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Abstract. We deal with some pcf (possible cofinality theory) investigations

mostly motivated by questions in abelian group theory. We concentrate on ap-
plications to test problems but we expect the combinatorics will have reason-

ably wide applications. The main test problem is the “trivial dual conjecture”
which says that there is a quite free abelian group with trivial dual. The “quite

free” stands for “µ-free” for a suitable cardinal µ, the first open case is µ = ℵω .

We almost always answer it positively, that is, prove the existence of ℵω-free
Abelian groups with trivial dual, i.e., with no non-trivial homomorphisms to

the integers. Combinatorially, we prove that “almost always” there are F ⊆ κλ

which are quite free and have a relevant black box. The qualification “almost
always” means except when we have strong restrictions on cardinal arithmetic,

in fact restrictions which hold “everywhere”. The nicest combinatorial result

is probably the so called “Black Box Trichotomy Theorem” proved in ZFC.
Also we may replace abelian groups by R-modules. Part of our motivation

(in dealing with modules) is that in some sense the improvement over earlier

results becomes clearer in this context.
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2 SAHARON SHELAH

Annotated Content

§0 Introduction, pg. 3

[We formulate the trivial dual conjecture for µ, TDUµ, and relate it to
pcf statements and black box principles. Similarly we state the trivial
endomorphism conjecture for µ, TEDµ, but postpone its treatment.]

§1 Preliminaries, pg. 11

[We quote some definitions and results we shall use and state a major
conclusion of this work: the Black Box Trichotomy Theorem.]

§2 Cases of weak G.C.H., pg. 22

[Assume µ ∈ Cκ, µ < λ < 2µ < 2λ moreover λ = min{χ : 2χ > 2µ}.
Then for any θ < µ, a black box called BB(λ, µ+, θ, κ) holds, which for our
purpose is very satisfactory.]

§3 Getting large µ+-free F ⊆ κµ, pg. 30

[The point is to give sufficient conditions for BB: see 0.9(2). Let µ ∈ Cκ and
λ = 2µ. We give sufficient conditions for the existence of µ+-free F ⊆ κµ
of cardinality λ, which is quite helpful for our purposes, as it implies the
existence of suitable black boxes. One such condition is (see 3.6): the
existence of θ < κ and χ < λ such that χθ = λ. Recall that by §2 assuming
λ < λ<λ suffices (for the black box). Now assuming there is no θ as above
so λ = λ<λ, by older results if θ = cf(θ) < κ ∧ χ < λ ⇒ χ<κ>tr < λ then
(D`)∗

Sλθ
, hence (D`)S for every stationary S ⊆ Sλκ .

In 3.1 we consider θ ∈ (κ, µ)∩ Reg and χ ∈ (µ, λ) such that χ<θ>tr = λ.
Here the results are less sharp. Also if λ = χ+, where χ is regular, then
this holds; see 3.12. We finish by indicating some obvious connections.

§4 On the µ-free trivial dual conjecture for R-modules, pg. 46

[We deduce what we can on the conjecture TDUµ.]
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§ 0. Introduction

§ 0(A). Background.

We prove some black boxes, most notably the Black Box Trichotomy Theorem.
Our original question is whether provably in ZFC the conjecture TDUℵω holds and
even whether TEDℵω holds where:

Definition 0.1. 1) Let TDUµ, the trivial dual conjecture for µ > ℵ0, mean:
there is a µ-free abelian group G, necessarily of cardinality ≥ µ, such that G has a
trivial dual (i.e., Hom(G,Z) = {0}).
2) Let TEDµ, the trivial endomorphism conjecture for µ mean: there is a µ-free
abelian group with no non-trivial endomorphism, i.e., End(G) is trivial (that is,
End(G) ∼= Z).

Much is known for µ = ℵ1 (see, e.g., [?]). Note that each of the cases of 0.1
implies that G is ℵ1-free, not free, and much is known on the existence of µ-free,
non-free abelian groups of cardinality µ (see , e.g., [?]). Also, positive answers are
known for arbitrary µ under, e.g., V = L, see pg. 461 of [?].

Note that by singular compactness, for singular µ there are no counterexamples
of cardinality µ.

By [?], if µ = ℵn, then the answer to TDUµ is yes, for the cardinality λ = in.
It was hoped that the method would apply to many other related problems and to
some extent this has been vindicated by Göbel-Shelah [?]; Göbel-Shelah-Strüngman
[?] and (on TEDµ, µ = ℵn) by Göbel-Herden-Shelah [?]. But we do not know the
answer for µ = ℵω. Note that even if we succeed this will not cover the results of
[?], [?], [?], [?]; e.g. because there the cardinality of G is < iω when µ < ℵω and
probably even more so when we deal with larger cardinals.

A natural approach is to prove in ZFC appropriate set-theoretic principles, and
this is the method we try here. This raises combinatorial questions which seem
interesting in their own right; our main result in this direction is the Black Box
Trichotomy Theorem 1.22. But the original algebraic question has bothered me
and the results are irritating: it is “very hard” not to answer yes in the following
sense (later we say more on the set theory involved):

(a) Failure implies strong demands on cardinal arithmetic in many iδ, (e.g. if
cf(δ) = ℵ1 then iδ+1 = cf(iδ+1) = (iδ+1)<iδ+1 and χ < iδ+1 ⇒ χℵ0 <
iδ+1 - see details below),

(b) If we weaken “ℵω-freeness” to (so called “stability” or “softness” and even)
“ℵ1-free and constructible from a ladder system 〈Cδ : δ ∈ S ⊆ Sλℵ0〉”, then
we can prove existence,

(c) Replacing abelian groups by R-modules, the parallel question depends on
a set of regular cardinals related to the ring, sp(R), see Definition 4.2 (so
the case of abelian groups is R = Z). If sp(R) is empty, there is nothing
to be done. By [?], if sp(R) is unbounded below some strong limit singular
cardinal µ of cofinality ℵ0 then TDUµ+ , see 4.16. Moreover, by [?], if
sp(R) is infinite, say κn < κn+1 ∈ sp(R) then by 4.16 again TDUµ for
every µ (by the quotation 1.18). Furthermore: (see 3.17), we prove that: if
ℵ0,ℵ1,ℵ2 ∈ sp(R) then the answer for R-modules is positive.
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4 SAHARON SHELAH

(d) Even if the negation of TDUℵω is consistent with ZFC its consistency
strength is large, to some extent this follows by clause (a) above but by
§2 we have more.

Obviously, e.g. clause (c) clearly seems informative for abelian groups; at first
sight it seems helpful that for every n there is an ℵn-free non-free abelian group of
cardinality ℵn, but this is not enough. More specifically this method does not at
present resolve the problem because for R = Z we only know that sp(R) includes
{ℵ0,ℵ1}, (and under MA it has no other member < 2ℵ0).

Still we get some information: a reasonably striking set-theoretic result is the
Black Box Trichotomy Theorem 1.22 below; some abelian group theory conse-
quences are given in §4.

A sufficient condition (see 4.12) for a positive answer to TDUµ is :

~0 TDUµ if BB(λ, µ, θ, J) when J is Jbd
ℵ0 or Jbd

ℵ1×ℵ0 , see 0.3, cf(λ) > ℵ0 and
θ = i4.

This work will be continued in [?] and also in [?] which originally was part of the
present paper.

Before we state the results we give some basic definitions.

§ 0(B). Basic Definitions.

Recall that

Definition 0.2. χ<∂>tr is the ∂-tree power of χ, i.e., the supremum of the number
of ∂-branches of a tree with ≤ χ nodes and ∂ levels.

Notation 0.3. 1) For a set S of ordinals with no greatest member (e.g. a limit
ordinal δ) let Jbd

S be the ideal {u : u is a bounded subset of S}.
2) For limit ordinals δ1, δ2 let Jbd

δ1×δ2 = {u ⊆ δ1 × δ2 : {α < δ1 : {β < δ2 : (α, β) ∈
u} /∈ Jbd

δ2
} ∈ Jbd

δ1
}.

3) For limit ordinals δ1, δ2 let δ3 = δ2 · δ1 and Jbd
δ1∗δ2 be the following ideal on

δ3 : {u ⊆ δ3 : {(α, β) ∈ δ1 × δ2 : δ2 · α+ β ∈ u} ∈ Jbd
δ1×δ2}.

Definition 0.4. 1) A sequence of non-empty sets C̄ = 〈Cα : α ∈ S〉 is µ-free
if for every u ∈ [S]<µ there exists Ā = 〈Aα ⊆ Cα : α ∈ u〉 so that the sets
〈Cα\Aα : α ∈ u〉 are pairwise disjoint and each Aα is bounded in Cα with respect
to a given order on Cα; in the default case “every Cα is a set of ordinals with the
natural order”.
2) We may replace µ by a pair (µ, J̄), where J̄ = 〈Jα : α ∈ S〉 and Jα is an ideal
on otp(Cα) so now “Aα bounded” is replaced by “{otp(ε ∩ Cα) : ε ∈ Aα} ∈ Jα”.
If Cα is a set of ordinals of a fixed order type γ(∗) and Jα = J for every α ∈ S
where J is an ideal on γ(∗) then we may replace the pair (µ, J̄) by the pair (µ, J).
In other words, instead of the demand “Aα is bounded in Cα” we require A′α :=
{otp(Cα ∩ γ) : γ ∈ Aα} ∈ J .

The definition of the assertion BB(λ, µ, θ, J) is as follows. (BB stands for black
box). The following is a relative of [?] (and see on the history there).
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Definition 0.5. Assume we are given a quadruple (λ, µ, θ, κ) of cardinals [but
we may replace λ by an ideal I on S ⊆ λ = sup(S) so writing λ means S = λ;
also we may replace κ by an ideal J on κ and writing κ means J = Jbd

κ ]. Let
BB−(λ, µ, θ, κ) mean that some pair (C̄, c̄) satisfies the clauses (A) and (B) below;
we call the pair (C̄, c̄) a witness for BB−(λ, µ, θ, κ). Let BB(λ, µ, θ, κ) mean that
some witness (C̄, c̄) satisfies clause (A) below and for some sequence 〈Si : i < λ〉
of pairwise disjoint subsets of λ (or of S), each (C̄ � Si, c̄ � Si) satisfies clause (B)
below, (thus replacing S, c̄ by Si, c̄�Si) where:

(A) (a) C̄ = 〈Cα : α ∈ S〉 and S = S(C̄) ⊆ λ = sup(S)

(b) Cα ⊆ α has order type κ

(c) C̄ is µ-free (see 0.4):
[but when we replace κ by J then we say “C̄ is (µ, J)-free”]

(B) (d) c̄ = 〈cα : α ∈ S〉
(e) cα is a function from Cα to θ

(f) if c :
⋃
α∈S

Cα → θ, then cα = c � Cα for some α ∈ S

[but when we replace λ by I an ideal on S, then we demand that
the set {α ∈ S : cα = c�Cα} is not in I].

Remark 0.6. The reader may recall that if S is a stationary subset of {δ < λ :
cf(δ) = κ} for a regular cardinal λ and S is non-reflecting and C̄ = 〈Cα : α ∈ S〉
satisfies Cδ ⊆ δ = sup(Cδ), otp(Cδ) = κ, then ♦S implies BB(λ, λ, λ, κ). So if
V = L then for every regular κ < λ, λ a non-weakly compact cardinal we have
BB(λ, λ, λ, κ).

So the consistency of (more than) having many cases of BB is known, but we
prefer to get results in ZFC, when possible.

Variants are:

Definition 0.7. In Definition 0.5:
1) We may replace θ by (χ, θ) which means there are S, C̄ satisfying clause (A) of
Definition 0.5 and

(B)′ if F̄ = 〈Fα : α ∈ S〉 and Fα is a function from (Cα)χ to θ, then for some c̄
we have:

(d) c̄ = 〈cα : α ∈ S〉
(e) cα < θ

(f) if c : λ→ χ, then cα = Fα(c � Cα) for some α ∈ S [or if we replace λ
by I then the set {α ∈ S : cα = Fα(c � Cα)} does not belong to the
ideal I].

2) Replacing (χ, θ) by (χ, 1/θ) abusing notation or 〈χ, θ〉, means that in clause (f)
we replace “cα = Fα(c � Cα)” by “cα 6= Fα(c � Cα)”.
3) We may replace µ by C̄ and thus waive the freeness demand, i.e. C̄ is not nec-
essarily µ-free. Alternatively, we may replace µ by a set F of one-to-one functions
from κ to λ when C̄ lists {Rang(f) : f ∈ F}.
4) Replacing κ by “< κ1” means that in (A)(b) we require just Cα ⊆ α∧ |Cα| < κ1

(and not necessarily otp(Cα) = κ). Replacing κ by ∗ means “< λ”.
5) We may replace θ by “< θ1” meaning “for every θ < θ1”.
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Remark 0.8. 1) Note that BB(λ, µ, θ, κ) is somewhat related to NPT(λ, κ) from [?,
Ch.II], i.e. BB(λ, λ, θ, κ)⇒ NPT(λ, κ), but NPT has no “predictive” part.
2) We shall use freely the obvious implications concerning the black boxes, e.g.

(∗) BB−(λ1, µ1, θ1, κ1) impliesBB−(λ2, µ2, θ2, κ2) when λ2 = λ1, µ2 ≤ µ1, θ2 ≤
θ1, κ2 = κ1.

Of course

Observation 0.9. 1) If C̄ = 〈Cα : α ∈ [µ, λ)〉, Cα ⊆ µ non-empty and 2µ = λ (e.g.
λ = µκ ∧ µ ∈ Cκ), then BB(λ, C̄, λ, ∗), see 0.7(4).
2) If in addition otp(Cα) = κ and C̄ is µ1-free, then BB(λ, µ1, λ, κ).

Proof. The proof is easy, but we shall give details.
1) Let S = [µ, λ) and let 〈Sε : ε < λ〉 be a partition of S into sets each of cardinality
λ, each stationary if λ is regular. Recalling Definitions 0.5, 0.7 it suffices to prove
BB(λ, C̄�Sε, λ, ∗) for each ε < λ; fix ε now. Clause (A) in Definition 0.5 is obvious,
so we shall prove clause (B)′, so let 〈Fα : α ∈ Sε〉 and Fα : (Cα)λ→ λ be given and
we should choose c̄ ∈ (Sε)θ.

Let f̄ = 〈fα : α ∈ Sε〉 list µλ, each appearing unboundedly often (and even
stationarily often if λ is regular), and choose cα := Fα(fα � Cα). Now check.
2) Look at the definitions. �0.9

Discussion 0.10. We use 0.9, e.g. in 1.32.

Recall:

Definition 0.11. 1) If ≤∗ is a partial order on a set I let λ = tcf(I,<∗) mean that
λ is a regular cardinal and there is an <∗-increasing sequence 〈tα : α < λ〉 which is
cofinal, that is (∀s ∈ I)(∃i < λ)[s ≤∗ t].
2) For I,<∗ as above let cf(I,<∗) = min{|P| : P ⊆ I is cofinal}.

Definition 0.12. Assume µ > θ ≥ σ = cf(σ) ≥ cf(µ).
For J an ideal on θ (or just on a set A∗ of cardinality θ) such that there is a

⊆-increasing sequence of members of J of length cf(µ) with union θ (or A∗).
1) We define ppJ(µ) = sup{tcf(

∏
i<θ

λi, <J) : λi = cf(λi) ∈ (θ, µ) for i < θ and

µ = limJ〈λi : i < θ〉} where µ = limJ〈λi : i < θ〉 means that µi < µ ⇒ {i < θ :
λi /∈ [µi, µ]} ∈ J .
2) We define ppθ,σ(µ) = sup{tcf(

∏
i<θ

λi, <J) : J a σ-complete ideal on θ with λi =

cf(λi) ∈ (θ, µ) such that µ = limJ〈λi : i < θ〉.
3) Let ppJ(µ) =+ χ mean that ppJ(µ) = χ and χ is regular and in the supremum
in part (1) is attained; similarly in parts (2),(3).
4) Let pp+

J (µ) be (ppJ(µ))+ if ppJ(µ) is regular and the supremum in part (1) is
obtained and be ppJ(µ) otherwise.

Definition 0.13. For cardinals λ ≥ µ ≥ θ ≥ σ let cov(λ, µ, θ, σ) = min{|P| : P ⊆
[λ]<µ and every u ∈ [λ]<θ is included in the union of < σ members of P}.
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§ 0(C). What is Done.

In this work we shall show that it is “hard” for V not to give a positive answer
(i.e. existence) for 0.1 via a case of 0.5 or variants; we review below the “evidence”

for this assertion. By 4.12(1) we know that (actually 2(2ℵ1 ) can be weakened):

�0 a sufficient condition for TDUµ is, e.g., BB(λ, µ, 2(2ℵ1 )+ , J), where cf(λ) >
ℵ0 and J is Jbd

ℵ0 or Jbd
ℵ1×ℵ0 (hence also J = Jbd

ℵ1 suffices; noting that here κ

is ℵ0 or ℵ1 together BB(λ, µ, 2(2ℵ1 )+ , κ) suffice).

Recall that Cκ is the class of strong limit singular cardinals of cofinality κ when
κ > ℵ0, and “most” of them when κ = ℵ0 (see Definition 1.1 and Claim 1.3).

Now the first piece of the evidence given here that a failure of G.C.H. near
µ ∈ Cκ helps is the following fact:

~1 BB(λ, µ+, θ, κ) if θ < µ ∈ Cκ and µ < λ < 2µ < 2λ.

[Why? By Conclusion 2.7(1); it is a consequence of the Black Box Trichotomy
Theorem 1.22.]

Note: another formulation is

�1 if θ < µ ∈ Cκ but BB(λ, µ+, θ, κ) fails then (2µ)<2µ = 2µ.

[Why? Let λ1 = min{χ : 2χ > 2µ}, so necessarily µ < λ1; if λ1 < 2µ then
BB(λ1, µ

+, θ, κ) holds by ~1, so by our assumption λ1 = 2µ, so µ ≤ χ < 2µ ⇒
2χ = 2µ ⇒ (2µ)χ = 2µ·χ = 2χ = 2µ, but this means (2µ)<2µ = 2µ, as stated.]

So by �0 +�1

�1 if TDUℵω fails, then
(a) a large class of cardinals satisfies a weak form of G.C.H.
(b) more specifically, (µ ∈ Cℵ0 ∪Cℵ1) ∧ λ = 2µ ⇒ λ = λ<λ.

For T ⊆ σ>χ a tree with ≤ χ nodes and ≤ σ levels we let limσ(T ) = {η ∈ σχ : (∀ε <
σ)(η�ε ∈ T )}, and recall that the tree power χ<σ>tr is sup{| limσ(T )| : T ⊆ σ>χ is
a tree with ≤ χ nodes and ≤ σ levels}.

We have:

~2 BB(2µ, κ+ω+1, θ, Jbd
κ+×κ) if θ < µ ∈ Cκ and (∀χ)(χ < 2µ ⇒ χ<κ

+>tr < 2µ).

[Why? See 1.36.]
So we have

�2 if TDUℵω fails, then for every µ ∈ Cℵ0 there is χ such that µ < χ <
χ<ℵ1>tr = 2µ (see Definition 0.2), hence µ < χ < 2µ and without loss of
generality cf(χ) = ℵ1, hence µ+ω1 ≤ χ < 2µ, and so G.C.H. fails quite
strongly (putting us in some sense in the opposite direction to �1)

and also

~3 if µ ∈ Cκ, θ < µ, λ = 2µ and some set F ⊆ κµ is µ1-free of cardinality
2µ (= µκ), then BB(λ, µ1, θ, κ).

[Why? See 0.9(2).]
In §3 we shall give various sufficient conditions for the satisfaction of the hy-

potheses of ~3. Another piece of evidence is
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~4 BB(λ, µ1, θ, J) when:

(a) θ < µ ∈ Cκ and λ = 2µ = λ<λ and ∂ < µ,

(b) J is an ideal on ∂ = cf(∂) extending Jbd
∂ , and S ⊆ Sλ∂ (see 0.16(3)),

C̄ = 〈Cδ : δ ∈ S〉 are such that δ ∈ S ⇒ Cδ ⊆ δ = sup(Cδ) ∧ κ =
otp(Cδ),

(c) C̄ is µ1-free, µ1 < λ, see Definition 1.2(1A),(2), it is closed to 0.4,

(d) • (∀α < λ)(λ > |{Cδ ∩ α : δ ∈ S ∧ α ∈ Cδ}|)∧
(∀χ < λ)(χ<∂>tr < λ) or

• (D`)S (see Definition 1.13).

[Why? This follows from [?].]
A consequence for the present work is:

~5 BB(λ, κ+ω, θ, Jbd
κ+×κ) when:

(a) θ < µ ∈ Cκ, λ = 2µ = λ<λ,

(b) S ⊆ Sλκ+ , δ ∈ S ⇒ Cδ ⊆ δ = sup(Cδ) ∧ otp(Cδ) = κ+,

(c) 〈Cδ : δ ∈ S〉 is κ+ω-free and κ+ω < λ which actually follows,

(d) (D`)S or the first possibility of ~4(d) for ∂ = κ.

[Why? By ~4.]
The point of ~5 is that we can find C̄ as in clause (b) of ~5 with S ⊆ Sλκ+ “quite

large” so we ignore the difference (in the introduction) - see 1.26. In particular

�2 if λ = µ+ = 2µ and µ > ℵ0 is a strong limit cardinal of cofinality κ = ℵ0,
then for some C̄, S clauses (a)-(d) of ~5 hold.

[Why? As in ~2.]
Moreover

�3 if κ < χ, κ is a regular cardinal, λ = χ+ = 2χ and κ 6= cf(χ), then ♦S for
every stationary S ⊆ Sλκ = {δ < λ : cf(δ) = κ}.

[Why? By [?] - see 1.17.]
We can conclude

�3 if TDUℵω fails and µ ∈ Cℵ0 , then 2µ is not µ+, moreover, 2µ is not of the
form χ+, cf(χ) 6= ℵ1.

[Why? Note that (D`)∗
Sλℵ1

holds by �3.]

~6 BB(2µ, µ+, θ, κ) if θ < µ ∈ Cκ and χσ = 2µ for some σ = cf(σ) < κ, χ < 2µ.

[Why? The assumptions (a) - (f) of claim 3.6 hold for J = Jbd
κ and σ here standing

for θ there. E.g. clause (d) there, “α < µ⇒ |α|θ < µ” holds as µ is a strong limit.
So the first assumption of conclusion 3.8 holds, and the second (µκ = 2µ) holds as
µ ∈ Cκ. So the conclusion of 3.8 holds which implies by 0.9 that ~6 holds.]

~7 BB(2µ, ∂, θ, κ) if θ < µ ∈ Cκ and ∂ = sup{cf(χ) : cf(χ) < µ < χ < 2µ and
ppcf(χ)-comp(χ) =+ 2µ}.

[Why? By 3.1 and 0.9.]
So (by �0,~6,~7)
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�4 if TDUℵω fails, then for every µ ∈ Cℵ1 we have

(a) α < 2µ ⇒ |α|ℵ0 < 2µ

(b) for some n,ℵn ≤ cf(χ) < µ ∧ χ < 2µ ⇒ ppcf(χ)comp(χ) 6=+ 2µ.

By the end of §4

�5 if TDUℵω fails and n ≥ 3, then

(A) no ℵn-free (abelian) group G of cardinality ℵn is Whitehead

(B) if µ ∈ Cℵ0 ∪Cℵ1 and λ = 2µ then (D`)Sλℵn
.

Generally in [?] we suggest cardinal arithmetic assumptions as good “semi-
axioms”.

We have used cases of WGCH (the Weak Generalized Continuum Hypothesis,

i.e., 2λ < 2λ
+

for every λ); in [?], [?], [?], also in [?] and see [?], [?]. Influenced
also by this, Baldwin suggested adopting WGCH as an extra axiom (to ZFC)
giving arguments parallel to the ones for large cardinals (but with no problem
of consistency). So it seems reasonable to see what we can say in our context.

Note that above we get:

Claim 0.14. Assume µ ∈ Cκ or just µ is a cardinal of cofinality κ (e.g. µ ≥ κ =
cf(µ)).

1) If µ+ < 2µ < 2µ
+

and κ ∈ {ℵ0,ℵ1}, then there is a µ+-free abelian group of
cardinality µ+ with Hom(G,Z) = 0; note that this is iterable, i.e., if µ`+1 ∈ Cµ+

`

for ` < n, 2µ` > µ+
` for ` < n and µ0 is like µ above, then the conclusion applies

for µn.
2) If µ+ = 2µ and κ ∈ {ℵ0,ℵ1}, then there is an ℵω+1-free abelian group of
cardinality µ+ such that Hom(G,Z) = 0.

