WHEN FIRST ORDER T HAS LIMIT MODELS SH868

SAHARON SHELAH

ABSTRACT. We to a large extent sort out when does a (first order complete theory) T have a superlimit model in a cardinal λ . Also we deal with related notions of being limit.

Date: March 8, 2013.

¹⁹⁹¹ Mathematics Subject Classification. MSC Primary 03C45; Secondary: 03C55.

Key words and phrases. model theory, classification theory, limit modes.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 710/07). I would like to thank Alice Leonhardt for the beautiful typing. First Typed - $04/\mathrm{June}/23$. Paper 868 in the author list of publications.

SAHARON SHELAH

Anotated Content

§0 Introduction, pg.3

[We give background and the basic definitions. We then present existence results for stable T which have models which are saturated or closed to being saturated.]

§1 On countable superstable not \aleph_0 -stable, pg.8

[Consistently $2^{\aleph_1} \geq \aleph_2$ and some such (complete first order) T has a superlimit (non-saturated) model of cardinality \aleph_1 . This shows that we cannot prove a non-existence result fully complementary to Lemma 0.9.]

§2 A strictly stable consistent example, pg.10

[Consistently $\aleph_1 < 2^{\aleph_0}$ and some countable stable not superstable T, has a (non-saturated) model of cardinality \aleph_1 which satisfies some relatives of being superlimit.]

§3 On the non-existence of limit models, pg.14

[The proofs here are in ZFC. If T is unstable it has no superlimit models of cardinality λ when $\lambda \geq \aleph_1 + |T|$. For unsuperstable T we have similar results but with "few" exceptional cardinals λ on which we do not know: $\lambda < \lambda^{\aleph_0}$ which are $< \beth_{\omega}$. Lastly, if T is superstable and $\lambda \geq |T| + 2^{|T|}$ then T has a superlimit model of cardinality λ iff $|D(T)| \leq \lambda$ iff T has a saturated model. Lastly, we get weaker results on weaker relatives of superlimit.]

2

0. Introduction

§(0A) Background and Content

Recall that ([?, Ch.III]). If T is (first order complete and) superstable then for $\lambda \geq 2^{|T|}$, T has a saturated model M of cardinality λ and moreover

(*) if $\langle M_{\alpha} : \alpha < \delta \rangle$ is \prec -increasing, δ a limit ordinal $< \lambda^+$ and $\alpha < \delta \Rightarrow M_{\alpha} \cong M$ then $\cup \{M_{\alpha} : \alpha < \delta\}$ is isomorphic to M.

When investigating categoricity of an a.e.c. (abstract elementary classes) $\mathfrak{k} = (K_{\mathfrak{k}}, \leq_{\mathfrak{k}})$, the following property turns out to be central: M is $\leq_{\mathfrak{k}}$ -universal model of cardinality λ with the property (*) above (called superlimit) - possibly with addition parameter $\kappa = \mathrm{cf}(\kappa) \leq \lambda$ (or stationary $S \subseteq \lambda^+$); we also consider some relatives, mainly limit, weakly limit and strongly limit. Those notions were suggested for a.e.c. in [?, 3.1] or see the revised version [?, 3.3] and see [?] or here in 0.7. But though coming from investigating non-elementary classes, they are meaningful for elementary classes and here we try to investigate them for elementary classes.

Recall that for a first order complete T, we know $\{\lambda : T \text{ has a saturated model of } T \text{ of cardinality } \lambda\}$, that is, it is $\{\lambda : \lambda^{<\lambda} \geq |D(T)| \text{ or } T \text{ is stable in } \lambda\}$, on the definitions of D(T) and other notions see $\S(0B)$ below. What if we replace saturated by superlimit (or some relative)? Let $\mathrm{EC}_{\lambda}(T)$ be the class of models M of T of cardinality λ .

If there is a saturated $M \in EC_{\lambda}(T)$ we have considerable knowledge on the existence of limit model for cardinal λ , this was as mentioned in [?, 3.6] by [?], see 0.9(1),(2). E.g. for superstable T in $\lambda \geq 2^{|T|}$ there is a superlimit model (the saturated one). It seems a natural question on [?, 3.6] whether it exhausts the possibilities of $(\lambda, *)$ -superlimit and (λ, κ) -superlimit models for elementary classes.

Clearly the cases of the existence of such models of a (first order complete) theory T where there are no saturated (or special) models are rare, because even the weakest version of Definition [?, 3.1] = [?, 3.3] or here Definitino 0.7 for λ implies that T has a universal model of cardinality λ , which is rare (see Kojman Shelah [?] which includes earlier history and recently Djamonza [?]).

So the main question seems to be whether there are such cases at all. We naturally look at some of the previous cases of consistency of the existence of a universal model (for $\lambda < \lambda^{<\lambda}$), i.e., those for $\lambda = \aleph_1$.

E.g. a sufficient condition for some versions is the existence of $T' \supseteq T$ of cardinality λ such that PC(T',T) is categorical in λ , see 0.4(3). By [?] we have consistency results for such T_1 so naturally we first deal with the consistency results from [?]. In §1 we deal with the case of the countable superstable T_0 from [?] which is not \aleph_0 -stable. By [?] consistently $\aleph_1 < 2^{\aleph_0}$ and for some $T'_0 \supseteq T_0$ of cardinality \aleph_1 , $PC(T'_0, T_0)$ is categorical in \aleph_1 . We use this to get the consistency of " T_0 has a superlimit model of cardinality \aleph_1 and $\aleph_1 < 2^{\aleph_0}$ ".

In §2 we prove that for some stable not superstable countable T_1 we have a parallel but weaker result. We relook at the old consistency results of "some $PC(T'_1, T_1), |T'_1| = \aleph_1 > |T_1|$, is categorical in \aleph_1 " from [?]. From this we deduce that in this universe, T_1 has a strongly (\aleph_1, \aleph_0) -limit model.

It is a reasonable thought that we can similarly have a consistency result on the theory of linear order, but this is still not clear.

In §3 we show that if T has a superlimit model in $\lambda \geq |T| + \aleph_1$ then T is stable and T is superstable except possibly under some severe restrictions on the cardinal λ (i.e., $\lambda < \beth_{\omega}$ and $\lambda < \lambda^{\aleph_0}$). We then prove some restrictions on the existence of some (weaker) relatives.

Summing up our results on the strongest notion, superlimit, by 1.1 + 3.1 we have:

Conclusion 0.1. Assume $\lambda \geq |T| + \beth_{\omega}$. Then T has a superlimit model of cardinality λ iff T is superstable and $\lambda \geq |D(T)|$.

In subsequent work we shall show that for some unstable T (e.g. the theory of linear orders), if $\lambda = \lambda^{<\lambda} > \kappa = \mathrm{cf}(\kappa)$, then T has a medium (λ, κ) -limit model, whereas if T has the independence property even weak (λ, κ) -limit models do not exist; see [?] and more in [?], [?], [?], [?].

We thank Alex Usvyatsov for urging us to resolve the question of the superlimit case and John Baldwin for comments and complaints.

§(0B) Basic Definitions

Notation 0.2. 1) Let T denote a complete first order theory which has infinite models but T_1, T' , etc. are not necessarily complete.

- 2) Let M, N denote models, |M| the universe of M and |M| its cardinality and $M \prec N$ means M is an elementary submodel of N.
- 3) Let $\tau_T = \tau(T), \tau_M = \tau(M)$ be the vocabulary of T, M respectively.
- 4) Let $M \models \text{``}\varphi[\bar{a}]^{\underline{i}f(\text{stat})}$ '' means that the model M satisfies $\varphi[\bar{a}]$ iff the statement stat is true (or is 1 rather than 0)).

