') is well defined and n € F' = u,, € P but |P| = cov(01,00,k",0) <
cf(f2) and F’ was chosen such that |F’'| > 63, hence for some uy € P the family
F" :={n € F : u, = uz} has cardinality > 6. But then letting vy = {a €
U:gla) €ug} wehave F, = {ne F:{i<r:nl) ecuw}eJt}={neF:
{i <k :9(n()) € us} € Jt} O F” hence the subfamily F” of F has cardinality
> |F"| > 6. Also |u1| = |ua| < 6y by the choice of (g,u;) and as us € P C [6;]<.

So uy exemplifies that (< 6, 62) € issp;(F), the desired conclusion.
2) As without loss of generality J = JP¢ and this ideal is x-complete.
3) Easy, too.
4) By part (3) and 1.5(1). 04
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Claim 1.5. Let F C " and J an ideal on k be such that f1 # fo € F = {i < K :
f1(i) = fa(i)} € J.

1) F is (0%, J)-free if J is 6-complete.

2)Ifk < o < Xthen: F is (N o,J)-free iff there are no regular 8 € [o,\) and
pairwise distinct fo, € F for a < 0 such that S = {6 < 9: for some ¢ € [4,0) the
set {i < k: fe(i) € {f-(i) : € < &} belongs to Jt} is a stationary subset of 9.

2A) In part (2), the two equivalent statements imply that for no 6 € [o,\),0 €
issp ;(F).

3) Assume we are given a sequence f = (fo : @ < au) of members of *Ord with no
repetitions, and X\ = cf(X) > k and J is an ideal on k.

Then f is not (\,\,J)-free as a set iff there is an increasing sequence {a. : & < \)
of ordinals < o such that the set S = {e < A: cf(e) < k and {i < kK : (¢ <
€)(fa. (1) = fa (i)} € J*} is a stationary subset of .

4) In part (3) if in addition f is tree-like, i.e., fo(€) = fg(¢) = fo €= f5 | € and
Jbd C J then S C S).

Proof. 1) Easy and more is proved in the proof of 1.8 below.

2) Proved in proving B suffice in the proof of 3.4.

2A) Easy, see Definition 1.2(6).

3) By 1.4.

4) Like part (2), see more in 1.6. Ois

Claim 1.6. Assume X\ > p > ko > k1 = 0 = cf(0).

1) F C%0rd is (ka, k1)-free iff F is (kT k)-free for every reqular k € [k1, K2).

2) There is a (kT*TL k)-free set F C “u of cardinality X iff for every n < w there
is a (KT, k)-free set F C “u of cardinality \.

8) Assume X > p > kT u > o = cf(p) and (Va < p)(la|X < ). If F. € % has
cardinality \ for € < x, then we can find F C u of cardinality \ such that:

if for some e, F. is (ka, k1)-free, then F is (Ko, k1)-free.

4) In part (3); if x = 0 then we can assume just (Vo < p)(|a]<X < p).
5) In (1)-(8) we can use an ideal J on 6.

Remark 1.7. See 1.5, 3.4.

Proof. 1) By 1.5(2).

2) By 3.10(1A) there is a (k1% k)-free F C “u and by the compactness theorem
for singulars it follows that F is (k<1 k)-free, (really an obvious case).

3) Let (\; : i < o) be increasing with limit g, \; = AY and let cd; : H<y (X)) = A
be one-to-one and onto; and let F. = {fS : @ < A}. Lastly, f, € “u is defined by
Jali) = edi((f5 N (X X Ai) 1 € < X)) Uie

In particular recalling 0.3(2)

Claim 1.8. 1) Assume F C *u is (0, s+F, JPY)-free and k = cf (k) < p. Then we
can find G C X%y of cardinality | F| such that G is (8, J°3 )-free and normal.
2) If A = cf(N) > p > k = cf(k) and there is a O-free F C "u of cardinality > X
and S C S2 is stationary and for simplicity 6 € S = -6 = then there is a 0-free
strict S-ladder system (Cs : § € S).

2A) In part (2) also for every o = cf(c) € (k,\) and stationary S C S2 there is a
(0, Jowp)-free strict S-ladder system (Cs : § € S).
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Proof. 1) If ;1 = k" then the construction below gives G C ® X (x* + 1) rather
than G C ' *%(u), but this is enough so we shall ignore this point. For f € F let
g5 : 67 x k — p be defined by:

(x)o for ¢ < kT,i <k welet g¢(,i) =rT - f(i)+K-C+i.
Let G ={gs: f € F}, now

(x)1 if f1 # fo € F then gy, # g, and moreover {((,7) € k1 x K : g, ((,7) =
gfz(C7i)} € J,Ejrix;g'

[Why? By Definition 1.2(1) we know i(x) := sup{i < s : f1(1) = f2(i)} < &k
and hence {(Cvl) S gfl(((:’i)) = gfz((gai))} < {(C,Z) (< xt and

i <i(x)} € JP4 ., so we are done.]

()2 assume G’ C G is of cardinality < 6 and we shall find (uj : g € G') as
required.

Why? We can choose F' C F of cardinality < 6 such that ¢’ = {gy : f € F'}.
We can apply the assumption “F is (0, x*")-free” and let (us : f € F') be as in
Definition 1.2(1); moreover let (F. : € < e(*)) be as guaranteed in 1.4(3), so in
particular [F.| < k™.

For each € < e(x) let (fe, : ¢ < |F:|) list F. with no repetitions and let g. , =
gy..,- First assume |F.| < &, then for ¢ < |F.| we let u?, = {i < x: the sequence
(fe., () : 11 < 1) has some repetitions or! i € Wuy,,, +u <o} As JPd s
k-complete, clearly ugL € JP4 and we let uéw = kT x ugyL.

Second, assume |F.| = kT and for each ¢ € [r,k™) let (£(¢,7) : j < k) list ¢
without repetition and for ¢ € [k, k™), < K let

ul o = {i < & the sequence (fee(cj,)(#) : j1 < j) has some repetitions or
{ € {ufg,g(g,jl) :jl S j}}

and for ¢ < |F.| let

uéw ={(,i):¢Ce(k+1,kT),i<kandie ug’c,j where j is the unique j < k
such that « = £(¢, )}

Now check that (uém te < e(x) and ¢ < |F¢|) is as required, i.e. witnessing the
freeness of F'.

2) Let (fs : 0 € S) be a sequence of pairwise distinct members of F and for 6 € S
let (s, : @ < k) be an increasing sequence of ordinals with limit .

Lastly, let Cs = {pas,; + fs(i) i < k} for § € S recallingd € S = J=p-0.

2A) The proof is similar. O s

How is this connected to Abelian groups?

Definition 1.9. 1) We say that G is an abelian group derived from F C ¢y when
G is generated by {zo : @ < p}U{y,n : 1 € F and n < w} freely except a set of
equations I' = U{T",, : n € F} where each T';, has the form {y,, = ayn - Yy nt1 +
Tp(n)n i 1 < w} where ay ., € Z\{—-1,0,1}.

2) We say that G is an abelian group derived from F C “1*¢y when G is generated
by {Zaen:a<pande <wi,n<wlU{ypen:n€F,e<wi,n<wtU{zy,:n€
F and n < w} freely except a set of equations I' = U{T', : n € F} where each I,
has the form

”

1actually “i € uy, " suffice
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{Un.em = anentnents +bnennp,  (n) T Cnennien)en i € <wi,n <w}
where

apen € Z\{—1,0,1},b,.0 € Z\{0},cpen € Z,py € “w is increasing and
€1 < €2 <wp = Rang(py,c,) N Rang(py,e,) is finite.

Remark 1.10. 1) Here choosing p, . € “(w + ¢) is alright but not for §4.
2) So in 1.9 if a,, = n + 1, considering G as a metric space with dg(z,y) =
inf{27" : x —y € (n!)G} we have y,,, = > (m!)/(n!)z,(m) for n € F,n <w. In

m>n
general for n; < ne we have
n2—1 m ’ILQ—l
Ynna = ( Z ( H an.e) xn(m),m) + ( H an,m)yn,nz'
m=ny f=nq m=ni

Easily (see [?] on the subject):

Claim 1.11. If F C “u is 0-free or F C > is (6, 54, ,)-free, then any abelian
group derived from it is 0-free.

Similarly to 1.4

Claim 1.12. 1) If F C Py is (0,05, J)-free and J is a (02,07 )-regular® and
o1-complete ideal then F is (0, J)-free.

2) Assume I,J is an ideal on S,T respectively. If F C Su is (0,0,1)-free, ™
is a function from T onto S and 7'(J) = {{r(3) : i € s} : s € J} D I then
Form={forn:feF}CTuis(0,0,J)-free.

Definition 1.13. 1) Let (D{)s mean that:

(a) A =sup(S) is a regular uncountable cardinal
(b) S is a stationary subset of A
(¢) there is a witness P by which we mean:

(@) P=(Py:a€Sf)

(8) Po C P() has cardinality < A

() for every subset U of A, the set Sy == {0 € S : UNJI € Ps} is a
stationary subset of .

2) Let (D{)% be defined similarly but in clause (¢)(y) we demand S\Sy is not
stationary.
3) We write (D{)p,s, (D€)p s when D is a normal filter on A and replace “station-
ary” by “€ D1”.
Definition 1.14. 1) For a regular uncountable cardinal X let I[\] = {S C \: some
pair (E,a) witnesses S € I()\), see below}.
2) We say that (E,u) is a witness for S € I[\] when:

(a) E is a club of the regular cardinal A

(0) @=(up:a<A),uqg Caand 8 € uy = ug = LN uy

(c) for every § € EN S, us is an unbounded subset of ¢ of order-type < ¢ (and

d is a limit ordinal).

2that is, there are A, € J for a < og such that v C oo Alu| > o = U{4qs : @ € u} = Dom(J).
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Claim 1.15. 1) If A = A<* and k = cf(k) < A and a < X = |a|<">= < X\ and
S C S2 is a stationary subset of \, then (D{)s.

2) If  is a strong limit cardinal and X\ = cf(X) > p, then p > sup{k < p: K = cf(x)
and (3a < X)(|a|<">= > )}

3) If X\ = A<* > 1, then {s : k = cf(k) and D, (k) < X and ~(Dl)gr or just
—(DL)% for some stationary S € I[N} is finite where I[N is from 1.1J.

4) If \ = x* and S C X is stationary, then (D)% is equivalent to {s.

5) If X > k are reqular and S € I.[)\] is a stationary subset of X then there is a
shallow, use 0.17(5) strict S-club system.

Proof. 1), 2), 3):  See [?].
4) A result of Kunen; for a proof of a somewhat more general result see [?].
5) See [?] or [?]. Ui1s

Discussion 1.16. 1) Of course, (Df)g is a relative of the diamond, see [?].
2) (DO)% is consistently not equivalent to ¢§ when A is a limit (regular) cardinal.
3) Trivially (D{)§ = (D).

For [z of §0, (it was previously known only when x is regular by using partial
squares which holds by [?, §4]).
Fact 1.17. If A = 2¥ = x* > k = cf(k) and & # cf(x) then {g» moreover {5 for
every stationary S C S}.

Proof. By [?]. U7
Now by [?, 1.10], this is used in 1.22, 1.32.
Theorem 1.18. We have BB(\,C, (), 0), < i) recalling 0.7(1),(3),(4) when :

)
) S C S2 is stationary,
c) C=(Cs:6€8),C5 C9,|Cs| < recalling® 0.7(4),
) X <2H = xS < 2H,

)

Remark 1.19. 1) Of course, if S € I,[\] is stationary then there is C' as in clauses
(c) + (e) (and, of course, (b)).
2) There are such stationary S as k™ < u < X by [?].

Definition 1.20. We say a filter D on a set X is weakly A\-saturated when there is
no partition (X, : @ < A) of X such that a < A= X, € DT :={Y C X : X\Y ¢
D}.

* * *

A notable consequence of the analysis in this work is the BB (Black Box) Tri-
chotomy Theorem 1.22.

Remark 1.21. Using C' = (Cs : § € S) below or using f = (fs : § € S) where f5 is
an increasing function from otp(Cys) onto Cys, does not make a real difference.

3actually 21Cs| < 91 is sufficient
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The BB Trichotomy Theorem 1.22. If y € C, and k > o = cf(0), then at
least one of the following holds:

(A)k there is a pt-free F C " of cardinality 2"
(B) (a) X:=2"= X< (s0 )\ is reqular) and x < A = X% < \
(B)rpo if S CS2 is stationary, C = (Cs : 6 € S) is a weak ladder system
(i.e., Cs C 0 so, e.g., the choice Cs = § for § € S is all right);
then
()apo letting J3* ={A C X\: AN S is not stationary in \} we have*
(i) BB(JE,C,0,< u) for every 6 < u provided that
deS=|Cs| <u, see 0.7(4)
(i) BB(JE, C,(2#,0),< \) for any 6 < p
(C)pye (@)  Ag =2"is regular, x < Ag = X7 < A2 and
A1 = min{0 : 22 > 21} is (regular and) < 2~
(b)  like (b)xp,0 of clause (B) for A= Xy but |Cs| < Ay ford e S
(so Cs =6 is not all right)
(¢) BB(JE, ut,0,k) for any 0 < p and any stationary subset S of A\
() lke (b)xpuo of (B) but for X = A1,S a club or just S not in the weak
diamond ideal (]?]).

Remark 1.23. 1) If k = Ry above, then there is no infinite cardinal ¢ < &k as
required, but the proof still gives something (e.g. for o = X;). In this case we
cannot get “for every stationary S C S27, still by [?, 3.1] one has “for all but
finitely many regular ¢ < u for almost every stationary S C S27; see 1.15.

2) Assume p € C,,, A = 2# = x+. If x is regular then (A) of 1.22 holds because by
3.12, there is C = (Cs : 6 € S, u divides §),Cs C § = sup(Cjs),otp(Cs) = k and C
is ut-free and shallow. If x # cf(x) and A = A<* then for every stationary S C S
we have (g, see [?].

3) What happens if A := 2 is weakly inaccessible? Here it seems plausible to
assume, for some g

() (@) p<po<A
b) a< A= A> cov(lal, ud,p2)

bt a<A=A> cov(\al,ugvugﬂ)’

(
(

Now (b)* implies (by [?])

(c) there is P such that
(@) P={(Py:a<\),
(8) [Pal <A
() Pa C{u: |u] < up,uis a closed subset of a},
(0) facuePg thenunNa e Py,
() if § < A, cf(0) < po then sup(u) = 6 for some u € Ps.

4What about freeness? We may get it by the choice of C, also if C is a ladder system (partic-
ularly if strictly), we get a weak form, e.g. stability.
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This is enough for the argument above.
4) Does clause (b) in (*) above suffice?

Proof. Proof of 1.22:

Recall that for every x € (u,2*) there is a puT-free F C ®u of cardinality x (see
1.3(c)).

If for some x < 2 we have x? = 2* then by 3.6, clause (A) holds (when 6
there stands for ¢ here), so we can assume that there is no such x. If 2¥ is a
singular cardinal then by 3.10(3), clause (A) holds, so we can assume that \ := 2#
is regular. Now assume A = A<* and we shall prove clause (B). Obviously clause
(B)(a) holds and clause (B)(b)(ii) holds by 1.18 above and clause (B)(b)(i) follows.
Note that any strict club system (Cs : 6 € S) is shallow as [{CsNa : § € S satisfies
a € Cs} <o~ <|al” < A

So assume A < A<*, hence necessarily there is @ < X such that A < 29.

Assume A\ = min{y : 2X > 2/} < Ay := 2#, then trivially clause (C)(a) holds
and by Conclusion 2.7(1) clauses (C)(c), (¢)’ hold. Clause (b) of (C) holds by [?],
i.e. 1.18, because we are assuming (Vx < A)(x” < A) so clause (C) holds. O .22

Remark 1.24. How can the Black Box Trichotomy Theorem 1.22 help?