Proof. 1) First assume µ ∈ Cκ.
By 1.22 there is a µ+-free F ⊆ κµ of cardinality µ+ (yes! not 2µ) hence

BB(λ, µ, λ, κ) by Conclusion 0.5(1). By 4.7, 4.10 there is G as required.
Similarly for iterations.
Second, assume cf(µ) = κ. We can find F as above if µ is singular, use again

0(C) if µ = κ it is easy. Then we get BB(λ, µ, 2, κ) by 0.5(3). Check.
2) The proof is similar. �0.14

Note that we can prove TDUℵω+1
if the answer to the following is positive:

Conjecture 0.15. If λ = λ<λ > κ+ and κ = cf(κ) and λ 6= ℵ1 (or at least λ ≥ iω
replacing the assumption λ 6= ℵ1) then (D`)Sλκ .

Related works are [?] and Göbel-Herden-Shelah ([?]).
Acknowledgements: We thank the referee for doing much more than duty dictates
and for pointing out much needed corrections and clarifications and Maryanthe
Malliaris and another helper (found by the editor) for pointing out many English
corrections and misprints.

∗ ∗ ∗
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Notation 0.16. 0) For sets let u1\u2\u2 mean (u1\u2)\u3.
1) Usually C̄ = 〈Cδ : δ ∈ S〉 with S = S(C̄).
2) A club of a limit ordinal δ (e.g. usually a regular cardinal) is a closed unbounded
subset.
3) Sλκ := {δ < λ : cf(δ) = κ}.

Definition 0.17. Let C̄ = 〈Cδ : δ ∈ S〉 and λ a regular cardinal.
1) C̄ is a weak λ-ladder system when S is a stationary subset of (the regular
cardinal) λ and δ ∈ S ⇒ Cδ ⊆ δ.
2) C̄ is a λ-ladder system when λ is regular, S is a stationary subset of λ and
Cδ ⊆ δ = sup(Cδ) for δ ∈ S.
3) C̄ is a strict λ-ladder system when in addition otp(Cδ) = cf(δ).
4) C̄ is a strict (λ, κ)-ladder system when in addition S ⊆ Sλκ .
5) C̄ is shallow when α ∈

⋃
δ∈S

Cδ ⇒ sup(S) > |{Cδ ∩ α : δ ∈ S and α ∈ Cδ}|.

6) In parts (1),(2),(3) we may omit the “λ” when clear from the content or replace
λ by S.
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§ 1. Preliminaries

Most of our results involve µ ∈ C where

Definition 1.1. Let C = {µ : µ is a strong limit singular cardinal and pp(µ) =+

2µ}, recalling Definition 0.12 for =+.
2) Cκ = {µ ∈ C : cf(µ) = κ}.

Note that 1.4(2) below which relies on 1.2(1),(1A) repeats 0.4.

Definition 1.2. 1) The set F ⊆ κµ is called (θ, σ, J)-free where J is an ideal on κ
when [f1 6= f2 ∈ F ⇒ {i < κ : f1(i) = f2(i)} ∈ J ] and every F ′ ⊆ F of cardinality
< θ is [J, σ]-free which means that:

• there is a sequence 〈uf : f ∈ F ′〉 of members of J such that for every pair
(γ, i) ∈ µ× κ the set {f ∈ F ′ : f(i) = γ ∧ i /∈ uf} has cardinality < 1 + σ.

1A) We may replace “F ⊆ κµ” by a sequence C̄ = 〈Cδ : δ ∈ S〉, Cδ a set of order
type κ, or even just such a set {Cδ : δ ∈ S}; meaning that the definition applies to
{fδ : δ ∈ S} where for δ ∈ S, fδ is an increasing function from κ onto Cδ. Similarly
for the other parts.
2) If σ = 1 we may omit it. If J = Jbd

κ we may omit it so we may say “F ⊆ κµ is
θ-free”. Lastly, “F is free” means F is |F|+-free.
3) If J is not an ideal on κ but is a subset of P(κ), then we replace “uf ∈ J” by
“(uf ∈ J)⇔ (∅ ∈ J)” and uf ⊆ κ, of course.
4) We say a sequence 〈fα : α < α∗〉 of members of κµ is (θ, J)-free when: J ⊆ P(κ)

and for every w ⊆ α∗ of cardinality < θ the sequence f̄�w is J-free which means
that there is a sequence 〈ufα : α ∈ w〉 of subsets of κ such that: (uf ∈ J)⇔ (∅ ∈ J)
and α ∈ w ∧ β ∈ w ∧ α < β ∧ i ∈ κ\ufα ∧ i ∈ κ\ufβ ⇒ fα(i) < fβ(i). Again if

J = Jbd
κ then we may omit it.

5) We say F ⊆ κµ is normal when f1, f2 ∈ F ∧ f1(i1) = f2(i2) ⇒ i1 = i2. We
say F ⊆ κµ is tree-like when it is normal and moreover f1 ∈ F ∧ f2 ∈ F1 ∧ i <
κ ∧ f1(i) = f2(i)⇒ f1 � i = f2�i.
6) For F ⊆ κµ and an ideal J on κ let (issp stands for instability spectrum)

isspJ(F) = {(θ1, θ2) : κ ≤ θ1 < θ2 and for some u ⊆ µ of cardinality ≤ θ1

we have θ2 ≤ |{η ∈ F : {i < κ : η(i) ∈ u} ∈ J+}|}.

7) Let θ ∈ isspJ(F) means (< θ, θ) ∈ isspJ(F) where (< θ1, θ2) ∈ isspJ(F) means
that (θ′1, θ2) ∈ isspJ(F) for some θ′1 < θ1. For J = Jbd

κ we may omit J .
8) If we write isspJ(〈ηs : s ∈ I〉) we mean isspJ({ηs : s ∈ I}) but demand s1 6= s2 ∈
I ⇒ ηs1 6= ηs2 .

Recall

Claim 1.3.

(a) we have µ ∈ C and moreover, ppJbd
cf(µ)

(µ) =+ 2µ when µ is a strong limit

singular cardinal of uncountable cofinality

(b) if µ = iδ > cf(µ) and δ = ω1 or just cf(δ) > ℵ0, then µ ∈ Ccf(µ) and for
a club of α < δ we have iα ∈ C
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(c) if µ ∈ Cκ and χ ∈ (µ, 2µ) or just κ = cf(µ) < µ and χ ∈ (µ,pp+
Jbd
κ

(µ)),

see 0.12(5), then there is a µ+-free F ⊆ κµ of cardinality χ, even <Jbd
κ

-

increasing µ+-free sequence of length χ; moreover if (
∏
i<κ

λi, <Jbd
κ

) is χ+-

directed and F∗ ⊆
∏
i<κ

λi is such that F∗ is cofinal or (F∗, <Jbd
κ

) is well

ordered of cardinality > χ then we can demand F ⊆ F∗ (and there is such
sequence 〈λi : i < κ〉).

Proof. Clause (a) holds by [?, ChII,§5], [?, ChVII,§1] and clause (b) by [?, ChIX,§5]
and clause (c) holds by [?, ChII,2.3,pg.53 + 1.5A,pg.51]. �1.3

Observation 1.4. 1) If J is a σ-complete ideal on κ and F ⊆ κµ and θ0 < θ1 <
θ2, (θ1, θ2) ∈ isspJ(F) and cov(θ1, θ0, κ

+, σ) < cf(θ2) recalling Definition 0.13 (e.g.
θ1 < θ+ω

0 , θ1 < cf(θ2)), then (< θ0, θ2) ∈ isspJ(F).
2) If in addition F is tree-like, Jbd

κ ⊆ J and κ is regular, then cov(θ1, θ0, κ
+, κ) <

cf(θ2) suffices.
3) Assume J is an ideal on κ and F ⊆ κµ is (θ, σ, J)-free. If σ = cf(σ) and κ < σ
then for every F ′ ⊆ F of cardinality < θ we can find 〈uf : f ∈ F ′〉 as in Definition
1.2(1) and a partition F̄ ′ = 〈F ′ε : ε < ε(∗) ≤ |F ′|〉 of F ′ into sets each of cardinality
< σ such that 〈{f(i): for some i we have f ∈ F ′ε, i ∈ κ\uf} : ε < ε(∗)〉 is a sequence
of pairwise disjoint subsets of µ. If we waive “κ < σ” still for each i < κ there is
such an F̄ i which can serve for this i.
4) If J is a κ-complete ideal on κ and F ⊆ κµ is (θ, κ+, J)-free hence f1 6= f2 ∈
F ⇒ {i < κ : f1(i) = f2(i)} ∈ J then F is (θ, J)-free.

Proof. 1) This should be clear as in [?, ChII,§6], but we give details.
Let P exemplify cov(θ1, θ0, κ

+, σ), i.e. P ⊆ [θ1]<θ0 has cardinality cov(θ1, θ0, κ
+, σ)

and every u ∈ [θ1]≤κ is included in the union of < σ members of P.
By the assumption “(θ1, θ2) ∈ isspJ(F)” there is U ⊆ µ which has cardinality

≤ θ1 such that F ′ = F ′U := {η ∈ F : {i < κ : η(i) ∈ U} ∈ J+} has cardinality ≥ θ2.
Let g be a one to one function from U into θ1 and fix for a while η ∈ F ′. Let

vη := {g(η(i)) : i < κ and η(i) ∈ U}, clearly it is ∈ [θ1]≤κ hence there is Pη ⊆ P
of cardinality < σ such that vη ⊆ ∪{u : u ∈ Pη}. So {{i < κ : η(i) ∈ U and
g(η(i)) ∈ u} : u ∈ Pη} is a family of < σ subsets of κ whose union belongs to J+.
But J is a σ-complete ideal on κ hence there is

~ uη ∈ Pη such that {i < κ : η(i) ∈ U and g(η(i)) ∈ uη} ∈ J+.

So 〈uη : η ∈ F ′〉 is well defined and η ∈ F ′ ⇒ uη ∈ P but |P| = cov(θ1, θ0, κ
+, σ) <

cf(θ2) and F ′ was chosen such that |F ′| ≥ θ2, hence for some u2 ∈ P the family
F ′′ := {η ∈ F ′ : uη = u2} has cardinality ≥ θ2. But then letting u1 = {α ∈
U : g(α) ∈ u2} we have F∗ := {η ∈ F : {i < κ : η(i) ∈ u1} ∈ J+} = {η ∈ F :
{i < κ : g(η(i)) ∈ u2} ∈ J+} ⊇ F ′′ hence the subfamily F ′′ of F has cardinality
≥ |F ′′| ≥ θ2. Also |u1| = |u2| < θ0 by the choice of (g, u1) and as u2 ∈ P ⊆ [θ1]<θ1 .

So u1 exemplifies that (< θ0, θ2) ∈ isspJ(F), the desired conclusion.
2) As without loss of generality J = Jbd

κ and this ideal is κ-complete.
3) Easy, too.
4) By part (3) and 1.5(1). �1.4
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Claim 1.5. Let F ⊆ κµ and J an ideal on κ be such that f1 6= f2 ∈ F ⇒ {i < κ :
f1(i) = f2(i)} ∈ J .
1) F is (θ+, J)-free if J is θ-complete.
2) If κ < σ < λ then : F is (λ, σ, J)-free iff there are no regular ∂ ∈ [σ, λ) and
pairwise distinct fα ∈ F for α < ∂ such that S = {δ < ∂: for some ζ ∈ [δ, ∂) the
set {i < κ : fζ(i) ∈ {fε(i) : ε < δ} belongs to J+} is a stationary subset of ∂.
2A) In part (2), the two equivalent statements imply that for no θ ∈ [σ, λ), θ ∈
isspJ(F).
3) Assume we are given a sequence f̄ = 〈fα : α < α∗〉 of members of κOrd with no
repetitions, and λ = cf(λ) > κ and J is an ideal on κ.
Then f̄ is not (λ, λ, J)-free as a set iff there is an increasing sequence 〈αε : ε < λ〉
of ordinals < α∗ such that the set S = {ε < λ: cf(ε) ≤ κ and {i < κ : (∃ζ <
ε)(fαε(i) = fαζ (i))} ∈ J+} is a stationary subset of λ.

4) In part (3) if in addition f̄ is tree-like, i.e., fα(ε) = fβ(ε)⇒ fα � ε = fβ � ε and
Jbd
κ ⊆ J then S ⊆ Sλκ .

Proof. 1) Easy and more is proved in the proof of 1.8 below.
2) Proved in proving � suffice in the proof of 3.4.
2A) Easy, see Definition 1.2(6).
3) By 1.4.
4) Like part (2), see more in 1.6. �1.5

Claim 1.6. Assume λ > µ ≥ κ2 ≥ κ1 = θ = cf(θ).
1) F ⊆ θOrd is (κ2, κ1)-free iff F is (κ+, κ)-free for every regular κ ∈ [κ1, κ2).

2) There is a (κ+ω+1, κ)-free set F ⊆ ωµ of cardinality λ iff for every n < ω there

is a (κ+n, κ)-free set F ⊆ ωµ of cardinality λ.
3) Assume λ > µ ≥ κ+ω, µ > σ = cf(µ) and (∀α < µ)(|α|χ < µ). If Fε ⊆ θµ has
cardinality λ for ε < χ, then we can find F ⊆ θµ of cardinality λ such that:

if for some ε,Fε is (κ2, κ1)-free, then F is (κ2, κ1)-free.

4) In part (3); if χ = θ then we can assume just (∀α < µ)(|α|<χ ≤ µ).
5) In (1)-(3) we can use an ideal J on θ.

Remark 1.7. See 1.5, 3.4.

Proof. 1) By 1.5(2).
2) By 3.10(1A) there is a (κ+ω, κ)-free F ⊆ ωµ and by the compactness theorem
for singulars it follows that F is (κ+ω+1, κ)-free, (really an obvious case).
3) Let 〈λi : i < σ〉 be increasing with limit µ, λi = λχi and let cdi : H≤χ(λi) → λi
be one-to-one and onto; and let Fε = {fεα : α < λ}. Lastly, fα ∈ σµ is defined by
fα(i) = cdi(〈fεα ∩ (λi × λi) : ε < χ〉). �1.6

In particular recalling 0.3(2)

Claim 1.8. 1) Assume F ⊆ κµ is (θ, κ++, Jbd
κ )-free and κ = cf(κ) < µ. Then we

can find G ⊆ (κ+×κ)µ of cardinality |F| such that G is (θ, Jbd
κ+×κ)-free and normal.

2) If λ = cf(λ) > µ > κ = cf(κ) and there is a θ-free F ⊆ κµ of cardinality ≥ λ
and S ⊆ Sλκ is stationary and for simplicity δ ∈ S ⇒ µ · δ = δ then there is a θ-free
strict S-ladder system 〈Cδ : δ ∈ S〉.
2A) In part (2) also for every σ = cf(σ) ∈ (κ, λ) and stationary S ⊆ Sλσ there is a
(θ, Jσ∗θ)-free strict S-ladder system 〈Cδ : δ ∈ S〉.
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Proof. 1) If µ = κ+ then the construction below gives G ⊆ κ+×κ(κ+ + µ) rather

than G ⊆ κ+×κ(µ), but this is enough so we shall ignore this point. For f ∈ F let
gf : κ+ × κ→ µ be defined by:

(∗)0 for ζ < κ+, i < κ we let gf (ζ, i) = κ+ · f(i) + κ · ζ + i.

Let G = {gf : f ∈ F}, now

(∗)1 if f1 6= f2 ∈ F then gf1 6= gf2 and moreover {(ζ, i) ∈ κ+ × κ : gf1(ζ, i) =
gf2(ζ, i)} ∈ Jbd

κ+×κ.

[Why? By Definition 1.2(1) we know i(∗) := sup{i < κ : f1(i) = f2(i)} < κ
and hence {(ζ, i) ∈ κ+ × κ : gf1((ζ, i)) = gf2((ζ, i))} ⊆ {(ζ, i) : ζ < κ+ and
i < i(∗)} ∈ Jbd

κ+×κ, so we are done.]

(∗)2 assume G′ ⊆ G is of cardinality < θ and we shall find 〈u1
g : g ∈ G′〉 as

required.

Why? We can choose F ′ ⊆ F of cardinality < θ such that G′ = {gf : f ∈ F ′}.
We can apply the assumption “F is (θ, κ++)-free” and let 〈uf : f ∈ F ′〉 be as in
Definition 1.2(1); moreover let 〈Fε : ε < ε(∗)〉 be as guaranteed in 1.4(3), so in
particular |Fε| ≤ κ+.

For each ε < ε(∗) let 〈fε,ι : ι < |Fε|〉 list Fε with no repetitions and let gε,ι =
gfε,ι . First assume |Fε| ≤ κ, then for ι < |Fε| we let u0

ε,ι = {i < κ: the sequence

〈fε,ι1(i) : ι1 ≤ ι〉 has some repetitions or1 i ∈ ∪{ufε,ι1 : ι1 ≤ ι}}. As Jbd
κ is

κ-complete, clearly u0
ε,ι ∈ Jbd

κ and we let u1
gε,ι := κ+ × u0

ε,ι.

Second, assume |Fε| = κ+ and for each ζ ∈ [κ, κ+) let 〈ξ(ζ, j) : j < κ〉 list ζ
without repetition and for ζ ∈ [κ, κ+), j < κ let
u0
ε,ζ,j = {i < κ: the sequence 〈fε,ξ(ζ,j1)(i) : j1 ≤ j〉 has some repetitions or

i ∈ {ufε,ξ(ζ,j1)
: j1 ≤ j}}

and for ι < |Fε| let
u1
gε,ι = {(ζ, i) : ζ ∈ (κ + ι, κ+), i < κ and i ∈ u0

ε,ζ,j where j is the unique j < κ

such that ι = ξ(ζ, j)}.
Now check that 〈u1

gε,ι : ε < ε(∗) and ι < |Fε|〉 is as required, i.e. witnessing the

freeness of F ′.
2) Let 〈fδ : δ ∈ S〉 be a sequence of pairwise distinct members of F and for δ ∈ S
let 〈αδ,i : i < κ〉 be an increasing sequence of ordinals with limit δ.

Lastly, let Cδ = {µαδ,i + fδ(i) : i < κ} for δ ∈ S recalling δ ∈ S ⇒ δ = µ · δ.
2A) The proof is similar. �1.8

How is this connected to Abelian groups?

Definition 1.9. 1) We say that G is an abelian group derived from F ⊆ ωµ when
G is generated by {xα : α < µ} ∪ {yη,n : η ∈ F and n < ω} freely except a set of
equations Γ = ∪{Γη : η ∈ F} where each Γη has the form {yη,n = aη,n · yη,n+1 +
xη(n),n : n < ω} where aη,n ∈ Z\{−1, 0, 1}.
2) We say that G is an abelian group derived from F ⊆ ω1×ωµ when G is generated
by {xα,ε,n : α < µ and ε < ω1, n < ω}∪ {yη,ε,n : η ∈ F , ε < ω1, n < ω}∪ {zη,n : η ∈
F and n < ω} freely except a set of equations Γ = ∪{Γη : η ∈ F} where each Γη
has the form

1actually “i ∈ ufε,ι” suffice
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{yη,ε,n = aη,ε,nyη,ε,n+1 + bη,ε,nzη,ρη,ε(n) + cη,ε,nxη(ε,n),ε,n : ε < ω1, n < ω}
where
aη,ε,n ∈ Z\{−1, 0, 1}, bη,ε,n ∈ Z\{0}, cη,ε,n ∈ Z, ρη,ε ∈ ωω is increasing and

ε1 < ε2 < ω1 ⇒ Rang(ρη,ε1) ∩ Rang(ρη,ε2) is finite.

Remark 1.10. 1) Here choosing ρη,ε ∈ ω(ω + ε) is alright but not for §4.
2) So in 1.9 if aη,n = n + 1, considering G as a metric space with dG(x, y) =
inf{2−n : x − y ∈ (n!)G} we have yη,n =

∑
m≥n

(m!)/(n!)xη(m) for η ∈ F , n < ω. In

general for n1 < n2 we have

yη,n1
= (

n2−1∑
m=n1

(

m∏
`=n1

aη,`)xη(m),m) + (

n2−1∏
m=n1

aη,m)yη,n2
.

Easily (see [?] on the subject):

Claim 1.11. If F ⊆ ωµ is θ-free or F ⊆ ω1×ωµ is (θ, Jbd
ω1×ω)-free, then any abelian

group derived from it is θ-free.

Similarly to 1.4

Claim 1.12. 1) If F ⊆ Dom(J)µ is (θ, σ+
2 , J)-free and J is a (σ2, σ

+
1 )-regular2 and

σ1-complete ideal then F is (θ, J)-free.
2) Assume I, J is an ideal on S, T respectively. If F ⊆ Sµ is (θ, σ, I)-free, π
is a function from T onto S and π′′(J) := {{π(i) : i ∈ s} : s ∈ J} ⊇ I then
F ◦ π = {f ◦ π : f ∈ F} ⊆ Tµ is (θ, σ, J)-free.

Definition 1.13. 1) Let (D`)S mean that:

(a) λ = sup(S) is a regular uncountable cardinal

(b) S is a stationary subset of λ

(c) there is a witness P̄ by which we mean:

(α) P̄ = 〈Pα : α ∈ S〉
(β) Pα ⊆ P(α) has cardinality < λ

(γ) for every subset U of λ, the set SU := {δ ∈ S : U ∩ δ ∈ Pδ} is a
stationary subset of λ.

2) Let (D`)∗S be defined similarly but in clause (c)(γ) we demand S\SU is not
stationary.
3) We write (D`)D,S , (D`)

∗
D,S when D is a normal filter on λ and replace “station-

ary” by “∈ D+”.

Definition 1.14. 1) For a regular uncountable cardinal λ let Ǐ[λ] = {S ⊆ λ: some
pair (E, ā) witnesses S ∈ Ǐ(λ), see below}.
2) We say that (E, ū) is a witness for S ∈ Ǐ[λ] when :

(a) E is a club of the regular cardinal λ

(b) ū = 〈uα : α < λ〉, uα ⊆ α and β ∈ uα ⇒ uβ = β ∩ uα
(c) for every δ ∈ E ∩ S, uδ is an unbounded subset of δ of order-type < δ (and

δ is a limit ordinal).

2that is, there are Aα ∈ J for α < σ2 such that u ⊆ σ2∧|u| ≥ σ+
1 ⇒ ∪{Aα : α ∈ u} = Dom(J).
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Claim 1.15. 1) If λ = λ<λ and κ = cf(κ) < λ and α < λ ⇒ |α|<κ>tr < λ and
S ⊆ Sλκ is a stationary subset of λ, then (D`)S.
2) If µ is a strong limit cardinal and λ = cf(λ) > µ, then µ > sup{κ < µ : κ = cf(κ)
and (∃α < λ)(|α|<κ>tr ≥ λ)}.
3) If λ = λ<λ > iω, then {κ : κ = cf(κ) and iω(κ) < λ and ¬(D`)Sλκ or just

¬(D`)∗S for some stationary S ∈ Ǐκ[λ]} is finite where Ǐκ[λ] is from 1.14.
4) If λ = χ+ and S ⊆ λ is stationary, then (D`)∗S is equivalent to ♦S.

5) If λ > κ are regular and S ∈ Ǐκ[λ] is a stationary subset of λ then there is a
shallow, use 0.17(5) strict S-club system.

Proof. 1), 2), 3): See [?].
4) A result of Kunen; for a proof of a somewhat more general result see [?].
5) See [?] or [?]. �1.15

Discussion 1.16. 1) Of course, (D`)S is a relative of the diamond, see [?].
2) (D`)∗S is consistently not equivalent to ♦∗S when λ is a limit (regular) cardinal.
3) Trivially (D`)∗S ⇒ (D`)S .

For �3 of §0, (it was previously known only when χ is regular by using partial
squares which holds by [?, §4]).

Fact 1.17. If λ = 2χ = χ+ > κ = cf(κ) and κ 6= cf(χ) then ♦Sλκ moreover ♦S for

every stationary S ⊆ Sλκ .

Proof. By [?]. �1.17

Now by [?, 1.10], this is used in 1.22, 1.32.

Theorem 1.18. We have BB(λ, C̄, (λ, θ), < µ) recalling 0.7(1),(3),(4) when :

(a) µ ∈ Cκ, λ = cf(2µ) and θ < µ, σ = cf(σ) < µ,

(b) S ⊆ Sλσ is stationary,

(c) C̄ = 〈Cδ : δ ∈ S〉, Cδ ⊆ δ, |Cδ| ≤ µ recalling3 0.7(4),

(d) χ < 2µ ⇒ χ<σ>tr < 2µ,

(e) C̄ is shallow, that is, |{Cδ ∩ α : α ∈ Cδ}| < λ for α < λ.