Definition 0.3. 1) For $\bar{a} \in {}^{\omega>}|M|$ and $B \subseteq M$ let $\operatorname{tp}(\bar{a}, B, M) = \{\varphi(\bar{x}, \bar{b}) : \varphi = \varphi(\bar{x}, \bar{y}) \in \mathbb{L}(\tau_M), \bar{b} \in {}^{\ell g(\bar{y})}B$ and $M \models \varphi[\bar{a}, \bar{b}]\}.$

- 2) Let $D(T) = \{ \operatorname{tp}(\bar{a}, \emptyset, M) : M \text{ a model of } T \text{ and } \bar{a} \text{ a finite sequence from } M \}.$
- 3) If $A \subseteq M$ then $\mathbf{S}^m(A, M) = \{ \operatorname{tp}(\bar{a}, A, N) : M \prec N \text{ and } \bar{a} \in {}^m N \}$, if m = 1 we may omit it.
- 4) A model M is λ -saturated when: if $A \subseteq M, |A| < \lambda$ and $p \in \mathbf{S}(A, M)$ then p is realized by some $a \in M$, i.e. $p \subseteq \operatorname{tp}(a, A, M)$; if $\lambda = ||M||$ we may omit it.
- 5) A model M is special when letting $\lambda = ||M||$, there is an increasing sequence $\langle \lambda_i : i < \operatorname{cf}(\lambda) \rangle$ of cardinals with limit λ and a \prec -increasing sequence $\langle M_i : i < \operatorname{cf}(\lambda) \rangle$ of models with union M such that M_{i+1} is λ_i -saturated of cardinality λ_{i+1} for $i < \operatorname{cf}(\lambda)$.

Definition 0.4. 1) For any T let $EC(T) = \{M : M \text{ is a } \tau_T\text{-model of } T\}$.

- 2) $EC_{\lambda}(T) = \{ M \in EC(T) : M \text{ is of cardinality } \lambda \}.$
- 3) For $T \subseteq T'$ let

$$PC(T',T) = \{M \mid \tau_T : M \text{ is model of } T'\}$$

$$PC_{\lambda}(T',T) = \{M \in PC(T',T) : M \text{ is of cardinality } \lambda\}.$$

- 4) We say M is λ -universal for T_1 when it is a model of T_1 and every $N \in EC_{\lambda}(T)$ can be elementarily embedded into M; if $T_1 = Th(M)$ we may omit it.
- 5) We say $M \in EC(T)$ is universal <u>when</u> it is λ -universal for $\lambda = ||M||$.

We are here mainly interested in

SH868

Definition 0.5. Given T and $M \in EC_{\lambda}(T)$ we say that M is a superlimit or λ -superlimit model <u>when</u>: M is universal and if $\delta < \lambda^+$ is a limit ordinal, $\langle M_{\alpha} : \alpha \leq \delta \rangle$ is \prec -increasing continuous, and M_{α} is isomorphic to M for every $\alpha < \delta$ <u>then</u> M_{δ} is isomorphic to M.

Remark 0.6. Concerning the following definition we shall use strongly limit in 2.14(1), medium limit in 2.14(2).

Definition 0.7. Let λ be a cardinal $\geq |T|$. For parts 3) - 7) but not 8), for simplifying the presentation we assume the axiom of global choice and \mathbf{F} is a class function; alternatively restrict yourself to models with universe an ordinal $\in [\lambda, \lambda^+)$.

1) For non-empty $\Theta \subseteq \{\mu : \aleph_0 \leq \mu < \lambda \text{ and } \mu \text{ is regular} \}$ and $M \in EC_{\lambda}(T)$ we say that M is a (λ, Θ) -superlimit when: M is universal and

if $\langle M_i : i \leq \mu \rangle$ is \prec -increasing, $M_i \cong M$ for $i < \mu$ and $\mu \in \Theta$ then $\cup \{M_i : i < \mu\} \cong M$.

- 2) If Θ is a singleton, say $\Theta = \{\theta\}$, we may say that M is (λ, θ) -superlimit.
- 3) Let $S \subseteq \lambda^+$ be stationary. A model $M \in EC_{\lambda}(T)$ is called S-strongly limit or (λ, S) -strongly limit when for some function: $\mathbf{F} : EC_{\lambda}(T) \to EC_{\lambda}(T)$ we have:
 - (a) for $N \in EC_{\lambda}(T)$ we have $N \prec \mathbf{F}(N)$
 - (b) if $\delta \in S$ is a limit ordinal and $\langle M_i : i < \delta \rangle$ is a \prec -increasing continuous sequence ¹ in $EC_{\lambda}(T)$ and $i < \delta \Rightarrow \mathbf{F}(M_{i+1}) \prec M_{i+2}$, then $M \cong \bigcup \{M_i : i < \delta\}$.
- 4) Let $S \subseteq \lambda^+$ be stationary. $M \in EC_{\lambda}(T)$ is called S-limit or (λ, S) -limit if for some function $\mathbf{F} : EC_{\lambda}(T) \to EC_{\lambda}(T)$ we have:
 - (a) for every $N \in EC_{\lambda}(T)$ we have $N \prec F(N)$
 - (b) if $\langle M_i : i < \lambda^+ \rangle$ is a \prec -increasing continuous sequence of members of $\mathrm{EC}_{\lambda}(T)$ such that $\mathbf{F}(M_{i+1}) \prec M_{i+2}$ for $i < \lambda^+$ then for some closed unbounded ² subset C of λ^+ ,

$$[\delta \in S \cap C \Rightarrow M_{\delta} \cong M].$$

- 5) We define³ "S-weakly limit", "S-medium limit" like "S-limit", "S-strongly limit" respectively by demanding that the domain of \mathbf{F} is the family of \prec -increasing continuous sequence of members of $\mathrm{EC}_{\lambda}(T)$ of length $<\lambda^+$ and replacing " $\mathbf{F}(M_{i+1}) \prec M_{i+2}$ " by " $M_{i+1} \prec \mathbf{F}(\langle M_j: j \leq i+1 \rangle) \prec M_{i+2}$ ".
- 6) If $S = \lambda^+$ then we may omit S (in parts (3), (4), (5)).
- 7) For non-empty $\Theta \subseteq \{\mu : \mu \leq \lambda \text{ and } \mu \text{ is regular}\}$, M is (λ, Θ) -strongly limit M is $\{\delta < \lambda^+ : \text{cf}(\delta) \in \Theta\}$ -strongly limit. Similarly for the other notions. If we do not write λ we mean $\lambda = ||M||$.
- 8) We say that $M \in K_{\lambda}$ is invariantly strong limit when in part (3), **F** is just a subset of $\{(M, N)/\cong: M \prec N \text{ are from } \mathrm{EC}_{\lambda}(T)\}$ and in clause (b) of part (3) we

¹no loss if we add $M_{i+1} \cong M$, so this simplifies the demand on \mathbf{F} , i.e., only $\mathbf{F}(M')$ for $M' \cong M$ is required

²alternatively, we can use as a parameter a filter on λ^+ extending the co-bounded filter

 $^{^3}$ Note that M is (λ,S) -strongly limit iff M is $(\{\lambda,\operatorname{cf}(\delta):\delta\in S\})$ -strongly limit.

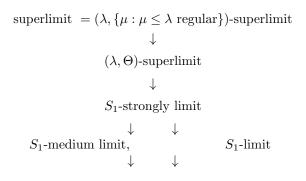
⁴in [?] we consider: we replace "limit" by "limit" if " $\mathbf{F}(M_{i+1}) \prec M_{i+2}$ ", " $M_{i+1} \prec \mathbf{F}(\langle M_j: j \leq i+1 \rangle) \prec M_{i+2}$ " are replaced by " $\mathbf{F}(M_i) \prec M_{i+1}$ ", " $M_i \prec \mathbf{F}(\langle M_j: j \leq i \rangle) \prec M_{i+1}$ " respectively. But (EC(T), \prec) has amalgamation.

replace " $\mathbf{F}(M_{i+1}) \prec M_{i+2}$ " by " $(\exists N)(M_{i+1} \prec N \prec M_{i+2} \land ((M,N)/\cong) \in \mathbf{F})$ ". But abusing notation we still write $N = \mathbf{F}(M)$ instead $((M,N)/\cong) \in \mathbf{F}$. Similarly with the other notions, so we use the isomorphism type of $M \land \langle N \rangle$ for "weakly limit" and "medium limit".

9) In the definitions above we may say " \mathbf{F} witness M is ..."

Observation 0.8. 1) Assume \mathbf{F}_1 , \mathbf{F}_2 are as above and $\mathbf{F}_1(N) \prec \mathbf{F}_2(N)$ (or $\mathbf{F}_1(\bar{N}) \prec \mathbf{F}_2(\bar{N})$) whenever defined. If \mathbf{F}_1 is a witness then so is \mathbf{F}_2 .

