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0. INTRODUCTION

§(0A) Background and Content
Recall that ([?, Ch.III]). If T is (first order complete and) superstable then for
A > 2IT1 T has a saturated model M of cardinality A and moreover

(%) if (M, : a < &) is <-increasing, § a limit ordinal < A* and o < § = M, =
M then U{M,, : @ < §} is isomorphic to M.

When investigating categoricity of an a.e.c. (abstract elementary classes) ¢ =
(K¢, <), the following property turns out to be central: M is <g-universal model
of cardinality A with the property (*) above (called superlimit) - possibly with ad-
dition parameter k£ = cf(rk) < A (or stationary S C AT); we also consider some
relatives, mainly limit, weakly limit and strongly limit. Those notions were sug-
gested for a.e.c. in [?, 3.1] or see the revised version [?, 3.3] and see [?] or here in 0.7.
But though coming from investigating non-elementary classes, they are meaningful
for elementary classes and here we try to investigate them for elementary classes.

Recall that for a first order complete T, we know {X : T has a saturated model
of T of cardinality A}, that is, it is {\ : A<* > |D(T)| or T is stable in A}, on
the definitions of D(T) and other notions see §(0B) below. What if we replace
saturated by superlimit (or some relative)? Let EC,(T) be the class of models M
of T of cardinality .

If there is a saturated M € EC,(T) we have considerable knoweldge on the
existence of limit model for cardinal A, this was as mentioned in [?, 3.6] by [?],
see 0.9(1),(2). E.g. for superstable T in A\ > 27| there is a superlimit model
(the saturated one). It seems a natural question on [?, 3.6] whether it exhausts the
possibilities of (A, )-superlimit and (A, x)-superlimit models for elementary classes.

Clearly the cases of the existence of such models of a (first order complete)
theory T where there are no saturated (or special) models are rare, because even
the weakest version of Definition [?, 3.1] = [?, 3.3] or here Definitino 0.7 for A
implies that T has a universal model of cardinality A, which is rare (see Kojman
Shelah [?] which includes earlier history and recently Djamonza [?]).

So the main question seems to be whether there are such cases at all. We
naturally look at some of the previous cases of consistency of the existence of a
universal model (for A < A<*), i.e., those for A = ;.

E.g. asufficient condition for some versions is the existence of 7" O T of cardinal-
ity A such that PC(T",T) is categorical in A, see 0.4(3). By [?] we have consistency
results for such 7} so naturally we first deal with the consistency results from [?].
In §1 we deal with the case of the countable superstable Ty from [?] which is not
No-stable. By [?] consistently ®; < 280 and for some T}, 2 Ty of cardinality Ny,
PC(T{, Tp) is categorical in 8. We use this to get the consistency of “Typ has a
superlimit model of cardinality X; and ¥; < 2807,

In §2 we prove that for some stable not superstable countable T} we have a
parallel but weaker result. We relook at the old consistency results of “some
PC(T{,Th),|T{| = Xy > |T1], is categorical in X;” from [?]. From this we deduce
that in this universe, T} has a strongly (N1, Ng)-limit model.

It is a reasonable thought that we can similarly have a consistency result on the
theory of linear order, but this is still not clear.
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In §3 we show that if T" has a superlimit model in A > |T'| + X; then T is stable
and T is superstable except possibly under some severe restrictions on the cardinal
A (ie, A <3, and A < AY0). We then prove some restrictions on the existence of
some (weaker) relatives.

Summing up our results on the strongest notion, superlimit, by 1.1 4+ 3.1 we
have:

Conclusion 0.1. Assume A > |T| 4+ 3,. Then T has a superlimit model of cardi-
nality X iff T is superstable and A > |D(T)]|.

In subsequent work we shall show that for some unstable T (e.g. the theory of
linear orders), if A = A<* > x = cf(k), then T has a medium (), k)-limit model,
whereas if T has the independence property even weak (A, x)-limit models do not
exist; see [?] and more in [?], [?], [?], [?]-

We thank Alex Usvyatsov for urging us to resolve the question of the superlimit
case and John Baldwin for comments and complaints.

§(0B)  Basic Definitions

Notation 0.2. 1) Let T denote a complete first order theory which has infinite
models but T;,T”, etc. are not necessarily complete.

2) Let M, N denote models, |M| the universe of M and || M|| its cardinality and
M < N means M is an elementary submodel of V.

3) Let 70 = 7(T"), 7ar = 7(M) be the vocabulary of T, M respectively.

4) Let M = “p[a]L¢**)” means that the model M satisfies @l[a] iff the statement
stat is true (or is 1 rather than 0)).

Definition 0.3. 1) For a € “>|M| and B C M let tp(a, B, M) = {¢(z,b) : ¢ =
o(z,7) € L(tar),b € “9 B and M = ¢la, bl}.