Remark 1.19. 1) Of course, if S ∈ Ǐκ[λ] is stationary then there is C̄ as in clauses
(c) + (e) (and, of course, (b)).
2) There are such stationary S as κ+ < µ < λ by [?].

Definition 1.20. We say a filter D on a set X is weakly λ-saturated when there is
no partition 〈Xα : α < λ〉 of X such that α < λ⇒ Xα ∈ D+ := {Y ⊆ X : X\Y /∈
D}.

∗ ∗ ∗

A notable consequence of the analysis in this work is the BB (Black Box) Tri-
chotomy Theorem 1.22.

Remark 1.21. Using C̄ = 〈Cδ : δ ∈ S〉 below or using f̄ = 〈fδ : δ ∈ S〉 where fδ is
an increasing function from otp(Cδ) onto Cδ, does not make a real difference.

3actually 2|Cδ| ≤ 2µ is sufficient
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The BB Trichotomy Theorem 1.22. If µ ∈ Cκ and κ > σ = cf(σ), then at
least one of the following holds:

(A)µ,κ there is a µ+-free F ⊆ κµ of cardinality 2µ

(B) (a) λ := 2µ = λ<λ (so λ is regular) and χ < λ⇒ χσ < λ

(b)λ,µ,σ if S ⊆ Sλσ is stationary, C̄ = 〈Cδ : δ ∈ S〉 is a weak ladder system
(i.e., Cδ ⊆ δ so, e.g., the choice Cδ = δ for δ ∈ S is all right);
then

(c)λ,µ,σ letting Jnst
S = {A ⊆ λ : A ∩ S is not stationary in λ} we have4

(i) BB(Jnst
S , C̄, θ,≤ µ) for every θ < µ provided that

δ ∈ S ⇒ |Cδ| < µ, see 0.7(4)

(ii) BB(Jnst
S , C̄, (2µ, θ), < λ) for any θ < µ

(C)µ,κ (a) λ2 = 2µ is regular, χ < λ2 ⇒ χσ < λ2 and
λ1 = min{∂ : 2∂ > 2µ} is (regular and) < 2µ

(b) like (b)λ,µ,σ of clause (B) for λ = λ2 but |Cδ| < λ1 for δ ∈ S
(so Cδ = δ is not all right)

(c) BB(Jnst
S , µ+, θ, κ) for any θ < µ and any stationary subset S of λ1

(c)′ like (b)λ,µ,σ of (B) but for λ = λ1, S a club or just S not in the weak
diamond ideal ([?]).

Remark 1.23. 1) If κ = ℵ0 above, then there is no infinite cardinal σ < κ as
required, but the proof still gives something (e.g. for σ = ℵ1). In this case we
cannot get “for every stationary S ⊆ Sλσ”, still by [?, 3.1] one has “for all but
finitely many regular σ < µ for almost every stationary S ⊆ Sλσ”; see 1.15.
2) Assume µ ∈ Cκ, λ = 2µ = χ+. If χ is regular then (A) of 1.22 holds because by
3.12, there is C̄ = 〈Cδ : δ ∈ Sλκ , µ divides δ〉, Cδ ⊆ δ = sup(Cδ), otp(Cδ) = κ and C̄
is µ+-free and shallow. If κ 6= cf(χ) and λ = λ<λ then for every stationary S ⊆ Sλκ
we have ♦S , see [?].
3) What happens if λ := 2µ is weakly inaccessible? Here it seems plausible to
assume, for some µ0

(∗) (a) µ ≤ µ0 < λ

(b) α < λ⇒ λ > cov(|α|, µ+
0 , µ, 2)

(b)+ α < λ⇒ λ > cov(|α|, µ+
0 , µ

+
0 , 2).

Now (b)+ implies (by [?])

(c) there is P̄ such that

(α) P̄ = 〈Pα : α < λ〉,
(β) |Pα| < λ

(γ) Pα ⊆ {u : |u| ≤ µ0, u is a closed subset of α},
(δ) if α ∈ u ∈ Pβ , then u ∩ α ∈ Pα,

(ε) if δ < λ, cf(δ) ≤ µ0 then sup(u) = δ for some u ∈ Pδ.

4What about freeness? We may get it by the choice of C̄, also if C̄ is a ladder system (partic-
ularly if strictly), we get a weak form, e.g. stability.
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This is enough for the argument above.
4) Does clause (b) in (∗) above suffice?

Proof. Proof of 1.22:
Recall that for every χ ∈ (µ, 2µ) there is a µ+-free F ⊆ κµ of cardinality χ (see

1.3(c)).
If for some χ < 2µ we have χσ = 2µ then by 3.6, clause (A) holds (when θ

there stands for σ here), so we can assume that there is no such χ. If 2µ is a
singular cardinal then by 3.10(3), clause (A) holds, so we can assume that λ := 2µ

is regular. Now assume λ = λ<λ and we shall prove clause (B). Obviously clause
(B)(a) holds and clause (B)(b)(ii) holds by 1.18 above and clause (B)(b)(i) follows.
Note that any strict club system 〈Cδ : δ ∈ S〉 is shallow as |{Cδ ∩α : δ ∈ S satisfies
α ∈ Cδ}| ≤ |α|<σ ≤ |α|σ < λ.

So assume λ < λ<λ, hence necessarily there is ∂ < λ such that λ < 2∂ .
Assume λ1 = min{χ : 2χ > 2µ} < λ2 := 2µ, then trivially clause (C)(a) holds

and by Conclusion 2.7(1) clauses (C)(c), (c)′ hold. Clause (b) of (C) holds by [?],
i.e. 1.18, because we are assuming (∀χ < λ)(χσ < λ) so clause (C) holds. �1.22

Remark 1.24. How can the Black Box Trichotomy Theorem 1.22 help?
If possibility (A) holds for κ ∈ {ℵ0,ℵ1}, we have, e.g., abelian groups as in

Definition 1.9; so we have G0 ⊆pr G1 (that is, G0 is a pure subgroup of the abelian
group G1) such that G1 is torsion-free, G0 is free, G1 quite free, |G0| = µ and, e.g. if
aη,n = n+1, then G1/G0 is divisible, and a list of |G1| = 2µ partial endomorphisms
of G1 such that if G0 ⊆pr G ⊆pr G1, any endomorphism of G is included in one of
the endomorphisms in the list. So by diagonalization we can build an endo-rigid
group. On the other hand, possibilities (B),(C) help in another way: as in black
boxes, see [?], [?], this is continued in [?].

Recall

Definition 1.25. Assume J is an ideal of κ and f̄ = 〈fα : α < α(∗)〉 is a <J -
increasing sequence of members of κOrd.

Let Sgd

f̄
, the good set of S, be {δ < λ : cf(δ) > κ and we can find sequence

Ā = 〈Aα : α ∈ u〉 witnessing δ is a good point of f̄} which means:

• u ⊆ δ = sup(u)

• Aα ∈ J for α ∈ u
• if α < β are from u and i ∈ κ\Aα\Aβ then fα(i) < fβ(i).

Claim 1.26. C̄ is (ℵκ, J)-free and even (θ+κ, J)-free when :

(a) µ > cf(µ) = κ and θ ∈ (κ, µ) is regular

(b) λ̄ = 〈λi : i < κ〉 is a sequence of regular cardinals < µ with limJ(λ̄) = µ

(c) J = Jθ∗κ, see Definition 0.3(3)

(d) λ = tcf(
∏
i<κ

λi, <Jbd
κ

) is exemplified by f̄ = 〈fα : α < λ〉

(e) S ⊆ Sλθ ∩S
gd

f̄
is stationary (on Sgd

f̄
see Definition 1.25 above), δ ∈ S ⇒ µ|δ

(f) C̄ = 〈Cδ : δ ∈ S〉 is a strict λ-ladder system such that otp(Cδ) = θ and
Cδ ⊆ δ = sup(Cδ)
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(g) if δ ∈ S, α < κ and i < κ, then the (κα + i)-th member of Cδ is equal to
fδ(i) modulo µ.

Remark 1.27. The proof is similar to in Magidor-Shelah [?] where the assumptions
are quite specific.

Hence we get

Conclusion 1.28. Assume that κ = cf(µ) < µ and λ = cf(λ) =+ ppJbd
κ

(µ).

Then there is a (κ+κ+1, Jκ+×κ)-free strict ladder system 〈ηδ : δ ∈ S〉 for some
stationary S ⊆ Sλκ+ .

Remark 1.29. This statement is used in the proof of Theorem 1.32.

Proof. We shall apply 1.26. As we are assuming ppJbd
κ

(µ) =+ λ = cf(λ) there

is a sequence λ̄ = 〈λi : i < κ〉 of regular cardinals < µ such that µ = limJ(λ̄)
and λ = tcf(

∏
i<κ

λi, <Jbd
κ

) and let f̄ = 〈fα : α < λ〉 exemplify it; without loss of

generality λ̄ is increasing.
Now λ is regular > µ > κ++ hence by [?] there is a stationary S ⊆ Sλκ+ which is

from Ǐκ[λ] hence by [?] without loss of generality S ⊆ Sgd

f̄
.

As S ∈ Ǐκ+ [λ] there is a strict club system C̄ = 〈Cδ : δ ∈ S〉. Easily without loss
of generality C̄ satisfies clause (g) of 1.26. Hence by 1.26, C̄ is as required. �1.28

Recall the following (see [?, ChII], more in [?]). Proving 1.26 we in fact use

Claim 1.30. If ~ below holds then we can find a θ-free, (λ, κ)-ladder system C̄ ′ =
〈C ′δ : δ ∈ S〉 such that (∀α ∈ C ′δ)(∃!β ∈ Cδ)(α + µ = β + µ). Moreover there is
〈fδ : δ ∈ S〉 ∈ SF without repetitions such that C ′δ ⊆ {β + i : β ∈ Cδ, i < µ and
(∃α, j)(µ|α ∧ j < µ ∧ β = α + j ∧ β + i = α + cd(otp(Cδ ∩ α), i, fδ(otp(Cδ ∩ α))},
when

~ (a) S ⊆ λ is stationary and δ ∈ S implies µ\δ or even µ · δ = µ

(b) C̄ = 〈Cδ : δ ∈ S〉 is a (λ, κ)-ladder system

(c) µ < λ and F ⊆ κµ has cardinality ≥ λ and is θ-free

(d) cd : κ× µ× µ→ µ is one-to-one.

Proof. Straightforward. �1.30

Remark 1.31. The problem in proving the conjecture TDUℵω is to have (D`)S
assuming λ = λ<λ; this would have solved the problem in §0. As in many cases
here, this is very persuasive but we do not know how to prove this in full generality.

The following will be useful showing that if (R a suitable ring), SPλ,θ(R), see
Definition 4.3, contains enough ideals (say Jbd

κ , Jbd
κ+×κ, J

bd
κ++×κ+) then TDUκ+ω (R);

Z “just” miss this criterion; see also 1.36

Theorem 1.32. For µ ∈ Cκ one of the following holds:

(A) BB(2µ, µ+, < µ, κ)

(B) BB(λ, µ+, < µ, κ) where λ = min{χ : 2µ < 2χ}
(C) λ := 2µ satisfies λ = λ<λ and BB(λ, κ+ω+1, < µ, Jκ+×κ)

(D) λ := 2µ satisfies λ = λ<λ and BB(λ, κ+ω+1, < µ, Jκ++×κ+) and also
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•1 there is χ ∈ (µ, λ) such that cf(χ) = κ+ and χ<κ
+>tr =+ λ

•2 F ⊆ (κ+)χ, |F| = λ⇒ (κ+, κ++) ∈ issp(F).

Proof. First, if Theorem 1.22 case (A) or case (C) holds then case (A) or case
(B) respectively here holds too, so we can assume case (B) of 1.22 holds and in
particular λ := 2µ satisfies λ = λ<λ and α < λ ∧ σ < κ⇒ |α|σ < λ.

Second, assume there is no χ ∈ (µ, λ) such that λ =+ χ<κ
+>tr then by 1.15(1) we

have (D`)S for every stationary S ⊆ Sλκ+ , and then by 1.28, we can find stationary

S ⊆ Sλκ+ and (see 0.17(4)) a strict (λ, κ+)-ladder system 〈ηδ : δ ∈ S〉 which is
(κ+ω+1, Jκ+×κ)-free hence by 1.18 we have BB(λ, κ+ω+1, < µ, Jκ+×κ) so clause (C)
of the theorem holds.

Third, assume that there is χ1 < λ such that λ =+ (χ1)<κ
+>tr and there is

F ⊆ (κ+)µ of cardinality λ which is κ++-free or just such that (κ+, κ++) /∈ issp(F)
then by clause (i) of Claim 3.4 clause (A) of the theorem holds.

Fourth, assume that for ` = 1, 2 for some χ` < λ we have (χ`)
<κ+`>tr =+ 2λ

so without loss of generality ppJbd

κ+`
(χ`) =+ 2λ; so the first assumption of “third”

hold and its second (by §3) hence clause (C) of the theorem holds.
So we can assume that none of the above apply, and we shall prove clause

(D), first •1 − •2. By “second” above without loss of generality we can choose

χ1 ∈ (µ, λ) such that (χ1)<κ
+>tr =+ λ and without loss of generality cf(χ1) =

κ+,ppJbd
κ+

(χ1) =+ λ (by [?]), so •1 holds.

By “third” without loss of generality there is no F ⊆ (κ+)µ of cardinality λ such
that (κ+, κ++) /∈ issp(F), hence •2 holds.

Now by “fourth” we can assume that there is no χ2 ∈ (µ, λ) such that λ =+

χ<κ
++>tr

2 , hence by 1.15(1) for every stationary S ⊆ Sλκ++ we have (D`)S . Again

we apply 1.28 with χ2 here for µ there and we can find a stationary set S ⊆ Sλκ++

and a strict ladder system 〈ηδ : δ ∈ S〉 which is (κ+ω+1, Jκ++×κ+)-free, hence by
1.18 we have BB(λ, κ+ω+1, < µ, Jκ++×κ+), so clause (D) of the theorem holds. So
we are done. �1.32

Claim 1.33. Assume χ < χ+ ≤ λ = cf(λ) and α < λ⇒ cf([α]≤χ,⊆) < λ.
1) If 2σ < λ, σ = cf(σ) ≤ χ and λ = λ<λ, then (D`)∗Sλσ

.

2) We can find P̄ = 〈Pα : α < λ〉 such that:

(a) Pα ⊆ P(α),

(b) |Pα| < λ,

(c) if u ∈ Pα, then |u| ≤ χ and u is a closed subset of α,

(d) if α ∈ Pα and β ∈ u, then u ∩ β ∈ Pβ,

(e) if δ < λ,ℵ0 < cf(δ) ≤ χ then δ = sup(u) for some u ∈ Pδ.

Proof. 1) By [?].
2) See Džamonja-Shelah [?]. �1.33

Observation 1.34. 1) Assume

(A) λ = χ+, χ = cf(χ) ≥ µ or

(B) λ = χ+ > µ+, cf([χ]≤µ,⊆) = χ, see 0.11(2).
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Then we can find 〈ēε : ε < χ〉 such that:

(a) ēε = 〈eε,α : α < λ〉
(b) eε,α ⊆ α is closed

(c) sup{otp(eε,α) : α < λ} < µ for each ε < χ

(d) if α ∈ eε,β then eε,α = eε,β ∩ α
(e) if α < λ ∧ cf(α) < µ then for some ε < χ the set eε,α contains a club of α

(f) for every α < λ and u ∈ [α]<µ for some ε < χ we have u ⊆ eε,α.

Remark 1.35. Used in 3.12.

Proof. First assume clause (A) holds. By [?, §4] or [?, 3.7] there is a sequence
〈ēε : ε < χ〉 satisfying clauses (a),(b),(d) and

(c)′ eε,α has cardinality < χ

(e) if u ⊆ α < λ has cardinality < χ then u ⊆ eε,α for some ε

(f)′ 〈eε,α : ε < χ〉 is ⊆-increasing.

Manipulating those ēε’s we get the desired conclusion (e.g. ignoring clause (f)
choose 〈eδ : δ < µ limit〉, eδ a club of δ of order type cf(δ) and for ε < χ ∧ δ < µ
we define ēδε = 〈eδε,α : α < λ〉 by eδε,α := {γ ∈ eε,α : otp(γ ∩ eε,α) ∈ eδ}, now check).

Second, assume clause (B). The proof is similar using 1.33, i.e. Dzamonja-Shelah
[?]. �1.34

Claim 1.36. We have BB(2µ, κ+ω+1, θ, Jbd
κ+×κ) if θ < µ ∈ Cκ and (∀χ)(χ < 2µ ⇒

χ<κ
+>tr < 2µ).

Proof. See in the proof of 1.32, “second...”. That is, by 1.28 there is a (κ+κ+1, Jκ+×κ)-
free ladder system 〈Cδ : δ ∈ S〉, S ⊆ Sλκ+ stationary.

We claim that C̄ exemplifies BB(λ, κ+ω+1, < λ, Jbd
κ+×κ). Recalling the assump-

tion χ < 2µ ⇒ χ<κ
+>tr < 2µ by Claim 1.15 we have (D`)S1

for every stationary
S1 ⊆ S, hence by 1.18 we have clause (B) of Definition 0.7. �1.36

Note (will be useful together with 1.32, 4.4, 3.17).

Observation 1.37. If (A) then (B) where:

(A) (a) J` is an ideal on κ` for ` = 1, 2 and κ1 = κ2 ∧ J1 ⊆ J2

or J1 ≤RK J2 or just for some function h from κ2 onto κ1 we have
(∀A ∈ J1)({β < κ2 : h(β) ∈ A} ∈ J1)

(b) c̄` = 〈c`α : α ∈ S`〉, otp(c1α) = κ1

(c) S2 = {κ2 · δ : δ ∈ S1} and for δ ∈ S1 we have C2
κ2·δ =

{κ2 · β + otp(C1
δ ∩ α) : α ∈ C1

δ and β = h(α)}
(B) (a) if c̄1 is (µ, J1)-free then c̄2 is (µ, J2)-free

(b) if BB(λ, µ, θ, J1) and θ = θκ2 then BB(λ, µ, θ, J2).

Proof. Straightforward. �1.37
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§ 2. Cases of weak G.C.H.

Note that if µ ∈ Cκ and λ < 2µ < 2λ, then we can find a µ+-free F ⊆ κµ of
cardinality λ (by the “No hole Conclusion”, [?, Ch.II,2.3 pg.53] or here 1.34(3)) so
by the Section Main Claim 2.2 we can deduce BB(λ, µ+, (2µ, θ), κ) for θ < µ - see
conclusion 2.7.

Observe below that if θ = 2, C̄ = 〈Cγ : γ < λ〉, Cγ ⊆ µ (and 2µ < 2λ), then
easily clause (β) of the conclusion of the Section Main Claim 2.2 below holds by
counting - see 2.3(5). The point is to prove it for more colors, this is a relative of
[?, 1.10] but this section is self contained. Also Definition 2.1 repeats Definition [?,
1.9].

This section is close to [?, §1] hence we try to keep similar notation.

Definition 2.1. 1) Sep(µ′, µ, χ, θ,Υ) means that for some f̄ :

(a) f̄ = 〈fε : ε < µ′〉
(b) fε is a function from µχ to θ

(c) for every % ∈ µ′θ the set {ν ∈ µχ : for every ε < µ′ we have fε(ν) 6= %(ε)}
has cardinality < Υ.

2) We may omit χ if χ = θ. We write Sep(µ, θ,Υ) for Sep(µ, µ, θ, θ,Υ) and Sep(µ, θ)
means that for some Υ = cf(Υ) ≤ 2µ we have Sep(µ, µ, θ, θ,Υ) and Sep(< µ, θ) if
for some Υ = cf(Υ) ≤ 2µ and some σ < µ we have Sep(σ, µ, θ, θ,Υ). Let Sep+(µ, θ)
mean Sep(µ, µ, θ, θ, µ).

The Section Main Claim 2.2. Assume

(a) 2µ < 2λ

(b) D is a µ+-complete filter on λ extending the co-bounded filter

(c) C̄ = 〈Cγ : γ < λ〉, Cγ ⊆ µ,

(d) 2 ≤ θ ≤ µ and Υ ≤ µ (or just D is Υ+-complete, Υ ≤ 2µ)

(e) Sep(µ, θ,Υ)

(f) λ = min{∂ : 2∂ > 2µ} or at least

(f)− we have hξ ∈ λ(2µ) for ξ < (2µ)+ such that ζ 6= ξ ⇒ hζ 6=D hξ.

Then

(α) if χ satisfies γ < λ ⇒ χ|Cγ | ≤ θ, then we can find f̄ = 〈fγ : γ < λ〉
satisfying fγ ∈ (Cγ)χ such that (see 2.3(1)):

for every f : µ→ χ, for some γ < λ, fγ ⊆ f (and even for D+-many
γ < λ)

(β) if Fγ : (Cγ)(2µ)→ θ for γ < λ, then we can find c̄ = 〈cγ : γ < λ〉 ∈ λθ such
that:

(∗) for any mapping f : µ → 2µ, for some γ < λ,Fγ(f � Cγ) = cγ (even
for D+-many γ < λ)

(γ) if χ̄ = 〈χε : ε < µ〉 satisfies γ < λ ⇒
∏
ε∈Cγ

χε ≤ θ, then we can find

f̄ = 〈fγ : γ < λ〉 satisfying fγ ∈
∏
ε∈Cγ

χε such that for every f ∈
∏
ε<µ

χε, for

some γ < λ, fγ = f � Cγ (and even for D+-many γ’s).
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Remark 2.3. 1) Of course “for D+ many t ∈ I we have xx” means that D is a filter
on I and {t ∈ I : t satisfies xx} ∈ D+, see below.
2) For D a filter on I let Dom(D) = I and let D+ = {A ⊆ I : I\A /∈ D}.
3) Similarly for J an ideal on I.
4) Note that in 2.2, clause (f) implies clause (a) and even clause (f)− does. Note
that clause (f) implies λ is regular (but not (f)−) and clause (b) implies cf(λ) > µ.
5) Concerning clause (β) in 2.2, when θ = 2, this is easy: let D be the filter of
co-bounded subsets of λ, and let 〈fα : α < 2µ〉 list µ(2µ), each appearing λ times.
Now F := {〈1 − Fγ(fα � Cγ) : γ < λ〉 : α < 2µ} is a subset of λ2 of cardinality
2µ < 2λ = |λ2|. So every sequence c̄ ∈ λ2\F is as required. Concerning this proof
we can use any filter D on λ such that |2λ/D| > 2µ,
6) In the Section Main Claim 2.2 we can replace µ by any set of cardinality µ. E.g.,
ω>µ. Hence replacing C̄ by C̄ ′ = 〈C ′α : α < λ〉, C ′α = ω>(Cα) in clause (β) of 2.2
we can assume Dom(Fγ) = {f : f a function from ω>(Cα) to 2µ}.
7) We may wonder if clause (e) of the assumption of the Section Main Claim 2.2
is reasonable; the following Claim 2.6 gives some sufficient conditions for clause (e)
of 2.2 to hold.
8) In 2.2 we implicitly assert that (f) ⇒ (f)−; for completeness we recall the
justification (as there (2µ)+ ≤ 2λ).

Observation 2.4. We have (f) ⇒ (f)− in 2.2, i.e. if λ = min{∂ : 2∂ > 2µ} then
there are hξ : λ→ 2µ for ξ < 2λ such that ξ < ζ < 2λ ⇒ hξ 6= hζ mod Jbd

λ .

Proof. As α < λ ⇒ |α2| = 2|α| ≤ 2µ and µ ≤ λ ≤ 2µ clearly λ>2 = ∪{α2 : α < λ}
has cardinality 2µ, so there is a one-to-one function g from λ>2 onto 2µ.

Let 〈ηξ : ξ < 2λ〉 list λ2 and let hξ : λ→ 2µ be defined by hξ(α) = g(ηξ � α) for
α < λ.

Clearly 〈hξ : ξ < 2λ〉 is as required. �2.4

In order to give a sufficient condition for clause (e) of 2.2 we recall

Definition 2.5. 1) For J an ideal on σ and cardinal µ let UJ(µ) = min{|P| : P ⊆
[µ]≤σ and for every f ∈ σµ, for some u ∈ P, we have {ε < σ : f(ε) ∈ u} 6= ∅
mod J}.
2) If J = Jbd

σ and σ is a regular cardinal, we may write Uσ(µ).