- 2) All versions of limit models implies being a universal model in $EC_{\lambda}(T)$.
- 3) The Obvious implications diagram: For non-empty $\Theta \subseteq \{\theta : \theta \text{ is regular } \leq \lambda\}$ and stationary $S_1 \subseteq \{\delta < \lambda^+ : \operatorname{cf}(\delta) \in \Theta\}$:



 S_1 -weakly limit.

Lemma 0.9. Let T be a first order complete theory.

- 1) If λ is regular, M a saturated model of T of cardinality λ , then M is (λ, λ) -superlimit.
- 2) If T is stable, and M is a saturated model of T of cardinality $\lambda \geq \aleph_1 + |T|$ and $\Theta = \{\mu : \kappa(T) \leq \mu \leq \lambda \text{ and } \mu \text{ is regular}\}$), then M is (λ, Θ) -superlimit (on $\kappa(T)$ -see [?, III,§3]).
- 3) If T is stable in λ and $\kappa = \mathrm{cf}(\kappa) \leq \lambda$ then T has an invariantly strongly (λ, κ) -limit model.

Remark 0.10. Concerning 0.9(2), note that by [?] if λ is singular or just $\lambda < \lambda^{<\lambda}$ and T has a saturated model of cardinality λ then T is stable (even stable in λ) and $\operatorname{cf}(\lambda) \geq \kappa(T)$).

- *Proof.* 1) Let M_i be a λ -saturated model of T of cardinality λ for $i < \lambda$ and $\langle M_i : i < \lambda \rangle$ is \prec -increasing and $M_{\lambda} = \bigcup_{i < \lambda} M_i$. Now for every $A \subseteq M_{\lambda}$ of cardinality
- $<\lambda$ there is $i<\lambda$ such that $A\subseteq M_i$ hence every $p\in \mathbf{S}(A,M_\lambda)$ is realized in M_i hence in M_λ ; so clearly M_λ is λ -saturated. Remembering the uniqueness of a λ -saturated model of T of cardinality λ we finish.
- 2) Use [?, III,3.11]: if M_i is a λ -saturated model of $T, \langle M_i : i < \delta \rangle$ increasing $\operatorname{cf}(\delta) \geq \kappa(T)$ then $\bigcup M_i$ is λ -saturated.
- 3) Let $\mathbf{K}_{\lambda,\kappa} = \{ \bar{M} : \bar{M} = \langle M_i : i \leq \kappa \rangle \text{ is } \prec\text{-increasing continuous, } M_i \in \mathrm{EC}_{\lambda}(T) \text{ and } (M_{i+2},c)_{c \in M_{i+1}} \text{ is saturated for every } i < \kappa \}.$ Clearly $\bar{M}, \bar{N} \in \mathbf{K}_{\lambda,\kappa} \Rightarrow M_{\kappa} \cong N_{\kappa}$. Also for every $M \in \mathrm{EC}_{\lambda}(T)$ there is N such that $M \prec N$ and $(N,c)_{c \in M}$

SH868

is saturated, as also $\operatorname{Th}((M,c)_{c\in M})$ is stable in λ ; so there is an invariant $\mathbf{F}: \operatorname{EC}_{\lambda}(T) \to \operatorname{EC}_{\lambda}(T)$ such that $M \prec \mathbf{F}(M)$ and $(\mathbf{F}(M),c)_{c\in M}$ is saturated; such \mathbf{F} witness the desired conclusion. $\square_{0.9}$

Definition 0.11. 0) For regular $\kappa < \lambda$ let $S_{\theta}^{\lambda} = \{ \delta < \lambda : \text{cf}(\delta) = \lambda \}.$

- 1) For a regular uncountable cardinal λ let $\check{I}[\lambda] = \{S \subseteq \lambda : \text{ some pair } (E, \bar{a}) \text{ witnesses } S \in \check{I}[\lambda], \text{ see below}\}.$
- 2) We say that (E, \bar{u}) is a witness for $S \in I[\lambda]$ iff:
 - (a) E is a club of the regular cardinal λ
 - (b) $\bar{u} = \langle u_{\alpha} : \alpha < \lambda \rangle, u_{\alpha} \subseteq \alpha \text{ and } \beta \in u_{\alpha} \Rightarrow u_{\beta} = \beta \cap u_{\alpha}$
 - (c) for every $\delta \in E \cap S$, u_{δ} is an unbounded subset of δ of order-type cf(δ) (and δ is a limit ordinal).

By [?, §1]

Claim 0.12. If $\kappa^+ < \lambda$ and κ, λ are regular then some stationary $S \subseteq \{\delta < \lambda : cf(\delta) = \kappa\}$ belongs to $\check{I}[\lambda]$.

By [?]

Claim 0.13. If $\lambda = \mu^+, \theta = \operatorname{cf}(\theta) \leq \operatorname{cf}(\mu)$ and $\alpha < \mu \Rightarrow |\alpha|^{<\theta} \leq \mu$ then $S_{\theta}^{\lambda} \in \check{I}[\lambda]$.

1. On superstable not \aleph_0 -stable T

We first note that superstable T tend to have superlimit models.

Claim 1.1. Assume T is superstable and $\lambda \geq |T| + 2^{\aleph_0}$. Then T has a superlimit model of cardinality λ iff T has a saturated model of cardinality λ iff T has a universal model of cardinality λ iff $\lambda \geq |D(T)|$.

Proof. By [?, III,§5] we know that T is stable in λ iff $\lambda \geq |D(T)|$. Now if $|T| \leq \lambda < 1$ |D(T)| trivially there is no universal model of T of cardinality λ hence no saturated model and no superlimit model, etc., recalling 0.8(2). If $\lambda \geq |D(T)|$, then T is stable in λ hence has a saturated model of cardinality λ by [?, III] (hence universal) and the class of λ -saturated models of T is closed under increasing elementary chains by [?, III] so we are done.

The following are the prototypical theories which we shall consider.

Definition 1.2. 1) $T_0 = \operatorname{Th}(^{\omega}2, E_n^0)_{n<\omega}$ when $\eta E_n^0 \nu \Leftrightarrow \eta \upharpoonright n = \nu \upharpoonright n$.

- 2) $T_1 = \operatorname{Th}(^{\omega}(\omega_1), E_n^1)_{n < \omega}$ where $\eta E_n^1 \nu \Leftrightarrow \eta \upharpoonright n = \nu \upharpoonright n$.
- 3) $T_2 = \operatorname{Th}(\mathbb{R}, <)$.

Recall

Observation 1.3. 0) T_{ℓ} is a countable complete first order theory for $\ell = 0, 1, 2$.

- 1) T_0 is superstable not \aleph_0 -stable.
- 2) T_1 is strictly stable, that is, stable not superstable.
- 3) T_2 is unstable.
- 4) T_{ℓ} has elimination of quantifiers for $\ell = 0, 1, 2$.

Claim 1.4. It is consistent with ZFC that $\aleph_1 < 2^{\aleph_0}$ and some $M \in EC_{\aleph_1}(T_0)$ is a superlimit model.

Proof. By [?], for notational simplicity we start with V = L.

So T_0 is defined in 1.2(1) and it is the T from Theorem [?, 1.1] and let S be the set of $\eta \in ({}^{\omega}2)^{\mathbf{L}}$. We define T' (called T_1 there) as the following theory:

- \circledast_1 (i) T_0 , or just for each n the sentence saying E_n is an equivalence relation with 2^n equivalence classes, each E_n equivalence class divided to two by E_{n+1}, E_{n+1} refine E_n, E_0 is trivial
 - (ii) the sentences saying that
 - (α) for every x, the function $z \mapsto F(x,z)$ is one-to-one and
 - (iii) $E_n(F(x,z))$ for each $n < \omega$ (iii) $E_n(c_{\eta}, c_{\nu})^{\mathrm{if}(\eta \upharpoonright n = \nu \upharpoonright n)}$ for $\eta, \nu \in S$.