2) Let D(T) = {tp(a,®, M) : M a model of T and @ a finite sequence from M }.

3) If AC M then S™(A, M) = {tp(a, A,N): M < N and a € "N}, if m =1 we
may omit it.

4) A model M is A-saturated when: if A C M,|A| < X and p € S(A, M) then p is
realized by some a € M, i.e. p C tp(a, A, M); if A = ||M|| we may omit it.

5) A model M is special when letting A = |[[M]||, there is an increasing sequence
(i i < cf(N)) of cardinals with limit A and a <-increasing sequence (M; : i <
cf(N\)) of models with union M such that M, is A\;-saturated of cardinality A;41
for i < cf(N).

Definition 0.4. 1) For any T let EC(T) = {M : M is a 7p-model of T'}.

2) ECA\(T) ={M € EC(T): M is of cardinality \}.

3) For T C T’ let

PC(T",T) ={M | 77 : M is model of T"}

PCA(T",T) ={M € PC(T',T) : M is of cardinality \}.
4) We say M is A-universal for T when it is a model of 77 and every N € EC\(T)

can be elementarily embedded into M; if T3 = Th(M) we may omit it.
5) We say M € EC(T) is universal when it is A-universal for A = || M||.

We are here mainly interested in
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Definition 0.5. Given T and M € EC,(T) we say that M is a superlimit or -
superlimit model when : M is universal and if § < AT is a limit ordinal, (M,, : a < 6)
is <-increasing continuous, and M, is isomorphic to M for every o < § then M;
is isomorphic to M.

Remark 0.6. Concerning the following definition we shall use strongly limit in
2.14(1), medium limit in 2.14(2).

Definition 0.7. Let A be a cardinal > |T|. For parts 3) - 7) but not 8), for
simplifying the presentation we assume the axiom of global choice and F is a class
function; alternatively restrict yourself to models with universe an ordinal € [\, AT).
1) For non-empty © C {p: Ng < p < A and p is regular} and M € EC\(T) we say
that M is a (A, ©)-superlimit when: M is universal and

if (M; :1< u)is <-increasing, M; = M for i < p and p € ©

then U{M; :i < p} =2 M.
2) If © is a singleton, say © = {6}, we may say that M is (A, §)-superlimit.
3) Let S C AT be stationary. A model M € EC,(T) is called S-strongly limit or
(A, S)-strongly limit when for some function: F : EC(T) — EC,(T) we have:

(

a) for N € EC,(T') we have N < F(N)

(b) if 6 € S is a limit ordinal and (M; : i < J) is a <-increasing continuous
sequence ! in EC\(T) and i < § = F(M;y1) < M, o, then M = U{M, :
i< 0}.

4) Let S C At be stationary. M € EC,(T) is called S-limit or (A, S)-limit if for
some function F : EC5(T) — EC,(T) we have:

(a) for every N € EC,(T') we have N < F(N)

(b) if (M; : i < A7) is a <-increasing continuous sequence of members of
EC,(T) such that F(M;y1) < M;;o for i < A* then for some closed un-
bounded 2 subset C of AT,

[6€SNC = M= M)

5) We define® “S-weakly limit”, “S-medium limit” like “S-limit”, “S-strongly limit”
respectively by demanding that the domain of F is the family of <-increasing con-
tinuous sequence of members of ECy(T) of length < AT and replacing “F(M;,1) <
Miyo” by “Miyy <F((M;:j <i+1)) < Mo

6) If S = A" then we may omit S (in parts (3), (4), (5)).

7) For non-empty © C {u: p < X and p is regular}, M is (), ©)-strongly limit? if
M is {6 < AT : cf(8) € ©}-strongly limit. Similarly for the other notions. If we do
not write A we mean A = | M]|].

8) We say that M € K is invariantly strong limit when in part (3), F is just a
subset of {(M,N)/ = M < N are from EC,(T)} and in clause (b) of part (3) we

Ino loss if we add M;4+1 = M, so this simplifies the demand on F, i.e., only F(M’) for M’ = M
is required

2a1ternatively, we can use as a parameter a filter on AT extending the co-bounded filter

3Note that M is (A, S)-strongly limit iff M is ({}, cf(6) : 6 € S})-strongly limit.

4in [?] we consider: we replace “limit” by “limit™” if “F(M;q1) < Miy2”, “M;11 < F((M; :
j < i+4+1)) < M;po” are replaced by “F(M;) < M;y1”,“M; < F((M; : j < i) < Miy1”
respectively. But (EC(T'), <) has amalgamation.
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replace “F(Mi-i-l) < MH_Q” by “(HN)(MH_l <N < Mz A ((]\/[7 N)/ g) S F)”.
But abusing notation we still write N = F(M) instead ((M, N)/ =) € F. Similarly
with the other notions, so we use the isomorphism type of M"(N) for “weakly
limit” and “medium limit”.

