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Abstract. This paper deals with the splitting number s and polarized
partition relations. In the first section we define the notion of strong
splitting families, and prove that its existence is equivalent to the failure

of the polarized relation
(
s
ω

)
→

(
s
ω

)1,1
2

. We show that the existence of a
strong splitting family is consistent with ZFC, and that the strong split-
ting number equals the splitting number, when it exists. Consequently,
we can put some restriction on the possibility that s is singular. In the
second section we deal with the polarized relation under the weak dia-

mond, and we prove that the strong polarized relation
(
2ω

ω

)
→

(
2ω

ω

)1,1
2

is

consistent with ZFC, even when cf(2ω) = ℵ1 (hence the weak diamond
holds).
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2 SHIMON GARTI AND SAHARON SHELAH

0. introduction

This paper deals with two problems. The first is a topological one, and it
deals with strong splitting families in P(ω). the second is a combinatorial
one, and related to the polarized partition relation.

Let us start with the topological problem. A family S̄ = {Sα : α < κ} ⊆
P(ω) is splitting if for every B ∈ [ω]ω there exists an ordinal α < κ so that
|B ∩Sα| = |B \Sα| = ℵ0. In this case we say that Sα splits B. The cardinal
invariant s, the splitting number, is defined as the minimal cardinality of
a splitting family. A good source for information about s (as well as other
basic cardinal invariants on the continuum) is van Dowen (in [10]). We
follow, in this paper, his terminology.

Notice that the existence of one ordinal α such that Sα splits B is enough
for this definition. We may ask, further, if one can find a family of subsets of
ω so that for each B ∈ [ω]ω almost every set among the sets in the splitting
family splits B. This is the property of strong splitting families, and our
topological problem is whether such a property is possible.

For splitting families in the common sense, one can always take the col-
lection of all the subsets of ω. But this does not work for strong splitting
families. On one hand, we need enough sets (in the family that we try to
create) so that every B ∈ [ω]ω is split. On the other hand, we must be care-
ful not to take too many sets, since otherwise we will have some B ∈ [ω]ω

which is included in a lot of sets.
Let us describe the combinatorial problem. The balanced polarized re-

lation
(
α
β

)
→
(
γ
δ

)1,1
2

asserts that for every coloring c : α × β → 2 there

are A ⊆ α and B ⊆ β so that otp(A) = γ, otp(B) = δ and c � (A × B)
is constant. This relation was first introduced in papers of Erdös, Hajnal
and Rado (see [2], and [3]). A good reference for the basic facts about this
relation is [11].

If α = γ and β = δ, we name this relation as a strong polarized relation.

Our question is whether the strong relation
(
s
ω

)
→
(
s
ω

)1,1
2

holds. As we shall
see, the topological problem above is deeply connected to this combinatorial
question. In fact, our ability to solve the combinatorial part enables us to
give an answer to the topological problem.

In the second section we deal with the polarized relation on the continuum.
The starting point is the negative result of Erdös and Rado, that

(
ω1

ω

)
9(

ω1

ω

)1,1
2

under the continuum hypothesis. Of course, the positive relation is
also consistent (e.g., under the PFA).

We have asked whether the correct generalization of the negative result is(
2ω

ω

)
9
(
2ω

ω

)1,1
2

. It was proved in [5] that the positive relation
(
2ω

ω

)
→
(
2ω

ω

)1,1
2

is consistent with ZFC. But in that paper, cf(2ω) ≥ ℵ2, and one of the

referees suggested to consider the possibility that cf(2ω) = ℵ1 ⇒
(
2ω

ω

)
9(

2ω

ω

)1,1
2

. We shall prove the converse.
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COMBINATORIAL ASPECTS OF THE SPLITTING NUMBER 3