In [?] it is proved that in some forcing⁵ extension $\mathbf{L}^{\mathbb{P}}$ of \mathbf{L} , \mathbb{P} an \aleph_2 -c.c. proper forcing of cardinality \aleph_2 , in $\mathbf{V} = \mathbf{L}^{\mathbb{P}}$, the class $\mathrm{PC}(T', T_0) = \{M \mid \tau_{T_0} : M \text{ is a } T_0 \in \mathbb{P} \}$ τ -model of T'} is categorical in \aleph_1 .

However, letting M^* be any model from $PC(T', T_0)$ of cardinality \aleph_1 , it is easy to see that (in $\mathbf{V} = \mathbf{L}^{\mathbb{P}}$):

- \circledast_2 the following conditions on M are equivalent
 - (a) M is isomorphic to M^*

⁵We can replace **L** by any \mathbf{V}_0 which satisfies $2^{\aleph_0} = \aleph_1, 2^{\aleph_1} = \aleph_2$.

WHEN FIRST ORDER T HAS LIMIT MODELS

SH868

9

- (b) $M \in PC(T', T_0)$
- (c) (a) M is a model of T_0 of cardinality \aleph_1
 - (β) M^* can be elementarily embedded into M
 - (γ) for every $a \in M$ the set $\cap \{a/E_n^M : n < \omega\}$ has cardinality \aleph_1 .

But

- \circledast_3 every model M_1 of T of cardinality $\leq \aleph_1$ has a proper elementary extension to a model satisfying (c), i.e., (α) , (β) , (γ) of \circledast_2 above
- \circledast_4 if $\langle M_\alpha : \alpha < \delta \rangle$ is an increasing chain of models satisfying (c) of \circledast_2 and $\delta < \omega_2$ then also $\cup \{M_\alpha : \alpha < \delta\}$ does.

Together we are done.

 $\square_{1.4}$

Naturally we ask

Question 1.5. What occurs to T_0 for $\lambda > \aleph_1$ but $\lambda < 2^{\aleph_0}$?

Question 1.6. Does the theory T_2 of linear order consistently have an (\aleph_1, \aleph_0) -superlimit? (or only strongly limit?) but see §3.

Question 1.7. What is the answer for T when T is countable superstable not \aleph_0 -stable and D(T) countable for $\aleph_1 < 2^{\aleph_0}$ for $\aleph_2 < 2^{\aleph_0}$?

So by the above for some such T, in some universe, for \aleph_1 the answer is yes, there is a superlimit.

2. A STRICTLY STABLE CONSISTENT EXAMPLE

We now look at models of T_1 (redefined below) in cardinality \aleph_1 ; recall

Definition 2.1. $T_1 = \operatorname{Th}(^{\omega}(\omega_1), E_n)_{n < \omega}$ where $E_n = \{(\eta, \nu) : \eta, \nu \in ^{\omega}(\omega_1) \text{ and } \eta \upharpoonright n = \nu \upharpoonright n\}.$

Remark 2.2.

- (a) Note that T_1 has elimination of quantifiers.
- (b) If $\lambda = \Sigma\{\lambda_n : n < \omega\}$ and $\lambda_n = \lambda_n^{\aleph_0}$, then T_1 has a (λ, \aleph_0) -superlimit model in λ (see 2.15).

Definition/Claim 2.3. 1) Any model of T_1 of cardinality λ is isomorphic to $M_{A,h} := (\{(\eta, \varepsilon) : \eta \in A, \varepsilon < h(\eta))\}, E_n)_{n < \omega}$ for some $A \subseteq {}^{\omega}\lambda$ and $h : {}^{\omega}\lambda \to (\operatorname{Car} \cap \lambda^+) \setminus \{0\}$ where $(\eta_1, \varepsilon_1)E_n(\eta_2, \varepsilon_2) \Leftrightarrow \eta_1 \upharpoonright n = \eta_2 \upharpoonright n$, pedantically we should write $E_n^{M_{A,h}} = E_n \upharpoonright |M_{A,n}|$.

- 2) We write M_A for $M_{A,h}$ when A is as above and $h: A \to \{|A|\}$, so constantly |A| when A is infinite.
- 3) For $A \subseteq {}^{\omega}\lambda$ and h as above the model $M_{A,h}$ is a model of T_1 iff A is non-empty and $(\forall \eta \in A)(\forall n < \omega)(\exists^{\aleph_0}\nu \in A)(\nu \upharpoonright n = \eta \upharpoonright n \wedge \nu(n) \neq \eta(n))$.
- 4) Above $M_{A,h}$ has cardinality λ iff $\Sigma\{h(\eta): \eta \in A\} = \lambda$.

Definition 2.4. 1) We say that A is a (T_1, λ) -witness when

- (a) $A \subseteq {}^{\omega}\lambda$ has cardinality λ
- (b) if $B_1, B_2 \subseteq {}^{\omega}\lambda$ are (T_1, A) -big (see below) of cardinality λ then $(B_1 \cup {}^{\omega} > \lambda, \triangleleft)$ is isomorphic to $(B_2 \cup {}^{\omega} > \lambda, \triangleleft)$.
- 2) A set $B \subseteq {}^{\omega}\lambda$ is called (T_1, A) -big when it is $(\lambda, \lambda) (T_1, A)$ -big; see below.
- 3) B is $(\mu, \lambda) (T_1, A)$ -big means: $B \subseteq {}^{\omega}\lambda, |B| = |A| = \mu$ and for every $\eta \in {}^{\omega} > \lambda$ there is an isomorphism f from $({}^{\omega} \ge \lambda, \triangleleft)$ onto $(\{\eta \hat{\ } \nu : \nu \in {}^{\omega} \ge \lambda\}, \triangleleft)$ mapping A into $\{\nu : \eta \hat{\ } \nu \in B\}$.
- 4) $A \subseteq {}^{\omega}(\omega_1)$ is \aleph_1 -suitable when:
 - (a) $|A| = \aleph_1$
 - (b) for a club of $\delta < \omega_1, A \cap {}^{\omega}\delta$ is everywhere not meagre in the space ${}^{\omega}\delta$, i.e., for every $\eta \in {}^{\omega}{}^{>}\delta$ the set $\{\nu \in A \cap {}^{\omega}\delta : \eta \triangleleft \nu\}$ is a non-meagre subset of ${}^{\omega}\delta$ (that is what really is used in [?]).

Claim 2.5. It is consistent with ZFC that $2^{\aleph_0} > \aleph_1 +$ there is a (T_1, \aleph_1) -witness; moreover every \aleph_1 -suitable set is a (T_1, \aleph_1) -witness.

Proof. By [?, §2].
$$\square_{2.5}$$

Remark 2.6. The witness does not give rise to an (\aleph_1, \aleph_0) -limit model, as for the union of any "fast enough" \prec -increasing ω -chain of members of $EC_{\aleph_1}(T_1)$, the relevant sets are meagre.

Definition 2.7. Let A be a (T_1, λ) -witness. We define $K_{T_1,A}^1$ as the family of $M = (|M|, <^M, P_{\alpha}^M)_{\alpha \le \omega}$ such that:

- (α) ($|M|, <^M$) is a tree with ($\omega + 1$) levels
- (β) P_{α}^{M} is the α -th level; let $P_{<\omega}^{M} = \bigcup \{P_{n}^{M} : n < \omega\}$

SH868

- (γ) M is isomorphic to M_B^1 for some $B\subseteq {}^\omega\lambda$ of cardinality λ where M_B^1 is defined by $|M_\beta^1|=({}^{\omega>}\lambda)\cup B, P_n^{M_B^1}={}^n\lambda, P_\omega^{M_B^1}=B$ and $<^{M_B^1}=\triangleleft\upharpoonright|M_B^1|$, i.e., being an initial segment
- (δ) moreover B is such that some f satisfies:
 - \circledast (a) $f: {}^{\omega} > \lambda \to \omega$ and f(<>) = 0 for simplicity
 - (b) $\eta \le \nu \in {}^{\omega} > \lambda \Rightarrow f(\eta) \le f(\nu)$
 - (c) if $\eta \in B$ then $\langle f(\eta \upharpoonright n) : n < \omega \rangle$ is eventually constant
 - (d) if $\eta \in {}^{\omega} > \lambda$ then $\{ \nu \in {}^{\omega} \lambda : \eta \cap \nu \in B \text{ and } m < \omega \Rightarrow f(\eta \cap (\nu \upharpoonright m)) = f(\eta) \}$ is (T_1, A) -big
 - (e) for $\eta \in {}^{\omega >} \lambda$ and $n \in [f(\eta), \omega)$ for λ ordinals $\alpha < \lambda$, we have $f(\eta^{\frown} \langle \alpha \rangle) = n$.