9) In the definitions above we may say “F witness M is ...”

Observation 0.8. 1) Assume F1,F3 are as above and F1(N) < Fa(N) (or F1(N) <

F2(N)) whenever defined. If F1 is a witness then so is Fa.
2) All versions of limit models implies being a universal model in EC(T).

3) The Obvious implications diagram: For non-empty © C {6 : 6 is regular < A}
and stationary S; C {d < AT : cf(d) € O}:

superlimit = (A, {p : 4 < A regular})-superlimit
il
(A, ©)-superlimit
1
Si-strongly limit
1 1

S1-medium limit, S1-limit

+ 4

S1-weakly limit.

Lemma 0.9. Let T be a first order complete theory.

1) If X\ is reqular, M a saturated model of T of cardinality X\, then M is (A \)-
superlimit.

2) If T is stable, and M is a saturated model of T of cardinality X > Wy + |T)|
and © = {u: k(T) < pw < X and p is regular}), then M is (N, ©)-superlimit (on
k(T)-see [?, II1,§3] ).

3) If T is stable in A and k = cf(k) < X\ then T has an invariantly strongly (A, k)-
limit model.

Remark 0.10. Concerning 0.9(2), note that by [?] if A is singular or just A < A<*
and T has a saturated model of cardinality A then T is stable (even stable in X)
and cf(A) > (T)).

Proof. 1) Let M; be a A-saturated model of T of cardinality A for ¢ < A and
(M; : i < Ay is <-increasing and My = |J M;. Now for every A C M, of cardinality
i<A

< A there is i < A such that A C M; hence every p € S(4, M,) is realized in M;
hence in My; so clearly M) is A-saturated. Remembering the uniqueness of a
A-saturated model of T of cardinality A we finish.

2) Use [?, II,3.11]: if M; is a A-saturated model of T, (M; : i < 4) increasing
cf(8) > k(T) then |J M; is A-saturated.

i<6

3) Let Ky, = {M : M = (M, : i < k) is <-increasing continuous, M; € EC,(T)
and (M; 2, ¢)cem,,, is saturated for every i < k}. Clearly M,N € Ky ,, = M, =
N,.. Also for every M € EC,(T) there is N such that M < N and (N, ¢)cenm
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is saturated, as also Th((M,c)eenr) is stable in A; so there is an invariant F :
ECA(T) — EC)(T) such that M < F(M) and (F(M), ¢)cenr is saturated; such F
witness the desired conclusion. oo

Definition 0.11. 0) For regular x < A let S) = {6 < A : cf(§) = A}.
1) For a regular uncountable cardinal A let I[\] = {S C \: some pair (E,a)
witnesses S € I[)\], see below}.
2) We say that (F, @) is a witness for S € I[\] iff:
(a) E is a club of the regular cardinal A
(0) 2= (ug:a<A),uqy Caand € uy, = ug =B Nug
(c) for every 6 € ENS,us is an unbounded subset of § of order-type cf(d) (and
0 is a limit ordinal).

By [?, §1]

Claim 0.12. If xT < A and K, A are regular then some stationary SC{i<A:
cf(6) = Kk} belongs to I])].

By [7]
Claim 0.13. If A = ut,0 = cf(0) < cf(p) and a < pp = |a|<? < p then S € I[N
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1. ON SUPERSTABLE NOT No-STABLE T'
We first note that superstable T' tend to have superlimit models.

Claim 1.1. Assume T is superstable and X\ > |T| + 2%°. Then T has a superlimit
model of cardinality N iff T has a saturated model of cardinality X iff T' has a
universal model of cardinality \ iff X > |D(T)|.

Proof. By [?, I11,85] we know that T is stable in A iff A > |D(T)|. Now if |T] < A <
|D(T)| trivially there is no universal model of T' of cardinality A hence no saturated
model and no superlimit model, etc., recalling 0.8(2). If A > | D(T)|, then T is stable
in A hence has a saturated model of cardinality A by [?, III] (hence universal) and
the class of A-saturated models of T is closed under increasing elementary chains
by [?, III] so we are done. O 4

The following are the prototypical theories which we shall consider.

Definition 1.2. 1) Top = Th(“2, E?), <, when nE2v < n [ n=v | n.
2) Ty = Th(“(w1), E})p<w where nElv & nln=v|n.
3) T» = Th(R, <).

Recall

Observation 1.3. 0) T; is a countable complete first order theory for £ =0,1,2.
1) Tp is superstable not Rg-stable.

2) T, is strictly stable, that is, stable not superstable.

3) Ty is unstable.

4) Ty has elimination of quantifiers for £ =0,1,2.