Claim 2.6. Clause (e) of 2.2 holds, i.e., Sep(µ, θ,Υ) holds, when θ ≥ ℵ0 and5 at
least one of the following holds:

(a) µ = µθ and Υ = θ

(b) Uθ(µ) = µ and 2θ < µ and Υ = (2θ)+

(c) UJ(µ) = µ where for some σ we have J = [σ]<θ, θ ≤ σ, σθ ≤ µ and θ<σ < µ
and Υ = (θ<σ)+

(d) µ is strong limit of cofinality 6= θ, θ < µ and Υ = (2θ)+

(e) µ ≥ iω(θ) and Υ = µ.

Proof. By the proof of [?, 1.11], (not the statement!); however, for completeness,
below we shall give a complete proof (after the proofs of 2.2, 2.7 and 2.8). We shall
use mainly 2.6 clause (d).
Proof of the Section Main Claim 2.2:

5On the case “θ finite”, see 2.10.
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It is enough to prove clause (β), as it implies the others. Why? Clearly clause
(α) is a special case of clause (γ) and for clause (γ) note that without loss of
generality (∀ε)(χε ≤ θ) hence (∀ε)(χε ≤ 2µ) so we can choose Fγ as any function

from (Cγ)(2µ) onto θ such that:

• Fγ�
∏
ε∈Cγ

χε is a one to one function.

Now by clause (β) we can find 〈cγ : γ < λ〉 such that (∗) there holds and for γ < λ
let fγ be the unique f ∈

∏
ε∈Cγ

χε such that Fγ(f) = cγ and fγ constantly zero if

there is no such f .
Now check; so indeed is sufficient to prove clause (β).
Let 〈Fγ : γ < λ〉 be as in clause (β) and we shall prove that there is 〈cγ : γ < λ〉

as promised therein.
By assumption (e) we have Sep(µ, θ,Υ) which means (see Definition 2.1(2)) that

we have Sep(µ, µ, θ, θ,Υ).
Let f̄ = 〈fε : ε < µ〉 exemplify Sep(µ, µ, θ, θ,Υ), see Definition 2.1(1) and

(∗)0 for % ∈ µθ let Sol% := {ν ∈ µθ : for every ε < µ we have %(ε) 6= fε(ν)}

where Sol stands for solutions, so by clause (c) of the Definition 2.1(1) of Sep it
follows that:

(∗)1 % ∈ µθ ⇒ |Sol%| < Υ.

Let cd be a one-to-one function from µ(2µ) onto 2µ such that (this is possible as
cf(2µ) > µ):

α = cd(〈αε : ε < µ〉)⇒ α ≥ sup{αε : ε < µ}

Let cdε : 2µ → 2µ for ε < µ be such that α < 2µ ⇒ α = cd(〈cdε(α) : ε < µ〉).
Let H be a one-to-one function from 2µ onto µθ, such H exists as 2 ≤ θ ≤ µ by

clause (d) of the assumption. For % ∈ µθ let Sol′% := {α < 2µ : H(α) ∈ Sol%}, so

(∗)2 % ∈ µθ ⇒ |Sol′%| < Υ.

Clearly in the assumption, if clause (f) holds, then clause (f)− holds (see 2.4), so we
can assume that 〈hξ : ξ < (2µ)+〉 are as in clause (f)− so in particular hξ ∈ λ(2µ).

Fix ξ < (2µ)+ for a while.
For γ < λ let

(∗)3 %∗ξ,γ := H(hξ(γ)) ∈ µθ.

Let ε < µ. Recall that %∗ξ,γ ∈ µθ for γ < λ and fε is a function from µθ to θ so

fε(%
∗
ξ,γ) < θ. Hence we can consider the sequence c̄ξε = 〈fε(%∗ξ,γ) : γ < λ〉 ∈ λθ as

a candidate for being as required (on 〈cγ : γ < λ〉) in the desired conclusion (∗)
from clause (β) of the Section Main Claim 2.2. If one of them is as required, we
are done. So assume towards a contradiction that for each ε < µ (recall we are
fixing ξ < (2µ)+) there is a sequence ηξε ∈ µ(2µ) that exemplifies the failure of c̄ξε
to satisfy (∗), hence there is a set Eξε ∈ D, so necessarily a subset of λ, such that

(∗)4 γ ∈ Eξε ⇒ Fγ(ηξε � Cγ) 6= fε(%
∗
ξ,γ).
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Define η∗ξ ∈ µ(2µ) by

�1 η∗ξ (α) = cd(〈ηξε(α) : ε < µ〉) for α < µ; so η∗ξ ∈ µ(2µ) for our ξ < (2µ)+.

By clause (b) in the assumption of our Section Main Claim 2.2, the filter D is
µ+-complete hence

(∗)5 E∗ξ := ∩{Eξε : ε < µ} belongs to D.

Now we vary ξ < (2µ)+. For each such ξ we have chosen η∗ξ ∈ µ(2µ), and clearly the

number of such η∗ξ ’s is ≤ |µ(2µ)| = (2µ)µ = 2µ hence for some η∗ and unbounded

U ⊆ (2µ)+ we have ξ ∈ U ⇒ η∗ξ = η∗.

For ε < µ we define η′ε ∈ µ(2µ) by η′ε(α) = cdε(η
∗(α)) for α < µ.

So by the choice of η∗ξ in �1 above:

�2 if ξ ∈ U , then ε < µ⇒ ηξε = η′ε.

So by (∗)4 + (∗)5

�3 if γ ∈ E∗ξ where ξ ∈ U then ε < µ⇒ Fγ(η′ε � Cγ) 6= fε(%
∗
ξ,γ).

So noting 〈Fγ(η′ε � Cγ) : ε < µ〉 ∈ µθ, clearly by (∗)0 and �3 we have:

�4 if γ ∈ E∗ξ where ξ ∈ U , then %∗ξ,γ ∈ Sol〈Fγ(η′ε�Cγ):ε<µ〉.

As ξ was any member of U , by the choice of %∗ξ,γ , i.e. (∗)3 which says that %∗ξ,γ =

H(hξ(γ)) and the definition of Sol′ (just before (∗)2), we have:

�5 if ξ ∈ U , then γ ∈ E∗ξ ⇒ hξ(γ) ∈ Sol′〈Fγ(η′ε�Cγ):ε<µ〉.

Let ξ̄ = 〈ξi : i < Υ〉 be a sequence of pairwise distinct members of U , which is
possible as U is an unbounded subset of (2µ)+ and Υ ≤ 2µ (see clause (d) of the
assumption). As D is µ+-complete and Υ ≤ µ or just D is Υ+-complete, also
E∗ := ∩{E∗ξi : i < Υ} belongs to D. By the above,

γ ∈ E∗ ∧ i < Υ⇒ hξi(γ) ∈ Sol′〈Fγ(η′ε�Cγ):ε<µ〉.

But by (∗)2 we have |Sol′〈Fγ(η′ε�Cγ):ε<µ〉| < Υ, hence by �5 for each γ ∈ E∗ we can

choose iγ < jγ < Υ such that hξiγ (γ) = hξjγ (γ).

As Υ ≤ µ and D is µ+-complete or just D is Υ+-complete recalling E∗ ∈ D
clearly for some i < j < Υ the set {γ ∈ E∗ : iγ = i ∧ jγ = j} is 6= ∅ mod
D. As i < j, by the choice of ξ̄ (after �5) we have ξi 6= ξj and by the previous
sentences {γ ∈ E∗ : hξi(γ) = hξj (γ)} 6= ∅ mod D. But this contradicts the choice of
〈hζ : ζ < (2µ)+〉, i.e., clause (f)− of the assumption which is enough by 2.4. �2.6

Conclusion 2.7. 1) BB(λ, µ+, θ, κ) and if λ is regular even BB(Jnst
λ , µ+, θ, κ) - see

Definition 0.5 - holds when θ < µ ∈ Cκ and µ < λ < 2µ < 2λ.
2) BB(λ, µ+, (2µ, θ), κ) - see Definition 0.7 - holds when θ, µ, λ are as above.
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Proof. 1) Let Υ = (2θ+κ
+

)+, so Υ < µ. By case (d) of 2.6, we have Sep(µ, θ,Υ).
Let 〈Cγ : γ ∈ [µ, λ)〉 be a µ+-free family of subsets of µ each of order type κ (exist
by 1.3(c)) and let 〈Si : i < λ〉 be a partition of [µ, λ) into λ (pairwise disjoint)
sets each of cardinality λ, stationary if λ is regular and let 〈ξi,α : α < λ〉 list Si
in increasing order. Clearly 〈Cγ : γ ∈ [µ, λ)〉 is a weak (λ, κ)-ladder system and is
µ+-free so is as required in clause (A) of 0.5. Hence it suffices to find for each i < λ
a function ci with domain Si, such that ci(γ) ∈ (Cγ)θ as in Definition 0.5.

Clearly λ ≥ λ0 := min{∂ : 2∂ > 2µ}, so if equality holds, by 2.4 there are
hξ ∈ λ(2µ) for ξ < 2λ such that ζ 6= ε ⇒ hζ 6=Jbd

λ
hε. So we can apply the

Section Main Claim 2.2(α) with D taken to be the club filter and with 〈Cξi,α :

α ∈ [µ, λ)〉 here standing for C̄ there; we get c′i with domain λ. Let ci have
domain Si, ci(ξi,α) = c′i(α) so ci is as required. If otherwise, i.e., λ > λ0, the result
“BB(λ, µ+, θ, κ)” follows by monotonicity of BB in λ.

To get “if λ is regular then BB(Jnst
λ , µ+, θ, κ)”, let g : λ → [µ, λ0) be such that

g−1{α} is a stationary subset of λ for α ∈ [µ, λ0) let 〈S′i : i < λ〉 be a partition
of [µ, λ0) into stationary sets and use S′′i = {β < λ : g(β) ∈ S′i〉, C ′′β = Cg(β) and

D = {A ⊆ λ: for club E of λ0, (∀β < λ)(g(β) ∈ E ⇒ β ∈ A)}.
2) The proof is similar. �2.7

Conclusion 2.8. Suppose we add clause (g) and replace clause (b) by (b)+ in the
Section Main Claim 2.2 where

(g) λ = cf(λ) and dλ > 2µ, recalling dλ = cf(λλ,<Jbd
λ

)

(b)+ λ is regular and D is the club filter on λ.

Then we can strengthen clause (β) of the conclusion to:

(β)+ if Fγ : (Cγ)(2µ) → θ for γ < λ and F′ : µ(2µ) → λλ, then we can find
c̄ = 〈cγ : γ ∈ S∗〉 ∈ λθ with S∗ ∈ D+ such that:

(∗) for any f : µ→ 2µ for some γ < λ (and even for D+-many γ ∈ S∗) we
have

Fγ(f � Cγ) = cγ and (F′(f))(γ) < min(S∗\(γ + 1))

Proof. Note that clause (b)+ here implies clause (b) from 2.2, so the conclusion
of 2.2 holds. We do not have to repeat the proof of the Section Main Claim 2.2;
just to quote it as F = {F′(f) : f a function from µ to 2µ} is a subset of λλ of
cardinality ≤ 2µ.

Let F ′ := {sup{fi : i < µ} : fi ∈ F for i < µ}, so clearly:

(∗) (a) F ′ ⊆ λλ

(b) |F ′| ≤ 2µ

(c) (F ′,≤) is µ+-directed.

[Why Clause (c)? Because if fi ∈ F ′ for i < µ then sup{fi : i < µ} ∈ F ′.]
Now we apply a result from Cummings-Shelah [?, §8] possible as λ > µ, µ strong

limit, saying that cf(λλ,<Jbd
λ

) = cf(λλ,<Jnst
λ

), that is dλ = cf(λλ,<Jnst
λ

). Hence

there is f∗ ∈ λλ such that the set {α < λ : f(α) < f∗(α)} is a stationary subset of
λ for every f ∈ F ′. For f ∈ F let Sf = {δ < λ : δ a limit ordinal and f∗(α) ≤ f(δ)}
hence
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(∗) (a) if f1 ≤ f2 are from F ′ then Sf1 ⊆ Sf2
(b) Sf /∈ D for f ∈ F ′.

Now apply 2.2 for the filter D∗ := {S ⊆ λ : S ∪ Sf ∈ D, i.e. contains a club of λ
for some f ∈ F}. �2.8

We still owe a proof of Claim 2.6 giving sufficient conditions for Sep(µ, µ, θ, θ,Υ).

Proof. Proof of 2.6
The cases 1-4 below cover all the clauses (a)-(e) of Claim 2.6 recalling

(∗)1 Sep(µ, θ,Υ) = Sep(µ, µ, θ, θ,Υ)

and using freely the obvious

(∗)2 monotonicity: if Sep(µ′1, µ1, χ1, θ1,Υ1) and µ′1 ≤ µ′2, µ1 = µ2, χ1 ≤ χ2, θ1 =
θ1,Υ1 ≤ Υ2 then Sep(µ′2, µ2, χ2, θ2,Υ2).

Clause (a) is fully covered by case 1 using χ = θ, clause (b) follows from clause (c)
for the case σ = θ (and monotonicity in Υ), clause (c) by case 2 for χ = θ, clause
(d) by case 3 letting σ = θ and clause (e) by case 4.

Case 1: µ = µθ,Υ = θ, χ ∈ [θ, µ] and we shall prove Sep(µ, µ, χ, θ, θ). Let

F =

{
f : f is a function from µχ into θ and

for some u ∈ [µ]θ and a sequence ρ̄ = 〈ρi : i < θ〉
with no repetition, ρi ∈ uχ, we have

(∀ν ∈ µχ)[ρi ⊆ ν ⇒ f(ν) = i] and

(∀ν ∈ µχ)[(
∧
i<θ(ρi * ν))⇒ f(ν) = 0]

}
.

We write f = f∗u,ρ̄, if u, ρ̄ witness that f ∈ F as above. Notice that the size of the

set of such pairs (u, ρ̄) is µθ, and each such pair determines a unique f .
Recalling µ = µθ, clearly |F| = µ. Let F = {fε : ε < µ} and we let f̄ = 〈fε :
ε < µ〉. Clearly clauses (a),(b) of Definition 2.1 (with µ, µ, χ, θ, θ here standing
for µ′, µ, χ, θ,Υ there) hold; let us check clause (c). So suppose % ∈ µθ and let
R = R% := {ν ∈ µχ: for every ε < µ we have fε(ν) 6= %(ε)}. We have to prove that
|R| < θ (as we have chosen Υ = θ).
Towards a contradiction, assume that R ⊆ µχ has cardinality ≥ θ and choose
R′ ⊆ R of cardinality θ. Hence we can find u ∈ [µ]θ such that 〈ν � u : ν ∈ R′〉 is
without repetitions.

Let {νi : i < θ} list R′ without repetitions and let ρi := νi � u for i < θ. Now
let ρ̄ = 〈ρi : i < θ〉, so f∗u,ρ̄ is well-defined and belongs to F . Hence for some
ζ < µ we have f∗u,ρ̄ = fζ . Now for each i < θ, νi ∈ R′ ⊆ R, hence by the definition
of R, (∀ε < µ)(fε(νi) 6= %(ε)) and, in particular, for ε = ζ, we get fζ(νi) 6= %(ζ).
But by the choice of ζ, fζ(νi) = f∗u,ρ̄(νi) and by the definition of f∗u,ρ̄, recalling
νi � u = ρi, we have f∗u,ρ̄(νi) = i, so i = fζ(νi) 6= %(ζ). This holds for every i < θ
whereas % ∈ µθ, a contradiction.

Case 2: θ ≤ χ < µ, χ<σ < µ, χθ ≤ µ, σθ ≤ µ, θ ≤ σ, J = [σ]<θ so it is an ideal on
σ,UJ(µ) = µ,Υ = (χ<σ)+ recalling Definition 2.5. We shall prove Sp(µ, µ, χ, θ,Υ)
which is more than required.
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Let {uγ : γ < µ} ⊆ [µ]≤σ exemplify UJ(µ) = µ. Define F as in case 1 replacing
“u ∈ [µ]θ” by “u ∈ P :=

⋃
{[uγ ]θ : χ < µ}”. As σθ ≤ µ easily |P| = µ and as

χθ ≤ µ clearly |F| = µ. Let 〈fε : ε < µ〉 list F , clearly clauses (a),(b) of Definition
2.1 hold and we shall prove clause (c).

Assume that % ∈ µθ and R = R% ⊆ µθ is defined as in case 1, and towards a
contradiction assume that |R| ≥ Υ = (χ<σ)+. We can find ν∗, 〈(αζ , νζ) : ζ < σ〉
such that:

� (a) ν∗, νζ ∈ R%
(b) αζ < µ

(c) νζ � {αξ : ξ < ζ} = ν∗ � {αξ : ξ < ζ}
(d) νζ(αζ) 6= ν∗(αζ).

[Why? Obvious, as in the proof of the Erdös-Rado theorem; let 〈ηi : i < Υ〉 be a
sequence with no repetitions of members of R. For each j < Υ, we try to choose
by induction on ζ < σ ordinals i(j, ζ), αj,ζ such that:

(a) i(j, ζ) < j is increasing with ζ

(b) αj,ζ = min{α : ηj(α) 6= ηi(j,ζ)(α)}
(c) i(j, ζ) = min{i : i(j, ε) < i < j and ηi(αj,ε) = ηj(αj,ε) for ε < ζ}.

If we succeed for some j we are done. Otherwise for each j < Υ there is ξ(j) < σ
such that (i(j, ζ), αj,ζ) is well defined iff ζ < ξ(j).

Let T = {〈(i(j, ζ), αj,ζ) : ζ < ξ〉 : j < Υ and ξ ≤ ξ(j)} which is, under /, a
tree with ≤ σ levels, is normal, has a root and each node has at most χ immediate
successors, hence |T | ≤

∑
i<σ

|iχ| = Σ{χ|i| : i < σ)} = χ<σ. But j 7→ 〈(i(j, ζ), αj,ζ) :

ζ < ξ(j)〉 is a one-to-one function from Υ into T , a contradiction.]
Clearly 〈αζ : ζ < σ〉 has no repetitions.
So by the choice of {uγ : γ < µ} as exemplifying UJ(µ) = µ, i.e., the definition

of UJ(µ) and the choice of J , for some i < µ the set uγ ∩ {αζ : ζ < σ} has
cardinality ≥ θ; choose a subset u of this intersection of cardinality θ, hence u ∈ P.
So {ν � u : ν ∈ R} has cardinality ≥ θ; without loss of generality u = {αζi : i < θ}
where ζi, increasing with i, and let ρ∗i = νζi � u for i < θ and we can continue as in
Case 1.

Case 3: µ > θ 6= cf(µ) and σ = θ (or θ ≤ σ ∈ Reg ∩ µ\{cf(µ)}) and µ is a strong
limit cardinal, Υ = (2<σ)+ and we shall prove Sep(µ, θ,Υ).

Letting χ = θ, this follows by case 2, the main point is “UJ(µ) = µ where
J = [σ]<θ, recalling Definition 2.5.

Let P = ∪{u : u is a bounded subset of µ of cardinality ≤ σ}. So P ⊆ [µ]≤σ

and as µ is a strong limit cardinal clearly P has cardinality ≤ µ and if f is a
function from σ to µ, as σ = cf(σ) 6= cf(µ) necessarily for some α < µ the set
u∗ := {ε < σ : f(ε) < α} is of cardinality σ hence it belongs to P (and has subsets
of cardinality exactly θ which necessarily belong to µ).

Case 4: µ ≥ iω(θ) and Υ = µ and we shall prove Sep(µ, θ,Υ).
Let χ = θ so we should prove Sep(µ, µ, χ, θ,Υ). By [?] or see [?] we can find a

regular σ < iω(θ) which is greater than θ and is such that Uσ(µ) = µ (i.e., the
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ideal is Jbd
σ ); hence J := [σ]<θ ⊆ Jbd

σ hence trivially UJ(µ) = µ; so case 2 applies
and by monotonicity we are done. �2.6

∗ ∗ ∗

Discussion 2.9. We may try to strengthen the results on Sep(µ, θ, κ) assuming
µσ = µ, a case which is unnatural for [?] but may be helpful.

Claim 2.10. 1) Sep(µ, θ,Υ) when µ ≥ ℵ0 > θ and Υ ≥ θ.

2) If BB(I, C̄, (λ, θ1), < κ) and [α < κ⇒ θ
|α|
2 ≤ θ2] then BB(I, C̄, θ2, < κ).

Proof. 1) By the proof of 2.2, clause (a) and monotonicity of Sep in Υ.
2) As in the beginning of the proof of 2.2, i.e. proving it suffices to prove clause
(β) implies clause (γ) of the conclusion. �2.10

Paper Sh:898, version 2013-12-01 11. See https://shelah.logic.at/papers/898/ for possible updates.



30 SAHARON SHELAH

§ 3. Getting large µ+-free subsets of κµ

Recall that µ = Cκ ⇒ pp(µ) =+ 2µ and easily (see 0.9(2))

� if F ⊆ κµ is µ1-free and λ = |F| = 2µ, then BB(λ, µ1, λ, κ), (and hence
TDUµ1

holds when κ ∈ {ℵ0,ℵ1}).

This is a motivation of the investigation here, i.e., trying to get more cases of µ+-
free subsets for κµ of cardinality pp(µ). In 3.1 the case of our interest is µ = iω, µ <
χ < λ = iω+1(= 2µ), cf(χ) = θ ∈ (ℵω, µ).

Claim 3.1. There is a set F ⊆ κµ of cardinality λ satisfying � if ~ holds where

� (α) the set F is (θ, J1)-free, see Definition 1.2,

(β) F is (µ+, (2θ)+, J1)-free - see Definition 1.2,

~ (a) µ < χ < λ,

(b) κ = cf(µ) < µ,

(c) θ is regular (naturally but not necessarily θ = cf(χ)),

(d) κ < θ < µ or just κ 6= θ are both < µ,

(e) α < µ⇒ |α|θ < µ,

(f) J = J1 is a κ-complete ideal on κ, including Jbd
κ , of course

(g) χ<θ>tr ≥+ λ as witnessed by T ; i.e., the tree T has θ levels,
≤ χ nodes and ≥ λ distinct θ-branches,

(h) ppJ1(µ) > χ

Claim 3.2. In Claim 3.1 we can replace ~ by ~′ and �(β) by �′(β)′ below, i.e. if
~′ holds then there is F ⊆ κµ of cardinality λ such that �′ holds where:

�′ (α) the set F is (θ1, J1)-free,

(β)′ F is (µ+, σ, J1)-free,

~′ (a) µ < χ < λ,

(b) κ = cf(µ) < µ,

(c) J2 is an ideal on θ,

(d) J = J1 is an ideal on κ,

(e) α < µ⇒ |α|θ < µ (hence θ < µ),

(f) θ1 satisfies (α) or (β) where

(α) θ1 ≤ θ and J2 is θ1-complete,

(β) J1 is cf(θ1)+-complete and J2 = Jbd
θ1

and θ1 < κ of course,

(g) there are ηα ∈ θχ for α < λ such that α < β < λ⇒ {ε < θ:
ηα(ε) = ηβ(ε)} ∈ J2,

(h) there is a (µ+, J1)-free F ⊆ κµ of cardinality ≥ χ,

(i) (α) P(θ)/J2 satisfies the σ-c.c. or just

(β) for some κ+-complete ideal J ′2 ⊇ J2 of θ,
σ ≥ sup{|A|+ : A ⊆ P(θ)\J ′2 and A 6= B ∈ A ⇒ A ∩B ∈ J2}.

Remark 3.3. 1) Recall Definition 1.2 where we defined notions of freeness for sets
and for sequences.
2) The proof of 3.1 is written so it can be adapted to become a proof of 3.2.
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Proof. Proof of Claim 3.1: As cf(µ) = κ < µ by clause (b) of ~; and α < µ ⇒
|α|θ < µ by clause (e), we can let 〈µi : i < κ〉 be increasing with limit µ such that
(µi)

θ = µi > 2θ. Let µ−i =
⋃
j<i µj ; without loss of generality µ−i < µi < µ; if

σ ≤ κ and (∀α < µ)(|α|σ < µ), we can add (µi)
κ+θ = µi.

There is ρ̄ = 〈ργ : γ < χ〉 such that:

(∗)1 (a) ργ ∈
∏
i<κ µi with no repetition; moreover ργ(i) ∈ [µ−i , µi)

(b) the set {ρα : α < χ} is (µ+, J1)-free (in fact we can add that
even the sequence 〈ρα : α < χ〉 is µ+-free, recalling
Definition 1.2(1),(2) but this is immaterial here).

[Why? For any regular χ1 ∈ (µ, χ] by clause (h) of the assumption ~ and the
no-hole claim, there is an increasing sequence 〈λi : i < κ〉 of regular cardinals < µ
with limit µ such that χ1 < tcf(

∏
i<κ

λi, <J1).

As we can replace 〈µi : i < κ〉 by any subsequence of length κ, for some non-
decreasing sequence, without loss of generality µ−i < λi < µi.