Let us try to explain the background of this interesting suggestion of the

referee. If ♦ℵ1 holds, then
(
2ω

ω

)
9
(
2ω

ω

)1,1
2

. If cf(2ω) = ℵ1 then we know
that a weak version of the diamond holds. This version is the so-called weak
diamond, and we denote it by Φℵ1 . It follows that this principle is equivalent
to the cardinal assumption 2ℵ0 < 2ℵ1 , and since cf(2ω) = ℵ1 ⇒ 2ℵ0 < 2ℵ1

one might guess that under this assumption we shall get
(
2ω

ω

)
9
(
2ω

ω

)1,1
2

.
As we shall see, the weak diamond does not imply this negative result (in
contrary to the full diamond). We also show that Φℵ1 is consistent with the

positive relation
(
ω1

ω

)
→
(
ω1

ω

)1,1
2

.
We try to use standard notation. The combinatorial notation is due to

[4]. We save the letter H for monochromatic sets, when possible. The sym-
bol A ⊆∗ B means that |A \ B| < ℵ0. We use κ, λ, µ, τ as cardinals, and
α, β, γ, δ, ε, ζ as ordinals. n is a finite ordinal, and ω is the first infinite ordi-
nal. We use c and 2ℵ0 interchangeably. The second section employs forcing
arguments. Some benighted people reverse the natural order in forcing re-
lations. We indicate that p ≤ q means (in this paper) that q gives more
information than p in forcing notions. For background in forcing (including
the notation we adhere to) we suggest [9]. For background in pcf theory
(e.g., the covering numbers which appear at the end of the first section) the
reader may consult the monograph [8].
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4 SHIMON GARTI AND SAHARON SHELAH

1. Splitting families and the polarized relation

Let us define the strong splitting property:

Definition 1.1. Strong splitting.
Let F = {Sα : α < κ} be a family of subsets of ω, and assume F is a
splitting family.
For B ∈ [ω]ω set FB = {Sα : (B ⊆∗ Sα) or (B ⊆∗ ω \ Sα)}.
F is a strong splitting family if |FB| < s for every B ∈ [ω]ω.
F is a very strong splitting family if |FB| < |F| for every B ∈ [ω]ω.

Remark 1.2. If F = {Sα : α < κ} is a strong splitting family, then κ ≥ s,
since a strong splitting family is, in particular, a splitting family.

We start with a claim that draws a connection of double implication
between the topological question of strong splitting families, and the strong
polarized relation with respect to the splitting number:

Claim 1.3. The equivalence claim.

(a) A strong splitting family (in P(ω)) exists iff
(
s
ω

)
9
(
s
ω

)1,1
2

.

(b) A very strong splitting family of cardinality µ exists iff
(
µ
ω

)
9
(
µ
ω

)1,1
2

.

Proof.
We prove part (a), and the same argument gives also part (b). Suppose(
s
ω

)
→
(
s
ω

)1,1
2

, and assume toward contradiction that F = {Sα : α < κ} is a
strong splitting family. We define a coloring cF ≡ c : s× ω → 2 as follows:

c(α, n) = 0⇔ n ∈ Sα
This is done for every α < s and every n ∈ ω. Since

(
s
ω

)
→
(
s
ω

)1,1
2

, there
are H0 ∈ [s]s and H1 ∈ [ω]ω so that c � (H0 ×H1) is constant. Without loss
of generality, α ∈ H0, n ∈ H1 ⇒ c(α, n) = 0.

On one hand, F is strong splitting, so |FH1 | < s. On the other hand,
if α ∈ H0 then H1 ⊆ Sα (since c(α, n) = 0 for every n ∈ H1, and by the
definition of c). So clearly, H1 ⊆∗ Sα for every α ∈ H0. But |H0| = s, so
|FH1 | ≥ s, a contradiction.

The opposite implication is similar. Suppose there is no strong splitting

family, aiming to show that
(
s
ω

)
→
(
s
ω

)1,1
2

holds. Given a coloring c : s×ω →
2, we wish to find a monochromatic cartesian product with the desired
cardinalities. For ` = 0, 1 and for every α < s, set S`α = {n ∈ ω : c(α, n) =
`}. Now, let Fc ≡ F be the following family:

{S`α : α < s, ` = 0, 1}
By our assumption (in this direction), F is not a strong splitting family.