If possibility (A) holds for k € {Xy,X;}, we have, e.g., abelian groups as in
Definition 1.9; so we have Gy C,,y G (that is, Gy is a pure subgroup of the abelian
group (1) such that G is torsion-free, Gy is free, G1 quite free, |Go| = p and, e.g. if
ann = n+1, then G1 /Gy is divisible, and a list of |G| = 2* partial endomorphisms
of G such that if Gy Cp,r G Cpr G, any endomorphism of G is included in one of
the endomorphisms in the list. So by diagonalization we can build an endo-rigid
group. On the other hand, possibilities (B),(C) help in another way: as in black
boxes, see [?], [?], this is continued in [?].

Recall

Definition 1.25. Assume J is an ideal of k and f = (f, : @ < a(*)) is a <;-
increasing sequence of members of *Ord.
Let S?d, the good set of S, be {§ < X : cf(d) > k and we can find sequence

A= (A, : a € u) witnessing ¢ is a good point of f} which means:
e u C 6 =sup(u)
e Ap,eJforacu
o if @ < 8 are from u and ¢ € K\ Ay \Ag then f, (i) < fz(i).

Claim 1.26. C is (X, J)-free and even (817, J)-free when :
(a
(b

(c

(d

o> cf(p) = Kk and 0 € (K, ) is regular
= (\i 11 < K) is a sequence of reqular cardinals < p with lim ;(\) =
J = Jgur, see Definition 0.3(3)
= tef([] Ai, <yva) is evemplified by f={fara<)

<K
(e) SC Sy ﬂS;g;d is stationary (on S?d see Definition 1.25 above), § € S = u|d

)
) A
)
) A

(f) €

= (Cs : 0 € 5) is a strict A-ladder system such that otp(Cs) = 0 and
Cs C § = sup(Cs)
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(9) if 6 € S,a < k and i < K, then the (ka + ©)-th member of Cs is equal to
fs(2) modulo p.

Remark 1.27. The proof is similar to in Magidor-Shelah [?] where the assumptions
are quite specific.

Hence we get

Conclusion 1.28. Assume that k = cf(u) < g and A = cf(\) =T PP sba (1)

Then there is a (kT*F1, J 4+, )-free strict ladder system (ns : § € S) for some
stationary S C S’;\Jr.

Remark 1.29. This statement is used in the proof of Theorem 1.32.
Proof. We shall apply 1.26. As we are assuming pp sva (k) =T X\ = cf()\) there

is a sequence A = (\; : i < K) of regular cardinals < p such that p = lim;())
and A = tef([[ Ai, <jva) and let f = (fo : a < A) exemplify it; without loss of
<K

generality A is increasing.

Now X is regular > p > k™1 hence by [?] there is a stationary S C S;\ which is
from I,.[A] hence by [?] without loss of generality S C S%d.

AsSel,+ [A] there is a strict club system C'= (Cs : § € S). Easily without loss
of generality C' satisfies clause (g) of 1.26. Hence by 1.26, C' is as required. [Jj og

Recall the following (see [?, ChII], more in [?]). Proving 1.26 we in fact use

Claim 1.30. If ® below holds then we can find a 0-free, (\, k)-ladder system C' =
(C5 : 0 € S) such that (Vo € C§5)(3!8 € Cs)(a+ p = B+ p). Moreover there is
(fs : 6 € S) € 5F without repetitions such that C5 C {8 +i: 8 € Cs,i < p and
Ba,H(planji<pAB=a+jAB+i=a+cd(otp(Cs Na),i, fs(otp(Cs N))},

when
® (a) S C X\ is stationary and § € S implies p\d or even p-§ = p
(b) C=(Cs:6€8) is a () r)-ladder system
(¢) p<Xand F C"u has cardinality > X and is 0-free
(d) cd: kX puxp— pis one-to-one.
Proof. Straightforward. 4 .30

Remark 1.31. The problem in proving the conjecture TDUy, is to have (Df)g
assuming A = A<?; this would have solved the problem in §0. As in many cases
here, this is very persuasive but we do not know how to prove this in full generality.

The following will be useful showing that if (R a suitable ring), SPy ¢(R), see
Definition 4.3, contains enough ideals (say J29, J>¢. Jbd. ) then TDU,+o (R);
Z “just” miss this criterion; see also 1.36

Theorem 1.32. For p € C,; one of the following holds:
(A) BB(2*, u™, < p, k)
(B) BB(\, u™, < p, k) where A = min{y : 2#* < 2X}
(C) X := 2" satisfies A\ = AN and BB\, st < 1, Jot )
(D) X :=2* satisfies A\ = A< and BB(\, k7T, < u, Joi 1o+ ) and also
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o1 thereis x € (1, \) such that cf(x) = k+ and y<F >u =+ )
oo FC W\ |F|l=A= (T, 5TT) € issp(F).

Proof. First, if Theorem 1.22 case (A) or case (C) holds then case (A) or case
(B) respectively here holds too, so we can assume case (B) of 1.22 holds and in
particular \ := 2# satisfies A = A<* and a < AA o < k= |a]” < A.

Second, assume there is no x € (i, A) such that A =7 X<"‘+ > then by 1.15(1) we
have (Df)g for every stationary S C Si‘Jr, and then by 1.28, we can find stationary
S C 82, and (see 0.17(4)) a strict (A, xT)-ladder system (ns : § € S) which is
(et J.+ . )-free hence by 1.18 we have BB(A, k7“1, < p, J,.+ «,.) so clause (C)
of the theorem holds.

Third, assume that there is x; < A such that A =T (X1)<"+>" and there is
F C (59 of cardinality A which is s -free or just such that (k+, xt+) ¢ issp(F)
then by clause (i) of Claim 3.4 clause (A) of the theorem holds.

Fourth, assume that for £ = 1,2 for some y; < A we have (g
so without loss of generality pp e, (xe) =1 27; so the first assumption of “third”
hold and its second (by §3) hence clause (C) of the theorem holds.

So we can assume that none of the above apply, and we shall prove clause
(D), first e; — @3. By “second” above without loss of generality we can choose
X1 € (u, A) such that (Xl)<’<’+>tr =T X\ and without loss of generality cf(x1) =
n*,ppjbi (x1) =T X (by [?]), so ;1 holds.

)<K,+£>n —+ 92X

By “third” without loss of generality there is no F C (=) u of cardinality A\ such
that (k¥,xTT) ¢ issp(F), hence o5 holds.

Now by “fourth” we can assume that there is no y2 € (p, A) such that A\ =T
X2<K++>"7 hence by 1.15(1) for every stationary S C S, , we have (Df)g. Again
we apply 1.28 with xo here for u there and we can find a stationary set S C S 2++
and a strict ladder system (ns : § € S) which is (kT*Tt, J ++ .+ )-free, hence by
1.18 we have BB(A, k™, < 1, Jo+4 5+ ), 50 clause (D) of the theorem holds. So
we are done. .39

Claim 1.33. Assume x < xT < A =cf()\) and a < X\ = cf([a]SX, <) < .
1) If2° < X\,0 =cf(0) < x and A = A<, then (D0)%,.
2) We can find P = (P, : a < \) such that:

(a) Pa € P(a),

(0) [Pal <A,

(¢) if u € Py, then |u| < x and u is a closed subset of a,
d) if a € Py and B € u, then uNf € Pg,

)

e) if § <A\, Rg < cf(0) < x then § = sup(u) for some u € Ps.

(
(
Proof. 1) By [?].

2) See Dzamonja-Shelah [?]. Uy .33

Observation 1.34. 1) Assume

(A) A=x"x= cf(x) = por
(B) A=xT > u™T, cf([x]=*,C) = x, see 0.11(2).
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Then we can find {(é. : € < x) such that:

(a) & = {ecqn:a <)

(f) for every @ < X and u € [a]<H for some £ < x we have u C e, .
Remark 1.35. Used in 3.12.

Proof. First assume clause (A) holds. By [?, §4] or [?, 3.7] there is a sequence
(é. : € < x) satisfying clauses (a),(b),(d) and

(¢)' es,n has cardinality < x
(e) if u C & < A has cardinality < x then u C e, for some &
(f) (ee,a € < x) is C-increasing.

Manipulating those é.’s we get the desired conclusion (e.g. ignoring clause (f)

choose (e5 : 6 < g limit), es a club of § of order type cf(d) and for e < x Ad < p
we define & = (e2 , : v < A) by €2 , := {7 € €co : 0tP(y Ne€ca) € €5}, nOW check).
Second, assume clause (B). The proof is similar using 1.33, i.e. Dzamonja-Shelah

[7]. 01,34
Claim 1.36. We have BB(2#, kT+1 0, JPd ) if < p € C, and (Vx)(x < 2* =

YRt XK
+
XSET T < 2R,

Proof. See in the proof of 1.32, “second...”. That is, by 1.28 thereis a (k"1 J, 4 1 )-
free ladder system (Cs : § € S), S C S, stationary.
We claim that C' exemplifies BB(\, kT+1, < A, JP4 ). Recalling the assump-

kT XK
tion x < 2% = y<" > < 20 by Claim 1.15 we have (D{)g, for every stationary
S; C S, hence by 1.18 we have clause (B) of Definition 0.7. (.36

Note (will be useful together with 1.32, 4.4, 3.17).
Observation 1.37. If (A) then (B) where:

(A) (a) Jgisanideal on kg for £ =1,2 and k1 = ko A J; C Jo
or J; <grk J2 or just for some function i from ko onto k1 we have
(VA e J1)({B < ka:h(B) e A} € Jy)
(b) & =(ct :ae S, otp(ct) = Ky
(¢) So={k2-d:0€ 51} and for 6 € S; we have 022_5:
{ka-B+otp(CiNa):aeC}and B=h(a)}
(B) (a) ifé is (p, J1)-free then & is (p, J2)-free
(b) if BB(A,u,0,J1) and 6 = 0"2 then BB(A, i, 0, J3).

Proof. Straightforward. Uy .37
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§ 2. CASEs OF WEAK G.C.H.

Note that if 4 € C, and A\ < 2* < 2* then we can find a p*-free F C *u of
cardinality A (by the “No hole Conclusion”, [?, Ch.II,2.3 pg.53] or here 1.34(3)) so
by the Section Main Claim 2.2 we can deduce BB(A, ut, (2#,0), k) for 6 < u - see
conclusion 2.7.

Observe below that if § = 2,C = (C, : v < A),C, C p (and 2# < 2*), then
easily clause () of the conclusion of the Section Main Claim 2.2 below holds by
counting - see 2.3(5). The point is to prove it for more colors, this is a relative of
[?, 1.10] but this section is self contained. Also Definition 2.1 repeats Definition [?,
1.9].

This section is close to [?, §1] hence we try to keep similar notation.

Definition 2.1. 1) Sep(y/, i, x, 0, T) means that for some f:

(@) f=(fere<u)

(b) f- is a function from *x to 6

(¢) for every p € 6 the set {v € #y : for every e <y’ we have f.(v) # o(e)}
has cardinality < T.

2) We may omit y if x = 6. We write Sep(u, 8, 1) for Sep(u, 11,6, 6, T) and Sep(u, 0)
means that for some T = cf(Y) < 2# we have Sep(u, 1,6, 6,Y) and Sep(< p, ) if
for some Y = cf(Y) < 2* and some o <y we have Sep(a, 11,6,0, Y). Let Sep™ (11, 6)
mean Sep(u, 1, 0,0, ).

The Section Main Claim 2.2. Assume

(a) 2# < 2*
(b) D is a pT-complete filter on \ extending the co-bounded filter
(¢) C=(Cy iy <N, C, S,

d) 2<0<pand Y < p (orjust D is T-complete, T < 2H)
Sep(u, 0,7)
(f) A =min{0: 29 > 2"} or at least

(f)~ we have he € 2(2*) for &€ < (2*)T such that ¢ # & = h¢ #p he.

—_
— —

(o) if x satisfies v < A = x|l < 0, then we can find f = (fy v < A
satisfying f € (©)yx such that (see 2.3(1)):
for every f:p— x, for somey <X, fy C f (and even for D" -many

<A
(B) if By (C)(20) = 0 for v < A, then we can find ¢ = (¢, : v < \) € 20 such
that:

(x) for any mapping f : p — 2, for some v < \,Fy(f | Cy) = ¢y (even
for DY -many v < \)

(Y) if X = (xe : € < p) satisfies v < X = [ xe < 60, then we can find
eeC,
F={fy:v <\ satisfying f € T Xe such that for every f € [ xe, for
eeC, e<p
some v <\, fy = f | Cy (and even for Dt -many ~’s).
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Remark 2.3. 1) Of course “for DT many ¢ € I we have x2” means that D is a filter
on I and {t € I : ¢ satisfies zz} € DT, see below.

2) For D a filter on I let Dom(D) =1 and let DT ={ACI:I\A ¢ D}.

3) Similarly for J an ideal on I.

4) Note that in 2.2, clause (f) implies clause (a) and even clause (f)~ does. Note
that clause (f) implies A is regular (but not (f)7) and clause (b) implies cf(A) > p.
5) Concerning clause (8) in 2.2, when 6 = 2, this is easy: let D be the filter of
co-bounded subsets of A, and let (f, : o < 2#) list #(2*), each appearing A times.
Now F := {(1 = F,(fa | C;) : ¥ < A) : @ < 2#} is a subset of *2 of cardinality
21 < 2 = |*2]. So every sequence ¢ € 22\ F is as required. Concerning this proof
we can use any filter D on A such that |[2*/D| > 2#,

6) In the Section Main Claim 2.2 we can replace u by any set of cardinality u. E.g.,
“> 1. Hence replacing C' by C' = (C! : a < \),C" = “>(C,) in clause (3) of 2.2
we can assume Dom(F,) = {f : f a function from “~(C,) to 2#}.

7) We may wonder if clause (e) of the assumption of the Section Main Claim 2.2
is reasonable; the following Claim 2.6 gives some sufficient conditions for clause (e)
of 2.2 to hold.

8) In 2.2 we implicitly assert that (f) = (f)”; for completeness we recall the
justification (as there (2#)* < 2*).

Observation 2.4. We have (f) = (f)~ in 2.2, i.e. if A = min{9 : 22 > 2#} then
there are he : A — 2# for £ < 2* such that £ < ¢ < 2* = he # he mod JP9.

Proof. As a < A = |*2| = 2lol <20 and p < A < 2# clearly 2 = U{*2: a < A}
has cardinality 2#, so there is a one-to-one function g from *>2 onto 2*.

Let (ne : € < 2*) list *2 and let he : A — 2# be defined by he(a) = g(ne | @) for
a < A

Clearly (he : £ < 2*) is as required. Oos

In order to give a sufficient condition for clause (e) of 2.2 we recall

Definition 2.5. 1) For J an ideal on ¢ and cardinal p let U () = min{|P|: P C
[1]=° and for every f € “pu, for some u € P, we have {¢ < o : f(¢) € u} # 0
mod J}.

2) If J = Jb4 and o is a regular cardinal, we may write U, ().

Claim 2.6. Clause (e) of 2.2 holds, i.e., Sep(u,0,Y) holds, when 6 > Ny and® at
least one of the following holds:

(@) p=p and T =0

(b) Ug(p) = p and 2° <y and T = (2°)*

(¢) Uj(u) = p where for some o we have J = [0]<?,0 < 0,0% < pand 6= < p

and T = (<)

(d)  is strong limit of cofinality # 6,0 < u and Y = (29)*

(e) u>3,(0) and T = p.
Proof. By the proof of [?, 1.11], (not the statement!); however, for completeness,
below we shall give a complete proof (after the proofs of 2.2, 2.7 and 2.8). We shall

use mainly 2.6 clause (d).
Proof of the Section Main Claim 2.2:

50n the case “0 finite”, see 2.10.
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It is enough to prove clause (8), as it implies the others. Why? Clearly clause
(a) is a special case of clause () and for clause (7y) note that without loss of
generality (Ve)(x. < ) hence (Ve)(x. < 2*) so we can choose F, as any function
from (€+)(2#) onto @ such that:

e F.l T] x- is a one to one function.
eeCy

Now by clause () we can find (c, : v < A) such that (x) there holds and for v < A

let f, be the unique f € g Xe such that F.,(f) = ¢y and f, constantly zero if
ecly

there is no such f.