By the no-hole-claim (really [?, Ch.II,1.5A]) there are ργ ∈
∏
i<κ

[µ−i , λi) ⊆
∏
i<κ

[µ−i , µi)

for γ < χ1 such that 〈ργ : γ < χ1〉 is (µ+, J1)-free. If χ is regular, we can use
χ1 := χ. We are left with a case χ is singular; however, by the strenghening of the
no-hole claim in [?, Ch.II,1.5A,pg.51] there is a sequence 〈ργ : γ < χ〉 as above. So
(∗)1 holds indeed.

Let J2 = Jbd
θ , (for 3.2 the ideal J2 is given in clause (c)); and let T be a tree as

in clause (g) of the assumption ~. Without loss of generality

(∗)2 (a) T ⊆ θ>χ and <T is /, i.e. being an initial segment

(b) if η1, η2 ∈ T ∧ ε1 < θ ∧ ε2 < θ ∧ η1(ε1) = η2(ε2) then ε1 = ε2

and we can add, but not used, η1 � ε1 =η2 � ε2.

Recall limθ(T ) = {η ∈ θχ : (∀ε < θ)(η � ε ∈ T )}, so it has ≥ λ members.
Let 〈ηα : α < λ〉 be a sequence of pairwise distinct members of limθ(T ). Let

cd∗ : ∪{θ(µi) : i < κ} → µ be one-to-one onto µ such that ρ ∈ θ(µi)⇔ cd∗(ρ) < µi.
Let 〈cdε : ε < θ〉 be the sequence of functions with domain µ such that ζ = cd∗(ρ)⇒
ρ = 〈cdε(ζ) : ε < θ〉. Let cd′ε(ζ) = cdε(cd0(ζ)).

Lastly, for α < λ (the second and third demands are for later claims using this
proof)

�1 να ∈ κµ is defined as follows:

• for i < κ, let να(i) ∈ [µ−i , µi) be such that cd′ε(να(i)) = ρηα(ε)(i) for
every ε < θ

• if (∀α < µ)(|α|κ < µ), then we can make να(i) also code να � i, e.g.
cd1(να(i)) codes να�i

• if %α ∈
∏
i<κ

µi for α < λ are given then we can add that να(i) codes

%α(i), too, e.g. %α(i) = cd0(cd2(να(i))).

[Why? E.g. why the demand να(i) ≥ µ−i is O.K.? Because cd∗ is a one-to-one
function and the freedom in choosing cd3(να(i)).]

We shall prove that the set F = {να : α < λ} is as required and let ν̄ = 〈να :
α < λ〉.
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Now

�2 ν̄ is without repetition, i.e., α < β < λ ⇒ να 6= νβ : and so the set F has
cardinality λ.

[Why? If να = νβ , then for every ε < θ and i < κ, we have ρηα(ε)(i) = cd′ε(να(i)) =

cd′ε(νβ(i)) = ρηβ(ε)(i). Fixing ε < θ, as this holds for every i < κ, we conclude
that ρηα(ε) = ρηβ(ε). But 〈ργ : γ < χ〉 is without repetitions, hence it follows
that ηα(ε) = ηβ(ε). As this holds for every ε < θ, we conclude that ηα = ηβ but
〈ηα : α < λ〉 is without repetitions hence α = β, so we are done.]

Now the main point is proving clauses (α) and (β) of �.

Step 1: To prove clause (α) of �, i.e., “F is (θ, J1)-free”.
Assume w ⊆ λ and |w| < θ. Recalling (∗)1(b) and θ < µ, clearly the set

{ρηα(ε) : α ∈ w, ε < θ} being of cardinality ≤ θ < µ+ is free, hence there is a
sequence 〈sηα(ε) : α ∈ w, ε < θ〉 of members of J1 such that: if (α`, ε`) ∈ w × θ, for
` = 1, 2, and ηα1

(ε1) 6= ηα2
(ε2) and i ∈ κ\sηα1 (ε1)\sηα2 (ε2) (recalling 0.16(0)), then

ρηα1 (ε1)(i) 6= ρηα2 (ε2)(i).

Now as 〈ηα : α ∈ w〉 is a sequence of < θ distinct θ-branches of T and ηα1(ε1) =
ηα2(ε2) ⇒ ε1 = ε2 and ηα1(ε) = ηα2(ε) ⇒ ηα1 � ε = ηα2 � ε by (∗)2, i.e., by the
choice of T . Hence by the regularity of θ we can find ε∗ < θ such that 〈ηα(ε∗)) :
α ∈ w〉 has no repetitions, and define s′α = sηα(ε∗) ⊆ κ for α ∈ w; now 〈s′α : α ∈ w〉
is as required. [Why? First s′α ∈ J1 by the choice of s′α. Second, assume α 6= β are

from w and i ∈ κ\s′α\s′β and we should prove να(i) 6= νβ(i). Now ηα(ε∗) 6= ηβ(ε∗)

by the choice of ε∗ and s′α = sηγ(ε∗), s
′
β = sηβ(ε∗) hence i ∈ κ\sηα(ε∗\sββ(ε∗) so

by the choice of 〈sηγ(ε) : γ ∈ w, ε < θ〉 we have ρηα(ε∗)(i) 6= ρηβ(ε∗)(i) hence

cd′ε∗(να(i)) = ρηα(ε∗)(i) 6= ρηβ(ε∗)(i) = cd′ε∗(νβ(i)) which implies that να(i) 6= νβ(i).

Note also that F is normal by �1 as the intervals [µ−i , µi) for i < κ are pairwise
disjoint.

Step 2: To prove clause (β) of �.
Let F ′ ⊆ {να : α < λ} have cardinality ≤ µ. Choose w such that F ′ = {να :

α ∈ w}, so that w ∈ [λ]≤µ and let u := ∪{Rang(ηα) : α ∈ w}. Clearly u ∈ [χ]≤µ.
By the choice of 〈ργ : γ < χ〉 we can find a sequence 〈sγ : γ ∈ u〉 such that sγ ∈ J1

and i ∈ κ\(sγ1 ∪ sγ2) ∧ γ1 6= γ2 ∧ {γ1, γ2} ⊆ u⇒ ργ1(i) 6= ργ2(i).
For α ∈ w let tα := {i < κ : the set of ε < θ such that i /∈ sηα(ε) belongs to

J2 = Jbd
θ }.

We shall now show that t̄ := 〈tα : α ∈ w〉 is as required in Definition 1.2(1),(2);
that is, we have to prove that tα ∈ J1 and that for any ξ < µ and i∗ < κ the set
of α ∈ w such that i∗ /∈ tα ∧ να(i∗) = ξ is small, i.e. of cardinality ≤ 2θ; these
demands are proved below in (∗)4 and (∗)3 respectively. So let ξ < µ and i∗ < κ
and let v = vξ,i∗ = {α ∈ w : i∗ /∈ tα and να(i∗) = ξ}.

First we shall prove below that

(∗)3 |v| ≤ 2θ.

This will do one half of proving “t̄ is as required in Definition 1.2(1),(2).”
Why does (∗)3 hold? Now if α ∈ v, then i∗ ∈ κ\tα, hence (by the definition
of tα) we have Uα,i∗ := {ε < θ : i∗ /∈ sηα(ε)} ∈ J+

2 . So if α 6= β are from v
and ε ∈ Uα,i∗ ∩ Uβ,i∗ and ηα(ε) 6= ηβ(ε), then we have i∗ /∈ sηα(ε) (as ε ∈ Uα,i∗)
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and i∗ /∈ sηβ(ε) (as ε ∈ Uβ,i∗), and hence by the choice of 〈sγ : γ ∈ u〉, we have
ρηα(ε)(i∗) 6= ρηβ(ε)(i∗), so

(∗)4 cd′ε(να(i∗)) = ρηα(ε)(i∗) 6= ρηβ(ε)(i∗) = cd′ε(νβ(i∗)).

Recall that να(i∗) = ξ = νβ(i∗) because ε ∈ Uα,i∗ ∩Uβ,i∗ , but this contradicts (∗)4.
It follows that α ∈ v ∧ β ∈ v ∧ α 6= β ∧ ε ∈ Uα,i∗ ∩ Uβ,i∗ ⇒ ηα(ε) = ηβ(ε); but
α 6= β ⇒ {ε < θ : ηα(ε) = ηβ(ε)} ∈ J2, hence this implies α ∈ v ∧ β ∈ v ∧ α 6= β ⇒
Uα,i∗ ∩ Uβ,i∗ ∈ J2. As we have noted earlier that α ∈ v ⇒ Uα,i∗ ∈ J+

2 , it follows
that P(θ)/J2 fails the |v|-c.c. But for the present proof, P(θ) has cardinality 2θ,
hence P(θ)/J2 satisfies the (2θ)+-c.c., and so |v| ≤ 2θ, as required in (∗)3. For
proving “t̄ is as required in Definition 1.2”, we need also the second half:

(∗)5 tα ∈ J1 for α ∈ w.

Why does (∗)5 hold? Firstly, assume κ < θ; towards a contradiction assume that
tα ∈ J+

1 . By the choice of tα, for each i ∈ tα, the set {ε < θ : i /∈ sηα(ε)} belongs

to J2, but J2, being euqal to Jbd
θ (and recalling θ is regular), is κ+-complete and

|tα| ≤ κ, hence the set

rηα :=
⋃
i∈tα

{ε < θ : i /∈ sηα(ε)}

lies in J2 hence we can choose εα < θ such that ε = εα ⇒
∧
i∈tα

i ∈ sηα(ε), so

tα ⊆ sηα(εα), but sηα(εα) ∈ J1, and hence tα ∈ J1 as required.

Secondly, assume κ > θ; towards a contradiction, assume tα ∈ J+
1 . Again

i ∈ tα ⇒ {ε < θ : i /∈ sηα(ε)} ∈ J2, but J2 = Jbd
θ , hence we can find ε̄α = 〈εα,i :

i ∈ tα〉 ∈ (tα)θ such that εα,i = sup{ε < θ : i /∈ sηα(ε)} < θ. However, J1 is

κ-complete (see clause (f) of ~) hence J1 is θ+-complete, so for some ε∗α < θ, we
have t′α := {i ∈ tα : εα,i < ε∗α} ∈ J+

1 . So i ∈ t′α ⇒ εα,i < ε∗α ⇒ sup{ε < θ : i /∈
sηα(ε)} < ε∗α ⇒ i ∈ sηα(ε∗α) so t′α ⊆ sηα(ε∗α). But sηα(ε∗α) ∈ J1, while t′α /∈ J1, a
contradiction. �3.1

Proof. Proof of 3.2:
We note the points of the proof of 3.1 which have to be changed. The choice

of ρ̄ = 〈ργ : γ < χ〉, i.e. (∗)1 is now done by using ~′(h). Before (∗)2, instead of
defining J2 recall that it is given (see ~′(f)) and if J ′2 is not given (see ~′(i)(β))
let J ′2 = J2. After (∗)2, instead of choosing 〈ηα : α < λ〉 it is given in ~′(g) and
the tree T disappears, so we “lose” the statement “η1�ε1 = η2�ε2” in the end of
(∗)2(h), the “η1(ε1) = η2(ε2)” is easy to get.

Now step 1 says that “F is (θ1, J1)-free”. Thus we have to choose ε∗ as there.
Of course, now |w| < θ1 as we are proving “F is (θ1, J1)-free”.

First, if clause (α) of ~′(f) holds, as U1
α,β := {ε < θ : ηα(ε) = ηβ(ε)} ∈ J2 for

α 6= β from w, but J2 is θ1-complete, so {ε < θ : ηα(ε) = ηβ(ε) for some α 6= β
from w} belongs to J2, hence there is ε∗ < θ not in ∪{U1

α,β : α 6= β are from ω}.
Second, if clause (β) of ~′(f) clearly θ1 < κ, so as J1 is κ-complete it suffices

to prove α < β < λ ⇒ sα,β = {i < κ : να(i) = νβ(i)} ∈ J1 but for α 6= β we
have ηα 6= ηβ hence for some ε < θ we have ηα(ε) 6= ηβ(ε) hence sα,β ⊆ {i < κ :
ρηα(ε)(i) = ρηβ(ε)(i)} ∈ J1 so we are done.
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Turning to step 2, now to define tα we use “belongs to J ′2”; then (∗)3 should say
|v| < σ and in the proof instead of “P(θ)/J2 satisfies the (2θ)+-c.c.” we use clause
~′(i)(α) if it holds and ~′(i)(β) otherwise, as still α 6= β ⇒ Uα,i∗ ∩ Uβ,i∗ ∈ J2.

Lastly, to prove (∗)5 we use clause ~′(f). �3.2

Claim 3.4. In 3.1, recalling J = J1 is a (κ-complete) ideal on κ, and letting
J2 = Jbd

θ assuming (∀α < µ)(|α|κ < µ) we can add to the conclusion that F is
(Υ, J)-free when (a) or (b) or (c) hold where:

Case (a) Υ = θ+ω+1 and we can choose ηα ∈ θχ for α < λ with no repetitions such

that θ+ /∈ isspJ({ηα : α < λ}).

Case (b) θ+ω < Υ ≤ µ and we can choose ηα ∈ θχ for α < λ with no repetitions

such that θ < ∂ = cf(∂) ∧ (< ∂, ∂) ∈ isspJ({ηα : α < λ})⇒ ∂ ≥ Υ.

Case (c) there are pairwise distinct ηα ∈ θχ for α < λ and pairwise distinct %γ ∈ κµ

for γ < χ such that for every regular ∂ ∈ (θ+κ+,Υ) we have ∂ /∈ issp({ηα :
α < λ}) and ∂ /∈ issp({%γ : γ < χ}).

Proof. The proof splits to cases.

Case (a):

We reduce it to case (b) proved below. It follows by 1.4 but we elaborate. So
assume toward contradiction that case (b) fails, so there is ∂ such that θ < ∂ = cf(∂)
and (< ∂, ∂) ∈ isspJ({ηα : α < λ}) but ∂ < Υ. We can choose a minimal such that
∂ and let ∂1 < ∂ be such that (∂1, ∂) ∈ isspJ({ηα : α < λ}). So by Definition 1.2(6)
with (χ, θ) here standing for (µ, κ) there, there is a set u ⊆ χ of cardinality ≤ ∂1

such that ∂ ≤ |Uu| where Uu := {α : α < λ and {i < θ : ηα(i) ∈ u} ∈ J+
2 }.

Without loss of generality ∂1 ≥ θ; clearly ∂ = ∂+
1 by the minimality of ∂ as ∂+

1

is regular > θ. Also if ∂1 = θ we get the desired contradiction (i.e. clause (a) fails);
so we can assume ∂1 > θ.

Let 〈αε : ε < ∂1〉 list the elements of u and let Uu,ζ := {αε : ε < ζ} for ζ ≤ ∂1.
As θ < ∂1 < ∂ < ∂ < Υ = θ+θ+1 we have cf(∂1) 6= θ so recalling J2 = Jbd

θ , for every
α ∈ Uu for some ε(α) < ∂1 we have {i < θ : ηα(i) ∈ Uu,ε(α)} ∈ J+

2 . As |Uu| ≥ ∂ =

∂+
1 > ∂1 necessarily for some ε(∗) < ∂1 the set {α ∈ Uu : {i < θ : ηα(i) ∈ Uu,ε(∗)}

has cardinality ≥ ∂ ≥ ∂1. So Uu,ε(∗) witness that also ∂1 satisfies the demand on
∂, contradicting the minimality of ∂, so we are done.

So case (b) holds and this is proved below.

Case (b):

We shall prove that case (c) holds, so toward contradiction assume it fails. Re-
calling Definition 1.2(7), note that choosing any %γ ∈ κµ for γ < χ clause (c) holds.

Case (c):

We repeat the proof of 3.1 but we use 〈ηα : α < χ〉, 〈%α : α < λ〉 from the
assumption (c). In the proof of 3.1 we use the %α’s in �1, that is, we demand that
να(i) also codes %α(i).

Consider the statement

� For regular ∂ ∈ (θ+ κ+, µ), the set S is not a stationary subset of ∂ when :

Paper Sh:898, version 2013-12-01 11. See https://shelah.logic.at/papers/898/ for possible updates.



PCF AND ABELIAN GROUPS SH898 35

�∂,S ∂ = cf(∂) ∈ (θ + κ+, µ), αε < λ for ε < ∂ with no repetitions and
S = {ζ < ∂ : for some ξ ∈ [ζ, ∂), the set {i < κ : ναξ(i) ∈ {ναε(i) :

ε < ζ}} belongs to J+
1 }.

It suffices to prove �:

Why? We prove that {να : α < λ} is ∂+-free by induction on ∂ < Υ so let
w ⊆ λ, |w| ≤ ∂. If ∂ ≤ κ just note that α 6= β ∈ w ⇒ {i < κ : να(i) = νβ(i)} ∈ J1,
if ∂ < θ recall �(α) of Claim 3.1. If ∂ ≥ κ+ + θ is singular use compactness for
singulars. So assume ∂ = cf(∂) ≥ κ+ + θ so by the induction hypothesis without
loss of generality |w| = ∂ and let 〈αε : ε < ∂〉 list w and define S as in�S above from
〈αε : ε < ∂〉. As we are assuming �, necessarily S is not a stationary subset of ∂ so
let E be a club of ∂ disjoint to S. Let 〈ε(ι) : ι < ∂〉 list E ∪{0} in increasing order.
For each ι < θ we apply the induction hypothesis to wι := {αε : ε ∈ [ε(ι), ε(ι+ 1))}
and get the sequence 〈sι,ε ∈ J1 : ε ∈ wι〉.

Lastly, for ε < ∂ let ι be such that ε ∈ [ε(ι), ε(ι+1)) and sε = sι,ε∪{i < κ : νε(i)
belong to {ναζ (i) : ζ < ε(ι)}}.
Why does � hold?

Towards a contradiction, suppose that 〈αε : ε < ∂〉, S are as in �∂,S and S is a
stationary subset of ∂ = cf(γ) ∈ (θ + κ+,Υ). Then without loss of generality :

(∗)5 (a) for some stationary S0 ⊆ S, for every limit ζ ∈ S0, ζ can itself serve
as the witness ξ (in fact we can have S\S0 not stationary)

(b) for some club E of ∂, if ε < ξ and E∩ (ε, ξ] 6= ∅ then {i < κ : ναξ(i) ∈
{ναζ (i) : ζ < ε}} ∈ J1.

[Why? For clause (a) by renaming. For clause (b), it suffices to show that (∀ε <
∂)(f(ε) < ∂) where for ε < ∂, f(ε) is the minimal ordinal γ ≤ ∂ such that if ξ < ∂
and {i < κ : ναξ(i) ∈ {ναζ (i) : ζ < ε}} ∈ J+

1 then ξ < ∂.
Now, if ε < ∂ and f(ε) = ∂ then by the third • of �2 in the proof of 3.1 it follows

that u = {%αζ (i) : i < κ and ζ < ε} and 〈αζ : ζ < ∂〉 witness ∂ ∈ isspJ1({%α : α <
λ}) so also clause (b) of (∗)5 holds indeed.]

Clearly δ ∈ S ⇒ cf(δ) ≤ κ, and because (∀α < µ)(|α|κ < µ), by the second • in
�1 in the proof of 3.1 we know that for i < κ the value να(i) determine να�i, hence
easily without loss of generality

(∗)6 if δ ∈ S then δ ∈ E and cf(δ) = κ.

Let

S1 := {ζ ∈ S0 : {ε < θ : ηαζ (ε) ∈ {ηαj (ε) : j < ζ}} belongs to J+
2 }.

Case A: S1 is a stationary subset of ∂.

Firstly, assume κ < θ. As, see above, ζ ∈ S0 ⇒ cf(ζ) ≤ κ and θ > κ ⇒ J2 is
κ+-complete, clearly for each ζ ∈ S1, for some jζ < ζ, the set {ε < θ : ηαζ (ε) ∈
{ηαj (ε) : j < jζ}} belongs to J+

2 . By Fodor’s lemma, for some j(∗), the set
S2 = {ζ ∈ S1 : jζ ≤ j(∗)} is a stationary subset of ∂. Now {ηαζ : ζ ∈ S2}
witnesses (< ∂, ∂) ∈ usspJ2(limθ(T )); but this contradicts a demand in case (c) of
the assumption of 3.4.

Secondly, if θ < κ but recalling (∗)6 (see above) ζ ∈ S0 ⇒ cf(ζ) = κ and now
the proof is similar.
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Case B: κ < θ and S1 is not stationary.
So necessarily S0\S1 is a stationary subset of ∂. By the definition of S1 (and

(∗)5) we can find s̄∗ = 〈s∗ζ : ζ ∈ (S0\S1)〉 such that:

(∗)7 (a) s∗ζ ∈ J2

(b) if ζ1 6= ζ2 are from (S0\S1) and ε ∈ θ\s∗ζ1\s
∗
ζ2

, then

ηαζ1 (ε) 6= ηαζ2 (ε).

Let ε(ζ) = min(θ\s∗ζ) for ζ ∈ (S0\S1).

So for some stationary S2 ⊆ (S0\S1), we have ζ ∈ S2 ⇒ ε(ζ) = ε(∗) and so

(∗)8 〈ηαζ (ε(∗)) : ζ ∈ S2〉 is without repetitions.

Now (∗)2(b) in the proof of 3.1 says that 〈ργ : γ < χ〉 is (µ+, J+
1 )-free; apply this

to the subset {%ηαζ (ε(∗)) : ζ ∈ S2} which has cardinality ∂ < µ+ hence (recall (∗)8)

(∗)9 some 〈s[ηαζ (ε(∗))] : ζ ∈ S2〉 witnesses that 〈ρηαζ (ε(∗)) : ζ ∈ S2〉 is free, i.e.

sηαζ (ε(∗)) ∈ J1 for ζ ∈ S1 and ζ 6= ξ ∈ S2∧i ∈ κ\s[ηαζ (ε(∗))]\s[ηαξ(ε(∗))]⇒
%ηαζ (ε(∗))(i) 6= %ηαξ (ε(∗))(i).

As κ < ∂, for some i(∗) < κ,

(∗)10 the set S3 := {ζ ∈ S2 : i(∗) /∈ s[ηαζ (ε(∗))]} is a stationary subset of ∂.

Hence

(∗)11 〈ναε(i(∗)) : ε ∈ S2〉 is a sequence without repetitions.

By (∗)6 we know that να(i) = νβ(i) ⇒ να � i = νβ � i for α, β < λ, i < κ; but by
the choice of S we have ζ ∈ S3 ⇒ ναε(i(∗)) ∈ {ναζ (i(∗)) : ζ < ε}. However, this
contradicts (∗)10 + (∗)11. �3.4

Claim 3.5. 1) In 3.1, F satisfies: for κ + θ < ∂ = cf(∂) < λ, we have F is
(∂+, ∂, J1)-free iff (< ∂, ∂) ∈ isspJ1(F) and there are pairwise distinct fε ∈ F for

ε < ∂ with no repetitions such that for stationarily many δ ∈ Sλ≤κ, {i < κ : fδ(i) ∈
{fα(i) : α < δ} ∈ J+

1 .
2) If in 3.1 also α < µ⇒ |α|<κ < µ then we can replace Sλ≤κ by Sλκ .

Proof. By the proof of the previous claim. �3.5

∗ ∗ ∗

In 3.6, the case we are most interested in is µ = iω1
, κ = ℵ1, θ = ℵ0.

Claim 3.6. There is F ⊆ κµ of cardinality λ which is (µ+, J)-free when :

~ (a) θ = cf(θ) < κ = cf(µ) < µ

(b) λ = µκ

(c) µ < χ < χθ = λ

(d) α < µ⇒ |α|θ < µ

(e) J is a θ+-complete ideal on κ

(f) ppJ(µ) =+ λ.
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Remark 3.7. This claim is used in the proof of the theorem 1.22.

Proof. Let 〈µi : i < κ〉 be increasing with limit µ such that (µi)
θ = µi and let

cd∗ : θµ→ µ and cdε (for ε < θ) be as in the proof of 3.1, noting that by clause (a) of
the assumption of the claim θµ = ∪{θ(µi) : i < κ} = µ and let µ−i = ∪{µj : j < i}.

As χ < ppJ(µ), by 1.3(c), i.e. [?, Ch.II] there is a sequence ρ̄ = 〈ργ : γ < χ〉 of
members of κµ which is (µ+, J)-free. Let η̄ = 〈ηα : α < λ〉 with ηα ∈ θχ be pairwise
distinct.