Choose a witness, i.e., a set B ∈ [ω]ω such that |FB| ≥ s. Collect the
ordinals of FB, i.e., let HB be the set {α < s : ∃` ∈ {0, 1}, S`α ∈ FB}. Since
|FB| ≥ s and ` ranges just over two values, we may assume (without loss of
generality) that ` = 0.
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COMBINATORIAL ASPECTS OF THE SPLITTING NUMBER 5

By a similar argument, we may assume that B ⊆∗ S0
α (and not in its

complement) for every α < s. Moreover, we can replace (again, without
loss of generality) the relation ⊆∗ by ⊆. This is justified by the fact that
cf(s) > ℵ0 upon noticing that |ω<ω| = ℵ0. Consequently, one can choose a
finite set of natural numbers which occurs s-many times as the discrepancy
between ⊆∗ and ⊆. Now, remove this set from B, and we still have an
infinite monochromatic set as required. The last step is to observe that
c � (HB ×B) ≡ 0. Since the coloring c was arbitrary, we are done.

�1.3

Remark 1.4. If we add λ = λℵ0 Cohen reals, so c = λ, then for every

µ ∈ (ℵ0, λ] we have
(
µ
ω

)
9
(
µ
ω

)1,1
2

. Moreover,
(
µ
ω

)
9
(ℵ1
ω

)1,1
2

.

Proof.
Let Q be the forcing notion which adds λ-many Cohen reals, 〈gα : α <
λ〉. Define c

˜
(α, n) = g

˜
α(n). We claim that this coloring demonstrates the

negative relation to be proved.
Towards contradiction assume that A

˜
∈ [N]ℵ0 , B

˜
∈ [µ]ℵ1 , and there exists

a condition p0 so that p0 
Q c
˜
� B

˜
× A

˜
= i

˜
. For every n ∈ ω there is a

maximal antichain In which forces a truth value to the assertion n ∈ A
˜

. Set
U =

⋃
{Dom(q) : q ∈ In, n ∈ ω}. Since |U | = ℵ0 we know that 
Q B

˜
* U .

Consequently, there is some α < µ such that p0 1 α /∈ B
˜

, so one can
choose a condition p1 ≥ p0 such that p1 
 α ∈ B

˜
. Without loss of generality,

α ∈ Dom(p1). Let p2 be p1 � U . Choose a natural number n∗ such that
sup(Dom(p1(α))) < n∗. There are n, p3 such that p2 ≤ p3,Dom(p3) ⊆ U and
p3 
Q n∗ < n ∈ A

˜
. Define p4 = p1 � (Dom(p1)\U)∪p3 and p5 = p4∪〈α, 1−i

˜
〉.

The condition p5 forces c
˜
(α, n) 6= i

˜
, a contradiction.

�1.4

So our problems are connected. We would like to show that under the
continuum hypothesis there is a strong splitting family. We quote the follow-
ing result (in a more general form), about strong polarized relations under
the local assumption of the GCH. The proof appears in [11]:

Proposition 1.5. Polarized relation and the GCH.
Assume 2κ = κ+.

Then
(
κ+

κ

)
9
(
κ+

κ

)1,1
2

.

We can conclude:

Corollary 1.6. The existence of strong splitting families.
Suppose 2ℵ0 = ℵ1.
Then there exists a strong splitting family.

Proof.

By proposition 1.5,
(ℵ1
ℵ0

)
9
(ℵ1
ℵ0

)1,1
2

. Since ℵ1 ≤ s ≤ 2ℵ0 , we have (under the

continuum hypothesis) s = ℵ1, so
(
s
ω

)
9
(
s
ω

)1,1
2

, and by claim 1.3 we know
that a strong splitting family exists.

�1.6
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6 SHIMON GARTI AND SAHARON SHELAH

Definition 1.7. The strong splitting numbers.

(a) Let ss (= the strong splitting number) be the minimal cardinality
of a strong splitting family, if one exists.

(b) Similarly, ss′ (= the very strong splitting number) is the minimal
cardinality of a very strong splitting family, if one exists.