Now check; so indeed is sufficient to prove clause (3).

Let (F, : v < A) be as in clause (3) and we shall prove that there is (¢, : v < A)
as promised therein.

By assumption (e) we have Sep(u, 6, T) which means (see Definition 2.1(2)) that
we have Sep(u, p,0,6,7T).

Let f = (f. : € < p) exemplify Sep(u, i1, 0,0, T), see Definition 2.1(1) and

(x)o for o € #0 let Sol, := {v € #0 : for every € < pu we have g(¢) # f.(v)}

where Sol stands for solutions, so by clause (c) of the Definition 2.1(1) of Sep it
follows that:

(¥)1 0 € "0 = |Sol,| < Y.

Let cd be a one-to-one function from #(2#) onto 2 such that (this is possible as
cf(2#) > p):

a=cd({a: e < p)) = a>sup{ac: e < u}

Let cd. : 2 — 2" for € < p be such that a < 2 = a = cd({cd.(a) : € < p)).
Let H be a one-to-one function from 2* onto #6, such H exists as 2 < 6 < u by
clause (d) of the assumption. For g € #6 let Sol}, := {a < 2# : H(a) € Sol,}, so

(¥)2 0 €= [Sol,| <.

Clearly in the assumption, if clause (f) holds, then clause (f)~ holds (see 2.4), so we
can assume that (he : € < (2#)*) are as in clause (f)~ so in particular he € *(2#).
Fix € < (2#)7T for a while.
For v < A let

(x)3 0f, = H(he(7)) € 0.

Let e < p. Recall that g . € "6 for v < A and [ is a function from 6 to 6 so
fe(0f ) < 0. Hence we can consider the sequence e = (felog ) v < A) € A0 as
a candidate for being as required (on (c, : v < A)) in the desired conclusion (x)
from clause (8) of the Section Main Claim 2.2. If one of them is as required, we
are done. So assume towards a contradiction that for each ¢ < u (recall we are
fixing € < (2#)%) there is a sequence ¢ € #(2*) that exemplifies the failure of &
to satisfy (x), hence there is a set Ef. € D, so necessarily a subset of A, such that

(¥)a v € Ef = Fv(77§ I Cy) # fs(Qz’A,)-
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Define n; € #(2#) by
Xy ng(e) = cd((né () s e < p)) for a < p; so nf € #(2") for our € < (24)7.

By clause (b) in the assumption of our Section Main Claim 2.2, the filter D is
T -complete hence

(*)s Ef = N{ES : e < pu} belongs to D.

Now we vary £ < (2#)T. For each such £ we have chosen n; € #(2m), and clearly the
number of such nf’s is < [#(2#)[ = (2#)* = 2 hence for some 7" and unbounded
UC (2#)F we have § €U = 1 = 1"

For e < pu we define 7. € #(2*) by nL(a) = cde(n*(a)) for o < p.

So by the choice of 7 in Ky above:

Xy if € €U, then e < p = ns =1L
So by (*)a + (*)5
X3 if v € Ef where £ € U then ¢ < p=F,(n. [ Cy) # f-(0 ,)-
So noting (F(n. | Cy) : € < p) € "0, clearly by (x)o and X3 we have:
X, if v € Ef where £ € U, then of . € Solr. (y:1C):e<p)-

As § was any member of U, by the choice of gf _, i.e. (*)3 which says that 0%, =
H(he(7y)) and the definition of Sol’ (just before (x)2), we have:

X5 if £ € U, then v € Ef = he(v) € Sol’<Fw(77é 1O ey

Let £ = (& : i < T) be a sequence of pairwise distinct members of U/, which is
possible as U is an unbounded subset of (2#)" and T < 2# (see clause (d) of the
assumption). As D is p'-complete and Y < p or just D is Tt-complete, also
E* = n{Eg, :i <Y} belongs to D. By the above,

Y S E* Nt < T = hfz (’7) € SOlQFw(”]é 1Cy)ie<p)

But by (x)2 we have |SOII<F7(ng 10 ye<py| < T, hence by K5 for each v € E* we can
choose i, < j, < T such that he, () = he; (7).

As T < p and D is pt-complete or just D is TT-complete recalling E* € D
clearly for some ¢ < j < Y the set {y € E* : iy, = i Aj, = j} is # ) mod
D. As i < j, by the choice of £ (after K5) we have & # & and by the previous
sentences {y € E* : he, () = he, (7)} # 0 mod D. But this contradicts the choice of
(he = ¢ < (2)T), i.e., clause (f)~ of the assumption which is enough by 2.4. O

Conclusion 2.7. 1) BB(A, puT, 60, k) and if \ is regular even BB(JY, u*, 0, k) - see
Definition 0.5 - holds when § < p € C,, and p < A < 2# < 2%,
2) BB(\, ut, (2%, 0), k) - see Definition 0.7 - holds when 6, 1, A are as above.
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Proof. 1) Let T = (207%")* 0 T < p. By case (d) of 2.6, we have Sep(y, 6, ).
Let (Cy : v € [, \)) be a p*-free family of subsets of u each of order type k (exist
by 1.3(c)) and let (S; : i < A) be a partition of [, \) into A (pairwise disjoint)
sets each of cardinality A, stationary if A is regular and let (& : @ < A) list S;
in increasing order. Clearly (C., : v € [u, ) is a weak (A, k)-ladder system and is
puT-free so is as required in clause (A) of 0.5. Hence it suffices to find for each i < A
a function ¢; with domain S;, such that c;(vy) € (€3)0 as in Definition 0.5.

Clearly A > )Xo := min{d : 22 > 2/}, so if equality holds, by 2.4 there are
he € *(2#) for & < 2* such that ¢ # ¢ = h¢ #gva he. So we can apply the
Section Main Claim 2.2(a) with D taken to be the club filter and with (Cy, , :
a € [u,)\)) here standing for C' there; we get c; with domain A. Let c; have
domain S;, ¢;(&;,o) = c(a) so c; is as required. If otherwise, i.e., A > Ao, the result
“BB(\, 1,0, k)" follows by monotonicity of BB in A.

To get “if A is regular then BB(JY**, u7,60, k)", let g : A — [p, A\g) be such that
g Ha} is a stationary subset of A for o € [u, Ag) let (S! : i < A) be a partition
of [u, Ao) into stationary sets and use S}’ = {8 < A : g(B) € 5),Cj; = Cy(p) and
D={ACM\ for club E of A, (V8 < A)(9(B) e E= € A)}.

2) The proof is similar. Oy 7

Conclusion 2.8. Suppose we add clause (g) and replace clause (b) by (b)™ in the
Section Main Claim 2.2 where

(9) A =cf()\) and 0y > 2#, recalling 0y = cf(* ), <gba)
(b)™ X is regular and D is the club filter on \.
Then we can strengthen clause (§) of the conclusion to:
(BT if B, (©)(20) — 0 for v < X and F’ : #(2%) — A\, then we can find
¢={c,:v€S8,) € with S, € DT such that:

(x) for any f : pu — 2* for some v < A (and even for DT-many v € S,) we
have

Fy(f 1 Cy) = ¢y and (F'(f))(7) < min(S,\(y + 1))

Proof. Note that clause (b)* here implies clause (b) from 2.2, so the conclusion
of 2.2 holds. We do not have to repeat the proof of the Section Main Claim 2.2;
just to quote it as F = {F/(f) : f a function from u to 2*} is a subset of *X\ of
cardinality < 2+,
Let F' := {sup{f; : i < u}: fi € F for i < pu}, so clearly:
() (a) F' C2A
() [Fl<2"
(¢) (F',<)is pt-directed.
[Why Clause (c)? Because if f; € F' for i < p then sup{f; : i < u} € F'|]
Now we apply a result from Cummings-Shelah [?, §8] possible as A > pu, p strong
limit, saying that cf(*), <J§d) = cf(*), <gpst), that is 0y = cf (A, <jpst). Hence
there is f. € ) such that the set {a < X : f(a) < f.(a)} is a stationary subset of

A for every f € F'. For f € Flet Sy = {0 < X:0 alimit ordinal and f,(c) < f(0)}
hence
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(¥) (a) if fi < fo are from F' then Sy, C Sy,
(b) Syé¢Dfor feF.

Now apply 2.2 for the filter D, := {S C A : SUS; € D, i.e. contains a club of A
for some f € F}. U8

We still owe a proof of Claim 2.6 giving sufficient conditions for Sep(u, i, 6,0, ).

Proof. Proof of 2.6
The cases 1-4 below cover all the clauses (a)-(e) of Claim 2.6 recalling

(*)1 Sep(p,0,YT) = Sep(u, p,0,0,Y)

and using freely the obvious

()2 monotonicity: if Sep(u], 11, X1, 01, T1) and p) < ph, 1 = p2, x1 < X2,601 =
61,T1 < Yy then Sep(ub, 2, X2, 02, T2).

Clause (a) is fully covered by case 1 using x = 0, clause (b) follows from clause (c)
for the case o = # (and monotonicity in T), clause (c) by case 2 for x = 6, clause
(d) by case 3 letting o = 6 and clause (e) by case 4.

Case 1: = p?, Y =0,x € [0, ] and we shall prove Sep(u, i1, X, 0,6). Let

F = {f . f is a function from #x into 6 and

for some u € [u]’ and a sequence p = (p; : i < 0)
with no repetition, p; € “x, we have
(Vv etx)[pi Cv= f(v)=1i] and

(7 € MO Auegps & 1)) = F) = 01}-

We write f = f; 5, if u, p witness that f € F as above. Notice that the size of the
set of such pairs (u, p) is u?, and each such pair determines a unique f.

Recalling pp = u?, clearly |F| = p. Let F = {f. : ¢ < u} and we let f = (f. :
e < p). Clearly clauses (a),(b) of Definition 2.1 (with p,u,x, 0,6 here standing
for p', p, x,0,T there) hold; let us check clause (c). So suppose g € #6 and let
R =R, :={v € "x: for every ¢ < p we have f.(v) # p(¢)}. We have to prove that
|R| < 0 (as we have chosen T = 6).

Towards a contradiction, assume that R C #x has cardinality > 6 and choose
R’ C R of cardinality 6. Hence we can find u € [u]? such that (v [ u:v € R') is
without repetitions.

Let {v; : i < 0} list R’ without repetitions and let p; :== v; [ u for i < 6. Now
let p = (p; : 7 < 0), so f, is well-defined and belongs to F. Hence for some
¢ < u we have f ;= fc. Now for each i < 0,v; € R’ C R, hence by the definition
of R, (Ve < u)(f:(vi) # o(e)) and, in particular, for € = ¢, we get fe(vi) # 0(().
But by the choice of ¢, fc(vi) = fii ;(vi) and by the definition of f; -, recalling
vi [ w = p;, we have f ;(vi) =1, s0 i = fc(vi) # 0(C). This holds for every i <
whereas ¢ € #0, a contradiction.

Case 2: 0 < x < p, X< < p,x? <p,0% <p,0 <o0,J =[0]<Y so0 it is an ideal on
o, Us(p) = p, T = (x<9)* recalling Definition 2.5. We shall prove Sp(y, u1, x, 8, )
which is more than required.
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Let {u, : v < pu} C [u]=7 exemplify U (u) = pu. Define F as in case 1 replacing
“u e W by “ue P = {u,l?: x < pu}’. As o? < poeasily |P| = p and as
x? < p clearly |F| = p. Let (f. : e < p) list F, clearly clauses (a),(b) of Definition
2.1 hold and we shall prove clause (c).

Assume that o € #§ and R = R, C " is defined as in case 1, and towards a
contradiction assume that [R| > T = (x<7)". We can find v*, ((ac,v¢) : ¢ < 0)
such that:

B (a) v,vc€R,
(0) ac<p

() vel{ag: &< =v"[{ae:{<C}
(d) velag) # v (ag).

[Why? Obvious, as in the proof of the Erdés-Rado theorem; let (n; : i < T) be a
sequence with no repetitions of members of R. For each j < Y, we try to choose
by induction on ¢ < ¢ ordinals (3, (), & ¢ such that:

(a) i(j,¢) < j is increasing with ¢
(0) aj¢= min{a:n;(a) # ni.e (@)}
(c) i(4,¢) = min{i : i(j,e) < i < j and ni(aye) = n;(ye) for e < C}.

If we succeed for some j we are done. Otherwise for each j < T there is £(j) < o
such that (i(7,(), o ¢) is well defined iff ¢ < £(j).

Let 7 = {{(i(j,¢),aj,¢c) : ¢ < &) : 7 < T and £ < £(j)} which is, under <, a
tree with < o levels, is normal, has a root and each node has at most x immediate
successors, hence [T < 3 ['x| = S{xI"l : i < 0)} = x=7. But j — ((i(4,¢), aj¢)

<o
¢ < &(j)) is a one-to-one function from Y into 7, a contradiction.]

Clearly (¢ : ¢ < o) has no repetitions.

So by the choice of {u, : v < p} as exemplifying U;(u) = p, i.e., the definition
of Uy(p) and the choice of J, for some ¢ < p the set uy N {a¢ : ¢ < o} has
cardinality > 6; choose a subset u of this intersection of cardinality 6, hence u € P.
So {v [ u:v € R} has cardinality > 6; without loss of generality u = {a¢, : i < 6}
where (;, increasing with ¢, and let pj = v¢, | u for i < 6 and we can continue as in
Case 1.

Case 3: p >0 # cf(u) and o0 =6 (or < o € Reg N p\{cf(1)}) and u is a strong
limit cardinal, T = (2<79)" and we shall prove Sep(u, 6, T).

Letting x = 6, this follows by case 2, the main point is “U;(u) = p where
J = [0]<?, recalling Definition 2.5.

Let P = U{u : u is a bounded subset of u of cardinality < o}. So P C [u]=°
and as p is a strong limit cardinal clearly P has cardinality < p and if f is a
function from o to u, as ¢ = cf(0) # cf(u) necessarily for some o < p the set
uy = {e <o : f(e) < a} is of cardinality o hence it belongs to P (and has subsets
of cardinality exactly € which necessarily belong to u).

Case 4: u > 3,(0) and T = u and we shall prove Sep(u, 8, ).
Let x = 6 so we should prove Sep(u, i1, x,6,Y). By [?] or see [?] we can find a
regular o < J,(0) which is greater than 6 and is such that U,(u) = p (i.e., the
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ideal is J24); hence J := [0]<% C JP4 hence trivially U (i) = p; so case 2 applies
and by monotonicity we are done. Lo

Discussion 2.9. We may try to strengthen the results on Sep(u,0,x) assuming
1’ = u, a case which is unnatural for [?] but may be helpful.

Claim 2.10. 1) Sep(u,0,YT) when pn > Ro > 6 and T > 6.
2) If BB(I,C, (A, 01), < k) and [o < k = 05" < 05] then BB(I,C, 05, < k).
Proof. 1) By the proof of 2.2, clause (a) and monotonicity of Sep in Y.

2) As in the beginning of the proof of 2.2, i.e. proving it suffices to prove clause
(8) implies clause () of the conclusion. 0210
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§ 3. GETTING LARGE p-FREE SUBSETS OF "
Recall that = C,, = pp(p) =" 2# and easily (see 0.9(2))

B if F C *uis pi-free and X\ = |F| = 2#, then BB(\, p1, A, k), (and hence
TDU,, holds when x € {Xg,R;}).

This is a motivation of the investigation here, i.e., trying to get more cases of u™-

free subsets for *p of cardinality pp(p). In 3.1 the case of our interest is p = J,, p <
X < A=3,41(=2"), cf(x) =0 € Ry, p).