Without loss of generality, ργ ∈
∏
i<κ

[µ−i , µi); we define να ∈
∏
i<κ

µi ⊆ κµ for α < λ

by να(i) = cd∗(〈ρηα(ε)(i) : ε < θ〉) for i < κ. We shall prove that 〈να : α < λ〉 is as

required, i.e. 〈να : α < λ〉 is (µ+, J)-free; this suffices as it implies α < β < λ ⇒
να 6= νβ hence {να : α < λ} ⊆ κµ has cardinality λ = µκ (and is (µ+, J)-free).

For w ∈ [λ]≤µ, we let u = ∪{Rang(ηα) : α ∈ w}, so u is a subset of χ of
cardinality ≤ µ.

As ρ̄ = 〈ρα : α < χ〉 is (µ+, J)-free, there is s̄ = 〈sγ : γ ∈ u〉 such that:

~ (α) sγ ∈ J for every γ ∈ u
(β) if γ1 6= γ2 ∈ u and i ∈ κ\(sγ1 ∪ sγ2), then ργ1(i) 6= ργ2(i).

Now for each α ∈ w, the set tα := ∪{sηα(ε) : ε < θ} is the union of ≤ θ members of

J , but J is a θ+-complete ideal by assumption (e), hence tα ∈ J .
Suppose α1 6= α2 are from w and i ∈ κ\(tα1 ∪tα2). Can we have να1(i) = να2(i)?

If so, then for every ε < θ, we have i ∈ κ\sηα1 (ε)\sηα2 (ε) and ρηα1 (ε)(i) = ρηα2(ε)
(i),

hence necessarily ηα1
(ε) = ηα2

(ε). As this holds for every ε < θ, we get ηα1
= ηα2

.
This implies α1 = α2.

So i ∈ κ\(tα1
∪ tα2

) ∧ να1
(i) = να2

(i) ⇒ α1 = α2. Thus 〈να : α ∈ w〉 is free, so
we are done. �3.6

Conclusion 3.8. If clauses (a)-(f) of 3.6 hold and λ = µκ = 2µ, then BB(λ, µ+, λ, J).

Proof. By claim 3.6 there is F ⊆ κµ of cardinality λ which is (µ+, J)-free. By
assumption |F| = µκ = 2µ hence by 0.9 we get BB(2µ, µ+, χ, J) so we are done.

�3.8

A relative of 3.6 is

Claim 3.9. There is a (µ+, J1)-free F ⊆ κµ of cardinality λ when

~ (a) σ < θ < κ = cf(µ) < µ < λ

(b) (α) J2 is a σ+-complete ideal on θ and

(β) there are λ pairwise J2-distinct members of θχ

(c) 2κ < µ < χ < λ and 2κ < cf(λ)

(d) α < µ⇒ cov(|α|, θ+, θ+, σ+) ≤ µ
(e) J1 is a θ+-complete ideal on κ

(f) χ < ppJ1(µ).

Proof. By clauses (f) and (c) there is an increasing sequence 〈λj : j < κ〉 of regular
cardinals ∈ (2κ, µ) with limit µ such that χ+ = tcf(

∏
i<κ

λi, <J1) and we let λ−i =

Σ{λj : j < i} for i < κ.
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By clause (f) and 1.3(c), without loss of generality there is a (µ+, J1)-free se-
quence 〈ργ : γ < χ〉 of members of

∏
j<κ

λj . Let Pi ⊆ [λi]
θ be a set of cardinality

≤ µ such that:

(∗)Pi for every u ∈ [λi]
θ, we can find ζu ≤ σ and uζ ∈ Pi for ζ < ζu such that

u ⊆ ∪{uζ : ζ < ζu}.

Note that Pi exists by clause (d) of the assumption. Let P = ∪{Pi : i < κ}, so
that |P| ≤ µ,P ⊆ [µ]θ.

By clause (b)(β), let η̄ = 〈ηα : α < λ〉 with ηα ∈ θχ be such that α < β < λ
implies ηα 6=J2 ηβ , i.e. {ε < θ : ηα(ε) = ηβ(ε)} ∈ J2.

Lastly, for each α < λ, for each i < κ, we know that {ρηα(ε)(i) : ε < θ} ∈ [λi]
≤θ,

hence we can find a sequence 〈uiα,ζ : ζ < σ〉 of members of Pi such that {ρηα(ε)(i) :

ε < θ} ⊆ ∪{uiα,ζ : ζ < σ}.
For each α < λ and i < κ, as J2 is a σ+-complete ideal on θ, for some

ζα,i < σ, the set Wα,i := {ε < θ : ρηα(ε)(i) ∈ uiα,ζα,i} belongs to J+
2 . Let

xα := {(i, ζα,i, sηα(ε)(i) ∩ uiα,sα,i) : i < κ and ε ∈ Wα,i ⊆ θ}.
The number of possible xα is at most ≤ 2κ, but 2κ < cf(λ) by clause (c) of the

assumption. As we can replace 〈ηα : α < λ〉 by 〈ηα : α ∈ v〉 for any v ∈ [λ]λ,
without loss of generality for some x = {(i, ζi,ε, γi,ε) : i < κ and ε ∈ Wi}, we have:

(∗)0 xα = x for every α < λ.

For α < λ let να ∈ κP be defined by:

�1 να(i) = uiα,ζα,i .

Clearly it suffices to show that:

�2 ν̄ = 〈να : α < λ〉 exemplifies the conclusion.

This follows by (∗)1, (∗)2, (∗)3 below:

(∗)1 να ∈ κP and |P| ≤ µ.

[Why? Obviously.]

(∗)2 να 6= νβ for α < β < λ.

[Why? By the proof of (∗)3 using w = {α, β}.]

(∗)3 {να : α < λ} is (µ+, J1)-free.

[Why? Let w ∈ [λ]≤µ; we shall prove that {να : α ∈ w} is J1-free. Now u :=
∪{Rang(ηα) : α ∈ w} ∈ [χ]≤µ, recalling ε < θ ⇒ ηα(ε) < χ. By the assumption on
{ργ : γ < χ}, we can find a sequence s̄ such that:

(α) s̄ = 〈sγ : γ ∈ u〉 ∈ u(J1)

(β) if γ1 6= γ2 and γ1 ∈ u, γ2 ∈ u and i ∈ κ\sγ1\sγ2 , then ργ1(i) 6= ργ2(i).
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For each α ∈ w, let tα := ∪{sηα(ε) : ε < θ}. Now tα is the union of ≤ θ members

of J1 which is a θ+-complete ideal (by (e)), so tα ∈ J1. It suffices to prove that
〈tα : α ∈ w〉 witnesses {να : α ∈ w} is J1-free, so, by the previous sentence, it
suffices to prove:

(∗)′3 if α1 6= α2 are from w and i ∈ κ\tα1\tα2 , then να1(i) 6= να2(i).

Toward a contradiction assume that να1(i) = να2(i). Recalling the choice of να, i.e.
�1, this means that uiα1,ζα1,i

= uiα2,ζα2,i
.

As xα1
= x = xα2

, see condition (∗)0, clearlyWα1,i =Wα2,i but we are assuming
uiα1,ζα1,i

= uiα2,ζα2,i
so by the definition of xα1

,xα2
we have ε ∈ Wα1

= Wα2
⇒

ρηα1
(ε)(i) = ρηα2

(ε)(i) ⇒ ηα1
(ε) = ηα2

(ε) so {ε < θ : ηα1
(ε) = ηα2

(ε)} ⊇ Wα1
but

Wα1,i ∈ J+
2 by the choice of ζα1,i. So we get ¬(ηα1

6=J2 ηα2
), contradicting the

choice of 〈ηα : α < λ〉.]
So (∗)′3 holds, and hence (∗)3 holds. Therefore �2 holds, so we are done. �3.9

Observation 3.10. 1) Assume λ > µ > κ = cf(µ) and α < µ ⇒ |α|σ < µ, and
θ = sup{θi : i < σ} and for each i < σ, there is a θi-free F ⊆ κµ of cardinality λ.
Then there is a θ-free F ⊆ κµ of cardinality λ.
1A) If κ = σ then α < µ⇒ |α|<σ < µ suffices.
2) If F ⊆ κµ is θ-free, then there is a normal θ-free F ′ ⊆ κµ of cardinality |F| - see
Definition 1.2(5).
3) If J is an ideal on κ, δ < λ and 〈λi : i < δ〉 is increasing with limit λ and there
are (θ, J)-free Fi ⊆ κµ of cardinality λi for i < δ then there is a (θ,F)-free F ⊆ κµ
of cardinality λ.
3A) In part (3), if f ∈ Fi ∧ ε < κ, f(ε) ∈ Uε ⊆ µ and Uε is infinite for ε < κ then
without loss of generality f ∈ F ∧ ε < κ⇒ f(ε) ∈ Uε.
4) We can in parts (3), (3A) add “(Fi, <J) of order type λi” and change the
conclusion to “F ⊆ κ(µ× µ), (F ,≺J) of order type λ (and still is (θ, J)-free)”.
5) Similarly to part (4) but F ⊆ κµ if 2κ < µ, cf(δ) recalling Definition 1.2(4).

Proof. 1) By coding (separating the proof according to whether σ < κ or σ ≥ κ).
In more detail, without loss of generality, i < σ ⇒ θi < θ; let Fi ⊆ κµ be θi-free

of cardinality λ, let 〈ηiα : α < λ〉 list Fi with no repetitions, and let cd:
⋃
α<µ

σα→ µ

be a one-to-one mapping.

Case 1: σ < κ.
For α < λ and ε < κ the sequence 〈ηiα(ε) : i < σ〉 belongs to σµ hence by the

present case to ∪{σβ : β < α}.
Let ηα := 〈cd(〈ηiα(ε) : i < σ〉) : ε < κ〉, so ηα ∈ κµ, and clearly 〈ηα : α < λ〉 is as

required.

Case 2: σ ≥ κ.
Let 〈µε : ε < κ〉 be increasing with limit µ. For ε < κ let hε : σ × ε → σ be

one-to-one and onto.
We define ηα ∈ κµ as follows:

• for ε < κ we let ηα(ε) = cd(〈γα,i : i < σ〉) where

• if j < σ and ζ < ε and i = hε(j, ζ), then γα,i = min{ηjα(ζ), µε}.
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Now first for ε < κ, ηα(ε) is well defined (< µ) as 〈γα,i : i < σ〉 ∈ σ(µε) ⊆ dom(cd);
so indeed ηα ∈ κµ. Second, {ηα : α < λ} is θ-free because if w ⊆ λ, |w| < θ then for
some i < σ we have |w| < θi, hence we can find a sequence 〈ζα : α ∈ w〉 of ordinals
< κ such that:

• α ∈ w ∧ β ∈ w ∧ ε < κ ∧ ε ≥ ζα ∧ ε ≥ ζβ ⇒ ηiα(ε) 6= ηiβ(ε).

Let ξα = min{ξ : ξ ≥ ζα and ηiα(ζα) < µξ}. Then, easily

• α ∈ w ∧ β ∈ w ∧ ε < κ ∧ ε ≥ ξα ∧ ε ≥ ξβ ⇒ ηα(ε) 6= αβ(ε).

So we are done.
1A) The proof is similar using ηα = 〈cd(ηiα(ε) : i ≤ ε) : ε < κ〉 for an appropriate
function cd. This is all right because α < µ ⇒ |α|<σ < µ; actually α < µ ⇒
|α|<σ ≤ µ suffices.
2) Easy.
3) Let i(∗) = min{i : δ ≤ λi} and let λ−i = ∪{λj : j < i} for i < δ, further let
〈f iα : α < λi〉 list Fi with no repetitions, for ε < κ let cdε : µ × µ → µ be one
to one and for α < λ let fα ∈ κµ be defined by: if α ∈ [λ−i , λi) and ε < κ then

f ′α(ε) = cdε(f
i
α(ε), f

i(∗)
i (ε)). One can now check that this works.

3A) Similarly but add: cdε maps Uε × Uε into Uε.
4) As we weaken the conclusion to “there is a <J -increasing sequence of length λ
in κ(µ× µ)”, the proof of part (3) suffices if we add

⊕ cdε(α1, α2) < cdε(α
′
1, α
′
2) Iff (α2 < α′2) ∨ (α2 = α′2 ∧ α1 < α′1)

5) Without loss of generality λ < µ and δ = cf(δ).
Without loss of generality each λi is regular and (even > µ and also λ0 > δ).

For each i < δ let f̄ i = 〈f iα : α < λi〉 be a <J -increasing sequence of members of
κµ, in the role of Fi. Let 〈µε : ε < κ〉 be an increasing sequence of regular cardinals
> κ with limit µ and for i < δ, α < λi let giα : κ → κ be defined by: for ε < κ we
let giα(ε) = min{ζ < µ : f iα(ε) < µζ}. Hence {gα : α < λi} ⊆ κκ has cardinality
≤ 2κ which is < µ < λi = cf(λi), so for some gi ∈ κκ the set {α < λi : giα = gi} is
unbounded in λi. Hence without loss of generality i < σ ∧ α < λ2 ⇒ giα = gi.

Also we can replace 〈(λi, f̄ i) : i < δ〉 by its restriction to any u ⊆ δ which is
unbounded in δ. Hence without loss of generality 〈gi : i < δ〉 is constant or with no
repetitions. The latter is impossible as cf(δ) > 2κ. Now we can just use the proof
of part (3) using ⊕ from above. �3.10

Observation 3.11. There is a sup{θi : i < i(∗)}-free F ⊆ κµ of cardinality 2µ

when :

(a) µ ∈ Cκ

(b) for each i < i(∗) at least one of the following holds:

(α) for some χ, θi < µ < χ < λ and χ<θi>tr = λ (and the supremum is
attained)

(β) θi = µ+ and for some χ and σ = cf(σ) < κ we have µ < χ < λ and
χσ = λ

(γ) for some χ, θi < µ < χ < λ, κ 6= cf(χ) < µ and ppJbd
κ

(χ) =+ λ.

Paper Sh:898, version 2013-12-01 11. See https://shelah.logic.at/papers/898/ for possible updates.



PCF AND ABELIAN GROUPS SH898 41

Proof. Clearly i < i(∗)⇒ θi ≤ µ+. Without loss of generality, i(∗) < µ.
[Why? Clearly we can replace 〈θi : i < i(∗)〉 by 〈θi : i ∈ u〉 when u ⊆ i(∗) and
sup{θi : i < i(∗)} = sup{θi : i ∈ u}, so without loss of generality 〈θi : i < i(∗)〉
has no repetitions, and so i(∗) ≤ µ + 1, and if i(∗) ≥ µ, we can find u as above of
cardinality < µ.]

If for every i < i(∗) clause (α) or clause (γ) of (b) of the assumption holds
then by 3.1 or 1.26 there is a θi-free Fi ⊆ κµ of cardinality λ for each i < i(∗)
and by 3.10(1) the conclusion holds. It holds by 3.6 if (β) of (b) applies for some
i < i(∗). �3.11

Claim 3.12. If µ ∈ Cκ and λ = 2µ = χ+ and χ is regular or just cf([χ]≤µ,⊆) = χ
then :

(a) there is a µ+-free F ⊆ κµ of cardinality 2µ = µκ

hence

(b) BB(λ, µ+, θ, κ) for every θ < µ.

Remark 3.13. This is actually as in [?, Ch.II,6.5(3),pg.100] and the no-hole claim.

Proof. By Definition 1.1 there is an ideal J on κ and a sequence 〈λi : i < κ〉 of
regular cardinals < µ such that λ = tcf(

∏
i<κ

λi, <J). So there is a <J -increasing

cofinal sequence 〈fα : α < λ〉 of members of
∏
i<κ

λi. Let ē′ε = 〈eε,α : α < λ〉 for

ε < χ be as in 1.34, that is, if χ is regular then we apply clause (A) of 1.34 and if
cf([χ]≤µ,⊆) = χ, then we apply clause (B) of 1.34.

Now by induction on α < λ we choose ḡα = 〈gε,α : ε < χ〉 and f∗α such that

�2 (a) gε,α ∈
∏
i<κ

λi

(b) f∗α ∈
∏
i<κ

λi

(c) gε,α <J f
∗
α

(d) f∗γ <J gε,α if γ < α

(e) gε,α(i) > sup{f∗β(i), gε,β(i) : β ∈ eε,α} when λi > |eε,α|.

As (
∏
i<κ

λi, <J) is λ-directed we can carry out this definition. In more detail, at

stage α, first we can choose f ′α ∈
∏
i<κ

λi such that β < α ⇒ fβ <J f ′α because

λ > |{fβ : β < α}. Second, for ε < χ we choose gε,α ∈
∏
i<κ

λi such that λi > |eε,α| ⇒

gε,α(i) = sup({f∗β(i), gε,β(i);β ∈ eε,α}∪{f ′α(i)+1}). Third, choose fα ∈
∏
i<κ

λi such

that ε < χ⇒ gε,α <J fα again possible as we have < λ demands.
Now we can prove that for any u ⊆ λ of cardinality ≤ µ the sequence 〈f∗α : α ∈ u〉

is J-free (see 1.2(4)) by induction on otp(u), as in the proof of the no-hole claim,
actually [?, Ch.II,1.5A]. �3.12

Remark 3.14. 1) Note that 1.17 is quoted in �3 of §0 in order to show �3.1, but
we could also use 3.12.
2) How much partial square on λ suffices in 3.12? One for cofinality ≥ κ where the
ideal J is Jbd

κ or just κ-complete (which is all right).
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3) We may consider a parallel of 3.12 when χ is not as there. So assume µ ∈
Cκ, λ = 2µ = χ+ and χ is singular and cf([χ]≤µ,⊆) = λ.

(A) Is there cf(χ)-free F ⊆ κµ of cardinality λ?

4) If for some µ1, µ < µ1 < χ and cov(χ, µ+
1 , µ

+
1 , 2) = χ, then there is a cf(χ)-free

F ⊆ κµ of cardinality κ.
[Why? We apply 1.34(B) with λ, µ0 here standing for λ, χ there getting 〈e1

ε,α :

α < λ, ε < χ〉, so otp(e1
ε,α) < µ+

0 < λ. Let 〈e2
i : i < µ+

0 〉 be such that e2
i

is a closed unbounded subset of i of order type cf(i) for each i < µ+
0 . Now let

ē = 〈ei,ε,α : α < λ, ε < χ, i < µ+
0 〉 be defined by ei,ε,α = {β ∈ eε,α : otp(eε,α) ∈ e2

i }.
So ē is as required except that we use (i, ε) ∈ χ×µ+

0 instead of ε < χ but as χ×µ+
0

has cardinality χ this is all right.]

Now a variant of 3.1 is:

Claim 3.15. If ~ holds, then there is F such that � holds where:

� (α) F ⊆ κµ

(β) |F| = λ

(γ) F is (θ, J1)-free

~ (a) µ < χ < λ

(b) κ = cf(µ)

(c) θ is regular

(d) σ < κ < θ < µ

(e) J1 is a σ+-complete ideal on κ

(f) if α < µ, then cov(|α|, θ+, θ+, σ+) ≤ µ
or just

(f)− if α < µ, then UJ2(|α|) ≤ µ, see Definition 2.5

(g) there is a set of λ pairwise J2-distinct members of θχ

(h) ppJ1(µ)σ
+

(i) J1 is θ+-complete

(j) 2θ < µ

Proof. Combine the proofs of 3.1 and 3.9. �3.15

Claim 3.16. In 3.15:
1) If in ~, ∂ ≥ θ clause (g) is exemplified by F2 ⊆ θχ which is (∂, J2)-free, ∂ < µ,
then F is (∂, θ+, J2)-free.
2) If F ′ ⊆ F has cardinality > θ, then ∪{Rang(ν) : ν ∈ F} has cardinality ≥ θ.
3) Clauses (f) + (e) from ~ implies clause (f)−; in fact clause (e), “J2 is σ+-
complete”, is needed only for this.
4) We can in ~ weaken (also in part (1)) clause (h) to

(h)′ there is a ∂-free F ⊆ κµ of cardinality λ.

Proof. We leave the proof to the reader. �3.16
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Claim 3.17. Assume µ ∈ Cκ, J is a κ-complete ideal on κ and there is no (κ+ω, J)-
free F ⊆ κµ of cardinality λ := 2µ. Then the set Θ = {θ : θ = cf(θ) < µ, θ 6= κ and
for some witness (χ, I) we have I a θ-complete ideal on θ, χ ∈ (µ, λ) of cofinality θ
and ppJ(χ) =+ λ for some θ-complete ideal J on θ} is empty, or a singleton > κ
or of the form {θ, θ+}, θ > θ.

Remark 3.18. This is intended to help in §4 in dealing with R-modules when R has
at least three members together with 1.37, 1.32, 4.4.

Proof. Note

(∗)0 without loss of generality λ is regular.

[Why? By 3.10(3).]

(∗)1 if θ ∈ Θ then θ > κ.

[Why? Let (χ, J) witness θ ∈ Θ, now by 3.6 we get a contradiction to the assump-
tion “there is no (κ+ω, J)-free F ⊆ κµ of cardinality λ”.]

Let (θ1, χ1, J1) be such that

(∗)2 θ1 ∈ Θ and (χ1, J1) is a witness for θ1 ∈ Θ and χ1 is minimal under these
conditions (even varying θ1).

If θ ∈ Θ by the choice of χ1 as minimal, by [?, Ch.II,5.4] we have:

(∗)3 α < χ1 ⇒ cov(|α|, µ+, µ+, κ+) < χ1.

If Θ = {θ1} or Θ = {θ1, θ
+
1 } or θ+

2 = θ1 ∧Θ = {θ1, θ2}, we are done; otherwise let
(θ2, χ2, J2) be such that

(∗)4 θ2 ∈ Θ\{θ1, θ
+
1 } ∧ θ1 6= θ+

2 and (χ2, J2) witness that θ2 ∈ Θ, and χ2 is
minimal under these requirements.

Now

(∗)5 there is a (θ++
1 +θ2, J1)-free set F ⊆ θ1(χ1) of pairwise J1-distinct elements

of cardinality λ.

Why? Case 1: θ2 > θ1

So necessarily θ2 > θ+
1 by (∗)4, hence such an F exists by 3.15 with λ, χ1, χ2, κ, θ1, θ2, J1, J2

here standing for λ, µ, χ, σ, κ, θ, J1, J2 there.
Clauses (a),(b),(c) are obvious. Why does clause (d) from 3.15 hold? It means

“κ < θ1 < θ2 < χ1” and these inequalities hold because, first κ < θ1 holds by (∗)1,
second θ1 < θ2 holds by the present case assumption, and third “θ2 < µ < χ1”
holds by (∗)2.

Clause (e) of 3.15 means “J1, J2 are κ+-complete” which hold as θ1, θ2 > κ by
(∗)1 and J` is θ+

` -complete by the definition of Θ because (χ`, J`) witness θ` ∈ Θ
by (∗)2 + (∗)4.

Clause (f) of 3.9 means here α < χ1 ⇒ cov(|α|, θ+
2 , θ

+
2 , κ

+) ≤ χ1 which holds by
(∗)3.

Lastly, clause (g) of 3.15 means “there is a set of λ pairwise J2-distinct members
of θ2(χ2)” which holds as (J2, χ2) witnesses θ2 ∈ Θ.

The conclusion of 3.15 gives a family F ⊆ θ1(χ1) of cardinality λ which is (θ2, J1)-
free, but θ2 ≥ θ1 by “First”, and θ2 6= θ+

2 by (∗)4 so we are done.
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Case 2: θ2 ≤ θ1

Again by (∗)4, θ
+
2 < θ1. Hence by 3.9 with λ, χ1, χ2, κ, θ1, θ2, J1, J2 here stand-

ing for λ, µ, χ, σ, κ, θ, J1, J2 there, we have finished the proof of (∗)5 getting even
(µ+, J)-free.]

(∗)6 there is F ⊆ κµ of cardinality λ which is (Υ, 5)-free letting Υ = θ+κ
1 .

Why? We apply 3.4, case (c) with χ1, θ1 here standing for χ, θ there. Let 〈λi : i < κ〉
be an increasing sequence of regulars with limit µ such that (

∏
i

λi, <J) has true

cofinality λ, 〈%1
α : α < λ〉 witness it.

We choose 〈%2
α : α < λ〉 listing F as in (∗)5, so it is θ++

1 -free. Let %α =
〈pr(%1

α(i), %2
α(i)) : i < κ〉. Clearly ∂ ∈ issp({%α : α < λ})⇒ ∂ ≥ Υ(θ++

1 )+κ.
We choose 〈η1

α : α < λ〉 be <J -increasing cofinal is some (
∏
i<θ1

λ2
i , <J2) for some

regular λ2
i < χ1, exist because (χ1, J1) witness θ ∈ Θ. Hence by 1.4 we have

∂ ∈ issp({ηα : α < λ})⇒ ∂ ≥ θ+θ1 ≥ θ+κ
1 . �3.17

Claim 3.19. If (A) then (B) where

(A) (a) J is a σ+-complete ideal on κ

(b) Fi ⊆ κµ has cardinality λ for i < σ

(c) µ = µσ or (∀i)([Fi ⊆
∏
ε<κ

λε] and ε < κ⇒ (λε)
σ < µ

(B) there is F ⊆ κµ of cardinality λ such that:

(a) F is (θ2, θ1)− J-free when at least one Fi is (θ1, θ2)-free

(b) F is (θn, θ0)−J-free when θ0 < . . . < θn and for each ` < n for some
i < σ the set Fi is (θ`+1, θ`)− J-free.