Claim 1.4. It is consistent with ZFC that Xy < 280 and some M € ECxy, (Tp) is a
superlimit model.

Proof. By [?], for notational simplicity we start with V = L.
So Tp is defined in 1.2(1) and it is the T from Theorem [?, 1.1] and let S be the
set of n € (“2)L. We define 7" (called T} there) as the following theory:

®1 (1) To, or just for each n the sentence saying E,, is an equivalence
relation with 2" equivalence classes, each F,, equivalence class
divided to two by Fy41, Epy1 refine E,,, Fy is trivial
(#9)  the sentences saying that
() for every z, the function z — F(x, z) is one-to-one and

(8) xzE.(F(x,z)) for each n < w
(i45)  En(cy,c,)fMm=v1") for n v € S.

In [?] it is proved that in some forcing® extension LF of L, P an Ny-c.c. proper
forcing of cardinality Ny, in V = LF, the class PC(T",Ty) = {M | 71, : M is a
7-model of T"} is categorical in N;.

However, letting M* be any model from PC(T”,Ty) of cardinality 8, it is easy
to see that (in V = LF):

®o the following conditions on M are equivalent
(a) M is isomorphic to M*

5We can replace L by any V¢ which satisfies 280 = R1, 281 = Ry,
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(b) M € PC(T",Tp)
(¢) () M is a model of T of cardinality Ry
(8) M?* can be elementarily embedded into M
(y) for every a € M the set N{a/EM : n < w} has cardinality N;.
But
®3 every model M7 of T of cardinality < N; has a proper elementary extension
to a model satisfying (c), i.e., (a), (8), () of ®2 above
@4 if (M, @ o < ) is an increasing chain of models satisfying (c) of ®2 and
d < wy then also U{M,, : a < §} does.
Together we are done. Uia
Naturally we ask
Question 1.5. What occurs to Ty for A > X; but A < 2%0?

Question 1.6. Does the theory Ty of linear order consistently have an (X1, Rg)-
superlimit? (or only strongly limit?) but see §3.

Question 1.7. What is the answer for 7" when T is countable superstable not No-
stable and D(T') countable for ®; < 2% for Ry < 2%0?

So by the above for some such T', in some universe, for N; the answer is yes,
there is a superlimit.
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2. A STRICTLY STABLE CONSISTENT EXAMPLE
We now look at models of T} (redefined below) in cardinality R;; recall

Definition 2.1. T} = Th(“(w1), Ep)n<w where E, = {(n,v) : n,v € “(w1) and
nln=viln}

Remark 2.2.
(a) Note that 77 has elimination of quantifiers.
(b) If A =X{\, :n < w}and A, = AR, then T} has a (), Rg)-superlimit model
in A (see 2.15).

Definition/Claim 2.3. 1) Any model of T of cardinality A is isomorphic to
Mayp = ({(n,e) :m € Aye < h(n))}, En)n<cw for some A C “X and h : “A —
(Car N AT)\{0} where (n1,€1)En(n2,€2) < m | n =2 | n, pedantically we should
write En' " = Ey [|Ma.pl.

2) We write M4 for My, when A is as above and h : A — {]A]|}, so constantly |A]
when A is infinite.

3) For A C “X and h as above the model M4 5, is a model of T7 iff A is non-empty
and (Vn € A)(Vn < w)(3¥v € A)(vIn =nn Av(n) # n(n)).

4) Above M4 j, has cardinality X iff Z{h(n) : n € A} = A.

Definition 2.4. 1) We say that A is a (71, \)-witness when

(a) A C“\ has cardinality A
(b) if By, B2 C “Xare (11, A)-big (see below) of cardinality A then (B;U¥> ), <)
is isomorphic to (Bz U“~\, ).

2) A set B C“)\ is called (T, A)-big when it is (A, A) — (11, A)-big; see below.
3) Bis (p, A) — (11, A)-big means: B C “\,|B| = |A| = p and for every n € “Z X
there is an isomorphism f from (“*Z\, <) onto ({n v : v € “ZA}, <) mapping A into
{v:n"v € B}.
4) A C “(wy) is Ny-suitable when:

(a) Al =

(b) for a club of 6 < w1, AN“J is everywhere not meagre in the space “9d, i.e.,

for every n € “>¢ the set {v € AN“3 : n<v} is a non-meagre subset of “§
(that is what really is used in [?]).

Claim 2.5. [t is consistent with ZFC that 2%° > R+ there is a (11, R, )-witness;
moreover every Ni-suitable set is a (T1,Nq)-witness.

Proof. By [?, §2]. Oas

Remark 2.6. The witness does not give rise to an (Nq, Xg)-limit model, as for the
union of any “fast enough” <-increasing w-chain of members of ECy, (T1), the
relevant sets are meagre.