Claim 3.1. There is a set F C "u of cardinality A satisfying X if ® holds where

X () the set F is (0, J1)-free, see Definition 1.2,

B)  F s (ut,(29)F, J1)-free - see Definition 1.2,

a) p<x <A

b) K =cf(u) <p,

¢) 0 is reqular (naturally but not necessarily 0 = cf(x)),

d) k<0 <porjust k0 are both < p,

e) a<p=laf <u,

f) J=Ji is a k-complete ideal on k, including J°4, of course

g) xS >t X\ as witnessed by T ; i.e., the tree T has 0 levels,
< x nodes and > \ distinct 8-branches,

(h) PP (1) > X

Claim 3.2. In Claim 3.1 we can replace ® by ® and X(B) by X' (B) below, i.e. if
@' holds then there is F C *u of cardinality \ such that X' holds where:

®

S~ o~ o~ o~ o~ o~ o~

e) a<p=|al’ <u (hence @ < ),
f) 01 satisfies () or (8) where

(o) 01 <0 and Jy is 61-complete,

(B)  Ju is cf(61) " -complete and Jy = J3¢ and 6, < K of course,
(g9) there are o € Ox for a < X such that o < 3 < X\ = {e < 0:

Ha(e) = 13(e)} € Ja,
(h)  thereis a (ut,J1)-free F C " of cardinality > ¥,
(1) (a) P(0)/J2 satisfies the o-c.c. or just
(8)  for some kT -complete ideal J5 D Jy of 0,
o >sup{|A|T: ACPO)\J, and A~ABe A= ANB e Jr}.

Remark 3.3. 1) Recall Definition 1.2 where we defined notions of freeness for sets
and for sequences.
2) The proof of 3.1 is written so it can be adapted to become a proof of 3.2.

X' (o) the set F is (61, J1)-free,
(B)  Fis (ut, o, J1)-free,
@ (a) p<x<A
() r=cf(u) <,
(¢) J2is an ideal on 0,
(d) J=Jy is an ideal on K,
(
(
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Proof. Proof of Claim 3.1: As cf(u) = k < p by clause (b) of ®; and @ < p =
|a|® < 11 by clause (e), we can let (i; : i < k) be increasing with limit 4 such that
(1) = i > 29 Let p; = U;<i pj; without loss of generality p; < p; < ps if
o <k and (Yo < p)(la]” < i), we can add ()t = p;.

There is p = (p, : 7 < x) such that:

(%)1 (a) py € ]l;<, té with no repetition; moreover p (i) € [u; , i)
(b)  the set {po : a < x} is (ut, J1)-free (in fact we can add that
even the sequence (p, : a < x) is pu*-free, recalling
Definition 1.2(1),(2) but this is immaterial here).

[Why? For any regular x1 € (p,x] by clause (h) of the assumption ® and the
no-hole claim, there is an increasing sequence (\; : i < k) of regular cardinals <
with limit g such that x1 < tef([] A, <ugy)-
<K
As we can replace (u; : @ < k) by any subsequence of length «, for some non-
decreasing sequence, without loss of generality p;, < A; < p;.

By the no-hole-claim (really [?, Ch.II,1.5A]) there are p, € [ [p; , Ai) € T [, 1)
<K <K

for v < x1 such that (p, : v < x1) is (ut, Jy)-free. If x is regular, we can use
X1 := X. We are left with a case x is singular; however, by the strenghening of the
no-hole claim in [?, Ch.II,1.5A,pg.51] there is a sequence (p, : 7 < x) as above. So
(*)1 holds indeed.

Let J» = JP4, (for 3.2 the ideal J, is given in clause (c)); and let 7 be a tree as
in clause (g) of the assumption ®. Without loss of generality

(*)2 (a)
(b) if N1,M2 € TA 1 <BOANea <OAN 171(61) = 7]2(52) then €1 = &5
and we can add, but not used, 1, [ €1 =12 [ €2.

T C 9 x and <7 is <, i.e. being an initial segment

Recall limg(7) = {n € °x : (Ve < 0)(n [ € € T)}, so it has > X\ members.

Let (0o : a < A) be a sequence of pairwise distinct members of limg(7). Let
edy 1 U{%(ps) : i < K} — 1 be one-to-one onto p such that p € (p;) < cd.(p) < pi-
Let (cd. : € < 0) be the sequence of functions with domain p such that ¢ = cd.(p) =
p={(cd.(¢) : e < ). Let cd.(¢) = cdc(cdo(¢)).

Lastly, for a < A (the second and third demands are for later claims using this
proof)

X v, € ®u is defined as follows:
o for i < k, let vo(i) € [p; , i) be such that cd. (v (i) = py., (o) (7) for
every € < 0
o if (Va < p)(Ja| < ), then we can make v, (i) also code v, | 4, e.g.
cdy (v (7)) codes v, i
o if o, € [] w; for a < X are given then we can add that v,(i) codes
i<K
0a(%), 100, e.g. 04(7) = cdg(cda (v (7))).
[Why? E.g. why the demand v, (i) > p; is O.K.? Because cd, is a one-to-one
function and the freedom in choosing cds (v, (7)).]
We shall prove that the set F = {v, : o < A} is as required and let 7 = (v, :
a < A).



Paper Sh:898, version 2013-12-01_11. See https://shelah.logic.at/papers/898/ for possible updates.

32 SAHARON SHELAH

Now

Ko © is without repetition, i.e., &« < 8 < A = v, # vg: and so the set F has
cardinality .

[Why? If v, = vg, then for every € < § and i < k, we have p,,_ () (i) = cd_(va(i)) =
cd.(v5(i)) = pu,(e)(i). Fixing e < 6, as this holds for every i < x, we conclude
that p,. () = pnse)- But (p, : v < x) is without repetitions, hence it follows
that n4(e) = ng(e). As this holds for every ¢ < 6, we conclude that 1, = ng but
(N : @ < A) is without repetitions hence o = 3, so we are done.]

Now the main point is proving clauses («) and (8) of K.

Step 1: To prove clause («) of X, i.e., “F is (6, Jq)-free”.

Assume w C A and |w| < 6. Recalling (x)1(b) and 6 < p, clearly the set
{Pnate) 1 @ € w,e < 0} being of cardinality < 6 < u* is free, hence there is a
sequence (s, (o) : @ € w,e < 0) of members of J; such that: if (ay,er) € w x 0, for
¢=1,2, and 1, (€1) # 7ay (2) and @ € K\Sy, (c,)\Sy,, (c,) (recalling 0.16(0)), then
pnal(m)(i) # Pray (52)(i)'

Now as (1, : o € w) is a sequence of < @ distinct #-branches of T and 7, (€1) =
Ny (62) = &1 = €2 and No (5) = Nas (6) = Noy f € = Nas f € by (*)27 Le., by the
choice of 7. Hence by the regularity of § we can find e, < 6 such that (n,(e4)) :
a € w) has no repetitions, and define s, = s, (.,) C & for a € w; now (s, : @ € w)
is as required. [Why? First s/, € J; by the choice of s/,. Second, assume a # (3 are

from w and i € £\s;,\sj; and we should prove v, (i) # v(i). Now n4(e.) # np(ex)
by the choice of e. and s, = s, (c,), 55 = Sp,(c.) hence i € k\s,, (. \8p,(.) 5O
by the choice of (s, (o) : v € w,e < 0) we have p,_(c,)(i) # pyy(.)(i) hence
cdl, (Va(i)) = pyo ey (i) # Pye. (i) = cdl (vs(i)) which implies that v (i) # v(i).

Note also that F is normal by H; as the intervals [u; , it;) for ¢ < k are pairwise
disjoint.

Step 2: To prove clause () of K.

Let F/ C {v4 : @ < A} have cardinality < . Choose w such that F' = {v, :
a € w}, so that w € [A\|5# and let u := U{Rang(n,) : a € w}. Clearly u € [x]S*.
By the choice of {p, : v < x) we can find a sequence (s, : v € u) such that s, € J;
and i € H\(S'Yl U 8’72) AN 7é Y2 A {’71772} Cu= Py (Z) 7é p’m(i)'

For a € w let t, := {i < K : the set of ¢ < 6 such that i ¢ s, () belongs to
Jo = Jpd}.

We shall now show that ¢ := (t, : @ € w) is as required in Definition 1.2(1),(2);
that is, we have to prove that ¢, € J; and that for any & < p and i, < K the set
of a € w such that i, & t, Av,(ix) = & is small, i.e. of cardinality < 27; these
demands are proved below in (x)4 and ()3 respectively. So let £ < p and iy, < K
and let v =wvg ;. = {a € w: i, ¢ty and v, (i) = £}

First we shall prove below that

(¥)3 Jv] < 2°.

b2

This will do one half of proving “f is as required in Definition 1.2(1),(2).
Why does (x)3 hold? Now if o € v, then i, € k\t,, hence (by the definition
of to) we have Uy ;, = {e < 0 : i, & 5.} € J5. Soif a # B are from v
and € € Uy,i, NUg;, and nq(e) # ns(e), then we have i, ¢ s, () (as € € Uqi,)



Paper Sh:898, version 2013-12-01_11. See https://shelah.logic.at/papers/898/ for possible updates.

PCF AND ABELIAN GROUPS SH898 33

and i, & S, (as € € Up,,), and hence by the choice of (s, : v € u), we have
Pra(e) (@x) 7 Pny(e) (i), 50

()1 edL(valia)) = prae(ia) # Py (ia) = cdl (v (i)

Recall that v, (i) = & = vg(is) because € € Uy i, NUg ;. , but this contradicts (x)4.
It follows that a € vA B € vAa # BAe € Uy, NUzi, = nale) = ng(e); but
a# = {e<b:nq(e) =ns(e)} € Ja, hence this impliesa cvAS evAa#[=
Ua,i. NUs,, € Ja. As we have noted earlier that a« € v = U, ;, € J;7 it follows
that P(6)/J, fails the |v|-c.c. But for the present proof, P(#) has cardinality 2%,
hence P(6)/J; satisfies the (2/)T-c.c., and so |v| < 2%, as required in (x)3. For
proving “t is as required in Definition 1.2”, we need also the second half:

()5 to € Jq for a € w.

Why does (x)5 hold? Firstly, assume x < 0; towards a contradiction assume that
ta € Ji". By the choice of t,, for each i € t,, the set {e <6 :i ¢ s, ()} belongs

+

to Ja, but Ja, being euqal to Jp¢ (and recalling @ is regular), is x*-complete and

|te| < K, hence the set

T i= U {e<b:i¢ Sna(f)}

1€ty

lies in Jy hence we can choose €, < 6 such that ¢ = ¢, = A i@ € Sna(e)s SO
i€t

ta C Sy, (en)> DUt sy (o) € J1, and hence t,, € J1 as required. ©

Secondly, assume k > 6; towards a contradiction, assume t, € Jf' . Again
i€ty = {e<O:i¢ s, (o)) € J2,but Jo = Jgd, hence we can find &, = (g4, :
i € ta) € (2)g such that e,; = supf{e < 0 : i & s, (o)} < 0. However, J; is
k-complete (see clause (f) of ®) hence J; is 81 -complete, so for some € < 6, we
have t), := {i €ty 1 €ai <L} €J{. Soi €t = cn; <& =suple <0:i¢
Sna(e)} < € = 1 € Sy (ex) S0 ty, C Sy (exy. But s, (o) € Ji, while t, ¢ Ji, a
contradiction. O34

Proof. Proof of 3.2:

We note the points of the proof of 3.1 which have to be changed. The choice
of p=(py 17 < x),1e. (%) is now done by using ®’(h). Before (x)2, instead of
defining J> recall that it is given (see ®'(f)) and if J} is not given (see ®'(¢)(5))
let Jj = Jo. After (x)2, instead of choosing (1, : o < A) it is given in ®'(g) and
the tree T disappears, so we “lose” the statement “n;le; = m2fe2” in the end of
(¥)2(h), the “ni(e1) = m2(e2)” is easy to get.

Now step 1 says that “F is (61, J;)-free”. Thus we have to choose ¢, as there.
Of course, now |w| < 0, as we are proving “F is (61, J1)-free”.

First, if clause () of ®'(f) holds, as U, 5 := {e < 0 : na(e) = n(e)} € Jo for
a # (B from w, but Jy is 61-complete, so {e < 0 : no(e) = ng(e) for some o # [
from w} belongs to Jz, hence there is e, < 6 not in U{U, 45 : a # 3 are from w}.

Second, if clause () of ®'(f) clearly 6; < &, so as Jy is k-complete it suffices
to prove a < B < A = sq8 = {i < Kk : v(i) = vg(i)} € Jp but for o # 5 we
have 1 # 1 hence for some € < 6 we have 7,(¢) # ns(e) hence sq 5 C {i < Kk :
Pra(e) (i) = Pnse) (i)} € J1 so we are done.
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Turning to step 2, now to define ¢, we use “belongs to J}”; then (x)3 should say
|v| < o and in the proof instead of “P(6)/J; satisfies the (2/)*-c.c.” we use clause
@' () () if it holds and ®'(2)(B) otherwise, as still & # 5 = Un;, NUz,;, € Jo.

Lastly, to prove (x)5 we use clause ®'(f). Os.2

Claim 3.4. In 3.1, recalling J = Jy is a (k-complete) ideal on k, and letting
Jo = Jp4 assuming (Va < p)(|a® < p) we can add to the conclusion that F is
(Y, J)-free when (a) or (b) or (c¢) hold where:

Case (a) T = 07“T! and we can choose 1, € %X for a < \ with no repetitions such
that 0% ¢ issp;({na : @ < A}).

Case (b) 07 < Y < u and we can choose 1, € %% for a < X with no repetitions
such that § < 0 = cf(0) A (< 0,0) €issp;({na :a<A})=0>7T.

Case (c) there are pairwise distinct n, € °x for a < X\ and pairwise distinct 0y €
for v < x such that for every reqular @ € (0+rxT,T) we have d ¢ issp({nq :
a < A}) and 0 ¢ issp({oy : v < x})-

Proof. The proof splits to cases.

Case (a):

We reduce it to case (b) proved below. It follows by 1.4 but we elaborate. So
assume toward contradiction that case (b) fails, so there is 0 such that 8 < 9 = cf(9)
and (< 9,0) € issp;({na : @ < A}) but 9 < Y. We can choose a minimal such that
0 and let 91 < 9 be such that (91,0) € issp ;({na : @ < A}). So by Definition 1.2(6)
with (x, @) here standing for (u, k) there, there is a set u C x of cardinality < 0;
such that 0 < U, | where U, := {a:a < Xand {i < 0 :n,(i) € u} € J}.

Without loss of generality 9, > 0; clearly d = 9] by the minimality of & as 9;
is regular > 0. Also if 91 = 6 we get the desired contradiction (i.e. clause (a) fails);
so we can assume 91 > 6.

Let (o : € < 01) list the elements of u and let Uy, ¢ := {a. : € < (} for ¢ < 01.
Asf <0, <0 <9 <T =04+ we have cf(0) # 0 so recalling Jo = JP4, for every
o € U, for some e(a) < 01 we have {i < 0 :1o(i) € Uy ey} € J5. As |U,| >0 =
0y > 01 necessarily for some () < 9y the set {a € Uy : {i < 0 :1a(i) € Uy ()}
has cardinality > 0 > 0. So U, () Witness that also 0; satisfies the demand on
0, contradicting the minimality of 0, so we are done.

So case (b) holds and this is proved below.

Case (b):
We shall prove that case (c) holds, so toward contradiction assume it fails. Re-
calling Definition 1.2(7), note that choosing any o, € " for v < x clause (c) holds.

Case (c):

We repeat the proof of 3.1 but we use (o : @ < X),{0a : @ < A) from the
assumption (c¢). In the proof of 3.1 we use the g,’s in X, that is, we demand that
Ve (1) also codes g4 (7).

Consider the statement

B For regular d € (0 + k™, 1), the set S is not a stationary subset of & when :
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®a,s 0= cf(d) € (0+ kT, u), e < X for £ < 9 with no repetitions and
S ={( <0 : for some { € [(,0), the set {i < K : va, (i) € {Va.(7) :
e < (}} belongs to J; }.