Proof. Straightforward. �3.19

We may note that (related to the beginning of §3)

Observation 3.20. Claim 3.2 implies Claim 3.1.

Proof. We assume ~ from 3.1 and let θ1 = θ2 = θ, σ = (2θ)+, J2 = Jbd
θ and prove

that ~′ of 3.2 holds, this suffices.

Clause ~′(a) holds by clause ~(a).

Clause ~′(b) holds by clause ~(b).

Clause ~′(c) holds as we have chosen J2 as Jbd
θ .

Clause ~′(d) holds by clause ~(f).

Clause ~′(e) holds by clause ~(e).

Clause ~′(f) holds, moreover ~′(f)(α) holds and we have chosen θ1 = θ and
J2 = Jbd

θ and by ~() the cardinal θ is regular.

Clause ~′(g) holds by clause ~(g), i.e. letting T be as there, without loss of
generality T is a subtree of θ>χ and we can find pairwise distinct ηα ∈ limθ(T ) ⊆ θχ
so ηα ∈ θχ and α 6= β ⇒ {i < θ : ηα(i) = ηβ(i)} ⊆ `g(ηα,mβ) ∈ Jbd

θ = J2 by the
choice of J2.

Clause ~′(h) holds by the proof of (∗)2 inside the proof of Claim 3.1.

Clause ~′(i) holds, moreover clause ~′(i)(α) holds because σ = (2θ)+ > P(θ) ≥
|P(θ)/J2|. �3.20

Paper Sh:898, version 2013-12-01 11. See https://shelah.logic.at/papers/898/ for possible updates.



PCF AND ABELIAN GROUPS SH898 45

Remark 3.21. In the proof of (∗)1 inside the proof of 3.1 we may wonder.

Question 3.22. What occurs if we just assume

� pp+
J (µ) > χ?

Answer:

Claim 3.23. Inside the proof of 3.1 there is ρ̄ as in (∗)1 provided that we add to
the assumption:

(i) at least one of the following holds:

(α) χ is regular

(β) 2κ < cf(χ)

(γ) α < µ⇒ |α|<κ < µ.

Proof. By the assumption �, for every regular χ1 ∈ [µ, χ] we get λ̄χ1 and subse-
quence µ̄χ1

of µ̄ and σ̄χ1
as above.

Now we use clause ~(i), so one of the three possibilities there holds. The first
say χ is regular, and we choose χ1 = χ so using µ̄χ, ρ̄χ we are done; and without
loss of generality we assume χ is singular.

The second says cf(χ) > 2κ hence for some µ̄′ the set Ξ = {χ1 < χ : χ1 ≥ µ
is regular and µ̄χ1 = µ̄′} is unbounded in χ and using the 〈ρ̄χ1 : χ2 ∈ Ξ〉 by the
proof of [?, Ch.II,1.5A,pg.51], i.e. using a pairing function on each µ′i there is a, ρ̄
as required in (∗)1, replacing µ̄ by µ̄′, of course.

The third says α < µ ⇒ |α|<κ < µ, so without loss of generality i < κ ⇒ µi =
µ<κi . Now for every regular χ1 ∈ (µ, χ) we define ρ̄′χ1

= 〈ρ′χ1,γ : γ < χ1〉 where
ρ′χ1,γ ∈

∏
i<κ

µi, yes using the original µ̄, is defined by ρ′χ1,γ(i) = hi(〈ρχ1,γ(j) : j <

hχ1
(i)〉 where hχ1

(i) = min{ε < κ : λχ1,ε > µi} and hi is a one-to-one function
from Π{λχ1,j : j < hχ1(i)} into µi.

Recalling J1 ⊇ Jbd
κ clearly 〈ρ′χ1,γ : γ < χ1〉 is (µ+, J1)-free as a set, and we finish

as in “the second”. So we are done. �3.23
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§ 4. On the µ-free trivial dual conjecture

We shall look at the following definition.

Definition 4.1. 1) For a ring R and a cardinal µ, let spµ(R) be the class of regular
cardinals κ such that there is a witness (Ḡ, h) where “(Ḡ, h) is a witness for spµ(R)”
means:

~ (a) Ḡ = 〈Gi : i ≤ κ+ 1〉
(b)(α) Ḡ is an increasing continuous sequence

(β) Gi is a left R-module, free for i 6= κ

(c) if i < j ≤ κ+ 1 and (i, j) 6= (κ, κ+ 1), then Gj/Gi is free,

(d) h is a homomorphism from Gκ to R as left R-modules,

(e) h cannot be extended to a homomorphism from Gκ+1 to R,

(f) |Gκ+1| ≤ µ.

2) For a ring R and cardinals µ ≥ θ, we define spµ,θ(R) = sp1
µ,θ(R) similarly,

replacing “free” by “θ-free” in clauses (b) and (c). Writing sp<µ(R) or sp<µ,θ(R)
means that “|Gκ+1| < µ” in clause (f).

Definition 4.2. 1) Let sp(R) = ∪{spµ(R) : µ a cardinal} = {κ : κ is a regular

cardinal such that for some Ḡ the conditions ~(a)− (e) from 4.1(1) hold}.
2) Let sp1(R) = ∩{sp1

θ(R) : θ a cardinal} where sp1
θ(R) = {κ : κ is regular such

that for some µ, we have κ ∈ spµ,θ(R)}.
The next definition is similar to 4.1 (adding the parameter “r ∈ R”), but replacing
the cardinal κ by a set of ideals on κ, that is:

Definition 4.3. 1) Let sp2
λ,θ(R) be the set of cardinals κ such that Jbd

κ ∈ SPλ,θ(R),
see below.
2) SPλ,θ(R) is the set of ideals J on some κ such that for every r ∈ R\{0}, there
exists a witness (Ḡ, h) (for r), where “(r, Ḡ, h) is a witness for SPλ,θ(R)” and (Ḡ, h)
witness SPλ,θ(R) (for r)” means that (r, Ḡ, h) possesses the following properties:

~ (a) Ḡ = 〈Gi : i ≤ κ+ 1〉 is a sequence of (left) R-modules,

(b) Gκ = ⊕{Gi : i < κ} ⊆ Gκ+1,

(c) if u ∈ J , then Gκ+1/⊕ {Gi : i ∈ u} is a θ-free (left) R-module,

(d) Gi is a θ-free R-module and Gi 6= 0 for simplicity,

(e) |Gκ+1| ≤ λ and κ ≤ λ (follows in non-trivial cases)

(f) h is a non-zero homomorphism from Gκ to RR, i.e. R
as a left module,

(g) there is no homomorphism h+ from Gκ+1 to RR such that
x ∈ Gκ ⇒ h+(x) = h(x)r.

3) Omitting θ means replacing “θ-free” by “free”; omitting θ and λ means for some
λ; writing “< λ” has the obvious meaning.

Observation 4.4. 1) If J1 ⊆ J2 are ideals on κ then J1 ∈ SPλ,θ(R) implies
J2 ∈ SPλ,θ(R).
2) If J` is an ideal on κ` for ` = 1, 2 and J1 ≤RK J2 then the above holds.
3) If G is a left R-module, h a homomorphism from G to R (as a left R-module)
and r ∈ R then the mapping x 7→ h(x) · r is a homomorphism from G to R.
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Proof. Straightforward. �

Remark 4.5. 1) Note that if R is a torsion free ring (i.e. ab = 0R ⇒ a = 0R∨b = 0k)
then clause (g) of Definition 4.3 holds also for r = 1. If in addition every left ideal
of R is principal then without loss of generality r = 1.
2) In 4.3(2), if κ is regular for J = Jbd

κ , we may replace clause (c) by “i < κ ⇒
Gκ+1/(⊕{Gj : j < i}) is a θ-free R-module”; in general, we may replace J by a
directed subset of P(κ) generating it.
3) Note that if J ∈ SPλ,θ(R) then λ ≥ |R| because by clause (c) of 4.3(2) we
know that Gκ+1 is θ-free hence is of cardinality ≥ |R|, (except when Gκ+1 is zero
contradicting clause (g) there) and λ ≥ |Gκ+1| by clause (e) there.

As in 0.1

Definition 4.6. Let TDUλ,µ(R) mean that R is a ring and there is a µ-free left
R-module G of cardinality λ with HomR(G,R) = {0}, that is, with no non-zero
homomorphism from G to R as left R-modules.

Claim 4.7. A sufficient condition for TDUλ,µ(R) is:

~ (a) R is a ring with unit (1 = 1R)

(b) J ∈ SPχ,µ(R) so is an ideal on κ

(c) C̄ = 〈Cδ : δ ∈ S〉 is such that otp(Cδ) = κ and Cδ ⊆ δ where S
is an unbounded subset of λ

(d) λ > |R|+ χ is regular, or at least cf(λ) > |R|+ χ+ κ and µ > κ

(e) BB(λ, C̄,Υ, J) where Υ = 2(2|R|+χ)+ , κ ≤ (2χ)+ and χ < λ, so
I∗ = Jbd

S recalling Jbd
S = {U : U ⊆ S and sup(U) < sup(S))}

(f) C̄ is (µ, J)-free; recalling 1.2(1A).

Remark 4.8. 0) See more in Definition 4.14 on.
1) In the present definition of SPλ,θ(R), we need to use BB(λ, C̄,Υ, J) before ap-
plying SP in 4.7. But normally it suffices to have a version of BB with fewer colours
and weaker demands on |Gi|, for example:

(A) Use BB(λ, C̄, (χ∗, θ), J) and χ∗ = Π{|R|χi : i < κ}, where χi = |Gi|+
sup{|Hom(Gj ,RR)| : j < κ}

(B) We define SPλ,χ̄,σ,θ(R) as in Definition 4.3(2) where χ̄ = 〈χi : i < κ〉 and
write χ if (∀i)(χi = χ) but instead of clauses (e) and (f) + (g)

(e)′ |Gκ+1| ≤ λ and |Hom(Gi, R)| ≤ χi,
(f)′ h̄ = 〈hi : i < σ〉, hi ∈ Hom(Gκ,RR) and if i < j < σ, then hi − hj

cannot be extended to any h′ ∈ Hom(Gκ+1,RR),

(C) In Definition 4.7, we change

(b)′ κ ∈ SPλ,χ,σ,θ or (C̄ is tree-like, κ ∈ SPλ,χ̄,σ,θ and J ∈ SPλ,χ̄,σ,θ is an
ideal on κ)

(e)′ BB(λ, C̄, (χ, σ), J).

2) BB(λ, C̄, (χ, 1/σ), J) is sufficient for the correct version of 4.3, see Definition
0.7(2); really we need there to use θ = 2κ and the guessing is of an initial segment
of the possibilities, i.e. in 4.3 we need: without loss of generality |Gi| ≤ κ for every
i, given fε ∈ Hom(Gκ,RR) for ε < ε(∗) < 2κ we can find, e.g. a permutation π
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of κ, inducing Gπκ ⊇ ⊕{Gi : i < κ} such that none of them can be extended to
f ∈ Hom(Gπκ,RR). This means we can use “very few colours” as in [?, AP,§1], i.e.,
0.7(2A).
3) See �0 in §0.
4) We may use only tree-like C̄’s (in 4.7(c)) and in BB(λ, C̄, (χ̄, σ), J) (in (C)(e)′

above).
5) In the proof of 4.7, if we demand that Gi(i < κ) is a free R-module, then we can
save on χ, using free R-moduels G∗α’s.
6) The beginning of the proof can be stated separately.

Proof. Without loss of generality C̄ is normal, see 1.2(5). By the definitions 0.5,
0.7 of BB(λ, C̄,Υ, J), there is a sequence 〈Sε : ε < λ〉 of λ pairwise disjoint subsets
of S = S(C̄) such that BB−(λ, C̄ � Sε,Υ, J) holds for each ε < λ.

Without loss of generality δ ∈ S ⇒ Cδ ∩ S = ∅, moreover S is a set of limit
ordinals and each Cδ is a set of successor ordinals and we let C∗ = ∪{Cδ : δ ∈ S}6.
We say that D is C̄-closed when D ⊆ C∗∪S and δ ∈ D∩S ⇒ Cδ ⊆ D. So for every
B′ ⊆ C∗ ∪ S there is a C̄-closed B′′ ⊆ C∗ ∪ S such that B′ ⊆ B′′ ∧ |B′′| ≤ |B′|+ κ.
We can put λ of the Si’s together, i.e.

�1 we can replace 〈Si : i < λ〉 by 〈∪{{Si : i ∈ Uζ} : ζ < λ}〉 provided that
〈Uζ : ζ < λ〉 is a partition of λ with each Uζ non-empty).

Also

�2 we can replace 〈Cδ : δ ∈ S〉 by 〈Cδ\h(δ) : δ ∈ S〉 when h is a function
satisfying δ ∈ S ⇒ h(δ) ∈ Cδ,

hence without loss of generality

�3 (a) ε < λ ∧ S′ ⊆ Sε ∧ |S′| < λ⇒ BB−(λ, C̄ � (Sε\S′),Υ, J)

(b) if α < λ then for λ ordinals ε < λ we have
δ ∈ Sε ⇒ α < min(Cδ).

Note that we have

~0 χ ≥ |R|+ κ and λ > 2χ.

[Why? We have χ ≥ |R| because SPχ,µ(R) 6= ∅ by clause (b) of the assumption,
using 4.5(3). The “and” holds as λ ≥ Υ by the first phrase of clause (e) of the
assumption and Υ > 2χ by the second phrase of clause (e) of the assumption.]

~1 There is a µ-free R-module G∗ of cardinality χ∗ := (2χ)+ such that

(a) G∗ = ⊕{G∗,ε : ε < χ∗},
(b) if G is a µ-free R-module of cardinality ≤ χ, then G is isomorphic

to G∗,ε for χ∗ ordinals ε < χ∗, (actually we need just that for any
r ∈ R\{0R} there is a sequence 〈Gi : i ≤ κ + 1〉 satisfying ~ of
Definition 4.3(2) with χ, µ here standing for λ, θ there),

(c) G∗,ε is a µ-free R-module of cardinality ≤ χ for each ε < χ∗.

6Why? Replace S by S′ = {δ ∈ S : δ a limit ordinal} and replace Cδ by C′
δ := {α+ 1 : α ∈ S}.
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[Why? Because the number of such G’s up to isomorphism is ≤ 2|R|+χ = 2χ and
κ ≤ (2χ)+ = χ∗.]

Let E = {(ε, ζ) : ε, ζ < χ∗ and G∗,ε ∼= G∗,ζ}, so E is an equivalence relation on
χ∗ and ε/E := {ζ < χ∗ : εEζ} is the equivalence class of ε < χ∗ under E. For
ε < χ∗, let f1

ε be an isomorphism from G∗,min(ε/E) onto G∗,ε.

~2 For any r ∈ R\{0} let xr = {(Ḡ, h) : (Ḡ, h) witness J ∈ SPχ,θ(R) for r,
see Definition 4.3(2)},

~3 H∗ :=
⊕
{G∗α : α ∈ C∗} ⊕

⊕
{K∗δ : δ ∈ S}, where

•1 each G∗α is isomorphic to G∗ under g1
α,

•2 K∗δ isomorphic to G∗ for δ ∈ S under g2
δ and

•3 for ε < χ∗ let Gα,ε = g1
α(G∗,ε),Kδ,ε = g2

α(G∗,ε)

~4 let K<δ = ⊕{G∗α : α ∈ Cδ} for δ ∈ S, which has cardinality χ∗ as κ ≤ χ∗
by clause (e) of the assumption

~5 for every B ⊆ C∗∪S let HB :=
⊕
{G∗α : α ∈ B∩C∗}⊕

⊕
{K∗δ : δ ∈ S∩B}.

We easily see that

~6 for every x ∈ H∗ there is a C̄-closed set D∗x ⊆ C∗ ∪ S of cardinality ≤ κ
such that x ∈ HD∗x

, in fact there is a minimal one.

Let

~7 (a) 〈(xi, ri) : i < λ〉 list the pairs (x, r) such that x ∈ H∗, r ∈ R\{0R}
(b) by ~6 +�3 without loss of generality δ ∈ Si ⇒ sup(D∗xi) < min(Cδ).

Let

~8 H<α := ⊕{G∗β ,K∗δ : β ∈ C∗ ∩ α and δ ∈ S ∩ α}.

For δ ∈ S let β(δ, ι) be the ι-th member of Cδ.
As δ ∈ S, clearly Hom(K<δ,RR) is a set of cardinality ≤ 2χ∗ = Υ. Also any

f ∈ Hom(K<δ,RR) is determined by 〈f � G∗α : α ∈ Cδ〉. Hence by clause (e) of
the assumption, for each i < λ, we can find 〈h1

δ : δ ∈ Si〉 such that

~9 (a) if δ ∈ Si, then h1
δ ∈ Hom(K<δ,RR)

(b) if i < λ and h ∈ Hom(H∗,RR), then for some (even stationarily
many) δ ∈ Si, we have h1

δ ⊆ h
~10 for δ ∈ Si, let

(a) x∗δ = xi, r
∗
δ = ri

(b) let N̄δ = 〈Nδ
ι : ι ≤ κ+1〉 and h∗δ be, for r∗δ , as guaranteed in Definition

4.3(2), with Nδ
i here standing for Gi there, so h∗δ ∈ Hom(Nδ

κ,RR)

(c) for ι < κ, let ε(δ, ι) = Min{ε < χ∗ : G∗,ε ∼= Nδ
ι } and let f0

δ,ι be an

isomorphism from Nδ
ι onto G∗,ε(δ,ι).

[Why is this possible? By clause (b) of the assumption.]
Now
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~11 for δ ∈ Si and ι < κ we can choose εδ,ι,1 < εδ,ι,2 < χ∗ from Y = Yδ,ι =
{ζ < χ∗ : G∗,ε(δ,ι) ∼= Gδ∗,ζ} such that h1

δ ◦ g1
β(δ,ι) ◦ f

1
εδ,ι,1

◦ f0
δ,ι = h1

δ ◦ g1
β(δ,ι) ◦

f1
εδ,ι,2

◦ f0
δ,i.

[Why? Note that min(Y ) = ε(δ, ι) and

• h1
δ ∈ Hom(K<δ,RR) hence h1

δ�G
∗
β(δ,ι) ∈ Hom(G∗β(δ,ι),RR)

• g1
β(δ,ι) is an isomorphism fromG∗ ontoG∗β(δ,ι) hence h1

δ◦g1
β(δ,ι) ∈ Hom(G∗,RR)

• f1
ε , see before ~2, is an isomorphism from G∗,min(Y ) onto G∗,ε ⊆ G∗ for
ε ∈ Y

• 〈h1
δ ◦ g1

β(δ,ι) ◦ f
1
ε : ε ∈ Y 〉 is a sequence of members of Hom(G∗,min(Y ),RR)

• Hom(G∗,min(Y ),RR) has cardinality≤ |R||G∗,min(Y )| ≤ |G∗| ≤ 2χ+|R|, whereas

|Y | = χ∗ = (2χ)+.

Hence we can chose εδ,ι,1, εδ,ι,2 such that

• εδ,ι,1 < εδ,ι,2 are members of Y satisfying h1
δ ◦ g1

β(δ,ι) ◦ f
1
εδ,ι,2

= h1
δ ◦ g1

β(δ,ι) ◦
f1
εδ,ι,1

.

So recalling ~10(c) the desired conclusion of ~11 holds.]
Let g2

δ,ι be the following embedding of Nδ
ι into H∗, in fact, into G∗β(δ,ι) (recalling

f0
δ,ι is an isomorphism from Nδ

ι onto G∗,min(Y )):

(∗)0 g2
δ,ι(x) = g1

β(δ,ι) ◦ f
1
εδ,ι,2

◦ f0
δ,ι(x)− g1

β(δ,ι) ◦ f
1
εδ,ι,1

◦ f0
δ,ι(x) for x ∈ Gδι .

Let g3
δ be the embedding of Nδ

κ into H∗ extending g2
δ,ι for each ι < κ, so

(∗)1 (a) g3
δ is an embedding of Nδ

κ into K<δ ⊆ H∗
(b) h1

δ � Rang(g3
δ ) is zero.

Let g4
δ be the following homomorphism from Nδ

κ into H∗

(∗)2 g4
δ (x) = g3

δ (x) + h∗δ(x)x∗δ for x ∈ Nδ
κ.

[Why? Recalling x∗δ ∈ H<δ is from ~10(a), h∗δ ∈ Hom(Nδ
κ,RR) is from ~10(b) so

h∗δ(x) ∈ R hence h∗δ(x)x∗δ ∈ H∗ indeed.]
By the choice of H<δ as δ ∈ Si ⇒ x∗δ = xi ∈ HD∗xi

⊆ H<min(Cδ) ⊆ H<δ using

~7(b) clearly

(∗)3 g4
δ is an embedding of Nδ

κ into H<δ.

So by (∗)1 + (∗)2 we have

(∗)4 if h is a homomorphism from H into RR where K<δ ⊆ H ⊆ H∗ such that
h1
δ ⊆ h ∧ h(x∗δ) = r∗δ , then : x ∈ Nδ

κ ⇒ h(g4
δ (x)) = h∗δ(x)r∗δ .

Let αδ,κ < χ∗ be such that G∗,αδ,κ
∼= Nδ

κ+1, and let f0
δ,κ be an isomorphism from

Nδ
κ+1 onto G∗,αδ,κ , and recalling ~3, •2 it follows that g2

δ ◦ f0
δ,κ embeds Nδ

κ+1 into

K∗δ ⊆ H∗ hence letting f4
δ,κ = f0

δ,κ�N
δ
κ we have g2

δ ◦ f4
δ,κ − g4

δ is a homomorphism

from Nδ
κ into H∗ (actually an embedding).

Let
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(∗)5 Lδ = {g2
δ ◦ f4

δ,κ(x)− g4
δ (x) : x ∈ Nδ

κ}.

Clearly Lδ is an R-submodule of H∗. Now by the choice of (N̄δ, r∗δ , h
∗
δ) we shall

show:

(∗)6 there is no homomorphism h from H∗ into RR such that h1
δ ⊆ h and

h(x∗δ) = r∗δ and h � Lδ = 0Lδ that is constantly zero.

[Why? Toward a contradiction assume h is a counterexample

⊕6.1 if x ∈ Rang(g3
δ ) then x ∈ K<δ and h(x) = h1

δ(x) = 0.

[Why? Note Rang(g3
δ ) ⊆ K<δ hence x ∈ K<δ by (∗)1(a), h ⊇ h1

δ by the choice
of h and Dom(h1

δ) = K<δ by ~9(a) hence h�Rang(g3
δ ) = h1

δ�Rang(g3
δ ). So as

x ∈ Rang(g3
δ ) by the assumption of ⊕6.1, clearly we have h(x) = h1

δ(x). But
h1
δ�Rang(g3

δ ) is constantly zero by (∗)1(b) and x ∈ Rang(g3
δ ) so h1

δ(x) = 0, so we
are done.]

⊕6.2 x ∈ Nδ
κ ⇒ h(g4

δ (x)) = h∗δ(x) · r∗δ .

[Why? The assumptions of (∗)4 say that h1
δ ⊆ h+ ∧ h(x∗δ) = r∗δ which hold by the

assumption of (∗)6, but the conclusion of (∗)4 is what we claim in ⊕6.2.]

⊕6.3 if x ∈ Nδ
κ then h((g2

δ ◦ f4
δ,κ)(x)) = h(g4

δ (x)).

[Why? As (in (∗)6) we are assuming h�Lδ is constantly zero and by the choice of
Lδ in (∗)5.]

⊕6.4 if x ∈ Nδ
κ then h((g2

δ ◦ f0
δ,κ)(x)) = h(g4

δ (x)).

[Why? As f4
δ,κ ⊆ f0

δ,κ, see after (∗)4, and ⊕6.3.]

⊕6.5 if x ∈ Nδ
κ then h((g2

δ ◦ f0
δ,κ)(x)) = h∗δ(x)rδ.

[Why? By ⊕6.2 +⊕6.4.]
Recalling g2

δ is from ~3 and f0
δ,κ is from after (∗)4

⊕6.6 define h′ : Nδ
κ+1 → RR by h′(x) = h((g2

δ ◦ f0
δ,κ)(x)).