Claim 2.8. [The Global Axiom of Choice] If A is a (T_1, \aleph_1) -witness <u>then</u>

- (a) $K_{T_1,A}^1 \neq \emptyset$
- (b) any two members of $K_{T_1,A}^1$ are isomorphic
- (c) there is a function \mathbf{F} from $K^1_{T_1,A}$ to itself (up to isomorphism, i.e., $(M, \mathbf{F}(M))$ is defined only up to isomorphism) satisfying $M \subseteq \mathbf{F}(M)$ such that $K^1_{T_1,A}$ is closed under increasing unions of sequence $\langle M_n : n < \omega \rangle$ such that $\mathbf{F}(M_n) \subseteq M_{n+1}$.

Proof. Clause (a): Trivial.

Clause (b): By the definition of "A is a (T_1, \aleph_1) -witness" and of $K^1_{T_1,A}$.

Clause (c):

We choose \mathbf{F} such that

 $\circledast \text{ if } M \in K_{A,T_1}^1 \text{ then } M \subseteq \mathbf{F}(M) \in K_{A,T_1}^1 \text{ and for every } k < \omega \text{ and } a \in P_k^M,$ the set $\{b \in P_{k+1}^{\mathbf{F}(M)} : a <_{\mathbf{F}(M)} b \text{ and } b \notin M\}$ has cardinality \aleph_1 .

Assume $M = \bigcup \{M_n : n < \omega\}$ where $\langle M_n : n < \omega \rangle$ is \subseteq -increasing $\}$, $M_n \in K^1_{A,T_1}, \mathbf{F}(M_n) \subseteq M_{n+1}$. Clearly M is as required in the beginning of Definition 2.7, that is, satisfies clauses $(\alpha), (\beta), (\gamma)$ there. To prove clause (δ) , we define $f: P^M_{<\omega} \to \omega$ by $f(a) = \min\{n: a \in M_n\}$. Pendantically, \mathbf{F} is defined only up to isomorphism.

So we are done. $\square_{2.8}$

Claim 2.9. [The Global Axiom of Choice] If A is a (T_1, λ) -witness then

- (a) $K_{T_1,A}^1 \neq \emptyset$
- (b) any two members of $K_{T_1,A}^1$ are isomorphic
- (c) if $M_n \in K^1_{T_1,A}$ and $n < \omega \Rightarrow M_n \subseteq M_{n+1}$ then $M := \cup \{M_n : n < \omega\} \in K^1_{T_1,A}$.

Remark 2.10. If we omit clause (b), we can weaken the demand on the set A.

Proof. Assume $M = \bigcup \{M_n : n < \omega\}, M_n \subseteq M_{n+1}, M_n \in K^1_{T_1,A} \text{ and } f_n \text{ witnesses } M_n \in K^1_{T_1,A}$. Clearly M satisfies clauses $(\alpha), (\beta), (\gamma)$ from Definition 2.7, we just have to find a witness f as in clause (δ) there.

For each $a \in M$ let $n(a) = \min\{n : a \in M_n\}$, clearly if $M \models "a < b < c"$ then $n(a) \le n(b)$ and $n(a) = n(c) \Rightarrow n(a) = n(b)$. Let $g_n : M \to M$ be defined by: $g_n(a) = b$ iff $b \le^M a, b \in M_n$ and b is \le^M -maximal under those restrictions; clearly it is well defined. Now we define $f'_n : M_n \to \omega$ by induction on $n < \omega$ such that $m < n \Rightarrow f'_m \subseteq f'_n$, as follows.

If n = 0 let $f'_n = f_n$.

If n = m + 1 and $a \in M_n$ we let $f'_n(a)$ be $f'_m(a)$ if $a \in M_m$ and be $(f_n(a) - f_n(g_m(a))) + f'_m(g_m(a)) + 1$ if $a \in M_n \setminus M_m$. Clearly $f := \bigcup \{f'_n : n < \omega\}$ is a function from M to $\omega, a \leq^M b \Rightarrow f(a) \leq f(b)$, and for any $a \in M$ the set $\{b \in M : a \leq^M b \text{ and } f(b) = f(a)\}$ is equal to $\{b \in M_{n(a)} : f_{n(a)}(a) = f_{n(a)}(b) \text{ and } a \leq^M b\}$. So we are done. $\square_{2.9}$

Definition 2.11. Let A be a (T_1, λ) -witness. We define $K_{T_1,A}^2$ as in Definition 2.7 but f is constantly zero.

Claim 2.12. [The Global Axiom of Choice] If A is a (T_1, \aleph_1) -witness then

- (a) $K_{T_1,A}^2 \neq \emptyset$
- (b) any two members of $K_{T_1,A}^2$ are isomorphic
- (c) there is a function \mathbf{F} from $\cup \{^{\alpha+2}(K^2_{T_0,A}) : \alpha < \omega_1\}$ to $K^2_{T_1,A}$ which satisfies: \boxtimes (α) if $\bar{M} = \langle M_i : i \leq \alpha + 1 \rangle$ is an \prec -increasing sequence of models of T then $M_{\alpha+1} \subseteq \mathbf{F}(\bar{M}) \in K^2_{T_1,A}$
 - (β) the union of any increasing ω_1 -sequence $\overline{M} = \langle M_{\alpha} : \alpha < \omega_1 \rangle$ of members of $K^2_{T_1,A}$ belongs to $K^2_{T_1,A}$ when $\omega_1 = \sup\{\alpha : \mathbf{F}(\overline{M} \upharpoonright (\alpha + 2)) \subseteq M_{\alpha+2}\}$ and is a well defined embedding of M_{α} into $M_{\alpha+2}\}$.

Remark 2.13. Instead of the global axiom of choice, we can restrict the models to have universe a subset of λ^+ (or just a set of ordinals).

Proof. Clause (a): Easy.

Clause (b): By the definition.

Clause (c): Let $\langle \mathscr{U}_{\varepsilon} : \varepsilon < \omega_1 \rangle$ be an increasing sequence of subsets of ω_1 with union ω_1 such that $\varepsilon < \omega_1 \Rightarrow |\mathscr{U}_{\varepsilon} \setminus \bigcup_{\zeta < \varepsilon} \mathscr{U}_{\zeta}| = \aleph_1$. Let $M^* \in K^2_{T_1,A}$ be such that

 $^{\omega>}(\omega_1)\subseteq |M^*|\subseteq ^{\omega\geq}(\omega_1)$ and $M^*_{\varepsilon}=:M^*\upharpoonright ^{\omega\geq}(\mathscr{U}_{\varepsilon})$ belongs to $K^2_{T_1,A}$ for every $\varepsilon<\omega_1$.

We choose a pair (\mathbf{F}, \mathbf{f}) of functions with domain $\{\bar{M} : \bar{M} \text{ an increasing sequence of members of } K^2_{T_1,A} \text{ of length } < \omega_1 \}$ such that:

- (α) $\mathbf{F}(\bar{M})$ is an extension of $\cup \{M_i : i < \ell g(\bar{M})\}$ from $K^2_{T_1,A}$
- $(\beta) \ \ {\bf f}(\bar{M})$ is an embedding from $M^*_{\ell g(\bar{M})}$ into ${\bf F}(\bar{M})$
- (γ) if $\bar{M}^{\ell} = \langle M_{\alpha} : \alpha < \alpha_{\ell} \rangle$ for $\ell = 1, 2$ and $\alpha_{1} < \alpha_{2}, \bar{M}^{1} = \bar{M}^{2} \upharpoonright \alpha_{1}$ and $\mathbf{F}(\bar{M}^{1}) \subseteq M_{\alpha_{1}}$ then $\mathbf{f}(\bar{M}^{1}) \subseteq \mathbf{f}(\bar{M}^{2})$
- (δ) if $a \in \mathbf{F}(\bar{M})$ and $n < \omega$ then for some $b \in M^*_{\ell g(\bar{M})}$ we have $\mathbf{F}(M) \models aE_n(\mathbf{f}(\bar{M})(b))$.