Claim 1.8. The equality claim.
If there is a strong splitting family, then s = ss.

Proof.
Let κ be ss. By remark 1.2, κ ≥ s. Assume toward contradiction that

κ > s. We shall prove that
(
s
ω

)
→
(
s
ω

)1,1
2

. Let c : s × ω → 2 be any
coloring. For every α < s, define Sα = {n ∈ ω : c(α, n) = 0}. Define
Fc ≡ F = {Sα : α < s}. Since |F| ≤ s < κ (by the assumption toward
contradiction), F is not a strong splitting family.

Choose a witness, B. It means that B ∈ [ω]ω and |FB| = s. For each
Sα ∈ FB we have (B ⊆∗ Sα) or (B ⊆∗ ω \ Sα). Without loss of generality,
B ⊆∗ Sα for every α < s, and moreover, B ⊆ Sα for s-many α’s (recall that
cf(s) > ℵ0). Let H be the set {α < s : Sα ∈ FB}. By the construction,

c � (H × B) ≡ 0, so
(
s
ω

)
→
(
s
ω

)1,1
2

. By Claim 1.3,
(
s
ω

)
→
(
s
ω

)1,1
2

implies that
there is no strong splitting family, a contradiction.

�1.8

Remark 1.9. We thank David Milovich for informing us the consistency of
ss = κ for every regular κ > ℵ0. The interested reader can find the proof
(among other results) in [7].

It is not known if s can be a singular cardinal. In general, it seems that
ss is more convenient to deal with. By the previous results, under some
circumstances, we can infer about s from what we know about ss. The
following claim illustrates this idea:

Claim 1.10. Suppose there is a strong splitting family.
If s = c, then s is a regular cardinal. Similarly, if a very strong splitting
family exists then ss′ = c implies the regularity of c.

Proof.
Assume toward contradiction that cf(s) < s. By the assumption of the claim,
c is also a singular cardinal. Choose an unbounded increasing sequence of
ordinals 〈ξγ : γ < cf(c)〉, whose limit is c. Choose a strong splitting family
F = {Sα : α < s}.

For every B ∈ [ω]ω we know that |FB| < s. Denote the set {α < s : Sα ∈
FB} by HB. Clearly, |HB| < s. We claim that there is an H ⊆ c, |H| = cf(c)
such that H * HB for every B ∈ [ω]ω.

Choose an enumeration {Hα : α < c} of the HB’s. We can assume
that sup{|Hε| : ε < ξγ} < c for every γ < cf(c). For every γ < cf(c)
choose aγ ∈ c \ (

⋃
{Hε : ε < ξγ} ∪ {aβ : β < γ}). This is possible, since
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COMBINATORIAL ASPECTS OF THE SPLITTING NUMBER 7

|
⋃
{Hε : ε < ξγ}| ≤ |ξγ | · sup{|Hε| : ε < ξγ} < c. Set H = {aγ : γ < cf(c)},

and we have the desired H.
Now define F ′ = {Sα : α ∈ H}. Clearly, |F ′| = |H| ≤ cf(c) < c = s. But

if B ∈ [ω]ω then there is an ordinal α ∈ H so that Sα splits B (by the fact
that H * HB). So F ′ is a splitting family whose cardinality is strictly less
than s, a contradiction. The proof of the second assertion is identical.

�1.10

Recall that cov(λ, µ, θ, 2) is the minimal cardinality of a family of subsets
of λ, the cardinality of each member is below µ, such that every set in [λ]<θ

is covered by a member from this family. By a similar argument, we can
conclude:

Corollary 1.11. Splitting properties and covering numbers.

(a) Suppose cov(s, s, s, 2) > c.
Then there is no strong splitting family.

(b) If µ > cf(µ) and cov(µ, µ, µ, 2) > c then there is no very strong
splitting family of cardinality µ.

Proof.
Assume toward contradiction that there exists a strong splitting family, and
let F = {Sα : α < s} exemplify it. For every B ∈ [ω]ω let HB = {α < s :
Sα ∈ FB}. By our assumption toward contradiction we know that |HB| < s
for every B.