It suffices to prove H:

Why? We prove that {v, : a < A} is @T-free by induction on d < Y so let
w C A |w| < 0. If 0 <k just note that a # 5 € w = {i < K : v, (1) = v3(i)} € J1,
if 0 < 6 recall K(«) of Claim 3.1. If 9 > kT + 6 is singular use compactness for
singulars. So assume 9 = cf(9) > kT + 6 so by the induction hypothesis without
loss of generality |w| = 0 and let (. : e < 9) list w and define S as in ®g above from
(ae 1 € < ). As we are assuming B, necessarily S is not a stationary subset of 9 so
let E be a club of J disjoint to S. Let (e(¢) : ¢ < 9) list EU {0} in increasing order.
For each ¢ < 6 we apply the induction hypothesis to w, := {ae : € € [e(1),e(¢ +1))}
and get the sequence (s, € J1: € € w,).

Lastly, for e < 0 let ¢ be such that ¢ € [e(¢),e(¢+1)) and 5. = 5, . U{i < K : v(4)
belong to {va, (i) : ¢ < e(¢)}}.
Why does H hold?

Towards a contradiction, suppose that (o, : € < 9),5 are as in [y g and S is a
stationary subset of 9 = cf(y) € (0 + ™, Y). Then without loss of generality :

(#)5 (a) for some stationary Sy C S, for every limit { € S, { can itself serve
as the witness ¢ (in fact we can have S\Sp not stationary)
(b)  for some club E of 9, if ¢ < & and EN(e,&] # 0 then {i < s : v, (i) €
{Va (@) : ¢ < e}} € Jh.

[Why? For clause (a) by renaming. For clause (b), it suffices to show that (Ve <
9)(f(e) < 9) where for £ < 9, f(g) is the minimal ordinal v < 9 such that if £ < 9
and {i < K : Vo (i) € {va (i) : ¢ <e}} € J; then £ <.

Now, if e < 9 and f(g) = 0 then by the third e of Hs in the proof of 3.1 it follows
that u = {04 (i) : i <k and ¢ < e} and (a¢ : ¢ < 9) witness 0 € issp, ({00 : @ <
A}) so also clause (b) of (%)5 holds indeed.]

Clearly 6 € S = cf(0) < k, and because (Vo < p)(|a|™ < ), by the second e in
X; in the proof of 3.1 we know that for ¢ < x the value v, (7) determine v, [7, hence
easily without loss of generality

(¥)g if § € S then ¢ € E and cf(d) = &.
Let

Sp:={C€Sy:{e <O:na.() € {na,(€) : j <(}} belongs to J; }.
Case A: S is a stationary subset of 0.

Firstly, assume x < 6. As, see above, ( € Sy = cf(() < k and § > k = Jo is
xt-complete, clearly for each ¢ € Sy, for some jo < ¢, the set {e < 0 : 1o (€) €
{Na,(€) © j < jc}} belongs to J7. By Fodor’s lemma, for some j(x), the set
Sy = {C € S1: jc < j(x)} is a stationary subset of 9. Now {n.. : ( € S2}
witnesses (< 0,0) € ussp, (limg(7)); but this contradicts a demand in case (c) of
the assumption of 3.4.

Secondly, if § < k but recalling ()¢ (see above) ¢ € Sy = cf(¢) = k and now
the proof is similar.
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Case B: k < 0 and S is not stationary.

So necessarily Sp\S7 is a stationary subset of 9. By the definition of S; (and
(*)5) we can find 5" = (sf : € (Sp\51)) such that:

(¥)7 (a) sf€Jo

(b) if i # (2 are from (Sp\S1) and € € 0\s7, \s7,, then
Nae, (€) 7 TN, (€)-

Let e(¢) = min(0\s?) for ¢ € (So\S1).

So for some stationary Sz C (Sp\S1), we have ¢ € Sy = £(() = e(x) and so

(%)8 (Ma(e(*)) : ¢ € Sq) is without repetitions.

Now (x)2(b) in the proof of 3.1 says that (p, : v < x) is (u™, J;")-free; apply this
to the subset {Qnac(a(*)) : ¢ € S3} which has cardinality & < pT hence (recall (x)g)
(¥)9 some (s[na,(e(x))] : ¢ € Sa) witnesses that (,o%C (e(x)) : ¢ € Sg) is free, i.e.
Snag (e(x)) € J1for ¢ € Sy and ¢ # & € SaNi € K\s[na (€(+))]\s[na, (e(+))] =
o () (1) # Ono (2(2)) (2)-
As k < 9, for some i(x) < K,
(*)10 the set Sz := {¢ € Sy :i(*) & 5[Na.(e(*))]} is a stationary subset of 9.
Hence
(#)11 (va.(i(x)) : € € S3) is a sequence without repetitions.

By (*)¢ we know that v, (i) = v3(1) = va [t =vg [ i for a,8 < A,i < k; but by
the choice of S we have ¢ € S3 = v, (i(%)) € {Va.(i(x)) : ¢ < e}. However, this
contradicts (*)19 + (*)11. W
Claim 3.5. 1) In 3.1, F satisfies: for k + 6 < 0 = cf(9) < A\, we have F is
(07,0, Jv)-free iff (< 0,0) € isspy, (F) and there are pairwise distinct f. € F for
£ < O with no repetitions such that for stationarily many 6 € S2,,{i < Kk : fs5(i) €
{fali):a< s}t e .

2) If in 3.1 also o < pu = |a|<" < p then we can replace S2,. by S}.

Proof. By the proof of the previous claim. Os 5

* * *

In 3.6, the case we are most interested in is p =3,k = Ry, 0 = Ny.
Claim 3.6. There is F C "u of cardinality X which is (u*, J)-free when :
® (a) 0= cf(0) <rk=cf(u) <up
b) A=~
o) p<x<x?=2x
a<p=laf <p
e) J is a 0T -complete ideal on K
) pps(p) =7 A

A~ N N N
SN
~—
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Remark 3.7. This claim is used in the proof of the theorem 1.22.

Proof. Let {u; : i < k) be increasing with limit p such that (u;)? = u; and let
cd, : %p — pand cd, (for e < 6) be as in the proof of 3.1, noting that by clause (a) of
the assumption of the claim %u = U{?(1;) : i < k} = p and let p; = U{p; : j < i}.

As x < pp;(p), by 1.3(c), i.e. [?, Ch.II] there is a sequence p = (p, : v < x) of
members of %y which is (uT, J)-free. Let 7 = (14 : a < A) with 1, € ?x be pairwise
distinct.

Without loss of generality, p, € [] [p;, ti); we define v, € [ ps C Fpfor oo < A

1<K 1<K

by va(i) = cds((py, () (i) : € < 0)) for i < k. We shall prove that (v, : a <)) is as
required, i.e. (Vg : a < A)is (uT, J)-free; this suffices as it implies o < 3 < A\ =
Vo # v hence {v, : @ < A} C ®u has cardinality A = p* (and is (u*, J)-free).

For w € [AJSH, we let u = U{Rang(n,) : @ € w}, so u is a subset of x of
cardinality < p.

As p= (pa:a <x)is (uT,J)-free, there is § = (s, : v € u) such that:

® (o) s, € J forevery y €u
(B) ify # v cuandi€r\(sy, Us,,), then p,, (1) # p,, (7).

Now for each a € w, the set t, := U{s, () : € < 0} is the union of < 6 members of
J, but J is a §T-complete ideal by assumption (e), hence t,, € J.

Suppose o # ag are from w and i € k\(tq, Uta,). Can we have vy, (1) = vq, (4)?
If so, then for every e < 0, we have i € K\sy, (c)\Sy,, () and py, () (1) = P, ., (D),
hence necessarily 74, (€) = 74, (€). As this holds for every € < 0, we get 7, = Na,-
This implies a; = as.

S0 i € K\(tay Utay) A Ve, (1) = Vay (1) = a1 = aa. Thus (v, : o € w) is free, so
we are done. Os g

Conclusion 3.8. If clauses (a)-(f) of 3.6 hold and A = p" = 2/, then BB(\, u™, A, J).

Proof. By claim 3.6 there is F C *u of cardinality A which is (u*,J)-free. By
assumption |F| = pf = 2# hence by 0.9 we get BB(2#,u™,x,J) so we are done.
Us.s

A relative of 3.6 is
Claim 3.9. There is a (u*, J1)-free F C *u of cardinality X\ when

® (a) o<O<r=cf(p)<p<A
(b) (a) Jo is a ot -complete ideal on 6 and
(B)  there are \ pairwise Jo-distinct members of ®x
() 2" <pu<x<Aand2® <cf(N)
(d) a<p=cov(lal,8t,0%,0%)<pu
(e) Jiis a 6F-complete ideal on k
(

) x<pps, (k).

Proof. By clauses (f) and (c) there is an increasing sequence (\; : j < k) of regular

cardinals € (27, ) with limit g such that x* = tef([] Ai, <j,) and we let \; =
<K

E{\j i j<i}fori<e.
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By clause (f) and 1.3(c), without loss of generality there is a (u*, Jy)-free se-
quence (p, : v < X) of members of [] A;. Let P; C [\;]? be a set of cardinality

<K
< u such that:
(¥)p, for every u € [\;]?, we can find ¢, < o and uc € P; for ( < ¢, such that
u CU{ue : ¢ < Gt

Note that P; exists by clause (d) of the assumption. Let P = U{P; : i < K}, so
that [P| < p, P C [1]°.
By clause (b)(3), let 7 = (N4 : @ < A) with 7, € ?x be such that a < 8 < A

implies 7o # 7, N, 1.e. {€ <0 :1a(e) =ns(e)} € Ja.
Lastly, for each ov < A, for each i < k, we know that {p; (i) : & <0} € [A]= <9

hence we can find a sequence (uy, . : ¢ < o) of members of P; such that {p,, (i) :
e <0} CU{ul, . : (<o}

For each @ < X and i < k, as Jo is a o'-complete ideal on @, for some
Cai < o, the set Wy, = {e < 0 : py (i) € u;Q“} belongs to J2+. Let

o = {0, Cais Spu () (1) Nty o ) 10 < wand € € Wa,; € 0}

The number of possible x, is at most < 2%, but 2 < cf(\) by clause (c) of the

assumption. As we can replace (1, : & < A) by (1, : a € v) for any v € [A]?,

without loss of generality for some x = {(i,; e, Vi) : ¢ < k and € € W, }, we have:

(%)o Xq = x for every o < A.
For @ < A let v, € ®P be defined by:
O1 Val(i) = ul, ot
Clearly it suffices to show that:
®2 7 = (V4 : @ < \) exemplifies the conclusion.
This follows by ()1, (*)2, (*)3 below:
(%)1 vq € "P and |P| < p.
[Why? Obviously.]
(%)2 Vo #Fvgfora<f <A
[Why? By the proof of (x)3 using w = {«, 8}.]
(x)3 {Va :a < A}is (ut, Jp)-free.

[Why? Let w € [A|S#; we shall prove that {v, : a € w} is Ji-free. Now u :=
U{Rang(n,) : @ € w} € [x]<H, recalling € < 6 = 1,(¢) < x. By the assumption on
{py 17 < x}, we can find a sequence 5 such that:

(a) 5= (sy:v€u) ()
(B) if y1 # v2 and 11 € u, 72 € uw and i € K\S4, \S,,, then p,, (2) # p4, (7).
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For each o € w, let to := U{s,, (c) : € < 0}. Now t, is the union of < 6 members
of J; which is a §7-complete ideal (by (e)), so to € Ji. It suffices to prove that
(to : o € w) witnesses {vy : @ € w} is Ji-free, so, by the previous sentence, it
suffices to prove:

()5 if a1 # ag are from w and i € K\t \ta,, then vy, (i) # v, (7).

Toward a contradiction assume that v,, (i) = v, (7). Recalling the choice of v,, i.e.
®1, this means that ugl,calyi = uflz’caw.
As x4, =X = Xq,, see condition (x)g, clearly Wy, ; = W, ; but we are assuming

so by the definition of X,,, X, We have € € Wy, = Wy, =

ufll;(al,i = u;274a2,i
Pray &) (1) = Pray(e) (1) = 7ay (€) = Nay(€) 80 {& < 02 10, (€) = 7ay(€)} 2 Wa, but
Was.i € J5 by the choice of (4, So we get —=(1a, #J, Nas), contradicting the
choice of (7 : @ < A).]

So (*)5 holds, and hence (x)s holds. Therefore ®y holds, so we are done. s

Observation 3.10. 1) Assume A > g > r = cf(u) and o < p = |a|” < p, and
0 = sup{h; : i < o} and for each i < o, there is a 6;-free F C “p of cardinality \.
Then there is a 6-free F C “u of cardinality .

1A) If k = o then o < p = |a|<7 < p suffices.

2) If F C " is -free, then there is a normal f-free 7' C *u of cardinality |F| - see
Definition 1.2(5).

3) If J is an ideal on k,d < A and (A; : 4 < §) is increasing with limit A and there
are (0, J)-free F; C *u of cardinality \; for ¢ < 0 then there is a (6, F)-free F C *u
of cardinality .

3A) In part (3), if f € F; Ae <k, f(e) € U C p and U, is infinite for ¢ < x then
without loss of generality f € FAe < k= f(e) € U..

4) We can in parts (3), (3A) add “(F;,<j) of order type \;” and change the
conclusion to “F C “(u x u), (F, <) of order type A (and still is (6, J)-free)”.

5) Similarly to part (4) but F C *“pu if 2% < p, ¢f(§) recalling Definition 1.2(4).

Proof. 1) By coding (separating the proof according to whether o < k or o > k).
In more detail, without loss of generality, i < o = 6; < 0; let F; C "u be 0;-free

of cardinality A, let (nf, : o < A) list F; with no repetitions, and let cd: |J “a — p
a<p
be a one-to-one mapping.

Case 1: 0 < k.

For @ < A and ¢ < k the sequence (0’ (¢) : i < o) belongs to “u hence by the
present case to U{? 8 : f < a}.

Let ng := (cd((ni(e) 1 i < 7)) 1 € < K), 80 Ny € "u, and clearly (7, : @ < A) is as
required.

Case 2: 0 > k.

Let (pe : € < k) be increasing with limit u. For € < x let he : 0 x ¢ — o be
one-to-one and onto.

We define 1, € " as follows:

o for e < Kk we let 1y (g) = cd((Va, : ¢ < o)) where
e if j <o and ¢ < and i = ho(j, ), then o, = min{n(C), ).
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Now first for € < &, 74 /(¢) is well defined (< ) as (Vo : ¢ < o) € 7(1e) C dom(cd);
so indeed 7, € "u. Second, {n, : o < A} is O-free because if w C A, |w| < € then for
some i < o we have |w| < 6;, hence we can find a sequence ((, : o € w) of ordinals
< k such that:

cacwAfewhe <kAe>(oNe> (g =€) #nj(e).
Let &, = min{¢ : £ > (, and 7((s) < pe}. Then, easily
s acwABEWAe<KANE>ENe > Ep = nale) # agle).

So we are done.

1A) The proof is similar using 7, = (cd(n’(e) : i < ¢) : € < k) for an appropriate
function cd. This is all right because @ < p = |a|<7 < pu; actually a < p =
|a|<? < u suffices.

2) Easy.

3) Let i(x) = min{i : § < A\;} and let A7 = U{\; : j < i} for i < 4, further let
(fi : o < \;) list F; with no repetitions, for ¢ < & let ¢d. : 4 X pp — p be one
to one and for o < A let f, € “p be defined by: if a € [A\;,\;) and € < & then
fh(e) = cdo(fi(e), fz(*)(s)). One can now check that this works.

3A) Similarly but add: c¢d. maps U X U, into U..

4) As we weaken the conclusion to “there is a < j-increasing sequence of length A
in ®(u x p)”, the proof of part (3) suffices if we add

@ cde(ag,an) < cde(af,ah) I (ay < ab) V(e =ab Aag < af)

5) Without loss of generality A < p and § = cf(9).

Without loss of generality each \; is regular and (even > p and also A\g > §).
For each i < § let f' = (f. : a < \;) be a < -increasing sequence of members of
® 1, in the role of F;. Let {u. : € < k) be an increasing sequence of regular cardinals
> k with limit g and for i < §,a < \; let g, : Kk — & be defined by: for e < k we
let g% (¢) = min{¢ < p: fi(e) < pc}. Hence {go : @ < A\;} C "k has cardinality
< 2% which is < p < A; = cf(\;), so for some g; € *r the set {a < \; : g, = g;} is
unbounded in \;. Hence without loss of generality i < o Aa < Ay = ¢!, = g;.