SH868

Now check. $\square_{2.12}$

Conclusion 2.14. Assume there is a (T_1, \aleph_1) -witness (see Definition 2.4) for the first-order complete theory T_1 from 2.1:

- 1) T_1 has an (\aleph_1, \aleph_0) -strongly limit model.
- 2) T_1 has an (\aleph_1, \aleph_1) -medium limit model.
- 3) T_1 has a (\aleph_1, \aleph_0) -superlimit model.

Proof. 1) By 2.8 the reduction of problems on $(EC(T_1), \prec)$ to $K^1_{T_1,A}$ (which is easy) is exactly as in [?].

- 2) By 2.12.
- 3) Like part (1) using claim 2.9.

 $\square_{2.14}$

Claim 2.15. If $\lambda = \Sigma\{\lambda_n : n < \omega\}$ and $\lambda_n = \lambda_n^{\aleph_0}$, then T_1 has a (λ, \aleph_0) -superlimit model in λ .

Proof. Let M_n be the model M_{A_n,h_n} where $A_n = {}^{\omega}(\lambda_n)$ and $h_n : A_n \to \lambda_n^+$ is constantly λ_n .

Clearly

- $(*)_1$ M_n is a saturated model of T_1 of cardinality λ_n
- $(*)_2$ $M_n \prec M_{n+1}$
- $(*)_3$ $M_{\omega} = \bigcup \{M_n : n < \omega\}$ is a special model of T_1 of cardinality λ .

The main point:

 $(*)_4$ M_{ω} is (λ, \aleph_0) -superlimit model of T_1 .

[Why? Toward this assume

- (a) N_n is isomorphic to M_ω say $f_n: M_\omega \to N_n$ is such isomorphic
- (b) $N_n \prec N_{n+1}$ for $n < \omega$.

Let $N_{\omega} = \bigcup \{N_n : n < \omega\}$ and we should prove $N_{\omega} \cong M_{\omega}$, so just N_{ω} is a special model of T_1 of cardinality λ suffice.

Let $N'_n = N_\omega \upharpoonright (\cup \{f_n(M_k) : k \leq n\})$. Easily $N'_n \prec N'_{n+1} \prec N_\omega$ and $\cup \{N'_n : n < \omega\} = N_{\omega_*}$ and $||N'_n|| = \lambda_n$. So it suffices to prove that N'_n is saturated and by direct inspection shows this.

3. On non-existence of limit models

Naturally we assume that non-existence of superlimit models for unstable T is easier to prove. For other versions we need to look more. We first show that for $\lambda \geq |T| + \aleph_1$, if T is unstable then it does not have a superlimit model of cardinality λ and if T is unsuperstable, we show this for "most" cardinals λ . On " Φ proper for $K_{\rm or}$ or $K_{\rm tr}^{\omega}$ ", see [?, VII] or [?] or hopefully some day in [?, III]. We assume some knowledge on stability.

Claim 3.1. 1) If T is unstable, $\lambda \geq |T| + \aleph_1$, then T has no superlimit model of cardinality λ .

2) If T is stable not superstable and $\lambda \geq |T| + \beth_{\omega}$ or $\lambda = \lambda^{\aleph_0} \geq |T|$ then T has no superlimit model of cardinality λ .

Remark 3.2. 1) We assume some knowledge on EM models for linear orders I and members of $K_{\rm tr}^{\omega}$ as index models, see, e.g. [?, VII].

2) We use the following definition in the proof, as well as a result from [?] or [?].

Definition 3.3. For cardinals $\lambda > \kappa$ let $\lambda^{[\kappa]}$ be the minimal μ such that for some, equivalently for every set A of cardinality λ there is $\mathscr{P}_A \subseteq [A]^{\leq \kappa} = \{B \subseteq A : |B| \leq \kappa\}$ of cardinality λ such that any $B \in [\lambda]^{\leq \kappa}$ is the union of $< \kappa$ members of \mathscr{P}_A .

Proof. 1) Towards a contradiction assume M^* is a superlimit model of T of cardinality λ . As T is unstable we can find $m, \varphi(\bar{x}, \bar{y})$ such that

(*) $\varphi(\bar{x}, \bar{y}) \in \mathbb{L}_{\tau(T)}$ linearly orders some infinite $\mathbf{I} \subseteq {}^m M, M \models T$ so $\ell g(\bar{x}) = \ell g(\bar{y}) = m$.

We can find a Φ which is proper for linear orders (see [?, VII]) and $F_{\ell}(\ell < m)$ such that $F_{\ell} \in \tau_{\Phi} \setminus \tau_{T}$ is a unary function symbol for $\ell < m, \tau_{T} \subseteq \tau(\Phi)$ and for every linear order I, $\mathrm{EM}(I,\Phi)$ has Skolem functions and its τ_{T} -reduct $\mathrm{EM}_{\tau(T)}(I,\Phi)$ is a model of T of cardinality |T| + |I| and $\tau(\Phi)$ is of cardinality $|T| + \aleph_{0}$ and $\langle a_{s} : s \in I \rangle$ is the Skeleton of $\mathrm{EM}(I,\Phi)$, that is, it is an indiscernible sequence in $\mathrm{EM}(I,\Phi)$ and $\mathrm{EM}(I,\Phi)$ is the Skolem hull of $\{a_{s} : s \in I\}$, and letting $\bar{a}_{s} = \langle F_{\ell}(a_{s}) : \ell < m \rangle$ in $\mathrm{EM}(I,\Phi)$ we have $\mathrm{EM}_{\tau(T)}(I,\Phi) \models \varphi[\bar{a}_{s},\bar{a}_{t}]^{\mathrm{lif}(s < t)}$ for $s,t \in I$.

Next we can find Φ_n (for $n < \omega$) such that:

- \boxplus (a) Φ_n is proper for linear order and $\Phi_0 = \Phi$
 - (b) $\mathrm{EM}_{\tau(\Phi)}(I,\Phi_n) \prec \mathrm{EM}_{\tau(\Phi)}(I,\Phi_{n+1})$ for every linear order I and $n < \omega$; moreover
 - $(b)^+$ $\tau(\Phi_n) \subseteq \tau(\Phi_{n+1})$ and $\mathrm{EM}(I,\Phi_n) \prec \mathrm{EM}_{\tau(\Phi_n)}(I,\Phi_{n+1})$ for every $n < \omega$ and linear order I
 - (c) if $|I| \le n$ then $\mathrm{EM}_{\tau(\Phi)}(I, \Phi_n) = \mathrm{EM}_{\tau(\Phi)}(I, \Phi_{n+1})$ and $\mathrm{EM}_{\tau(T)}(I, \Phi_n) \cong M^*$
 - $(d) \quad |\tau(\Phi_n)| = \lambda.$

This is easy. Let Φ_{ω} be the limit of $\langle \Phi_n : n < \omega \rangle$, i.e. $\tau(\Phi_{\omega}) = \bigcup \{\tau(\Phi_n) : n < \omega \}$ and if $k < \omega$ then $\mathrm{EM}_{\tau(\Phi_k)}(I, \Phi_{\omega}) = \bigcup \{\mathrm{EM}_{\tau(\Phi_k)}(I, \Phi_n) : n \in [k, \omega)\}$. So as M^* is a superlimit model, for any linear order I of cardinality $\lambda, \mathrm{EM}_{\tau(T)}(I, \Phi_{\omega})$ is the direct limit of $\langle \mathrm{EM}_{\tau(T)}(J, \Phi_{\omega}) : J \subseteq I$ finite \rangle , each isomorphic to M^* , so as we have assumed that M^* is a superlimit model it follows that $\mathrm{EM}_{\tau(T)}(I, \Phi_{\omega})$ is isomorphic to M^* . But by [?, III] or [?] which may eventually be [?, III] there are

SH868

 2^{λ} many pairwise non-isomorphic models of this form varying I on the linear orders of cardinality λ , contradiction.