By the assumption that cov(s, s, s, 2) > c, one can pick a set H ⊆ s, |H| <
s which is not covered by the family {HB : B ∈ [ω]ω}. Now set F ′ = {Sα :
α ∈ H}.

Since |H| < s, we know that |F ′| < s. By the nature of H we have
H * HB for every B ∈ [ω]ω. Hence, given B ∈ [ω]ω one can pick an ordinal
α ∈ H \ HB, so Sα splits B. It means that F ′ is a splitting family whose
cardinality is strictly less than s, a contradiction. Here, again, the second
part of the corollary follows in a similar way.

�1.11

Remark 1.12. The definition of s is generalized naturally to higher cardinals
(see, for example, [12]). sλ is the minimal cardinality of a λ-splitting family
in [λ]λ. It is known that sλ > λ iff λ is weakly compact (see [12]).

In this case, the main claim of this paper can be applied to sλ, yielding(
sλ
λ

)
9
(
sλ
λ

)1,1
2

iff there is a strong λ-splitting family in [λ]λ. The existence

result under the assumption 2λ = λ+ follows.

In a subsequent paper (see [6]) we prove that the positive relation
(
s
ω

)
→(

s
ω

)1,1
2

(and hence the non-existence of strong splitting families) is also con-
sistent with ZFC.

Paper Sh:962, version 2012-06-24 10. See https://shelah.logic.at/papers/962/ for possible updates.



8 SHIMON GARTI AND SAHARON SHELAH

2. Polarized relations and the weak diamond

We prove, in this section, the consistency of positive polarized relations
with the weak diamond. The following definition comes from [1]:

Definition 2.1. The weak diamond.
Φℵ1 means that for every F : ω1>2→ 2 there exists g ∈ ω12 so that for every
f ∈ ω12 the set S = {α < ℵ1 : F (f � α) = g(α)} is stationary (in ℵ1).

The idea is pretty simple. The diamond sequence provides a tool for
guessing many initial segments of every A ⊆ ℵ1 (in the sense of A ∩ α for
stationarily many α-s). The weak diamond does not give the set A, but it
gives a way to guess the color of A ∩ α (again, for stationarily many α-s)
once a coloring of ω1>2 is in hand.

It is shown in [1] that 2ℵ0 < 2ℵ1 ⇒ Φℵ1 (and as noted by Uri Abraham,
Φℵ1 ⇒ 2ℵ0 < 2ℵ1 , so actually we have an equivalence). This gives rise to
the following simple fact:

Proposition 2.2. Weak diamond and low cofinality.
Suppose cf(2ω) = ℵ1. then Φℵ1 holds.

Proof.
By Zermelo-König, cf(2ω1) > ℵ1, hence cf(2ω) = ℵ1 implies 2ω 6= 2ω1 , i.e.,
2ω < 2ω1 which yields Φℵ1 .

�2.2

As described in the introduction, one could suspect that Φℵ1 entails neg-
ative polarized relations (similar to the impact of the real diamond). The
following claims show that Φℵ1 is not strong enough. The first claim deals

with
(
ω1

ω

)
→
(
ω1

ω

)1,1
n

, and the second deals with
(
c
ω

)
→
(
c
ω

)1,1
n

.
We shall use the Mathias forcing MD for proving the main result of this

section. Let D be a nonprincipal ultrafilter on ω. We define MD as follows.
The conditions in MD are pairs of the form (s,A) when s ∈ [ω]<ω, A ∈ D
and min(A) > max(s). For the order, (s1, A1) ≤ (s2, A2) iff s1 ⊆ s2, A1 ⊇ A2

and s2 \ s1 ⊆ A1. The Mathias forcing is σ-centered, hence satisfies the ccc.
It follows that a finite support iteration of these forcing notions is also ccc.

Let G ⊆MD be generic over V. The Mathias real xG is defined as
⋃
{s :

∃A ∈ D, (s,A) ∈ G}. Notice that in VMD we have (xG ⊆∗ B)∨(xG ⊆∗ ω\B)
for every B ∈ [ω]ω ∩V. In a way, it means that the Mathias forcing adds a
pseudo-intersection to the ultrafilter D. By iterating these forcing notions
we create the monochromatic subsets.