Also we can replace ((\;, f*) : i < d) by its restriction to any u C § which is
unbounded in §. Hence without loss of generality (g; : i < §) is constant or with no
repetitions. The latter is impossible as cf(d) > 2%. Now we can just use the proof

of part (3) using @ from above. Os 10
Observation 3.11. There is a sup{f; : ¢ < i(x)}-free F C " of cardinality 2#
when :

(a) weC,

(b) for each i < i(x) at least one of the following holds:
(a) for some x,0; < u < x < A and x<%>= = X\ (and the supremum is

attained)
(B) 0; = pu™ and for some x and o = cf(0) < k we have y < y < X and
X7 =A

() for some x,0; < p < x <A,k # cf(x) < p and pp pa(X) =t \
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Proof. Clearly i < i(x) = 0; < p+. Without loss of generality, i(x) < u.

[Why? Clearly we can replace (0; : i < i(x)) by (6; : i € u) when u C i(*) and
sup{f; : i < i(x)} = sup{; : i € u}, so without loss of generality (6; : i < i(x))
has no repetitions, and so i(x) < p+ 1, and if i(*) > u, we can find u as above of
cardinality < p.]

If for every i < i(x) clause () or clause (v) of (b) of the assumption holds
then by 3.1 or 1.26 there is a 0;-free F; C "u of cardinality A for each ¢ < i(x)
and by 3.10(1) the conclusion holds. It holds by 3.6 if () of (b) applies for some
1< Z(*) Os.11

Claim 3.12. If up € C,, and A = 2* = x* and x is regular or just cf([x]S*,C) = x
then :

(a) there is a p*-free F C ®u of cardinality 2* = u*
hence
(b) BB\, u™,0,k) for every 0 < p.
Remark 3.13. This is actually as in [?, Ch.IL,6.5(3),pg.100] and the no-hole claim.

Proof. By Definition 1.1 there is an ideal J on k and a sequence (\; : i < k) of
regular cardinals < p such that A = tcf([] A\, <s). So there is a < -increasing
<K
cofinal sequence (f, : @ < A) of members of [[ A\;. Let €. = (ec,q : @ < A) for
<K
e < x be as in 1.34, that is, if x is regular then we apply clause (A) of 1.34 and if
cf([x]S*,C) = x, then we apply clause (B) of 1.34.

Now by induction on o < A we choose §o = (ge.o : € < x) and [ such that

H, (a) Je,a € H Ai

1<K

) fa€ H Ai
1<K
)

(
(€) Gea <s fa

(d) ijk <J Ye,a if T<a

(€) geali) > SUP{fE(i)aga,,B(i) : B € €c,a} When A; > ez o

b

As (IT M4, <y) is A-directed we can carry out this definition. In more detail, at
i<K
stage «, first we can choose f/, € [[ A; such that § < a = fg <; f., because
i<K
A > [{fs: 8 < a}. Second, for e < x we choose ge o € [] Aisuch that \; > |ec o] =
1<K
9e,a(i) = sup({f5(i), ge,(); B € ec,a }U{f,(i)+1}). Third, choose f, € [ A; such
<K
that ¢ < x = gc,o <J fo again possible as we have < A demands.
Now we can prove that for any u C X of cardinality < p the sequence (f% : « € u)
is J-free (see 1.2(4)) by induction on otp(u), as in the proof of the no-hole claim,
actually [?, Ch.II,1.5A]. Os.12

Remark 3.14. 1) Note that 1.17 is quoted in [z of §0 in order to show ®3.1, but
we could also use 3.12.

2) How much partial square on A suffices in 3.12?7 One for cofinality > x where the
ideal J is JP4 or just k-complete (which is all right).
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3) We may consider a parallel of 3.12 when x is not as there. So assume u €
C,, A= 2" = xt and y is singular and cf([x]S#,C) = A.

(A) Is there cf(x)-free F C " of cardinality A?

4) If for some pq, 0 < pg < x and cov(x, ui, p,2) = x, then there is a cf (x)-free
F C "u of cardinality k.

[Why? We apply 1.34(B) with X, uo here standing for A, x there getting (el , :
a < A\e < x), so otp(el ) < pd < A Let (e? : i < pug) be such that e?
is a closed unbounded subset of i of order type cf(i) for each i < ud. Now let
= (Cica:a<\e<X,i<pug)bedefined by €; .o = {8 € €co : Otp(ec.q) € €2}.
So € is as required except that we use (i,&) € x X M(T instead of € < x but as x X /‘(T
has cardinality x this is all right.]

Now a variant of 3.1 is:

Claim 3.15. If ® holds, then there is F such that X holds where:

X (o) FC"u
B) |[Fl=A
(v) F is(0,J1)-free
® (a) p<x<A
(0) K =cf(n)
(¢) 0 is regular
(d) o<r<b<p
(e) Jy is a o -complete ideal on k
(f)  if a < p, then cov(|a|,0T,0%7, 07) < p

or just
)~ ifa<p, then Uy (o)) < u, see Definition 2.5

g) there is a set of \ pairwise Jy-distinct members of %y

i) J1 is 0 -complete

(
(

(h) s, ()7
(i)

()

20 <y
Proof. Combine the proofs of 3.1 and 3.9. 0s3.15

Claim 3.16. In 3.15:

1) If in ®,0 > 0 clause (g) is exemplified by Fo C %% which is (9, J2)-free, 0 < p,
then F is (0,07, J3)-free.

2) If F' C F has cardinality > 0, then U{Rang(v) : v € F} has cardinality > 6.
3) Clauses (f) + (e) from & implies clause (f)~; in fact clause (e), “Ja is o™ -
complete”; is needed only for this.

4) We can in ® weaken (also in part (1)) clause (h) to

(h)" there is a O-free F C "u of cardinality A.

Proof. We leave the proof to the reader. Os.16
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Claim 3.17. Assume i € Cy, J is a k-complete ideal on k and there is no (k7 J)-
free F C "u of cardinality \ :== 2", Then the set © = {0 :0 = cf(0) < u,0 # k and
for some witness (x,I) we have I a 0-complete ideal on 0, x € (u, A) of cofinality 6
and pp;(x) =" A for some 0-complete ideal J on 0} is empty, or a singleton > K
or of the form {6,07},0 > 6.

Remark 3.18. This is intended to help in §4 in dealing with R-modules when R has
at least three members together with 1.37, 1.32, 4.4.

Proof. Note

(*)o without loss of generality A is regular.
[Why? By 3.10(3).]
(*)1 if 6 € © then 8 > k.

[Why? Let (x,J) witness § € ©, now by 3.6 we get a contradiction to the assump-
tion “there is no (k7% J)-free F C "y of cardinality \”.]
Let (01, x1, J1) be such that

(x)2 01 € © and (x1,J1) is a witness for §; € © and x; is minimal under these
conditions (even varying 6;).

If # € © by the choice of x; as minimal, by [?, Ch.I1,5.4] we have:
(x)3 a <x1= cov(|a|,u™,uT, k1) < x1.

If © = {61} or © = {61,61} or 05 =6, A© = {61,6,}, we are done; otherwise let
(02, x2, J2) be such that

(x)g 02 € @\{Gl,ﬁf} N0y # 9; and (x2,J2) witness that 0; € ©, and x» is
minimal under these requirements.

Now

(¥)5 thereis a (07" +0q, J1)-free set F C 91 (1) of pairwise J;-distinct elements
of cardinality .

Why? Case 1: 65 > 64

So necessarily 65 > 67 by (*)4, hence such an F exists by 3.15 with \, x1, x2, &, 01, 02, J1, J2
here standing for A, u, x, 0, &, 0, J1, Jo there.

Clauses (a),(b),(c) are obvious. Why does clause (d) from 3.15 hold? It means
“k < 07 <03 < x1” and these inequalities hold because, first £ < 67 holds by (*)1,
second 07 < 65 holds by the present case assumption, and third “6s < p < x1”
holds by (%)a.

Clause (e) of 3.15 means “Jy, Jo are x*-complete” which hold as 61,62 > & by
(x)1 and Jp is Hj—complete by the definition of © because (x¢, J¢) witness 6, € ©
by (#)2 + ()4

Clause (f) of 3.9 means here a < x1 = cov(|al,05,605,x%) < x1 which holds by
(*)3.
Lastly, clause (g) of 3.15 means “there is a set of A pairwise Jy-distinct members
of %2(x2)” which holds as (Ja, x2) Witnesses 0 € ©.

The conclusion of 3.15 gives a family F C 91 (1) of cardinality A which is (6, J;)-
free, but 0y > 0; by “First”, and 05 # 9; by (x)4 so we are done.
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Case 2: 05 < 64
Again by (¥)4,05 < 0;. Hence by 3.9 with X, x1, X2, k, 01, 02, J1, Jo here stand-

ing for A, u, x,0,k,0,J1, Jo there, we have finished the proof of ()5 getting even
(u*, J)-free.]

(¥)6 there is F C "u of cardinality A\ which is (Y, 5)-free letting T = 6;7".

Why? We apply 3.4, case (c) with x1, 01 here standing for x, 6 there. Let (\; : i < k)
be an increasing sequence of regulars with limit p such that (J[A;, <j) has true

cofinality A, (ol : a < \) witness it.
We choose (02 : a < ) listing F as in (x)5, so it is 6] T-free. Let oo =
(pr(oL (i), 02 (i)) : i < k). Clearly 0 € issp({oa : @ < A}) = 0 > T(6T)*+*.
We choose () : @ < A) be < j-increasing cofinal is some ( [] A?,<,) for some
<01
regular \? < y;, exist because (x1,J1) witness § € ©. Hence by 1.4 we have
d€issp({na :a < A}) = 0>0"0 >0f" Os5.17

Claim 3.19. If (A) then (B) where

1
o

(A) (a) J is a ot -complete ideal on Kk
(b) Fi C"u has cardinality X fori < o
(¢) p=p or ViO)([Fi C I A] ande <k = (A)? <

e<k

(B) there is F C "u of cardinality X such that:
(a) F is (02,01) — J-free when at least one F; is (61, 02)-free
(b) F is (0n,00) — J-free when 6y < ... < 6, and for each £ < n for some
i < o the set F; is (0p41,00) — J-free.

Proof. Straightforward. Os.19
We may note that (related to the beginning of §3)
Observation 3.20. Claim 3.2 implies Claim 3.1.
Proof. We assume ® from 3.1 and let 6, = 0 = 0,0 = (29)*, Jo = Jpd and prove
that ®’ of 3.2 holds, this suffices.
Clause ®(a) holds by clause ®(a).
Clause @’ (b) holds by clause ®(b).
Clause ®'(c) holds as we have chosen Jy as Jp4.
Clause ®'(d) holds by clause ®(f).
Clause ®'(e) holds by clause ®(e).
Clause ®'(f) holds, moreover ®'(f)(«) holds and we have chosen 6; = 6 and
Jo = Jp4d and by ®() the cardinal 6 is regular.
Clause ®'(g) holds by clause ®(g), i.e. letting 7 be as there, without loss of
generality 7 is a subtree of >y and we can find pairwise distinct 7, € limgy(T) C x
50 N € Ox and a # B = {i < 0 :0a(i) = 15(i)} C Lg(na, mp) € JP4 = Jp by the
choice of Js.
Clause ®’(h) holds by the proof of () inside the proof of Claim 3.1.

Clause ®’ (i) holds, moreover clause ®'(i)(a) holds because o = (2°)* > P(0) >
[P(6)/ 2] Us.20
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Remark 3.21. In the proof of (x); inside the proof of 3.1 we may wonder.

Question 3.22. What occurs if we just assume

® ppj () > x?
Answer:

Claim 3.23. Inside the proof of 3.1 there is p as in (x)1 provided that we add to
the assumption:

(1) at least one of the following holds:
(o) x is regular

(B) 2% <cf(x)
() a<p=laf~F <p.

Proof. By the assumption ®, for every regular x1 € [u, x] we get A, and subse-
quence i, of i and 7,, as above.

Now we use clause ®(7), so one of the three possibilities there holds. The first
say x is regular, and we choose x1 = x so using iy, p, we are done; and without
loss of generality we assume Y is singular.

The second says cf(x) > 2% hence for some i’ the set Z = {x1 < x : x1 > p
is regular and fi,, = i’} is unbounded in x and using the (p,, : x2 € E) by the
proof of [?, Ch.II,1.5A,pg.51], i.e. using a pairing function on each p there is a, p
as required in (*)1, replacing i by ', of course.

The third says a < p = |a|<" < u, so without loss of generality i < k = p; =
py". Now for every regular x1 € (p,x) we define g, = (o}, ., : v < x1) where

Priy € 11 1, yes using the original fi, is defined by pl, (i) = hi({px,7(J) 1 J <
1<K

hy, (1)) where hy, (i) = min{e < k : Ay, > n;} and h; is a one-to-one function
from TI{\y, ; : j < hy, (4)} into p;.

Recalling .J; 2 JP9 clearly (p), ., : v < x1) is (uT, J1)-free as a set, and we finish
as in “the second”. So we are done. O3 .03
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§ 4. ON THE p-FREE TRIVIAL DUAL CONJECTURE

We shall look at the following definition.

Definition 4.1. 1) For a ring R and a cardinal p, let sp,,(R) be the class of regular
cardinals x such that there is a witness (G, h) where “(G, h) is a witness for sp, (R)”
means:

® (a) G=(Gi:i<k+1)
(b)(a) @ is an increasing continuous sequence
(8) G, is aleft R-module, free for i # &
¢) ifi<j<rk+1and (i,j)# (k,k+ 1), then G;/G, is free,
d) his a homomorphism from G, to R as left R-modules,
e) h cannot be extended to a homomorphism from G411 to R,

) G| <

2) For a ring R and cardinals p > 6, we define sp, ¢(R) = spL,G(R) similarly,
replacing “free” by “O-free” in clauses (b) and (c). Writing sp,(R) or sp<,.¢(R)
means that “|G.41| < p” in clause (f).

Definition 4.2. 1) Let sp(R) = U{sp,(R) : p a cardinal} = {x : s is a regular
cardinal such that for some G the conditions ®(a) — (e) from 4.1(1) hold}.

2) Let sp1(R) = N{sp}(R) : 0 a cardinal} where spj(R) = {k :  is regular such
that for some y, we have k € sp, o(R)}.

(
(
(
(

The next definition is similar to 4.1 (adding the parameter “r € R”), but replacing
the cardinal x by a set of ideals on &, that is:

Definition 4.3. 1) Let sp3 ,(R) be the set of cardinals « such that J>* € SPy o(R),

see below.

2) SPy¢(R) is the set of ideals J on some & such that for every r € R\{0}, there

exists a witness (G, h) (for r), where “(r, G, h) is a witness for SP ¢(R)” and (G, h)

witness SPy ¢(R) (for r)” means that (r, G, h) possesses the following properties:
® (a) G=(G;:i<k+1)is asequence of (left) R-modules,

b GK:@{GZ'ZZ'<FL}§GH+1,

if u € J, then Go11/ @ {G; : i € u} is a O-free (left) R-module,

G; is a O-free R-module and G; # 0 for simplicity,

c
d
e

f

|Get1] < A and k < A (follows in non-trivial cases)

AAA/_\/.\
~—

h is a non-zero homomorphism from G, to gR, i.e. R
as a left module,

(9) there is no homomorphism A" from G,41 to gR such that
z € Gy = hT(x) = h(z)r.

3) Omitting # means replacing “f-free” by “free”; omitting 6 and A means for some
A; writing “< A\” has the obvious meaning.

Observation 4.4. 1) If J; C J, are ideals on « then J; € SP)(R) implies
Jo € SP)\yg(R).

2) If J; is an ideal on sy for £ = 1,2 and J; <grk Jo then the above holds.