Definition 2.7. Let A be a (71, \)-witness. We define K7, , as the family of
M = (|M|, <M PM), <, such that:

() (|M],<M) is a tree with (w + 1) levels
(B) PM is the a-th level; let P = Uu{PM :n < w}
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(y) M is isomorphic to M} for some B C “X of cardinality A where M} is
1 1
defined by \Mé\ = (YZ}) UB,PMe =)\ PME = B and <Mb= allMp],
i.e., being an initial segment

(6) moreover B is such that some f satisfies:
@® (a) f:“7X—>wand f(<>) =0 for simplicity

(b) ndve“ A= f(n) < f(v)
(¢) ifne Bthen (f(n]n):n<w) is eventually constant
(d) ifnevAthen{re“x:n " veBandm<w=
f= (v 1m)) = f(n)}is (Tr, A)-big
(e) forne“>Xandn € [f(n),w) for X ordinals & < A, we have
™ (a)) = n.

Claim 2.8. [The Global Aziom of Choice] If A is a (T1,Ry)-witness then

(a) K%H,A #0

(b) any two members of Ky, , are isomorphic

(¢c) thereis a function F from K;lpl’A to itself (up to isomorphism, i.e., (M, F(M))
is defined only up to isomorphism) satisfying M C F(M) such that K}I)A

is closed under increasing unions of sequence (M, : n < w) such that
F(Mn> C Mn+1~

Proof. Clause (a): Trivial.
Clause (b): By the definition of “A is a (T1,R;)-witness” and of K7, ,.
Clause (c):

We choose F such that

® if M € K p, then M C F(M) € K} 5, and for every k < w and a € P,
the set {b € P:ﬂ/l) ta <p(y) band b ¢ M} has cardinality ®;.

Assume M = U{M, : n < w} where (M, : n < w) is C-increasing}, M, €
K}l,Tl’F(Mn) C Mp4+1. Clearly M is as required in the beginning of Definition
2.7, that is, satisfies clauses («),(8), () there. To prove clause (0), we define
f:PY — wby f(a) = Min{n : a € M,}. Pendantically, F is defined only up to
isomorphism.

So we are done. Os s

Claim 2.9. [The Global Aziom of Choice/
If A is a (T1, \)-witness then
(a) Kq, o #0
(b) any two members of K%I,A are isomorphic

(¢) if M, € K%LA andn < w = M, C Mp4q then M := U{M, : n < w} €
K%-‘l A

Remark 2.10. If we omit clause (b), we can weaken the demand on the set A.

updates.
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Proof. Assume M = U{M,, : n < w},M,, C M1, M, € Kzlrl,A and f,, witnesses
M, € Kp, 4. Clearly M satisfies clauses (), (8), () from Definition 2.7, we just
have to find a witness f as in clause (9) there.

For each a € M let n(a) = Min{n : a € M,}, clearly if M = “a < b < ¢” then
n(a) < n(b) and n(a) = n(c) = n(a) = n(b). Let g, : M — M be defined by:
gn(a) = biff b <M a,b € M,, and b is <M-maximal under those restrictions; clearly
it is well defined. Now we define f/, : M,, — w by induction on n < w such that
m<n= fl Cfl asfollows.

Ifn=01et f, = fnr.

If n=m+1and a € M, we let f/(a) be f] (a)if a € M, and be (f,(a) —
fu(gm(@))+ [l (gm(a))+1if a € My \M,,. Clearly f := U{f], : n < w} is a function
from M to w,a <M b = f(a) < f(b), and for any a € M the set {b€ M :a <M b
and f(b) = f(a)} is equal to {b € Myy(a) : fn(a)(a) = fu(a)(b) and a <M b}.

So we are done. O g

Definition 2.11. Let A be a (T1, A)-witness. We define K7, , as in Definition 2.7
but f is constantly zero.

Claim 2.12. [The Global Aziom of Choice] If A is a (T1,Ry)-witness then

(a) Ki, 4 #0
(b) any two members of K%I,A are isomorphic
(c) thereis a function F from U{*T?(K7 ,):a <wi} to K7, , which satisfies:
K (o) ifM=(M;:i<a+ 1) is an <-increasing sequence of models
of T then Moyy CF(M) € K7, 4
(B)  the union of any increasing wi-sequence M = (M, : o < wy)
of members of K7, 5 belongs to K7, , when
wp =sup{a: F(M | (a+2)) € Myi2) and is a well defined
embedding of My, into Mao}.

Remark 2.13. Instead of the global axiom of choice, we can restrict the models to
have universe a subset of AT (or just a set of ordinals).

Proof. Clause (a): Easy.
Clause (b): By the definition.