Claim 2.3. Weak diamond and ω1.

The positive relation
(
ω1

ω

)
→
(
ω1

ω

)1,1
n

is consistent with Φℵ1, and even with

cf(2ℵ0) = ℵ1.

Proof.
By theorem 2.4 below.

�2.3
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Theorem 2.4. Weak diamond and the continuum.

(a) The strong relation
(
c
ω

)
→
(
c
ω

)1,1
n

is consistent with Φℵ1, and even

with cf(2ℵ0) = ℵ1.
(b) Moreover, suppose ℵ1 ≤ θ = cf(θ) ≤ µ, and µ = µℵ0 (in V). There

is a ccc forcing notion P, |P| = µ,
P 2ℵ0 = µ, and for every λ ∈
(ℵ0, µ] if cf(λ) /∈ {ℵ0, θ} then VP |=

(
λ
ω

)
→
(
λ
ω

)1,1
n

.

Proof.
We prove the second assertion of the theorem. By choosing any µ = µℵ0 >
cf(µ) = ℵ1 and θ = ℵ2, λ = µ we will get a proof to the first assertion. So
choose an ordinal δ ∈ [µ, µ+) so that cf(δ) = θ. We define a finite support
iteration 〈Pi,Q

˜
j : i ≤ δ, j < δ〉 of ccc forcing notions, such that |Pi| = µ for

every i ≤ δ.
Let Q

˜
0 be (a name of) a forcing notion which adds µ reals (e.g., Cohen

forcing). For every j < ω1 let D
˜
j be a Pj-name of a nonprincipal ultrafilter

on ω over the extension with Pj . Let Q
˜
1+j be the Mathias forcing MD

˜
j .

Q
˜
1+j is a ccc forcing notion which adds an infinite set A

˜
j ⊆ ω such that

(∀B ∈ D
˜
j)(A

˜
j ⊆∗ B ∨A

˜
j ⊆∗ ω \B). At the end, set P =

⋃
{Pi : i < δ}.

Since every component satisfies the ccc, and we use finite support itera-
tion, P is also a ccc forcing notion and hence no cardinal is collapsed in VP.
By virtue of Q

˜
0, 2ℵ0 = µ after forcing with P (since Q

˜
0 adds µ-many reals,

and the length of the iteration is δ, which is of size µ). Let λ be any cardinal
in (ℵ0, µ] such that cf(λ) /∈ {ℵ0, θ}, and let n be a finite ordinal. Our goal

is to prove that
(
λ
ω

)
→
(
λ
ω

)1,1
n

in VP.
Let c

˜
be a name of a function from λ×ω into n. For every α < λ we have

a name (in V) to the restriction c
˜
� ({α} × ω). P is ccc, hence the color of

every pair of the form (α, n) is determined by an antichain which includes
at most ℵ0 conditions. Since we have to decide the color of ℵ0-many pairs in
c
˜
� ({α}×ω), and the length of P is δ, cf(δ) ≥ ℵ1 we know that c

˜
� ({α}×ω)

is a name in Pi(α) for some i(α) < δ.
For every j < δ let Uj be the set {α < λ : i(α) ≤ j}, so 〈Uj : j < δ〉 is

⊆-increasing with union λ. Recall that cf(δ) = θ 6= cf(λ), hence for some
j < δ we have Uj ∈ [λ]λ. Choose such j, and denote Uj by U . We shall try
to show that U can serve (after some shrinking) as the first coordinate in
the monochromatic subset.