3) If G is a left R-module, A a homomorphism from G to R (as a left R-module)
and r € R then the mapping « — h(z) - r is a homomorphism from G to R.

See https://shelah.logic.at/papers/898/ for possible updates.
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Proof. Straightforward. a

Remark 4.5. 1) Note that if R is a torsion free ring (i.e. ab=0r = a = 0gVb = 0;)
then clause (g) of Definition 4.3 holds also for » = 1. If in addition every left ideal
of R is principal then without loss of generality r = 1.

2) In 4.3(2), if » is regular for J = JP4, we may replace clause (c) by “i < k =
Gri1/(®{G, : j < i}) is a O-free R-module”; in general, we may replace J by a
directed subset of P(k) generating it.

3) Note that if J € SPyg(R) then A > |R| because by clause (c) of 4.3(2) we
know that G,; is O-free hence is of cardinality > |R|, (except when G,; is zero
contradicting clause (g) there) and A > |Gy41]| by clause (e) there.

Asin 0.1

Definition 4.6. Let TDU, ,(R) mean that R is a ring and there is a p-free left
R-module G of cardinality A with Homp (G, R) = {0}, that is, with no non-zero
homomorphism from G to R as left R-modules.

Claim 4.7. A sufficient condition for TDU, ,(R) is:

® (a) R is a ring with unit (1 =1g)
(b) J €SPy . (R) sois an ideal on k
(¢) C={Cs:6¢€8) is such that otp(Cs) = k and C5 C & where S
is an unbounded subset of A
(d) A >|R|+ x is regular, or at least cf(\) > |R|+ x + k and p > &
(e) BB(\C,Y,J) where T = 2T < (2X)T and x < A\, so
L. = J89 recalling J24 = {U : U C S and sup(U) < sup(9))}
(f) C is (u,J)-free; recalling 1.2(1A).
Remark 4.8. 0) See more in Definition 4.14 on. B
1) In the present definition of SPj ¢(R), we need to use BB(\,C, T, J) before ap-
plying SP in 4.7. But normally it suffices to have a version of BB with fewer colours
and weaker demands on |G;|, for example:

(A) Use BB(\,C, (xx,0),J) and x. = II{|R
sup{|Hom(G;, rR)| : j < Kk}
(B) We define SPy 5.0,0(R) as in Definition 4.3(2) where y = (x; : ¢ < &) and
write x if (Vi)(x; = x) but instead of clauses (e) and (f) + (g)
(e) |Gr+1] < A and |[Hom(G;, R)| < x4,
(f) h=(h; :i < o),h; € Hom(Gy, rR) and if i < j < o, then h; — h;
cannot be extended to any ' € Hom(Gj41, rR),
(C) In Definition 4.7, we change
(b) K € SPy .00 or (C is tree-like, k € SP) .00 and J € SP) ;.50 is an
ideal on k)
(e)) BB\, C,(x,0),J).

2) BB(\,C, (x,1/0),J) is sufficient for the correct version of 4.3, see Definition
0.7(2); really we need there to use § = 2" and the guessing is of an initial segment
of the possibilities, i.e. in 4.3 we need: without loss of generality |G;| < k for every
i, given f. € Hom(Gy, grR) for ¢ < e(x) < 2% we can find, e.g. a permutation 7

Xi ;4 < K}, where x; = |Gy|+
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of k, inducing GT 2 ®{G; : i < k} such that none of them can be extended to
f € Hom(GT, gR). This means we can use “very few colours” as in [?, AP,§1], i.e.,
0.7(2A).

3) See ® in §0.

4) We may use only tree-like C’s (in 4.7(c)) and in BB(\, C, (x,0),J) (in (C)(e)
above).

5) In the proof of 4.7, if we demand that G;(i < k) is a free R-module, then we can
save on X, using free R-moduels G%’s.

6) The beginning of the proof can be stated separately.

Proof. Without loss of generality C' is normal, see 1.2(5). By the definitions 0.5,
0.7 of BB(\,C, Y, J), there is a sequence (S. : € < \) of A pairwise disjoint subsets
of § = S(C) such that BB=(\,C | S, Y, J) holds for each e < \.

Without loss of generality § € S = Cs NS = 0, moreover S is a set of limit
ordinals and each Cj is a set of successor ordinals and we let C,, = U{Cjs : § € S}°.
We say that D is C-closed when D C C,US and § € DNS = Cs C D. So for every
B’ C C,US there is a C-closed B” C C, U S such that B’ C B” A |B"”| < |B'| + k.
We can put A of the S;’s together, i.e.

B we can replace (S; : i < A) by (U{{S; : i € U} : ¢ < A}) provided that
(Ue : ¢ < A) is a partition of A with each U non-empty).

Also

B we can replace (C5 : 6 € S) by (C5\h(d) : 6 € S) when h is a function
satisfying § € S = h(d) € Cs,

hence without loss of generality

B3 (a) e<AAS CS.A|S]<A= BB (\,C[(S:\9),7,J)
(b) if @ < X then for A ordinals ¢ < A we have
0 € S. = a < min(Cy).
Note that we have
®0 x > |R|+ k and X\ > 2X.

[Why? We have x > |R| because SP, ,(R) # 0 by clause (b) of the assumption,
using 4.5(3). The “and” holds as A > T by the first phrase of clause (e) of the
assumption and Y > 2X by the second phrase of clause (e) of the assumption.|

®1 There is a pu-free R-module G, of cardinality x. := (2X)* such that
(@) Gi = ®{Gsr e < Xu},
(b) if G is a p-free R-module of cardinality < x, then G is isomorphic
to Gu for x. ordinals € < x., (actually we need just that for any
r € R\{Og} there is a sequence (G; : i < k + 1) satisfying ® of
Definition 4.3(2) with x, u here standing for A, there),

(¢) Gy is a p-free R-module of cardinality < x for each € < x..

6Why? Replace S by 8’ = {6 € S : § a limit ordinal} and replace Cs by Cs:={a+1:a€ S}
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[Why? Because the number of such G’s up to isomorphism is < 2/%+X = 2X and
5 < (29 = X

Let E = {(c,¢) :6,( < x« and G, . = G, ¢}, so E is an equivalence relation on
X+ and e/F := {¢ < x« : €eEC} is the equivalence class of ¢ < x, under E. For
£ < Xx, let f1 be an isomorphism from G min(e/E) Onto Gy e

®2 For any r € R\{0} let x, = {(G,h) : (G, h) witness J € SP, ¢(R) for r,
see Definition 4.3(2)},
®3 Hy :=@P{G,:aecC.} e P{K; :6 € S}, where
e, each G is isomorphic to G, under gl,
e, K} isomorphic to G, for § € S under g7 and
o3 for e < xu let Goe = gL(Gir), K5 = g2(Gic)

@y let K5 = &{G% : a € Cs} for § € S, which has cardinality y. as £ < x«
by clause (e) of the assumption

@5 forevery B C C,US let Hg := P{G}, : o € BNC,}dP{K; : 6 € SNB}.
We easily see that

®¢ for every x € H, there is a C-closed set D; C C,US of cardinality < s
such that z € Hp:, in fact there is a minimal one.

®7 (a) ((mi,r) 4 < A) list the pairs (z,7) such that x € H,,r € R\{Ogr}
(b) by ®¢+H3 without loss of generality 0 € S; = sup(D},) < min(Cs).

Let
®s Hep :=®{G%, K} :feCinNaand § € SNa}l.

For 6 € S let 3(6,¢) be the t-th member of Cs.

As § € S, clearly Hom(K 4, gR) is a set of cardinality < 2%+ = T. Also any
f € Hom(K<s, rR) is determined by (f | G : o € Cs). Hence by clause (e) of
the assumption, for each i < A\, we can find (h} : 6 € S;) such that

®9 (a) if 6 € S;, then h} € Hom(K.s, pR)

(b) ifi<Xandh € Hom(H,, gR), then for some (even stationarily
many) & € S;, we have h} C h

®10 for § € Si, let
(a) x5 =x5,75 =1
(b) let N° = (N? : 1 < k+1) and h be, for 7%, as guaranteed in Definition
4.3(2), with N? here standing for G; there, so h} € Hom(N?, rR)
(c) for v < K, let €(0,1) = Min{e < xx : Guc = N2} and let fgL be an
isomorphism from N? onto Gie(5,)-

[Why is this possible? By clause (b) of the assumption.]
Now
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®11 for 0 € S; and ¢ < k we can choose €5,1 < €5,2 < Xx from Y =Y;, =
{¢<xs: G*,e(ﬁ,L) = Gi,C} such that h}; Ogé(ﬁ,b) © ffl&,L.l © ft(s),b = h}; ogé(é’b) ©
1 50 '
€5,0,2 8,1
[Why? Note that min(Y) = £(d,¢) and
e h} € Hom(K_s, rR) hence hj [GE((S,L) € Hom(GZ(&L),RR)
o gé(é ) is an isomorphism from G, onto GZ((S ) hence h%ogé((s ) € Hom(G., rR)

1 see before ®2, is an isomorphism from G min(y) onto G . C G, for

eeY
(h} o gé([s O fl:e€Y)is asequence of members of Hom (G min(v)s RR)

Hom(Gs min(y); rIR) has cardinality < |R||Gxminn| < |G, | < 2XFIEI whereas
Y] = x. = (29)*.

Hence we can chose 5,1, €5,.,2 such that

® €51 < £5,,2 are members of ¥ satisfying hj o g5, 0 f2,, , = h5 © ghs, ©
1
€85,0,1°

So recalling ®19(c) the desired conclusion of ®;; holds.]
Let gg,L be the following embedding of N? into H,, in fact, into G;;((; 2 (recalling

fgL is an isomorphism from N? onto Gy min(y)):
()0 92,(2) = Ghany 0 S0 0 S0, (8) = ghsy o f1 0 f2, (@) for @ € G2,
Let g3 be the embedding of N7 into H, extending g3, for each ¢ < , so
(*)1 (a) g3 is an embedding of N? into K5 C H.,
(b) h} | Rang(g}) is zero.
Let g4 be the following homomorphism from N, 9 into H,
(*)2 gi(x) = g3(a) + hj (@)} for @ € NE.

[Why? Recalling x5 € H_s is from ®19(a), hi € Hom(N?, rR) is from ®10(b) so
hi(z) € R hence hj}(x)x} € H, indeed.]

By the choice of Hes as 0 € S; = 25 = x; € Hpx € Hopin(cs) € Hes using
®7(b) clearly

(¥)3 g3 is an embedding of N? into H_s.
So by (*)1 + (%) we have

(%)4 if h is a homomorphism from H into gR where K5 C H C H, such that

ht C h Ah(xf) =7}, then: € N° = h(gi(x)) = hi(z)r}.

Let a, < X+ be such that G, o, = N2, and let fgﬁ be an isomorphism from
N2, onto G, ay, , and recalling ®s, o5 it follows that gj o f7, embeds N2, into
K; C H, hence letting f}, = f7,.IN] we have g} o f}, — g3 is a homomorphism

from N? into H, (actually an embedding).
Let
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(*)5 Ls = {95 © f3.(x) — g5 (x) = € N}}.

Clearly Ls is an R-submodule of H,. Now by the choice of (N° 7%, h%) we shall
show:

() there is no homomorphism h from H, into gR such that h}; C h and
h(z}) =r} and h | Ls = 0r, that is constantly zero.

[Why? Toward a contradiction assume h is a counterexample
@®6.1 if z € Rang(g}) then x € K5 and h(z) = h}(z) = 0.

[Why? Note Rang(gi) € Ks hence © € K5 by (x)1(a),h 2 h} by the choice
of h and Dom(h}) = K s by ®g(a) hence h|Rang(g?) = h}[Rang(g3). So as
z € Rang(g}) by the assumption of @¢1, clearly we have h(z) = h}(z). But
h}IRang(g3) is constantly zero by (x)1(b) and € Rang(gg) so h}(z) = 0, so we
are done.]

®e.2 @ € N = h(gj () = hj(x) -1}

[Why? The assumptions of (x)4 say that h} C h™ A h(z}) = 7} which hold by the
assumption of (x)g, but the conclusion of (x)4 is what we claim in ®g.o.]

@e.3 if w € N} then h((g] o f3,.) (%)) = h(g5(@)).

[Why? As (in (%)g) we are assuming h|Ls is constantly zero and by the choice of
L5 in (*)5}

@e.4 if 2 € N} then h((g5 o f3,.)(2)) = h(g;(x)).
[Why? As fén C fgm see after ()4, and @g 3.
@5 if € N then h((g3 o f7,.)(x)) = hj(x)rs.

[Why? By ®6.2 + ®6.4.]
Recalling g2 is from ®3 and fgﬁ is from after ()4

@ define h' : N2, | — pR by W (x) = h((g3 o f3,.)(x)).
@67 (a) I is indeed a function from NJ,, to rR
(b) moreover it is an R-module homomorphism.

[Why? As f7, is a homomorphism from N¢; into G, 4, and g3 is a homomor-
phism from G, 2 G*_VQM into H, and h is a homomorphism from H, to pR.]

@68 h' extends the mapping = +— hi(x) - rs for z € NO.

[Why? By ©6.5.]
Now @7 + 6.3 contradicts the choice of hj,r} in ®19. So (x)¢ indeed holds.]
Lastly, let

(¥)7 (a) L:=3%{Ls:d € S}, asub-module of H,
(b) H:= H,/L, a module of cardinality A.

So
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(x)s Hom(H, gR) = 0.

[Why? Assume h € Hom(H, grR) is not constantly zero, so we can define h™ €
Hom(H., rR) by h'(z) = h(z + L) hence also h* is not constantly zero. Let
x € H, be such that h*(z) # 0, so for some i < X\ we have (z;,7;) = (z,h"(x)).
By the choice of (h} : § € S;) the set {6 € S; : h | K<s = h}} is unbounded in A,
so for some § € S; we have:

®s1 hIKo5 = hj,
and by (x)g we are done as h™ [ Lg is zero.|

(%)9 H is a p-free R-module.

[Why? Let H' C H be of cardinality < u. So for some H? C H, of cardinality
< p, we have H* = {x + L : z € H?}.

So H! C (H%+L)/L, and clearly for some C-closed set B C C,US of cardinality
< p (see before @) we have H?> C H3 := Hp, see ®;. So because {Hp : B C
C. US,|B| < u} is cofinal, and it is C-closed (inside [C, U S]<#, clearly it suffices
to prove that (Hp + L)/L for C-closed B € [C\ U S|<H.

By clause (f) of the claim’s assumption there is @ = (us : § € BN .S) such that
us € Jand 01 # 02 € BNI A1 € (K\ug,) A2 € (k\us,) = B(di,t1) # B(d2,12)
recalling C' is normal. The rest should be clear.]

By (%)7 + (x)s + (x)g we are done. Oa7

Claim 4.9. 1) In 4.7 if u = X, (i.e., for C the cardinality and degree of freeness
coincide, naturally in clause (b) we have J € SPy(R)) we can also deduce A\ €

spa(R).
2) In 4.7, it suffices to assume
@ asin ® of 4.7 omitting (d) and strengthening clause (b) to
(b)" Kk €spcy (R), see Definition 4.1
(e)  like (c) but C is tree-like, that is, o € C5,NCs, = Cs, N = Cs, Nav.
Proof. This should be clear. Oag
Claim 4.10. 1) For R = 7Z, we have
(a) JRY belongs to SPy,(R)
(b) J}@f belongs to SPy, (R)
(c) JR%y, belongs to SPy, (R)
(d) if 2% =Ry or 2™ < 2% then JRY belongs to SPy,(R)
(e) if 280 =Ry or 2% < 2% then JR,\ belongs to SPy,(R).

2) Similarly for R a proper subring of Q.

Remark 4.11. 1) If we want the proof of TDU,, to be more direct, we have to add
Hom(Gy+1/Gy) = 0, otherwise we have to “iterate”.

2) Claim 4.10 does not seem new but we could not find a direct quote. Clauses
(b),(c) follows essentially from [?] and clauses (d),(e) are the parallel for Ry instead
of Ny; we can continue for higher N;’s inductively.
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3) This is closely related to “G is derived from F”, see 1.9.
4) Can we use this to prove TDUy x_, (Z) for some A? Can we do it assuming CH?
Can we do it assuming there k < w such that 2% =N, for £ < k?