Clause (c): Let (% : € < w;) be an increasing sequence of subsets of w; with

union w; such that ¢ < w1 = |%\ U %]| = Ni. Let M* € K7 , be such that
(<e
“Z(w1) C [M*| € “Z(wy) and MF =: M* | “2(%.) belongs to K7, , for every
e <wi. - -
We choose a pair (F, f) of functions with domain {M : M an increasing sequence
of members of K7, 4 of length < w;} such that:

(a) F(M) is an extension of U{M; : i < £g(M)} from K7, ,

(B) f(M) is an embedding from MZg(M) into F(M)

(v) if M* = (M : o < ) for £ = 1,2 and oy < g, M' = M? | a; and
F(M?') C M, then f(M?') C £f(M?)

(0) if a € F(M) and n < w then for some b € My, vy we have F(M) =
aly, (£(M)(b)).
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Now check. 012

Conclusion 2.14. Assume there is a (T1,Ry)-witness (see Definition 2.4) for the
first-order complete theory Ty from 2.1:

1) Ty has an (R, Ng)-strongly limit model.

2) Th has an (Nq,Ry)-medium limit model.

3) T has a (Rq, Ro)-superlimit model.

Proof. 1) By 2.8 the reduction of problems on (EC(T}), <) to K}MA (which is easy)
is exactly as in [?].

2) By 2.12.
3) Like part (1) using claim 2.9. 014
Claim 2.15. If A\ = X{\, :n < w} and A, = A0, then Ty has a (X, No)-superlimit
model in .

Proof. Let M,, be the model Ma, 5, where A, = “()\,) and h,, : A, — A} is
constantly A,.
Clearly

(%)1 M, is a saturated model of T} of cardinality A,
(*)2 Mn =< Mn—i—l
(x)3 M, =U{M, : n < w} is a special model of T} of cardinality A.

The main point:
(%) M, is (A, Ro)-superlimit model of T7.
[Why? Toward this assume
(a) N, is isomorphic to M, say f, : M, — N, is such isomorphic
(b) Np < Npgq for n < w.

Let N,, = U{N,, : n < w} and we should prove N, = M, so just N, is a special
model of T} of cardinality A suffice.

Let N, = Ny, [(U{fn(My) : k < n}). Easily N;, < N;; < N, and U{N], : n <
w} = N,, and ||N/|| = M. So it suffices to prove that N is saturated and by
direct inspection shows this. Os 15
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3. ON NON-EXISTENCE OF LIMIT MODELS

Naturally we assume that non-existence of superlimit models for unstable T is
easier to prove. For other versions we need to look more. We first show that for
A > |T|+RXy, if T is unstable then it does not have a superlimit model of cardinality
A and if T is unsuperstable, we show this for “most” cardinals A. On “® proper for
Ko or K7, see [?, VII] or [?] or hopefully some day in [?, III]. We assume some
knowledge on stability.

Claim 3.1. 1) If T is unstable, X\ > |T| + Xy, then T has no superlimit model of
cardinality .

2) If T is stable not superstable and A > |T| + 3, or A = AR > |T| then T has no
superlimit model of cardinality \.

Remark 3.2. 1) We assume some knowledge on EM models for linear orders I and
members of K as index models, see, e.g. [?, VII].
2) We use the following definition in the proof, as well as a result from [?] or [?].

Definition 3.3. For cardinals A > « let Al*! be the minimal z such that for some,
equivalently for every set A of cardinality A there is 24 C [A]S" = {B C A:|B| <
k} of cardinality A such that any B € [\]<* is the union of < k members of Z4.

Proof. 1) Towards a contradiction assume M™* is a superlimit model of T of cardi-
nality A. As T is unstable we can find m, ¢(Z, y) such that

() ©(Z,9) € L.(p) linearly orders some infinite I C ™M, M = T so £g(Z) =
tg(y) =m.

We can find a ® which is proper for linear orders (see [?, VII]) and Fy(¢ < m) such
that Fy € 7¢\7r is a unary function symbol for £ < m,7r C 7(®) and for every
linear order I, EM(/, ®) has Skolem functions and its 7p-reduct EM, (I, ®) is a
model of T of cardinality |T'|+|I| and 7(®) is of cardinality |T'|+ ¢ and (as : s € I)
is the Skeleton of EM(I, ®), that is, it is an indiscernible sequence in EM(Z, ®) and
EM(I, ®) is the Skolem hull of {as : s € I}, and letting a; = (Fy(as) : £ < m) in
EM(I, ®) we have EM, (1) (I, ®) = ¢[as, @] <" for s,t € I.
Next we can find ®,, (for n < w) such that:

B (a) @, is proper for linear order and &g = &

(b) EMg;@)(I,®,) < EM()(I, ®,41) for every linear order I and n < w;
moreover

(b 7(®n) € 7(Ppg1) and EM(I,®,,) < EM () (I, ®,41) for every
n < w and linear order I

(e) if [I] <n then EM ()(I,®,) = EM (¢)({, ®,41) and
EM, 1)1, ®,) = M~

(d) |7(®n)| = A.