Choose a generic subset G ⊆ P, and denote A
˜
j [G] by A. For each α ∈ U

we know that c
˜
� ({α} × A) is constant, except a possible mistake over a

finite subset of A. But this mistake can be amended.
For every α ∈ U choose k(α) ∈ ω and m(α) < n so that (∀` ∈ A)[` ≥

k(α) ⇒ c
˜
[G](α, `) = m(α)]. n is finite and cf(λ) > ℵ0, so one can fix

some k ∈ ω and a color m < n such that for some U1 ∈ [U ]λ we have
α ∈ U1 ⇒ k(α) = k ∧m(α) = m.
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10 SHIMON GARTI AND SAHARON SHELAH

Let B be A \ k, so B ∈ [ω]ω. By the fact that U1 ⊆ U we know that
c(α, `) = m for every α ∈ U1 and ` ∈ B, so U1 ×B is monochromatic under

c, yielding the positive relation
(
λ
ω

)
→
(
λ
ω

)1,1
n

, as required.
�2.4

Remark 2.5. Assume λ is an uncountable regular cardinal. Denote by(
λ
µ

)
→st

(
λ
µ

)1,1
n

the assertion that for every coloring c : λ × µ → n there

exists B ∈ [µ]µ and a stationary subset U ⊆ λ so that c � U ×B is constant.

Our proof gives the consistency of
(
λ
ω

)
→st

(
λ
ω

)1,1
n

, when λ is regular.

Recall that if cf(κ) > ℵ0 and κ < s then
(
κ
ω

)
→
(
κ
ω

)1,1
2

(this is claim 1.4
in [5]). We can use this claim for accomplishing the proof of 2.3, as shown
below:
Proof of 2.3:
Choose θ = ℵ2 ≤ µ, cf(µ) = ℵ1 and µ = µℵ0 . Use the iteration in the proof
of 2.4 over some ordinal δ ∈ (µ, µ+) so that cf(δ) = ℵ2. By the properties of
the Mathias forcing we have s = θ = ℵ2 in the extension. For showing this,
we shall prove that ℵ1 < s ≤ ℵ2.

If {Sα : α < κ} is a splitting family in VP and κ < ℵ2, then there exists
an ordinal j < δ such that Sα ∈ VPj for every α < κ (since cf(δ) = ω2).
But then, the Mathias real added in the j-th stage is almost included in Sα
or its complement for every α < κ, a contratiction. Hence ℵ1 < s.

On the other hand, one can introduce a splitting family of size ℵ2 in VP.
Along a finite support iteration, a Cohen real is added at every limit stage.
Choose a cofinal sequence of limit ordinals in δ, of length ℵ2. Since every
Cohen real is a splitting real (over the old universe), the collection of the
Cohen reals along the cofinal sequence establishes a splitting family of size
ℵ2, so s ≤ ℵ2 in VP.

It follows from the remark above that
(
ω1

ω

)
→
(
ω1

ω

)1,1
2

since ω1 = cf(ω1) <

s. On the other hand, µ = 2ℵ0 so cf(2ℵ0) = ℵ1, hence Φℵ1 as required.
�2.3
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4. Paul Erdős, András Hajnal, Attila Máté, and Richard Rado, Combinatorial set the-
ory: partition relations for cardinals, Studies in Logic and the Foundations of Math-
ematics, vol. 106, North-Holland Publishing Co., Amsterdam, 1984. MR MR795592
(87g:04002)

5. Shimon Garti and Saharon Shelah, Strong polarized relations for the continuum, An-
nals of combinatorics, accepted.

6. , Partition calculus and cardinal invariants, The Journal of Mathematical So-
ciety of Japan (submitted).

7. David Milovich, Splitting families and the Noetherian type of βω\ω, J. Symbolic Logic
73 (2008), no. 4, 1289–1306. MR 2467217 (2010e:03063)

8. Saharon Shelah, Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Claren-
don Press Oxford University Press, New York, 1994, , Oxford Science Publications.
MR MR1318912 (96e:03001)

9. , Proper and improper forcing, second ed., Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1998. MR 1623206 (98m:03002)

10. Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology,
North-Holland, Amsterdam, 1984, pp. 111–167. MR MR776622 (87f:54008)

11. Neil H. Williams, Combinatorial set theory, studies in logic and the foundations of
mathematics, vol. 91, North-Holland publishing company, Amsterdam, New York,
Oxford, 1977.
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