Proof. Proof of 4.11

For part (1) let R = Z and a € Z be a prime, a,, = a (or we can use, e.g.
an = nl), for part (2) let a € R be a prime such that 1 ¢ R and a, = a; but we
could use any (a, : n < w) such that a, R C R. We have to check Definition 4.3.
Note that here the r in Definition 4.3 is without loss of generality, see Remark

4.5(1).

Clause (a):
Let G, 41 be the abelian group generated by {x,,y, : n < w} freely except for
the equations

Bi anyn+1 = Yn — zp for n < w.

Let G,, = Rx,, and G, = ®{Rxy : k < w}.

Letting a<, = [] a¢ so that ap = 1, we have Gu41 F Gc(ne)¥ns1 = Yo +

I<n
> acpry. We now define h € Hom(G,,, R) by choosing h(z,) by induction on
<n
n so that: if b € Z and r € R\{0} then for some n, computing in Q, the sum
r(b+ > aceh(zy)) is not in ac(n41)R, i.e. not divisible by ac(n41) in R. In fact
<n

the set of sequences (h|z,| : n < w) € “Z for which this fails is meagre.

Clause (b): Let 7, € “2 for a < wy be pairwise distinct. Let Gy, +1 be the abelian
group freely generated by {x; : i < wi}U{y, :n €72} U{z0n :a <wi,n <w}
freely except for the equations

By anzant1 = Za,n = Ynaln — Twatn 0 a <wi,n < w.
For a < wy let Gy := Rz, and G, = ®{Rzpg: B < w1}
Clause (c): As in clause (b) note that for A € J we let G4 = P{Rzwa+n : (a,n) €
A}
Clause (d):
For each oo < wq let (0a.e : € < wi) be a sequence of pairwise distinct members

of “2. Let (V4 : @ < ws) be a sequence of increasing functions from w; to wy of
length w; such that for all @ < f < ws for some ¢ < wy; we have {v,(¢) : ¢ €

e, wi)} N {ws(Q) : C € [e,w1)} = 0.
Let Gy,+1 be the R-module generated by

X ={20en @ <ws,e<wp;,n<w} U{yc:{<w}
U{Za,p:a <wz, o€ 2} U{ty: a<ws}

freely except for the equations,

EBB AnZa,en+1l = Raen — Yug(wetn) — La,oa,eln — twlaerern for o < wa,€ <
wi,n < wp.

For a < wy let Gy = ®{Rig: f € [wia,wia+w1)} and Gy, = D{Go : @ < wa}.
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Bs Gu,+1/Guw, is No-free.

Why? Let H, = &{Ry. : ¢ < w1} and for o < wy we let H, be the subgroup of
Guyt1 generated by G, UH, U {240 1€ <wi,n <w}U{Zq,:0€“”2}.

For @ < wq let Heo = E{Hp : f < a}. Then clearly G,,+1 = Hc,, and
(H<o : @ < ws) is C-increasing continuous. Hence it suffices to prove for a < Ry

Bit H.,/G,, is free.

Why? Without loss of generality a > wy, let (8(&) : € < wy) list {8 : 5 < a} with no
repetitions. We can easily find a sequence ¢ = ((s : 3 < «) such that the sets Us :=
{vg(e) : € € [{g,w1)} for f < «a are pairwise disjoint. Without loss of generality the
ordinal power w* divide (g for every 8 < w; and we let U = w1\ U{Up : B < a}.
Moreover, without loss of generality & < & = Rang(vg,)) N {vae,)(€) : € €

[Ca(a)s 1)} = 0.
For £ <wy let H, ¢ be the subgroup of H., generated by

Guy, U{zyen:ve{B((): (<&} ande <wi,n<w}

U{y, vy eU}

U{yo, () : € € [¢,R1) for some v € {B(() : ¢ < &3}

U{zy v €{B({): ¢ <&} and p € “72}.
S0 Guw, € Ho o = P{Ryc : ( €U} DG, hence H, /G, is free; also Hy o, = Heq
and (H, ¢ : & <wp) is C-increasing continuous. Hence it suffices to prove, for each
¢ < wi, that Hy e41/Ha ¢ is free. Let H&7£ be the subgroup of H, ¢41 generated
by HaeU{zp(e),,: 0 € “72} Now Hoe C H], o C Hygy1. It is easy to see that
H|, ¢/Hq is countable and free.

Also Hog1/H,, ¢ is free, in fact {25(¢) cn + Hae 1 € € [(ae),w1),n < w} is a

free basis. Putting those together H2:! holds hence H, is true.

Bs some hy € Hom(G,,,, R, R) has no extension he € Hom(Gy,,+1, rR).

Why? For o < ws let wey = {tw,ate € <wi}and Yo = {yp, () 1 € <wi}.
For £ = 1,2 let K’, be the subgroup of G, generated by:

o {ypc:e<wifwhen{=1and y, . =y, () +tw ate
{Tap:ipe®”2bU{y, .16 <wi} for £=2

¢ {Zaenie<win<whU{za,:p€“ 2 U{y,. e <wi} when {=3so0
e K] CK2CK2CGyyi-

Let LY, = Hom(K’,Z) for £ =1,2,3.
Let Lo, = {fIK.: f € L3}. Clearly L, is a submodule of L. As in the proof
of clause (b), L, ¢ L1, see [?], [?]. Let uy = u(a) = Rang(v,). We now define a

function F, : U R — L. /L, as follows: for f € “® R let g; € Hom(K}, gR) be
defined by g5 (v, .) = f(va(e)) and then Fo(f) = g5 + Lo € L,/ Lqo. Obviously

(¥)s.1 F, is a homomorphism from “(*)R onto L} /L.
Now consider

*)5.0 it suffices to find §* = (¢° : o < ws) such that g& € L! and for every
g Yo [ o
f € “1R for some o < we we have Fo(flua) # g5 + La.
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Why is (%)5.2 enough? Let f, € “()R be such that F(fs) = g% + Lo. We define
ho € Hom(G,,, R) by:

(%)5.3 ho(twate) = —fa(Va(€)) for a < we, e < wy.
Toward contradiction assume hy € Hom(Gy,+1, R) extends hg. Define the func-
tion f : wy — R by f(¢) = h(y.). Now for each a < wa, clearly ho|K} €
Hom(K}, rR) = L} but K} C K2 C G,,+1 hence by the choice of L, we have
halKL € L.

Now let fi, = flua € “9R so fL(va(e)) = ha(Yu.()) for ¢ < wi. Recall
that € < w1 = —fa(Va(€)) = ho(tw,ate) = ha(twiate) by (¥)5.3 and by he D hg
respectively. So f/ := f" — fo € “®) R satisfies f/ (va(c)) = £, (Va(€))+ fa(vale)) =
ho (Y. (e)) — h2(tw ate) = ha(yl, ), henace gyy = he[ K, which (as we said above)
belongs to Lq. It follows that gy — gy, € Lo that is Fo(f,) = Fa(fa) € L3/LL,
hence by the choice of f, above, Fo(f) = g% + La, but f/, = fluq.

As this holds for every @ < ws, the function f contradicts the present assumption

that (g7 : @ < wy) are as in (*)5.9, so there is no hy as above, hence indeed it suffices
to find

e §* asin (*)5.2.
Why does such g* exists? The proof splits into cases.

Case 1: 281 < 2X2
By renaming without loss of generality :

O Wug :a <wa} =ws.
We note that {(Fo(flua) 1 @ < ws): f € “1R} is a subset of [[ LL/L, but the

a<ws
former has cardinality < |R|®* < 2%t and the latter has cardinality > 282 (actually
equal) but we are assuming 2% < 2%2 in the present case, so indeed we can find
(9o s ¥ < w32) € [] Lo which is # (Fo(flua) : @ < wa) for every f € “'R.
a<w?z

Case 2: 280 =¥,

Without loss of generality po.. = pe for o < wg, e < wy.

Now choose 7 such that:

O1 (a) 7={vy:a<ws)
(b) V4 :wi — wy is increasing
(¢) if B < a < ws then for some £ < wy we have v, [(we + w) =
vgl(we + w) but v (we + w) # vg(we + w)
(d) if o # B then Rang(v,) N Rang(vg) is countable.

[Why? E.g. choose v, by induction on & < ws so that Rang(v,,) is a non-stationary
subset of wy and the relevant parts of (a)-(d) hold.]
Now choose h, such that

®2 (a) hy:“'7"2 YR
(b) let hY :“1>2 — R for n < w be such that h.(v) = (R} (V) : n < w)
(c) ife<wi,o0€®t2 0, =v"(f) for £ =0,1 then the following set of
equations is not solvable in R
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® anznt1 = zn — (hi(01) — hi(00)) for n < w.

This is as in the proof of case (b).
Now we choose hg satisfying:

®3 hg is the homomorphism from G, to gR such that
o ho(twatwern) = by (Val(w e +w+1)).

Now toward a contradiction assume that h € Hom(G,,+1, gR) extends hy. We
define a two-place relation F on wy by:

©4 aEpQ I
(a) valw=vglw
(b)  ha(ma,e) = ha(zs,,) for p € “>2.

Clearly E is an equivalence relation with < 2% equivalence classes, so in our case
N equivalence classes hence there are o # 8 such that aFf3. By ®1(c) there is ¢
such that v, [(w-e+w) =vgl(w-e+w) and vy (w-e+w) # vg(w- e +w). Without
loss of generality v,(w-e+w)=1and vg(w-e+w) =0.

For each n, consider the equations in Hs for (a,e,n), (8,e,n); apply he and
subtract them. The A(y,, (wetn)) = P(Yus(we+n))’s cancel by the choice of e. Also
the ho(za,o.1n) — ho(28,0.1n) cancel because aEfS.

Lastly, by the choice of hg recalling hg C hg we have ha(tw,.atw-etn)—P2(tw, ftwetr1) =
hf(Wallw-e+w+1) — hi(vgl(w - e+ w+1)). Hence the substitution z, —
ho(Za,e,n) — ha(28,e.n) solves the equations in ®q(c) for

o 01 =Vul(w-e+w+1),0=v3l(w-e+w+1).
So we get a contradiction to ®2(c)

Clause (e):
As in clause (d). Ua1a

Conclusion 4.12. 1) TDU, holds, when BB(\, p, 2(2N1)+, J), where J € {J}jg‘, Jblz)?*&o}
and cf(\) > Ny.
2) Similarly for BB(), u, (2Pom(/) gPom(1)) 1),

Proof. 1) By 4.7 and 4.10.
2) Similarly by 4.15 below and 4.10. U410

Remark 4.13. 1) The number, 2(2")" of colours is an artifact of the proof. Actually
2 and even the so-called “1/6 colours” (as in [?, Ap,§1], 0.7(2)) should suffice, see
4.5.

2) See 1.8. But we can quote in §0 cases of BB with 2 instead of 34 or just 22" )"
colours.

We can get more than in 4.7.

Definition 4.14. For cardinals A,0,0 for ¢« € {0,1} let SPi}fU(R) be the set of

ideals .J on some x such that for every 7 € R\{0} some pair (G, h) witnesses it for
r where “(G, h) witness SPi";ﬁo (R) for r” means:

® (o) G={(G;:i<k+1+0)is asequence of R-modules each of
cardinality < A
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(b)) Ge=&{G;,:i<k}and (<o =Gx® rR C Guyi4c¢
(¢) ifwueJand (<o, then Guyiye/ & {Gi i € u}is a O-free
left R-module
(d) G, is a O-free left R-module (for i < k hence for i <k + 1+ o)
() h={(h¢:(<o)and h¢ is a homomorphism from G, to pR
for (<o

(f)o if ¢ =0 for every homomorphism h from G, to gR thereis ( < o
such that

e 1o homomorphism At from Gi14¢ to pR satisfies”
z € Gy = h(x) = h(z) + he(z)r
(f)1  if ¢ =1 then for every homomorphism h from G, to gR there is
€ < o such that for every ¢ < o,( # ¢ we have

e the same as e from above.

Claim 4.15. A sufficient condition for TDUj ,(R) (i.e., there is a p-free left R-
module G of cardinality X with Hompg (G, R) = {0}) is ®¢ and also ®; where:

®o (a) R is a ring with unit (1 =1g)
(b)) Je SPi)97U(R) is an ideal on K
(¢) C=(Cs5:6€S8) is such that otp(Cs) =k and Cs C §
(d) X>|R|+ x is regular or at least cf(\) > |R| + x and p > K
(e) BB, C,(2IFI+X g),.J), see Definition 0.5(1)

(f) C is (u,J)-free (but see 1.8)

@1 similarly replacing clauses (b), (e) by (b)', (e)" where
(b)) J €SP} 4,(R)
(e) BB\ C, 214X 5) ), see 0.5(2).

Proof. Assuming ®,, the proof is similar to the proof of 4.7 with some changes.
First of all, instead of ®; we use

®} let (G™,h") witness Definition 4.14 for » € R\{0}
®) G, is a pu-free R-module and for some ordinal e(x) < |R| + k
(a) Gi = P{Gs € <e(x)}is a pu-free R-module G, . of cardinality < x
for e < e(x)
(b) if r € R\{0}, then for some sequence G" = (G : j < K+ 1+0) as in
4.14 we have: if j < r then e(x) = otp{e < e() : Gj =Zf: G} hence

(¢) |Gsl < x+r+|R]

Secondly, after ®s we choose (ns : § € S;) such that ns € "e(x) and j < kK =
G ~ G
J

*,M6 (]) =
Thirdly, we choose (¢} : § € S;) such that:

®g.1 (a) G <o

Tthe computation “h(z) + h¢(x) -r” is in the ring R.
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(b) if h € Hom(H,, rR), then for unboundedly many ¢ € S; we
have: ¢§ #ci(h | U G%) - see below
aeCys
®g.2 for d € S; and h € Hom(K <5, pR), we define c}(h) to be the minimal ¢ < o
satisfying QE,C below, and zero if there is no such ¢

@f ¢ thereis f € Hom(G}', ., rR) such that:
(@) f(z) =i,
(B) if j <k, then z € G} = f(x) = h(f, ;(x)).
The rest is similar. U5

Conclusion 4.16. Assume that JP4 € SPy 4 (R) and K, < k,qq1 for n < w.

K XW
Then, for some A, for every large enough n, TDU, ;+w+1 holds.

Remark 4.17. If we use [?], then we need ¢} k,, is strong limit” but instead we use
n
[7].

Proof. We shall use 4.7 freely.
Let 1 € Cy, be greater than A, for each n, and let 0,, < p1 be large enough.

Case 1: There is N such that N < 2# < 2%’
Then we can apply 2.7 getting even a p*-free Abelian group.

Case 2: 2" is singular or just there is a ut-free F C “u of cardinality 2*.
By 0.9(2).

Case 3: Neither Case 1 nor Case 2.
By Theorem 1.22 A = 2# = A<* and \ = tcf( [ A, < jpa) for some regular

m<w
Am < p increasing with m < w and let (fo : & < A) exemplify this. Let Sgq = Sf;d
- see 1.25 and Sg; = {0 € Sga : cf(d) > Vg and § is divisible by p}.
For each n < w,d§ € S, = Séd N S,i‘n, let Cs,,, be a club of  of order type &, and
let

Cy ={pn“+ns(n):a € Cs and n < w}

So (C§ : 0 € S§) is a strict (A, kp)-ladder system, i.e. otp(Cy) = k,CF C 5 =
sup(Cf). By 1.26 we know that C™ is (k" , JF | )-free (see Definitions 0.3(3)

s Y Xw

and 1.2). Now by [?, 1.10], [?, 3.1] it follows that for every n large enough, we have
BB(A,C™, (X, 0.), kn), where 0, < u is large enough. U416

Conclusion 4.18. If the ideal J = JP4 belongs to SPy ,(R) then TDU,, holds.
Proof. Left to the reader. 018

Remark 4.19. Now we can check all the promises from §0.
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