This is easy. Let ®,, be the limit of (®,, : n < w), i.e. 7(Dy) = U{7(D,) : n < w}
and if k& < w then EM,(¢,)(I,®,) = U{EM (s,)(I,®,) : n € [k,w)}. So as M*
is a superlimit model, for any linear order I of cardinality A\, EM, ([, ®,) is
the direct limit of (EM, 1y (J, @) : J C I finite), each isomorphic to M*, so as
we have assumed that M* is a superlimit model it follows that EM,(p)(I, @) is
isomorphic to M*. But by [?, III] or [?] which may eventually be [?, III] there are

See https://shelah.logic.at/papers/868/ for possible updates.
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22 many pairwise non-isomorphic models of this form varying I on the linear orders
of cardinality A, contradiction.

2) First assume A = A®0. Let 7 C 71 be countable such that 7" = T'NL(7) is not
superstable. Clearly if M* is (), Rg)-limit model then M* | 7/ is not R;-saturated.
[Why? As in [?, Ch.VL§6], but we shall give full details. There are N, E T,p =
{on(A\,@n) : n < w} a type in Ny, Gy < Gny1,0<> empty and @p41(2, Gpp1) forks
over a,. Let F(M) be such that if n < w and b,, C M realizes tp(a,, (), N.) then for
some b, 1 from F, M realizing tp(d@,1,0, N.), the type tp(b,y1, M, F(M)) does
not fork over b,.] But if k = cf(k) € [N, A\] and M* is a (A, £)-limit then M* | 7/
is Ny-saturated, contradiction.

The case A > |T'| + 3, is more complicated (the assumption A > 1, is to enable
us to use [?] or see [?] for a simpler proof; we can use weaker but less transparent
assumptions; maybe A > 2%o suffices).

As T is stable not superstable by [?] for some A:

®; for any p there are M and (an, : 1 € “p and o < ) such that
(a) M is a model of T
(b) L, = {an,a : & < p} € M is an indiscernible set (and o < f < p =
Una 7 an,8)
() A=(An:n<w)and A, C L, (7 infinite
(d) for n,v € “p we have Ava, (M,1,) = Ava, (M,L,) iff n [n=v]n.

Hence by [?, VIII], or see [?] assuming M* is a universal model of T' of cardinality
A

®o.1 there is ® such that
(a) ® is proper for K, 70 C 7(®), |7(®)| = A > |T| + No
(b) for I C“=X, EM,(¢)(I,®) is a model of T and I C J = EM(I,®) <
EM(J, ®)
(¢) for some two-place function symbol F if for I € K¥ and n € PL T a
subtree of “Z\ for transparency we let Iy, = {F(a,,a,) : v € I} then
(I, :n € PL) are as in ®1(b), (d).

Also

@92 if @y satisfies (a),(b),(c) of ®2.1 and M is a universal model of T then there
is @3 satisfying (a),(b),(c) of ®21 and &1 < P} see ®2.3(a) and for every
finitely generated J € K{, see ®2.3(b) below, there is M’ = M such that
EMT(T)? (J, @1) <M =< EMT(T)(J, (I)z)

@23 (a) wesay &1 < Py when 7(P1) C 7(P3) and J € K =

EM(‘L (I)l) = EMT(¢>1)(J7 (I)Z)

(b)  wesay J C I is finitely generated if it has the form {n, : £ < n}U
{p: for some n, £ we have p € P! and p <! n,} for some
N0y -+ Mn—1 EPJI

@94 if M, € EC,(T) is superlimit (or just weakly S-limit, S C AT stationary)
then there is ® as in ®2; above such that EM (1 (J, ®) = M, for every
finitely generated J € K¢,

@95 we fix ® as in ®9 4 for M, € EC,(T) superlimit.
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Hence (mainly by clause (b) of ®2.; and ®2 4 as in the proof of part (1))
®3 if I € K has cardinality < A then EM,(g)(I, ®) is isomorphic to M*.

Now by [?], we can find regular uncountable x < I, such that A = Al see
Definition 3.3.

Let S ={0 < x:cf(0) =No} and 77 = (ns : 6 € S) be such that s an increasing
sequence of length w with limit §.

For a model M of T'let OB;(M) ={a:a=(apoa:0€Wand a <k),WCS
and in M they are as in ®1(b), (d)}.
For a € OBj(M) let Wa] be W as above and let

E(@,M)={ne“k: thereis an indiscernible set
I={an:a<k}in M such that for every n
for some 6 € Wla],n [ n=ns [ n and
Ava, (M, I) = Ava, (M {an;.a o < K})}.