⊕6.7 (a) h′ is indeed a function from Nδ
κ+1 to RR

(b) moreover it is an R-module homomorphism.

[Why? As f0
δ,κ is a homomorphism from Nδ

κ+1 into G∗,αδ,κ and g2
δ is a homomor-

phism from G∗ ⊇ G∗,αδ,κ into H∗ and h is a homomorphism from H∗ to RR.]

⊕6.8 h′ extends the mapping x 7→ h∗δ(x) · rδ for x ∈ Nδ
κ.

[Why? By ⊕6.5.]
Now ⊕6.7 +⊕6.8 contradicts the choice of h∗δ , r

∗
δ in ~10. So (∗)6 indeed holds.]

Lastly, let

(∗)7 (a) L := Σ{Lδ : δ ∈ S}, a sub-module of H∗

(b) H := H∗/L, a module of cardinality λ.

So
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(∗)8 Hom(H,RR) = 0.

[Why? Assume h ∈ Hom(H,RR) is not constantly zero, so we can define h+ ∈
Hom(H∗,RR) by h+(x) = h(x + L) hence also h+ is not constantly zero. Let
x ∈ H∗ be such that h+(x) 6= 0, so for some i < λ we have (xi, ri) = (x, h+(x)).
By the choice of 〈h1

δ : δ ∈ Si〉 the set {δ ∈ Si : h � K<δ = h1
δ} is unbounded in λ,

so for some δ ∈ Si we have:

⊕8.1 h�K<δ = h1
δ ,

and by (∗)6 we are done as h+ � Lδ is zero.]

(∗)9 H is a µ-free R-module.

[Why? Let H1 ⊆ H be of cardinality < µ. So for some H2 ⊆ H∗ of cardinality
< µ, we have H1 = {x+ L : x ∈ H2}.

So H1 ⊆ (H2 +L)/L, and clearly for some C̄-closed set B ⊆ C∗∪S of cardinality
< µ (see before ⊕1) we have H2 ⊆ H3 := HB , see ~5. So because {HB : B ⊆
C∗ ∪ S, |B| < µ} is cofinal, and it is C̄-closed (inside [C∗ ∪ S]<µ, clearly it suffices
to prove that (HB + L)/L for C̄-closed B ∈ [C∗ ∪ S]<µ.

By clause (f) of the claim’s assumption there is ū = 〈uδ : δ ∈ B ∩ S〉 such that
uδ ∈ J and δ1 6= δ2 ∈ B ∩ δ ∧ ι1 ∈ (κ\uδ1) ∧ ι2 ∈ (κ\uδ2) ⇒ β(δi, ι1) 6= β(δ2, ι2)
recalling C̄ is normal. The rest should be clear.]

By (∗)7 + (∗)8 + (∗)9 we are done. �4.7

Claim 4.9. 1) In 4.7 if µ = λ, (i.e., for C̄ the cardinality and degree of freeness
coincide, naturally in clause (b) we have J ∈ SPχ(R)) we can also deduce λ ∈
spλ(R).
2) In 4.7, it suffices to assume

~′ as in ~ of 4.7 omitting (d) and strengthening clause (b) to

(b)′ κ ∈ sp≤λ,µ(R), see Definition 4.1

(c)′ like (c) but C̄ is tree-like, that is, α ∈ Cδ1 ∩Cδ2 ⇒ Cδ1 ∩α = Cδ2 ∩α.

Proof. This should be clear. �4.9

Claim 4.10. 1) For R = Z, we have

(a) Jbd
ℵ0 belongs to SPℵ0(R)

(b) Jbd
ℵ1 belongs to SPℵ1(R)

(c) Jbd
ℵ1∗ℵ0 belongs to SPℵ1(R)

(d) if 2ℵ0 = ℵ1 or 2ℵ1 < 2ℵ2 then Jbd
ℵ2 belongs to SPℵ2(R)

(e) if 2ℵ0 = ℵ1 or 2ℵ1 < 2ℵ2 then Jbd
ℵ2∗ℵ1 belongs to SPℵ2(R).

2) Similarly for R a proper subring of Q.

Remark 4.11. 1) If we want the proof of TDUµ to be more direct, we have to add
Hom(Gκ+1/Gκ) = 0, otherwise we have to “iterate”.
2) Claim 4.10 does not seem new but we could not find a direct quote. Clauses
(b),(c) follows essentially from [?] and clauses (d),(e) are the parallel for ℵ2 instead
of ℵ1; we can continue for higher ℵi’s inductively.
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3) This is closely related to “G is derived from F”, see 1.9.
4) Can we use this to prove TDUλ,ℵω+1(Z) for some λ? Can we do it assuming CH?

Can we do it assuming there k < ω such that 2ℵ` = ℵ`+1 for ` < k?

Proof. Proof of 4.11
For part (1) let R = Z and a ∈ Z be a prime, an = a (or we can use, e.g.

an = n!), for part (2) let a ∈ R be a prime such that 1
a /∈ R and an = a; but we

could use any 〈an : n < ω〉 such that anR ⊂ R. We have to check Definition 4.3.
Note that here the r in Definition 4.3 is without loss of generality , see Remark
4.5(1).

Clause (a):

Let Gω+1 be the abelian group generated by {xn, yn : n < ω} freely except for
the equations

�1 anyn+1 = yn − xn for n < ω.

Let Gn = Rxn and Gω = ⊕{Rxk : k < ω}.
Letting a<n =

∏
`<n

a` so that a0 = 1, we have Gω+1 |= a<(n+1)yn+1 = y0 +∑
`≤n

a<`x`. We now define h ∈ Hom(Gω, R) by choosing h(xn) by induction on

n so that: if b ∈ Z and r ∈ R\{0} then for some n, computing in Q, the sum
r(b +

∑
`≤n

a<`h(x`)) is not in a<(n+1)R, i.e. not divisible by a<(n+1) in R. In fact

the set of sequences 〈h|xn| : n < ω〉 ∈ ωZ for which this fails is meagre.

Clause (b): Let ηα ∈ ω2 for α < ω1 be pairwise distinct. Let Gω1+1 be the abelian

group freely generated by {xi : i < ω1} ∪ {yη : η ∈ ω>2} ∪ {zα,n : α < ω1, n < ω}
freely except for the equations

�2 anzα,n+1 = zα,n − yηα�n − xωα+n for α < ω1, n < ω.

For α < ω1 let Gα := Rxα and Gω1 = ⊕{Rxβ : β < ω1}.
Clause (c): As in clause (b) note that for A ∈ J we let GA =

⊕
{Rxωα+n : (α, n) ∈

A}.
Clause (d):

For each α < ω2 let 〈%α,ε : ε < ω1〉 be a sequence of pairwise distinct members
of ω2. Let 〈να : α < ω2〉 be a sequence of increasing functions from ω1 to ω1 of
length ω1 such that for all α < β < ω2 for some ε < ω1 we have {να(ζ) : ζ ∈
[ε, ω1)} ∩ {νβ(ζ) : ζ ∈ [ε, ω1)} = ∅.

Let Gω2+1 be the R-module generated by

X = {zα,ε,n : α < ω2, ε < ω1, n < ω} ∪ {yζ : ζ < ω1}
∪ {xα,% : α < ω2, % ∈ ω>2} ∪ {tα : α < ω2}

freely except for the equations,

�3 anzα,ε,n+1 = zα,ε,n − yνα(ωε+n) − xα,%α,ε�n − tω1α+ωε+n for α < ω2, ε <
ω1, n < ω0.

For α < ω2 let Gα = ⊕{Rtβ : β ∈ [ω1α, ω1α+ ω1)} and Gω2 = ⊕{Gα : α < ω2}.
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�4 Gω2+1/Gω2
is ℵ2-free.

Why? Let H∗ = ⊕{Ryε : ε < ω1} and for α < ω2 we let Hα be the subgroup of
Gω2+1 generated by Gω2 ∪H∗ ∪ {zα,ε,n : ε < ω1, n < ω} ∪ {xα,% : % ∈ ω>2}.

For α ≤ ω2 let H<α = Σ{Hβ : β < α}. Then clearly Gω2+1 = H<ω2
and

〈H<α : α ≤ ω2〉 is ⊆-increasing continuous. Hence it suffices to prove for α < ℵ2

�4.1
α H<α/Gω2

is free.

Why? Without loss of generality α ≥ ω1, let 〈β(ξ) : ξ < ω1〉 list {β : β < α} with no
repetitions. We can easily find a sequence ζ̄ = 〈ζβ : β < α〉 such that the sets Uβ :=
{νβ(ε) : ε ∈ [ζβ , ω1)} for β < α are pairwise disjoint. Without loss of generality the
ordinal power ωω divide ζβ for every β < ω1 and we let U = ω1\ ∪ {Uβ : β < α}.
Moreover, without loss of generality ξ1 < ξ2 ⇒ Rang(νβ(ξ1)) ∩ {νβ(ξ2)(ε) : ε ∈
[ζβ(ξ2), ω1)} = ∅.

For ξ ≤ ω1 let Hα,ξ be the subgroup of H<α generated by

Gω2
∪{zγ,ε,n : γ ∈ {β(ζ) : ζ < ξ} and ε < ω1, n < ω}
∪{yγ : γ ∈ U}
∪{yνγ(ε) : ε ∈ [ζγ ,ℵ1) for some γ ∈ {β(ζ) : ζ < ξ}}
∪{xγ,% : γ ∈ {β(ζ) : ζ < ξ} and % ∈ ω>2}.

So Gω2
⊆ Hα,0 =

⊕
{Ryζ : ζ ∈ U}⊕Gω2

hence Hα,0/Gω2
is free; also Hα,ω1

= H<α

and 〈Hα,ξ : ξ ≤ ω1〉 is ⊆-increasing continuous. Hence it suffices to prove, for each
ξ < ω1, that Hα,ξ+1/Hα,ξ is free. Let H ′α,ξ be the subgroup of Hα,ξ+1 generated

by Hα,ξ ∪ {xβ(ξ),% : % ∈ ω>2}. Now Hα,ξ ⊆ H ′α,ξ ⊆ Hα,ξ+1. It is easy to see that

H ′α,ξ/Hα,ξ is countable and free.

Also Hα,ξ+1/H
′
α,ξ is free, in fact {zβ(ξ),ε,n + Hα,ξ : ε ∈ [ζβ(ξ), ω1), n < ω} is a

free basis. Putting those together �4.1
α holds hence �4 is true.

�5 some h0 ∈ Hom(Gω2 , R,R) has no extension h2 ∈ Hom(Gω2+1,RR).

Why? For α < ω2 let ωα = {tω1α+ε : ε < ω1} and Yα = {yνα(ε) : ε < ω1}.
For ` = 1, 2 let K`

α be the subgroup of Gω2+1 generated by:

• {y′α,ε : ε < ω1} when ` = 1 and y′α,ε = yνα(ε) + tω1·α+ε

• {xα,ρ : ρ ∈ ω>2} ∪ {y′α,ε : ε < ω1} for ` = 2

• {zα,ε,n : ε < ω1, n < ω} ∪ {xα,ρ : ρ ∈ ω>2} ∪ {y′α,ε : ε < ω1} when ` = 3 so

• K1
α ⊆ K2

α ⊆ K3
α ⊆ Gω2+1.

Let L`α = Hom(K`
α,Z) for ` = 1, 2, 3.

Let Lα = {f�K1
α : f ∈ L3

α}. Clearly Lα is a submodule of L1
α. As in the proof

of clause (b), Lα * L1
α, see [?], [?]. Let uα = u(α) = Rang(να). We now define a

function Fα : u(α)R→ L1
α/Lα as follows: for f ∈ u(α)R let gf ∈ Hom(K1

α,RR) be
defined by gf (y′α,ε) = f(να(ε)) and then Fα(f) = gf + Lα ∈ L1

α/Lα. Obviously

(∗)5.1 Fα is a homomorphism from u(α)R onto L1
α/Lα.

Now consider

(∗)5.2 it suffices to find ḡ∗ = 〈g∗α : α < ω2〉 such that g∗α ∈ L1
α and for every

f ∈ ω1R for some α < ω2 we have Fα(f�uα) 6= g∗α + Lα.
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Why is (∗)5.2 enough? Let fα ∈ u(α)R be such that Fα(fα) = g∗α + Lα. We define
h0 ∈ Hom(Gω2 , R) by:

(∗)5.3 h0(tω1α+ε) = −fα(να(ε)) for α < ω2, ε < ω1.

Toward contradiction assume h2 ∈ Hom(Gω2+1, R) extends h0. Define the func-
tion f : ω1 → R by f(ε) = h(yε). Now for each α < ω2, clearly h2�K1

α ∈
Hom(K1

α,RR) = L1
α but K1

α ⊆ K3
α ⊆ Gω2+1 hence by the choice of Lα we have

h2�K1
α ∈ Lα.

Now let f ′α = f�uα ∈ u(α)R so f ′α(να(ε)) = h2(yνα(ε)) for ε < ω1. Recall
that ε < ω1 ⇒ −fα(να(ε)) = h0(tω1α+ε) = h2(tω1α+ε) by (∗)5.3 and by h2 ⊇ h0

respectively. So f ′′α := f ′α−fα ∈ u(α)R satisfies f ′′α(να(ε)) = f ′α(να(ε))+fα(να(ε)) =
h2(yνα(ε)) − h2(tω1α+ε) = h2(y′α,ε), henace gf ′′α = h2�K1

α which (as we said above)

belongs to Lα. It follows that gf ′α − gfα ∈ Lα that is Fα(f ′α) = Fα(fα) ∈ L3
α/L

1
α,

hence by the choice of fα above, Fα(f ′α) = g∗α + Lα, but f ′α = f�uα.
As this holds for every α < ω2, the function f contradicts the present assumption

that 〈g∗α : α < ω2〉 are as in (∗)5.2, so there is no h2 as above, hence indeed it suffices
to find

• ḡ∗ as in (∗)5.2.

Why does such ḡ∗ exists? The proof splits into cases.

Case 1: 2ℵ1 < 2ℵ2

By renaming without loss of generality :

� ∪{uα : α < ω2} = ω1.

We note that {〈Fα(f�uα) : α < ω2〉 : f ∈ ω1R} is a subset of
∏

α<ω2

L1
α/Lα but the

former has cardinality ≤ |R|ℵ1 ≤ 2ℵ1 and the latter has cardinality ≥ 2ℵ2 (actually
equal) but we are assuming 2ℵ1 < 2ℵ2 in the present case, so indeed we can find
〈gα : α < ω2〉 ∈

∏
α<ω2

Lα which is 6= 〈Fα(f�uα) : α < ω2〉 for every f ∈ ω1R.

Case 2: 2ℵ0 = ℵ1

Without loss of generality ρα,ε = ρε for α < ω2, ε < ω1.
Now choose ν̄ such that:

�1 (a) ν̄ = 〈να : α < ω2〉
(b) να : ω1 → ω1 is increasing

(c) if β < α < ω2 then for some ε < ω1 we have να�(ωε+ ω) =
νβ�(ωε+ ω) but να(ωε+ ω) 6= νβ(ωε+ ω)

(d) if α 6= β then Rang(να) ∩ Rang(νβ) is countable.

[Why? E.g. choose να by induction on α < ω2 so that Rang(να) is a non-stationary
subset of ω1 and the relevant parts of (a)-(d) hold.]

Now choose h∗ such that

�2 (a) h∗ : ω1>2→ ωR

(b) let h∗n : ω1>2→ R for n < ω be such that h∗(ν) = 〈h∗n(ν) : n < ω〉
(c) if ε < ω1, % ∈ ω·ε+ω2, %` = νˆ〈`〉 for ` = 0, 1 then the following set of

equations is not solvable in R
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• anzn+1 = zn − (h∗n(%1)− h∗n(%0)) for n < ω.

This is as in the proof of case (b).
Now we choose h0 satisfying:

�3 h0 is the homomorphism from Gω2 to RR such that

• h0(tω1α+ωε+n) = h∗n(να�(ω · ε+ ω + 1)).

Now toward a contradiction assume that h ∈ Hom(Gω2+1,RR) extends h0. We
define a two-place relation E on ω2 by:

�4 αEβ Iff

(a) να�ω = νβ�ω

(b) h2(xα,%) = h2(xβ,%) for % ∈ ω>2.

Clearly E is an equivalence relation with ≤ 2ℵ0 equivalence classes, so in our case
ℵ1 equivalence classes hence there are α 6= β such that αEβ. By �1(c) there is ε
such that να�(ω · ε+ω) = νβ�(ω · ε+ω) and να(ω · ε+ω) 6= νβ(ω · ε+ω). Without
loss of generality να(ω · ε+ ω) = 1 and νβ(ω · ε+ ω) = 0.

For each n, consider the equations in �3 for (α, ε, n), (β, ε, n); apply h2 and
subtract them. The h(yνα(ωε+n)) − h(yνβ(ωε+n))’s cancel by the choice of ε. Also
the h2(xα,%ε�n)− h2(xβ,%ε�n) cancel because αEβ.

Lastly, by the choice of h0 recalling h0 ⊆ h2 we have h2(tω1·α+ω·ε+n)−h2(tω1·β+ω·ε+1) =
h∗n(να�(ω · ε + ω + 1) − h∗n(νβ�(ω · ε + ω + 1)). Hence the substitution zn 7→
h2(zα,ε,n)− h2(zβ,ε,n) solves the equations in �2(c) for

• %1 = να�(ω · ε+ ω + 1), %0 = νβ�(ω · ε+ ω + 1).

So we get a contradiction to �2(c)

Clause (e):

As in clause (d). �4.11

Conclusion 4.12. 1) TDUλ holds, when BB(λ, µ, 2(2ℵ1 )+ , J), where J ∈ {Jbd
ℵ0 , J

bd
ℵ1∗ℵ0}

and cf(λ) > ℵ1.
2) Similarly for BB(λ, µ, (2Dom(J), 2Dom(J)), J).

Proof. 1) By 4.7 and 4.10.
2) Similarly by 4.15 below and 4.10. �4.12

Remark 4.13. 1) The number, 2(2ℵ1 )+ of colours is an artifact of the proof. Actually
2 and even the so-called “1/θ colours” (as in [?, Ap,§1], 0.7(2)) should suffice, see
4.5.
2) See 1.8. But we can quote in §0 cases of BB with 2 instead of i4 or just 2(2ℵ1 )+

colours.

We can get more than in 4.7.

Definition 4.14. For cardinals λ, θ, σ for ι ∈ {0, 1} let SP3+ι
λ,θ,σ(R) be the set of

ideals J on some κ such that for every r ∈ R\{0} some pair (Ḡ, h̄) witnesses it for
r where “(Ḡ, h̄) witness SP3+ι

λ,θ,σ(R) for r” means:

⊕ (a) Ḡ = 〈Gi : i < κ+ 1 + σ〉 is a sequence of R-modules each of
cardinality ≤ λ
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(b) Gκ = ⊕{Gi : i < κ} and ζ < σ ⇒ Gκ ⊕ RR ⊆ Gκ+1+ζ

(c) if u ∈ J and ζ < σ, then Gκ+1+ζ/⊕ {Gi : i ∈ u} is a θ-free
left R-module

(d) Gi is a θ-free left R-module (for i < κ hence for i < κ+ 1 + σ)

(e) h̄ = 〈hζ : ζ < σ〉 and hζ is a homomorphism from Gκ to RR
for ζ < σ

(f)0 if ι = 0 for every homomorphism h from Gκ to RR there is ζ < σ
such that

• no homomorphism h+ from Gκ+1+ζ to RR satisfies7

x ∈ Gκ ⇒ h+(x) = h(x) + hζ(x)r

(f)1 if ι = 1 then for every homomorphism h from Gκ to RR there is
ε < σ such that for every ζ < σ, ζ 6= ε we have

• the same as • from above.

Claim 4.15. A sufficient condition for TDUλ,µ(R) (i.e., there is a µ-free left R-
module G of cardinality λ with HomR(G,R) = {0}) is ~0 and also ~1 where:

~0 (a) R is a ring with unit (1 = 1R)

(b) J ∈ SP3
χ,θ,σ(R) is an ideal on κ

(c) C̄ = 〈Cδ : δ ∈ S〉 is such that otp(Cδ) = κ and Cδ ⊆ δ
(d) λ > |R|+ χ is regular or at least cf(λ) > |R|+ χ and µ > κ

(e) BB(λ, C̄, (2|R|+χ, σ), J), see Definition 0.5(1)

(f) C̄ is (µ, J)-free (but see 1.8)

~1 similarly replacing clauses (b), (e) by (b)′, (e)′ where

(b)′ J ∈ SP4
χ,θ,σ(R)

(e)′ BB(λ, C̄, 〈2|R|+χ, σ〉, J), see 0.5(2).

Proof. Assuming ~ι, the proof is similar to the proof of 4.7 with some changes.
First of all, instead of ~1 we use

~′0 let (Ḡr, h̄r) witness Definition 4.14 for r ∈ R\{0}
~′1 G∗ is a µ-free R-module and for some ordinal ε(∗) ≤ |R|+ κ

(a) G∗ =
⊕
{G∗,ε : ε < ε(∗)} is a µ-free R-module G∗,ε of cardinality ≤ χ

for ε < ε(∗)
(b) if r ∈ R\{0}, then for some sequence Ḡr = 〈Grj : j < κ+ 1 + σ〉 as in

4.14 we have: if j < κ then ε(∗) = otp{ε < ε(∗) : Grj
∼=f∗r,j

G∗,ε} hence

(c) |G∗| ≤ χ+ κ+ |R|.

Secondly, after ~8 we choose 〈ηδ : δ ∈ Si〉 such that ηδ ∈ κε(∗) and j < κ ⇒
G∗,ηδ(j)

∼= Grij .

Thirdly, we choose 〈ζ1
δ : δ ∈ Si〉 such that:

~′9.1 (a) ζ1
δ < σ

7the computation “h(x) + hζ(x) · r” is in the ring R.
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(b) if h ∈ Hom(H∗,RR), then for unboundedly many δ ∈ Si we
have: ζ1

δ 6= c̄1
δ(h �

⋃
α∈Cδ

G∗α) - see below

~9.2 for δ ∈ Si and h ∈ Hom(K<δ,RR), we define c1
δ(h) to be the minimal ζ < σ

satisfying �iδ,ζ below, and zero if there is no such ζ

�iδ,ζ there is f ∈ Hom(Griκ+1+ζ ,RR) such that:

(α) f(z) = ri,

(β) if j < κ, then x ∈ Grij ⇒ f(x) = h(f∗ri,j(x)).

The rest is similar. �4.15

Conclusion 4.16. Assume that Jbd
κn×ω ∈ SPλn,θn(R) and κn < κn+1 for n < ω.

Then, for some λ, for every large enough n, TDUλ,θ+ω+1
n

holds.

Remark 4.17. If we use [?], then we need “
∑
n
κn is strong limit” but instead we use

[?].

Proof. We shall use 4.7 freely.
Let µ ∈ Cℵ0 be greater than λn for each n, and let σn < µ be large enough.

Case 1: There is λ′ such that λ′ < 2µ < 2λ
′
.

Then we can apply 2.7 getting even a µ+-free Abelian group.

Case 2: 2µ is singular or just there is a µ+-free F ⊆ ωµ of cardinality 2λ.
By 0.9(2).

Case 3: Neither Case 1 nor Case 2.
By Theorem 1.22 λ = 2µ = λ<λ and λ = tcf(

∏
m<ω

λm, <Jbd
ω

) for some regular

λm < µ increasing with m < ω and let 〈fα : α < λ〉 exemplify this. Let Sgd = Sgd

f̄

- see 1.25 and S′gd = {δ ∈ Sgd : cf(δ) > ℵ0 and δ is divisible by µ}.
For each n < ω, δ ∈ S∗ = S′gd ∩ Sλκn , let Cδ,n be a club of δ of order type κn and

let

Cnδ = {µα + ηδ(n) : α ∈ Cδ and n < ω}

So 〈Cnδ : δ ∈ Snδ 〉 is a strict (λ, κn)-ladder system, i.e. otp(Cnδ ) = κ,Cnδ ⊆ δ =
sup(Cnδ ). By 1.26 we know that C̄n is (κ+κn

n , Jκκn×ω)-free (see Definitions 0.3(3)
and 1.2). Now by [?, 1.10], [?, 3.1] it follows that for every n large enough, we have
BB(λ, C̄n, (λ, θ∗), κn), where θ∗ < µ is large enough. �4.16

Conclusion 4.18. If the ideal J = Jbd
κ belongs to SPλ,µ(R) then TDUµ holds.

Proof. Left to the reader. �4.18

Remark 4.19. Now we can check all the promises from §0.
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