2) First assume $\lambda = \lambda^{\aleph_0}$. Let $\tau \subseteq \tau_T$ be countable such that $T' = T \cap \mathbb{L}(\tau)$ is not superstable. Clearly if M^* is (λ, \aleph_0) -limit model then $M^* \upharpoonright \tau'$ is not \aleph_1 -saturated. [Why? As in [?, Ch.VI,§6], but we shall give full details. There are $N_* \models T, p = \{\varphi_n(\lambda, \bar{a}_n) : n < \omega\}$ a type in $N_*, \bar{a}_n \triangleleft \bar{a}_{n+1}, \bar{a}_{<>}$ empty and $\varphi_{n+1}(x, \bar{a}_{n+1})$ forks over \bar{a}_n . Let $\mathbf{F}(M)$ be such that if $n < \omega$ and $\bar{b}_n \subseteq M$ realizes $\operatorname{tp}(\bar{a}_n, \emptyset, N_*)$ then for some \bar{b}_{n+1} from \mathbf{F}, M realizing $\operatorname{tp}(\bar{a}_{n+1}, \emptyset, N_*)$, the type $\operatorname{tp}(\bar{b}_{n+1}, M, \mathbf{F}(M))$ does not fork over b_n .] But if $\kappa = \operatorname{cf}(\kappa) \in [\aleph_1, \lambda]$ and M^* is a (λ, κ) -limit then $M^* \upharpoonright \tau'$ is \aleph_1 -saturated, contradiction.

The case $\lambda \geq |T| + \beth_{\omega}$ is more complicated (the assumption $\lambda \geq \beth_{\omega}$ is to enable us to use [?] or see [?] for a simpler proof; we can use weaker but less transparent assumptions; maybe $\lambda \geq 2^{\aleph_0}$ suffices).

As T is stable not superstable by [?] for some $\bar{\Delta}$:

- \circledast_1 for any μ there are M and $\langle a_{\eta,\alpha} : \eta \in {}^{\omega}\mu$ and $\alpha < \mu \rangle$ such that
 - (a) M is a model of T
 - (b) $\mathbf{I}_{\eta} = \{a_{\eta,\alpha} : \alpha < \mu\} \subseteq M$ is an indiscernible set (and $\alpha < \beta < \mu \Rightarrow a_{\eta,\alpha} \neq a_{\eta,\beta}$)
 - (c) $\bar{\Delta} = \langle \Delta_n : n < \omega \rangle$ and $\Delta_n \subseteq \mathbb{L}_{\tau(T)}$ infinite
 - $(d) \ \text{for} \ \eta, \nu \in {}^\omega \mu \ \text{we have} \ \operatorname{Av}_{\Delta_n}(M, \mathbf{I}_\eta) = \ \operatorname{Av}_{\Delta_n}(M, \mathbf{I}_\nu) \ \text{iff} \ \eta \upharpoonright n = \nu \upharpoonright n.$

Hence by [?, VIII], or see [?] assuming M^* is a universal model of T of cardinality λ :

- $\circledast_{2,1}$ there is Φ such that
 - (a) Φ is proper for $K_{\mathrm{tr}}^{\omega}, \tau_T \subseteq \tau(\Phi), |\tau(\Phi)| = \lambda \geq |T| + \aleph_0$
 - (b) for $I \subseteq {}^{\omega \geq} \lambda$, $\mathrm{EM}_{\tau(\Phi)}(I, \Phi)$ is a model of T and $I \subseteq J \Rightarrow \mathrm{EM}(I, \Phi) \prec \mathrm{EM}(J, \Phi)$
 - (c) for some two-place function symbol F if for $I \in K_{\mathrm{tr}}^{\omega}$ and $\eta \in P_{\omega}^{I}$, I a subtree of ${}^{\omega \geq} \lambda$ for transparency we let $\mathbf{I}_{I,\eta} = \{F(a_{\eta}, a_{\nu}) : \nu \in I\}$ then $\langle \mathbf{I}_{I,\eta} : \eta \in P_{\omega}^{I} \rangle$ are as in $\circledast_{1}(b)$, (d).

Also

- $\circledast_{2.2}$ if Φ_1 satisfies (a),(b),(c) of $\circledast_{2.1}$ and M is a universal model of T then there is Φ_2^* satisfying (a),(b),(c) of $\circledast_{2.1}$ and $\Phi_1 \leq \Phi_2^*$ see $\circledast_{2.3}(a)$ and for every finitely generated $J \in K_{\mathrm{tr}}^{\omega}$, see $\circledast_{2.3}(b)$ below, there is $M' \cong M$ such that $\mathrm{EM}_{\tau(T)},(J,\Phi_1) \prec M' \prec \mathrm{EM}_{\tau(T)}(J,\Phi_2^*)$
- $\circledast_{2.3}$ (a) we say $\Phi_1 \leq \Phi_2$ when $\tau(\Phi_1) \subseteq \tau(\Phi_2)$ and $J \in K_{\mathrm{tr}}^{\omega} \Rightarrow \mathrm{EM}(J, \Phi_1) \prec \mathrm{EM}_{\tau(\Phi_1)}(J, \Phi_2)$
 - (b) we say $J \subseteq I$ is finitely generated if it has the form $\{\eta_\ell : \ell < n\} \cup \{\rho : \text{ for some } n, \ell \text{ we have } \rho \in P_n^I \text{ and } \rho <^I \eta_\ell \}$ for some $\eta_0, \ldots, \eta_{n-1} \in P_\omega^I$
- $\circledast_{2.4}$ if $M_* \in EC_{\lambda}(T)$ is superlimit (or just weakly S-limit, $S \subseteq \lambda^+$ stationary) <u>then</u> there is Φ as in $\circledast_{2.1}$ above such that $EM_{\tau(T)}(J, \Phi) \cong M_*$ for every finitely generated $J \in K_{tr}^{\omega}$
- $\circledast_{2.5}$ we fix Φ as in $\circledast_{2.4}$ for $M_* \in EC_{\lambda}(T)$ superlimit.

Hence (mainly by clause (b) of $\circledast_{2.1}$ and $\circledast_{2.4}$ as in the proof of part (1))

 \circledast_3 if $I \in K^{\omega}_{tr}$ has cardinality $\leq \lambda$ then $\mathrm{EM}_{\tau(\Phi)}(I, \Phi)$ is isomorphic to M^* .

Now by [?], we can find regular uncountable $\kappa < \beth_{\omega}$ such that $\lambda = \lambda^{[\kappa]}$, see Definition 3.3.

Let $S = \{\delta < \kappa : \operatorname{cf}(\delta) = \aleph_0\}$ and $\bar{\eta} = \langle \eta_\delta : \delta \in S \rangle$ be such that η_δ an increasing sequence of length ω with limit δ .

For a model M of T let $OB_{\bar{\eta}}(M) = \{\bar{\mathbf{a}} : \bar{\mathbf{a}} = \langle a_{\eta_{\delta},\alpha} : \delta \in W \text{ and } \alpha < \kappa \rangle, W \subseteq S$ and in M they are as in $\circledast_1(b), (d)\}$.

For $\bar{\mathbf{a}} \in \mathrm{OB}_{\bar{\eta}}(M)$ let $W[\bar{\mathbf{a}}]$ be W as above and let

```
\Xi(\bar{\mathbf{a}},M) = \{ \eta \in {}^{\omega}\kappa : \text{ there is an indiscernible set} \\ \mathbf{I} = \{ a_{\alpha} : \alpha < \kappa \} \text{ in } M \text{ such that for every } n \\ \text{ for some } \delta \in W[\bar{\mathbf{a}}], \eta \upharpoonright n = \eta_{\delta} \upharpoonright n \text{ and} \\ \operatorname{Av}_{\Delta_n}(M,\mathbf{I}) = \operatorname{Av}_{\Delta_n}(M,\{a_{\eta_{\delta},\alpha} : \alpha < \kappa\}) \}.
```

Clearly

- \circledast_4 (a) if $M \prec N$ then $OB_{\bar{\eta}}(M) \subseteq OB_{\bar{\eta}}(N)$
 - (b) if $M \prec N$ and $\bar{\mathbf{a}} \in \mathrm{OB}_{\bar{\eta}}(M)$ then $\Xi(\bar{\mathbf{a}}, M) \subseteq \Xi(\bar{\mathbf{a}}, N)$.