Clearly

®4 (a) if M < N then OB;(M) C OBgz(N)
(b) if M <N andae OB;(M) then Z(a, M) C

[1]

(a,N).
Now by the choice of « it should be clear that

@5 if M = T is of cardinality A then we can find an elementary extension
N of M of cardinality A such that for every a € OBg(M) with W{a] a
stationary subset of k, for some stationary W’ C Wa] the set E[a, N]
includes {n € “k : (Yn)(36 € W')(n I n =ns | n)}, (moreover we can even
find e* < k and W, C W for € < e* satisfying Wa] = U{W, : e < e*})
®6 we can find M € ECy(T) isomorphic to M* such that for every a € OB;(M)
with W[a] a stationary subset of k, we can find a stationary subset W’ of
Wa] such that the set Z[a, M] includes {n € “u: (Vn)(36 € W')(n [ n =
ns [ n)}.
[Why? We choose (M;, N;) for i < kT such that
(a) M; € EC\(T) is <-increasing continuous
(a)
(a)
(a)

a

M+ is isomorphic to M*
ML‘ =< Ni =< Mi—i—l
(M;, N;) are like (M, N) in ®s.

Now M = U{M; :i < k" } is as required.
Now the model M is isomorphic to M* as M* is superlimit.]
Now the model from ®¢ is not isomorphic to M’ = EM ) (“"AU {ns : 6 €
S}, @) where @ is from ®5 ;. But M’ = M* by ®s.
Together we are done. Osq

The following claim says in particular that if some not unreasonable pcf conjectures
holds, the conclusion holds for every A > 2%o,
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Claim 3.4. Assume T is stable not superstable, A\ > |T| and A > k = cf(k) > .

1) T has no (\, k)-superlimit model provided that k = cf(k) > No, A > &Y and
A =Up(A) := Min{| 2| : & C [N]* and for every f : k — X for some u € &
we have {a < k : f(a) € u} € DT, where D is a normal filter on k to which
{6 < K :cf(d) =Ny} belongs.

2) Similarly if X > 280 and letting Jo = {u C k : |u| < N}, Jy ={u Ck:un S8,
non-stationary} we have X = Uy, ;,(A) == Min{| 2| : & C AN, ifu € Jy, f :
(k\u) — A then for some countable infinite w C k(u) and v € &2, Rang(flw) C v}.

Proof. Like 3.1(2). O

Claim 3.5. 1) Assume T is unstable and X > |T| + 3,,. Then for at most one
reqular k < X does T have a weakly (X, k)-limit model and even a weakly (X, S)-limit
model for some stationary S C S2.

2) Assume T is unsuperstable and X\ > |T| + 3,(k2) and k1 = Ng < kg = cf(k2).
Then T has no model which is a weak (X, S)-limit where S C X and SN Sy, is
stationary for £ =1,2.

Proof. 1) Assume k1 # ko form a counterexample. Let k < 3, be regular large
enough such that A = \*!| see Definition 3.3 and x ¢ {k1,k2}. Let m,p(Z,7) be
as in the proof of 3.1

() it M € ECX(T') then there is N such that
(a) N € ECA(T)
(b) M <N
(c) ifa=(a;:i< k)€ "("M) for o < k then for some % € [k]X for every
uniform ultrafilter D on k to which % belongs there is ap € "N such
that tp(ap,N,N) = Av(a/D,M) = {(z,¢) : ¥(z,2) € L(rr),¢ €
9GO M and {{a < K : N = ¢[a,,, e} € D}.

Similarly

M, for every function F with domain {M : M an <-increasing sequence of
models of T of length < AT each with universe € A\™} such that M; <
F(M) for i < £g(M) and F(M) has universe € A" there is a sequence
(M. : e < AT) obeying F such that: for every ¢ < AT and a € *(™(M.))
for o < K, there is Z € [k]" such that for every ultrafilter D on k to
which % belongs, for every ¢ € (¢, A") there is ap ¢ € ™(Mc41) realizing
AV({?[/D7 Mc) in Mc+1.

Hence

By for (M, : a < AT) as in B; for every limit § < A" of cofinality # & for
every a = (a; : 1 < k) € "("™(Ms)), there is Z € [k]" such that for every
ultrafilter D on & to which % belongs, there is a sequence (b, : £ < cf(§)) €
of(9) (™ (Ms)) such that for every 1(z, z) € L(rr) and ¢ € “9)(Ms) for every

e < cf(8) large enough, My = b., ¢ iff ¥(z,¢) € Av(a/D, Ms).

The rest should be clear.
2) Combine the above and the proof of 3.1(2). Os.5

See https://shelah.logic.at/papers/868/ for possible updates.
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