Now by the choice of κ it should be clear that

- \circledast_5 if $M \models T$ is of cardinality λ then we can find an elementary extension N of M of cardinality λ such that for every $\bar{\mathbf{a}} \in \mathrm{OB}_{\bar{\eta}}(M)$ with $W[\bar{\mathbf{a}}]$ a stationary subset of κ , for some stationary $W' \subseteq W[\bar{\mathbf{a}}]$ the set $\Xi[\bar{\mathbf{a}}, N]$ includes $\{\eta \in {}^{\omega}\kappa : (\forall n)(\exists \delta \in W')(\eta \upharpoonright n = \eta_{\delta} \upharpoonright n)\}$, (moreover we can even find $\varepsilon^* < \kappa$ and $W_{\varepsilon} \subseteq W$ for $\varepsilon < \varepsilon^*$ satisfying $W[\bar{\mathbf{a}}] = \bigcup \{W_{\varepsilon} : \varepsilon < \varepsilon^*\}$)
- \circledast_6 we can find $M \in EC_{\lambda}(T)$ isomorphic to M^* such that for every $\bar{\mathbf{a}} \in OB_{\bar{\eta}}(M)$ with $W[\bar{\mathbf{a}}]$ a stationary subset of κ , we can find a stationary subset W' of $W[\bar{\mathbf{a}}]$ such that the set $\Xi[\bar{\mathbf{a}}, M]$ includes $\{\eta \in {}^{\omega}\mu : (\forall n)(\exists \delta \in W')(\eta \upharpoonright n = \eta_{\delta} \upharpoonright n)\}.$

[Why? We choose (M_i, N_i) for $i < \kappa^+$ such that

- (a) $M_i \in EC_{\lambda}(T)$ is \prec -increasing continuous
- (a) M_{i+1} is isomorphic to M^*
- (a) $M_i \prec N_i \prec M_{i+1}$
- (a) (M_i, N_i) are like (M, N) in \circledast_5 .

Now $M = \bigcup \{M_i : i < \kappa^+\}$ is as required.

Now the model M is isomorphic to M^* as M^* is superlimit.]

Now the model from \circledast_6 is not isomorphic to $M' = \operatorname{EM}_{\tau(T)}({}^{\omega} > \lambda \cup \{\eta_{\delta} : \delta \in S\}, \Phi)$ where Φ is from $\circledast_{2.1}$. But $M' \cong M^*$ by \circledast_3 .

Together we are done.

The following claim says in particular that if some not unreasonable pcf conjectures holds, the conclusion holds for every $\lambda \geq 2^{\aleph_0}$.

SH868

Claim 3.4. Assume T is stable not superstable, $\lambda \geq |T|$ and $\lambda \geq \kappa = \operatorname{cf}(\kappa) > \aleph_0$. 1) T has no (λ, κ) -superlimit model provided that $\kappa = \operatorname{cf}(\kappa) > \aleph_0, \lambda \geq \kappa^{\aleph_0}$ and $\lambda = \mathbf{U}_D(\lambda) := \operatorname{Min}\{|\mathscr{P}| : \mathscr{P} \subseteq [\lambda]^{\kappa} \text{ and for every } f : \kappa \to \lambda \text{ for some } u \in \mathscr{P}$ we have $\{\alpha < \kappa : f(\alpha) \in u\} \in D^+$, where D is a normal filter on κ to which $\{\delta < \kappa : \operatorname{cf}(\delta) = \aleph_0\}$ belongs.

2) Similarly if $\lambda \geq 2^{\aleph_0}$ and letting $J_0 = \{u \subseteq \kappa : |u| \leq \aleph_0\}, J_1 = \{u \subseteq \kappa : u \cap S_{\aleph_0}^{\kappa} \}$ non-stationary we have $\lambda = \mathbf{U}_{J_1,J_0}(\lambda) := \min\{|\mathscr{P}| : \mathscr{P} \subseteq [\lambda]^{\aleph_0}, \text{ if } u \in J_1, f : (\kappa \setminus u) \to \lambda \text{ then for some countable infinite } w \subseteq \kappa(u) \text{ and } v \in \mathscr{P}, \operatorname{Rang}(f \upharpoonright w) \subseteq v\}.$

Proof. Like 3.1(2).

Claim 3.5. 1) Assume T is unstable and $\lambda \geq |T| + \beth_{\omega}$. Then for at most one regular $\kappa \leq \lambda$ does T have a weakly (λ, κ) -limit model and even a weakly (λ, S) -limit model for some stationary $S \subseteq S_{\kappa}^{\lambda}$.

2) Assume T is unsuperstable and $\lambda \geq |T| + \beth_{\omega}(\kappa_2)$ and $\kappa_1 = \aleph_0 < \kappa_2 = \mathrm{cf}(\kappa_2)$. Then T has no model which is a weak (λ, S) -limit where $S \subseteq \lambda$ and $S \cap S_{\kappa_\ell}^{\lambda}$ is stationary for $\ell = 1, 2$.

Proof. 1) Assume $\kappa_1 \neq \kappa_2$ form a counterexample. Let $\kappa < \beth_{\omega}$ be regular large enough such that $\lambda = \lambda^{[\kappa]}$, see Definition 3.3 and $\kappa \notin \{\kappa_1, \kappa_2\}$. Let $m, \varphi(\bar{x}, \bar{y})$ be as in the proof of 3.1

- (*) if $M \in EC_{\lambda}(T)$ then there is N such that
 - (a) $N \in EC_{\lambda}(T)$
 - (b) $M \prec N$
 - (c) if $\bar{\mathbf{a}} = \langle \bar{a}_i : i < \kappa \rangle \in {}^{\kappa}({}^mM)$ for $\alpha < \kappa$ then for some $\mathscr{U} \in [\kappa]^{\chi}$ for every uniform ultrafilter D on κ to which \mathscr{U} belongs there is $\bar{a}_D \in {}^nN$ such that $\operatorname{tp}(\bar{a}_D, N, N) = \operatorname{Av}(\bar{\mathbf{a}}/D, M) = \{\psi(\bar{x}, \bar{c}) : \psi(\bar{x}, \bar{z}) \in \mathbb{L}(\tau_T), \bar{c} \in {}^{\ell g(\bar{z})}M$ and $\{\{\alpha < \kappa : N \models \psi[\bar{a}_{i_{\alpha}}, \bar{c}]\} \in D\}$.

Similarly

 $egin{aligned} & egin{aligned} & & egin{aligned} & & egin{aligned} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Hence

 \boxplus_2 for $\langle M_\alpha : \alpha < \lambda^+ \rangle$ as in \boxplus_1 for every limit $\delta < \lambda^+$ of cofinality $\neq \kappa$ for every $\bar{\mathbf{a}} = \langle \bar{a}_i : i < \kappa \rangle \in {}^{\kappa}({}^m(M_{\delta}))$, there is $\mathscr{U} \in [\kappa]^{\kappa}$ such that for every ultrafilter D on κ to which \mathscr{U} belongs, there is a sequence $\langle \bar{b}_\varepsilon : \varepsilon < \operatorname{cf}(\delta) \rangle \in {}^{\operatorname{cf}(\delta)}({}^m(M_{\delta}))$ such that for every $\psi(\bar{x}, \bar{z}) \in \mathbb{L}(\tau_T)$ and $\bar{c} \in {}^{\ell g(\bar{z})}(M_{\delta})$ for every $\varepsilon < \operatorname{cf}(\delta)$ large enough, $M_{\delta} \models \psi[\bar{b}_{\varepsilon}, \bar{c}]$ iff $\psi(\bar{x}, \bar{c}) \in \operatorname{Av}(\bar{\mathbf{a}}/D, M_{\delta})$.

The rest should be clear.

2) Combine the above and the proof of 3.1(2).

 $\square_{3.5}$

SAHARON SHELAH

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM, THE HE-BREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, ISRAEL, AND, DEPARTMENT OF MATHE- ${\tt MATICS,\ HILL\ CENTER\ -\ BUSCH\ CAMPUS,\ RUTGERS,\ THE\ STATE\ UNIVERSITY\ OF\ NEW\ JERSEY,\ 110}$ Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

 $Email\ address \colon \mathtt{shelah@math.huji.ac.il}$

 URL : http://shelah.logic.at

18